


Linear (v) and angular (   )ω
velocity vectors

Velocity component vectors

Torque vectors (   )�

Displacement and
position vectors

Force vectors (F)
Force component vectors

Acceleration vectors (a )
Acceleration component vectors

Linear (p) and
angular (L)
momentum vectors

Linear or rotational
motion directions

Springs

Pulleys

Mechanics

Electricity and Magnetism

Light rays

Lenses and prisms

Mirrors

Objects

Images

Light and Optics

Electric fields

Magnetic fields

Positive charges

Negative charges

Resistors

Batteries and other
DC power supplies

Switches

Capacitors

Ground symbol

AC sources

Ammeters

Voltmeters

Inductors (coils)

V

A

+

–

– +

Pedagogical Color Chart



Some Physical Constants

Quantity Symbol Valuea

Atomic mass unit u 1.660 538 73 (13) � 10�27 kg
931.494 013 (37) MeV/c2

Avogadro’s number NA 6.022 141 99 (47) � 1023 particles/mol

Bohr magneton 9.274 008 99 (37) � 10�24 J/T

Bohr radius 5.291 772 083 (19) � 10�11 m

Boltzmann’s constant 1.380 650 3 (24) � 10�23 J/K

Compton wavelength 2.426 310 215 (18) � 10�12 m 

Coulomb constant 8.987 551 788 � 109 N·m2/C2 (exact)

Deuteron mass md 3.343 583 09 (26) � 10�27 kg
2.013 553 212 71 (35) u

Electron mass me 9.109 381 88 (72) � 10�31 kg
5.485 799 110 (12) � 10�4 u
0.510 998 902 (21) MeV/c2

Electron volt eV 1.602 176 462 (63) � 10�19 J
Elementary charge e 1.602 176 462 (63) � 10�19 C
Gas constant R 8.314 472 (15) J/mol·K
Gravitational constant G 6.673 (10) � 10�11 N·m2/kg2

Josephson frequency–voltage ratio 4.835 978 98 (19) � 1014 Hz/V

Magnetic flux quantum 2.067 833 636 (81) � 10�15 T·m2

Neutron mass mn 1.674 927 16 (13) � 10�27 kg
1.008 664 915 78 (55) u
939.565 330 (38) MeV/c 2

Nuclear magneton 5.050 783 17 (20) � 10�27 J/T

Permeability of free space �0 4� � 10�7 T·m/A (exact)

Permittivity of free space 8.854 187 817 � 10�12 C2/N·m2 (exact)

Planck’s constant h 6.626 068 76 (52) � 10�34 J·s

1.054 571 596 (82) � 10�34 J·s

Proton mass mp 1.672 621 58 (13) � 10�27 kg
1.007 276 466 88 (13) u
938.271 998 (38) MeV/c2

Rydberg constant RH 1.097 373 156 854 9 (83) � 107 m�1

Speed of light in vacuum c 2.997 924 58 � 108 m/s (exact)

Note: These constants are the values recommended in 1998 by CODATA, based on a least-squares adjustment of data from different
measurements. For a more complete list, see P. J. Mohr and B. N. Taylor, “CODATA recommended values of the fundamental
physical constants: 1998.” Rev. Mod. Phys. 72:351, 2000.

aThe numbers in parentheses for the values represent the uncertainties of the last two digits.
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Solar System Data

Mean Radius Distance from
Body Mass (kg) (m) Period (s) the Sun (m)

Mercury 3.18 � 1023 2.43 � 106 7.60 � 106 5.79 � 1010

Venus 4.88 � 1024 6.06 � 106 1.94 � 107 1.08 � 1011

Earth 5.98 � 1024 6.37 � 106 3.156 � 107 1.496 � 1011

Mars 6.42 � 1023 3.37 � 106 5.94 � 107 2.28 � 1011

Jupiter 1.90 � 1027 6.99 � 107 3.74 � 108 7.78 � 1011

Saturn 5.68 � 1026 5.85 � 107 9.35 � 108 1.43 � 1012

Uranus 8.68 � 1025 2.33 � 107 2.64 � 109 2.87 � 1012

Neptune 1.03 � 1026 2.21 � 107 5.22 � 109 4.50 � 1012

Pluto �1.4 � 1022 �1.5 � 106 7.82 � 109 5.91 � 1012

Moon 7.36 � 1022 1.74 � 106 — —
Sun 1.991 � 1030 6.96 � 108 — —

Physical Data Often Used

Average Earth–Moon distance 3.84 � 108 m
Average Earth–Sun distance 1.496 � 1011 m
Average radius of the Earth 6.37 � 106 m
Density of air (20°C and 1 atm) 1.20 kg/m3

Density of water (20°C and 1 atm) 1.00 � 103 kg/m3

Free-fall acceleration 9.80 m/s2

Mass of the Earth 5.98 � 1024 kg
Mass of the Moon 7.36 � 1022 kg
Mass of the Sun 1.99 � 1030 kg
Standard atmospheric pressure 1.013 � 105 Pa

Note: These values are the ones used in the text.

Some Prefixes for Powers of Ten

Power Prefix Abbreviation Power Prefix Abbreviation

10�24 yocto y 101 deka da
10�21 zepto z 102 hecto h
10�18 atto a 103 kilo k
10�15 femto f 106 mega M
10�12 pico p 109 giga G
10�9 nano n 1012 tera T
10�6 micro � 1015 peta P
10�3 milli m 1018 exa E
10�2 centi c 1021 zetta Z
10�1 deci d 1024 yotta Y
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Welcome to PhysicsNow, your fully
integrated system for physics tutorials
and self-assessment on the web. To get
started, just follow these simple
instructions.

Your first visit to PhysicsNow
1. Go to http://www.pop4e.com and click the

Register button.

2. The first time you visit, you will be asked to select 
your school. Choose your state from the drop-down
menu, then type in your school’s name in the box
provided and click Search. A list of schools with
names similar to what you entered will show on the
right. Find your school and click on it.

3. On the next screen, enter the access code from the 
card that came with your textbook in the “Content or
Course Access Code” box*. Enter your email address 
in the next box and click Submit.
* PhysicsNow access codes may be purchased separately. Should you need to
purchase an access code, go back to http://www.pop4e.com and click the Buy
button.

4. On the next screen, choose a password and click
Submit.

5. Lastly, fill out the registration form and click Register and Enter iLrn.
This information will only be used to contact you if there is a problem with your account.

6. You should now see the PhysicsNow homepage. Select a chapter and begin!

Note: Your account information will be sent to the email address that you entered in Step 3, so be sure 
to enter a valid email address. You will use your email address as your username the next time you login.

Second and later visits
1. Go to http://www.pop4e.com and click the Login button.

2. Enter your user name (the email address you entered when you registered) 
and your password and then click Login.

Turn the page to learn more

about PhysicsNow and how 

it can help you achieve success 

in your course!

SYSTEM REQUIREMENTS:
(Please see the System Requirements link at www.ilrn.com for complete list.)
PC: Windows 98 or higher, Internet Explorer 5.5 or higher
Mac: OS X or higher, Mozilla browser 1.2.1 or higher

TECHNICAL SUPPORT:
For online help, click on Technical Support in the upper right corner of
the screen, or contact us at:

1-800-423-0563 Monday–Friday • 8:30 A.M. to 6:00 P.M. EST
tl.support@thomson.com☎

Your quick start guide to

http://www.pop4e.com
http://www.pop4e.com
http://www.pop4e.com
www.ilrn.com


iv

P
h
y
si

cs
N

o
w

™
Q

u
ic

k
 S

ta
rt

 G
u

id
e

What do you need to learn now?

Take charge of your learning with PhysicsNow™, a powerful student-learning tool for physics! This interactive
resource helps you gauge your unique study needs, then gives you a Personalized Learning Plan that will help you
focus in on the concepts and problems that will most enhance your understanding. With PhysicsNow, you
have the resources you need to take charge of your learning!

The access code card included with this new copy of Principles of Physics is your ticket to all of the 
resources in PhysicsNow. (See the previous page for login instructions.)

Interact at every turn with the POWER and SIMPLICITY of PhysicsNow!

Begin at http://www.pop4e.com and build your own
Personalized Learning Plan now!
Log into PhysicsNow at http://www.pop4e.com by using the free access
code packaged with the text. You’ll immediately notice the system’s 
simple, browser-based format. You can build a complete Personalized
Learning Plan for yourself by taking advantage of all three powerful
components found on PhysicsNow:

� What I Know
� What I Need to Learn
� What I’ve Learned

The best way to maximize the system and optimize your time is to start by taking the Pre-Test ���

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

PhysicsNow combines Serway and Jewett’s best-selling Principles 
of Physics with carefully crafted media resources that will help you
learn. This dynamic resource and the Fourth Edition of the text 
were developed in concert, to enhance each other and provide you
with a seamless, integrated learning system.

As you work through the text, you
will see notes that direct you to
the media-enhanced activities in
PhysicsNow. This precise page-
by-page integration means you’ll
spend less time flipping through
pages or navigating websites
looking for useful exercises. These
multimedia exercises will make all
the difference when you’re

studying and taking exams . . . after all, it’s far easier to understand
physics if it’s seen in action, and PhysicsNow enables you to become a
part of the action! 

APPLICATIONS OF NEWTON’S LAWS ❚ 111

The Atwood MachineEXAMPLE 4.4INTERACTIVE

tion with up as positive for m1 and down as positive for
m2, as shown in Active Figure 4.12a.

With this sign convention, the net force exerted on
m 1 is T � m1g, whereas the net force exerted on m2 is
m2g � T. We have chosen the signs of the forces to be
consistent with the choices of the positive direction for
each object.

When Newton’s second law is applied to m1, we find

(1)

Similarly, for m 2 we find

(2)

Note that a is the same for both objects. When (2) is
added to (1), T cancels and we have

Solving for the acceleration a give us

(3)

If m2 � m1, the acceleration given by (3) is positive: m1
goes up and m2 goes down. Is that consistent with your
mental representation? If m1 � m 2, the acceleration is
negative and the masses move in the opposite direc-
tion.

If (3) is substituted into (1), we find

(4)

To finalize the problem, let us consider some special
cases. For example, when m1 � m 2, (3) and (4) give us
a � 0 and T � m 1g � m 2g, as we would intuitively ex-
pect for the balanced case. Also, if m 2 �� m1, a � g (a
freely falling object) and T � 0. For such a large mass

� 2m1m2

m1 � m2
� gT  �

� m2 � m1

m1 � m2
� ga  �

�m1g � m2g � m1a � m2a

� Fy � m2g � T � m2a

� Fy � T � m1g � m1a

When two objects with unequal masses are hung
vertically over a light, frictionless pulley as in Active
Figure 4.12a, the arrangement is called an Atwood
machine. The device is sometimes used in the laboratory
to measure the free-fall acceleration. Calculate the
magnitude of the acceleration of the two objects and
the tension in the string.

Solution Conceptualize the problem by thinking about
the mental representation suggested by Active Figure
4.12a: As one object moves upward, the other object
moves downward. Because the objects are connected by
an inextensible string, they must have the same magni-
tude of acceleration. The objects in the Atwood ma-
chine are subject to the gravitational force as well as to
the forces exerted by the strings connected to them. In
categorizing the problem, we model the objects as parti-
cles under a net force.

We begin to analyze the problem by drawing free-
body diagrams for the two objects, as in Active Figure
4.12b. Two forces act on each object: the upward force

exerted by the string and the downward gravitational
force. In a problem such as this one in which the pulley
is modeled as massless and frictionless, the tension in
the string on both sides of the pulley is the same. If the
pulley has mass or is subject to a friction force, the ten-
sions in the string on either side of the pulley are not
the same and the situation requires the techniques of
Chapter 10.

In these types of problems, involving strings that pass
over pulleys, we must be careful about the sign conven-
tion. Notice that if m1 goes up, m2 goes down. There-
fore, m1 going up and m2 going down should be repre-
sented equivalently as far as a sign convention is
concerned. We can do so by defining our sign conven-

T
:

(Interactive Example 4.4) The
Atwood machine. (a) Two objects
connected by a light string over a
frictionless pulley. (b) The free-
body diagrams for m1 and m2.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 4.12 to ad-
just the masses of the objects on
the Atwood machine and observe
the motion.

ACTIVE FIGURE 4.12

(a)

m1
m2

+

+

(b)

m1

T

m1g

T

m2g

m2

www.pop4e.com
http://www.pop4e.com
http://www.pop4e.com
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What I Know
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 

� You take a Pre-Test to measure your level of
comprehension after reading a chapter. Each Pre-Test
includes approximately 15 questions. The Pre-Test is
your first step in creating your custom-tailored
Personalized Learning Plan.

� Once you’ve completed the “What
I Know” Pre-Test, you are presented
with a detailed Personalized Learning
Plan, with text references that outline
the elements you need to review in order to master the
chapter’s most essential concepts. This roadmap to
concept mastery guides you to exercises designed to
improve skills and to increase your understanding of
the basic concepts.

At each stage, the Personalized Learning Plan refers to
Principles of Physics to reinforce the connection between
text and technology as a powerful learning tool.

An item-by-item
analysis gives
you feedback on
each of your
answers.

What I Need to Learn
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■  ■ ■ ■ ■ ■ ■ 

Once you’ve completed the Pre-Test, you’re ready to 
work through tutorials and exercises that will help you
master the concepts that are essential to your success in
the course.

ACTIVE FIGURES
A remarkable bank of more than 200 animated figures
helps you visualize physics in action. Taken straight 
from illustrations in the text, these Active Figures help
you master key concepts from the book. By interacting
with the animations and accompanying quiz questions,
you come to an even greater understanding of the
concepts you need to learn from each chapter. �  

Each figure is titled so you can easily identify the
concept you are seeing. The final tab features a
Quiz. The Explore tab guides you through the
animation so you understand what you should be
seeing and learning.

� The brief Quiz ensures that you mastered the concept
played out in the animation—and gives you feedback on
each response.

Continued on the next page
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What I Need to Learn Continued

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

COACHED PROBLEMS

Engaging Coached Problems reinforce the lessons in the
text by taking a step-by-step approach to problem-solving
methodology. Each Coached Problem gives you the option
of breaking down a problem from the text into steps with
feedback to ‘coach’ you toward the solution. There are
approximately five Coached Problems per chapter.

You can choose to work through the Coached Problems by
inputting an answer directly or working in steps with the
program. If you choose to work in steps, the problem is
solved with the same problem-solving methodology used
in Principles of Physics to reinforce these critical skills.
Once you’ve worked through the problem, you can click
Try Another to change the variables in the problem for
more practice.

� Also built into each Coached Problem is a link to
Brooks/Cole’s exclusive vMentor™ web-based tutoring
service site that lets you interact directly with a live 
physics tutor. If you’re stuck on math, a MathAssist link 
on each Coached Problem launches tutorials on math
specific to that problem.

INTERACTIVE EXAMPLES

You’ll strengthen your problem-solving and
visualization skills with Interactive Examples.
Extending selected examples from the text, Interactive
Examples utilize the proven and trusted problem-
solving methodology presented in Principles of
Physics. These animated learning modules give you 
all the tools you need to solve a problem type—you’re
then asked to apply what you have learned to different
scenarios. You will find approximately two Interactive
Examples for each chapter of the text.�

You’re guided through the steps to solve the
problem and then asked to input an answer in a
simulation to see if your result is correct.
Feedback is instantaneous.
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What I’ve Learned
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

� After working through the problems highlighted
in your Personalized Learning Plan, you move on to 
a Post-Test, about 15 questions per chapter.

Also available to help you succeed in your course
Student Solutions Manual and Study Guide
Volume I (Ch. 1–15) ISBN: 0-534-49145-6
Volume II (Ch. 16–31) ISBN: 0-534-49147-2
These manuals contain detailed solutions to approximately 20-percent of the end-
of-chapter problems. These problems are indicated in the textbook with boxed
problem numbers. Each manual also features a skills section, important notes 
from key sections of the text, and a list of important equations and concepts.

Core Concepts in Physics CD-ROM,Version 2.0
ISBN: 0-03-033731-3
Explore the core of physics with this powerful CD-ROM/workbook program!
Content screens provide in-depth coverage of abstract and often difficult
principles, building connections between physical concepts and mathematics.
The presentation contains more than 350 movies—both animated and live
video—including laboratory demonstrations, real-world examples, graphic
models, and step-by-step explanations of essential mathematics. An
accompanying workbook contains practical physics problems directly related
to the presentation, along with worked solutions. Package includes three 
discs and a workbook.

� Once you’ve completed the Post-Test, you
receive your percentage score and specific
feedback on each answer. The Post-Tests give
you a new set of questions with each attempt,
so you can take them over and over as you
continue to build your knowledge and skills 
and master concepts.
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Welcome to your MCAT Test Preparation Guide
The MCAT Test Preparation Guide makes your copy of Principles of Physics, Fourth Edition, the most comprehensive
MCAT study tool and classroom resource in introductory physics. The grid, which begins below and continues on the
next two pages, outlines twelve concept-based study courses for the physics part of your MCAT exam. Use it to 
prepare for the MCAT, class tests, and your homework assignments.

Vectors

Skill Objectives: To calculate distance, calculate 
angles between vectors, calculate magnitudes,
and to understand vectors.

Review Plan:

Distance and Angles: Chapter 1
� Section 1.6
� Active Figure 1.4
� Chapter Problem 33

Using Vectors: Chapter 1
� Sections 1.7–1.9
� Quick Quizzes 1.4–1.8
� Examples 1.6–1.8
� Active Figures 1.9, 1.16
� Chapter Problems 37, 38, 45, 47, 51, 53

Motion

Skill Objectives: To understand motion in two 
dimensions, to calculate speed and velocity, to 
calculate centripetal acceleration, and 
acceleration in free fall problems.

Review Plan:

Motion in 1 Dimension: Chapter 2
� Sections 2.1, 2.2, 2.4, 2.6, 2.7
� Quick Quizzes 2.3–2.6
� Examples 2.1, 2.2, 2.4–2.10
� Active Figure 2.12
� Chapter Problems 3, 5,13, 19, 21, 29, 31, 33

Motion in 2 Dimensions: Chapter 3
� Sections 3.1–3.3
� Quick Quizzes 3.2, 3.3
� Examples 3.1–3.4
� Active Figures 3.4, 3.5, 3.8
� Chapter Problems 1, 7, 15

Centripetal Acceleration: Chapter 3
� Sections 3.4, 3.5
� Quick Quizzes 3.4, 3.5
� Example 3.5
� Active Figure 3.12
� Chapter Problems 23, 31

Force

Skill Objectives: To know and understand Newton’s 
Laws, to calculate resultant forces and weight.

Review Plan:

Newton’s Laws: Chapter 4
� Sections 4.1–4.6
� Quick Quizzes 4.1–4.6
� Example 4.1
� Chapter Problem 7

Resultant Forces: Chapter 4
� Section 4.7
� Quick Quiz 4.7
� Example 4.6
� Chapter Problems 27, 35

Gravity: Chapter 11
� Section 11.1
� Quick Quiz 11.1
� Chapter Problem 3

Equilibrium

Skill Objectives: To calculate momentum and 
impulse, center of gravity, and torque.

Review Plan:

Momentum: Chapter 8
� Section 8.1
� Quick Quiz 8.2
� Examples 8.2, 8.3

Impulse: Chapter 8
� Sections 8.2, 8.3
� Quick Quizzes 8.3, 8.4
� Examples 8.4, 8.6
� Active Figures 8.8, 8.9
� Chapter Problems 7, 9, 15, 19, 21

Torque: Chapter 10
� Sections 10.5, 10.6
� Quick Quiz 10.7
� Example 10.8
� Chapter Problems 21, 27
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Work

Skill Objectives: To calculate friction, work,
kinetic energy, power, and potential energy.

Review Plan:

Friction: Chapter 5
� Section 5.1
� Quick Quizzes 5.1, 5.2

Work: Chapter 6
� Section 6.2
� Chapter Problems 1, 3

Kinetic Energy: Chapter 6 
� Section 6.5
� Example 6.4

Power: Chapter 6
� Section 6.8
� Chapter Problem 35

Potential Energy: Chapter 7
� Sections 7.1, 7.2
� Quick Quizzes 7.1, 7.2
� Chapter Problem 5

Waves

Skill Objectives: To understand interference of waves,
to calculate basic properties of waves, properties
of springs, and properties of pendulums.

Review Plan:

Wave Properties: Chapters 12, 13
� Sections 12.1, 12.2, 13.1-13.3
� Quick Quiz 13.1
� Examples 12.1, 13.2
� Active Figures 12.1, 12.2, 12.4, 12.6, 12.10
Chapter 13
� Problem 9

Pendulum: Chapter 12
� Sections 12.4, 12.5
� Quick Quizzes 12.3, 12.4
� Examples 12.5, 12.6
� Active Figure 12.11
� Chapter Problem 23

Interference: Chapter 14
� Sections 14.1–14.3
� Quick Quiz 14.1
� Active Figures 14.1–14.3

Matter

Skill Objectives: To calculate density, pressure,
specific gravity, and flow rates.

Review Plan:

Density: Chapters 1, 15
� Sections 1.1, 15.2

Pressure: Chapter 15
� Sections 15.1–15.4
� Quick Quizzes 15.1–15.4
� Examples 15.1, 15.3
� Chapter Problems 3, 7, 19, 23, 27

Flow rates: Chapter 15
� Section 15.6
� Quick Quiz 15.5

Sound

Skill Objectives: To understand interference of
waves, calculate properties of waves, the speed of
sound, Doppler shifts, and intensity.

Review Plan:

Sound Properties: Chapters 13, 14
� Sections 13.3, 13.4, 13.7, 13.8, 14.4
� Quick Quizzes 13.2, 13.3, 13.6
� Example 14.3
� Active Figures 13.6–13.8, 13.21, 13.22
Chapter 13
� Problems 3, 17, 23, 29, 35, 37
Chapter 14
� Problem 23

Interference/Beats: Chapter 14
� Sections 14.1, 14.2, 14.6
� Quick Quiz 14.6
� Active Figures 14.1–14.3, 14.12
� Chapter Problems 5, 39, 41
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Light

Skill Objectives: To understand mirrors and 
lenses, to calculate the angles of reflection, to use
the index of refraction, and to find focal lengths.

Review Plan:

Reflection: Chapter 25
� Sections 25.1–25.3
� Example 25.1
� Active Figure 25.5

Refraction: Chapter 25
� Sections 25.4, 25.5
� Quick Quizzes 25.2–25.5
� Example 25.2
� Chapter Problems 7, 13

Mirrors and Lenses: Chapter 26
� Sections 26.1–26.4
� Quick Quizzes 26.1–26.6
� Examples 26.1–26.7
� Active Figures 26.2, 26.24
� Chapter Problems 23, 27, 31, 35

Electrostatics

Skill Objectives: To understand and calculate the 
electric field, the electrostatic force, and the 
electric potential.

Review Plan:

Coulomb’s Law: Chapter 19
� Section 19.2–19.4
� Quick Quiz 19.1–19.3
� Examples 19.1, 19.2
� Active Figure 19.7
� Chapter Problems 3, 5

Electric Field: Chapter 19
� Sections 19.5, 19.6
� Quick Quizzes 19.4, 19.5
� Active Figures 19.10, 19.19, 19.21

Potential: Chapter 20
� Sections 20.1–20.3
� Examples 20.1, 20.2
� Active Figure 20.6
� Chapter Problems 1, 5, 11, 13

Circuits

Skill Objectives: To understand and calculate 
current, resistance, voltage, and power, and to 
use circuit analysis.

Review Plan:

Ohm’s Law: Chapter 21
� Sections 21.1, 21.2
� Quick Quizzes 21.1, 21.2
� Examples 21.1, 21.2
� Chapter Problem 7

Power and energy: Chapter 21
� Section 21.5
� Quick Quiz 21.4
� Example 21.5
� Active Figure 21.10
� Chapter Problems 17, 19, 23

Circuits: Chapter 21
� Section 21.6–21.8
� Quick Quizzes 21.5–21.8
� Example 21.7–21.9
� Active Figures 21.13, 21.14, 21.16
� Chapter Problems 25, 29, 35

Atoms

Skill Objectives: To understand decay processes 
and nuclear reactions and to calculate half-life.

Review Plan:

Atoms: Chapter 30
� Sections 30.1
� Quick Quizzes 30.1, 30.2
� Active Figure 30.1

Decays: Chapter 30
� Sections 30.3, 30.4
� Quick Quizzes 30.3–30.6
� Examples 30.3–30.6
� Active Figures 30.11–30.14, 30.16, 30.17
� Chapter Problems 13, 19, 23

Nuclear reactions: Chapter 30
� Sections 30.5
� Active Figure 30.21
� Chapter Problems 27, 29
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P R E F A C E

P rinciples of Physics is designed for a one-year introductory calculus-based physics course
for engineering and science students and for premed students taking a rigorous
physics course. This fourth edition contains many new pedagogical features—most

notably, an integrated Web-based learning system and a structured problem-solving strategy
that uses a modeling approach. Based on comments from users of the third edition and re-
viewers’ suggestions, a major effort was made to improve organization, clarity of presentation,
precision of language, and accuracy throughout.

This project was conceived because of well-known problems in teaching the introductory
calculus-based physics course. The course content (and hence the size of textbooks) contin-
ues to grow, while the number of contact hours with students has either dropped or re-
mained unchanged. Furthermore, traditional one-year courses cover little if any physics be-
yond the 19th century.

In preparing this textbook, we were motivated by the spreading interest in reforming the
teaching and learning of physics through physics education research. One effort in this di-
rection was the Introductory University Physics Project (IUPP), sponsored by the American
Association of Physics Teachers and the American Institute of Physics. The primary goals and
guidelines of this project are to

• Reduce course content following the “less may be more” theme;
• Incorporate contemporary physics naturally into the course;
• Organize the course in the context of one or more “story lines”;
• Treat all students equitably.

Recognizing a need for a textbook that could meet these guidelines several years ago, we
studied the various proposed IUPP models and the many reports from IUPP committees.
Eventually, one of us (RAS) became actively involved in the review and planning of one spe-
cific model, initially developed at the U.S. Air Force Academy, entitled “A Particles Approach
to Introductory Physics.” Part of the summer of 1990 was spent at the Academy working with
Colonel James Head and Lt. Col. Rolf Enger, the primary authors of the Particles model, and
other members of that department. This most useful collaboration was the starting point of
this project. 

The other author ( JWJ) became involved with the IUPP model called “Physics in Con-
text,” developed by John Rigden (American Institute of Physics), David Griffiths (Oregon
State University), and Lawrence Coleman (University of Arkansas at Little Rock). This in-
volvement led to the contextual overlay that is used in this book and described in detail later
in the Preface.

The combined IUPP approach in this book has the following features:

• It is an evolutionary approach (rather than a revolutionary approach), which should meet
the current demands of the physics community.

• It deletes many topics in classical physics (such as alternating current circuits and optical
instruments) and places less emphasis on rigid object motion, optics, and
thermodynamics.

• Some topics in contemporary physics, such as special relativity, energy quantization, and
the Bohr model of the hydrogen atom, are introduced early in the textbook.

• A deliberate attempt is made to show the unity of physics.
• As a motivational tool, the textbook connects physics principles to interesting social issues,

natural phenomena, and technological advances.

OBJECTIVES
This introductory physics textbook has two main objectives: to provide the student with a
clear and logical presentation of the basic concepts and principles of physics, and to
strengthen an understanding of the concepts and principles through a broad range of inter-
esting applications to the real world. To meet these objectives, we have emphasized sound

xix



physical arguments and problem-solving methodology. At the same time, we have attempted
to motivate the student through practical examples that demonstrate the role of physics in
other disciplines, including engineering, chemistry, and medicine.

CHANGES  IN  THE  FOURTH  EDITION
A number of changes and improvements have been made in the fourth edition of this text.
Many of these are in response to recent findings in physics education research and to com-
ments and suggestions provided by the reviewers of the manuscript and instructors using the
first three editions. The following represent the major changes in the fourth edition:

New Context The context overlay approach is described below under “Text Features.” The
fourth edition introduces a new Context for Chapters 2–7, “Alternative-Fuel Vehicles.” This
context addresses the current social issue of the depletion of our supply of petroleum and
the efforts being made to develop new fuels and new types of automobiles to respond to this
situation.

Active Figures Many diagrams from the text have been animated to form Active Figures,
part of the new PhysicsNow™ integrated Web-based learning system. There are over 150
Active Figures available at www.pop4e.com. By visualizing phenomena and processes that
cannot be fully represented on a static page, students greatly increase their conceptual
understanding. An addition to the figure caption, marked with the icon,
describes briefly the nature and contents of the animation. In addition to viewing animations
of the figures, students can change variables to see the effects, conduct suggested
explorations of the principles involved in the figure, and take and receive feedback on
quizzes related to the figure.

Interactive Examples Sixty-seven of the worked examples have been identified as
interactive. As part of the PhysicsNow™ Web-based learning system, students can engage in
an extension of the problem solved in the example. This often includes elements of both
visualization and calculation, and may also involve prediction and intuition-building.
Interactive Examples are available at www.pop4e.com.

Quick Quizzes Quick Quizzes have been cast in an objective format, including multiple
choice, true-false, and ranking. Quick Quizzes provide students with opportunities to test
their understanding of the physical concepts presented. The questions require students to
make decisions on the basis of sound reasoning, and some of them have been written to help
students overcome common misconceptions. Answers to all Quick Quiz questions are found
at the end of each chapter. Additional Quick Quizzes that can be used in classroom teaching
are available on the instructor’s companion Web site. Many instructors choose to use such
questions in a “peer instruction” teaching style, but they can be used in standard quiz format
as well. To support the use of classroom response systems, we have coded the Quick Quiz
questions so that they may be used within the response system of your choice.

General Problem-Solving Strategy A general strategy to be followed by the student is
outlined at the end of Chapter 1 and provides students with a structured process for solving
problems. In the remaining chapters, the steps of the Strategy appear explicitly in one
example per chapter so that students are encouraged throughout the course to follow the
procedure.

Line-by-Line Revision The text has been carefully edited to improve clarity of presentation
and precision of language. We hope that the result is a book both accurate and enjoyable to
read.

Problems In an effort to improve variety, clarity and quality, the end-of-chapter
problems were substantially revised. Approximately 15% of the problems (about 300) are
new to this edition. The new problems especially are chosen to include interesting
applications, notably biological applications. As in previous editions, many problems
require students to make order-of-magnitude calculations. More problems now explicitly
ask students to design devices and to change among different representations of a
situation. All problems have been carefully edited and reworded where necessary.
Solutions to approximately 20% of the end-of-chapter problems are included in the
Student Solutions Manual and Study Guide. Boxed numbers identify these problems. A
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smaller subset of problems will be available with coached solutions as part of the
PhysicsNow™ Web-based learning system and will be accessible to students and
instructors using Principles of Physics. These coached problems are identified with the

icon.

Biomedical Applications For biology and premed students, icons point the way to
various practical and interesting applications of physical principles to biology and medicine.
Where possible, an effort was made to include more problems that would be relevant to
these disciplines.

TEXT FEATURES
Most instructors would agree that the textbook selected for a course should be the student’s
primary guide for understanding and learning the subject matter. Furthermore, the text-
book should be easily accessible as well as styled and written to facilitate instruction and
learning. With these points in mind, we have included many pedagogical features that are in-
tended to enhance the textbook’s usefulness to both students and instructors. These features
are as follows:

Style To facilitate rapid comprehension, we have attempted to write the book in a clear,
logical, and engaging style. The somewhat informal and relaxed writing style is intended to
increase reading enjoyment. New terms are carefully defined, and we have tried to avoid the
use of jargon.

Organization We have incorporated a “context overlay” scheme into the textbook, in
response to the “Physics in Context” approach in the IUPP. This feature adds interesting
applications of the material to real issues. We have developed this feature to be flexible, so
that the instructor who does not wish to follow the contextual approach can simply ignore
the additional contextual features without sacrificing complete coverage of the existing
material. We believe, though, that the benefits students will gain from this approach will be
many.

The context overlay organization divides the text into nine sections, or “Contexts,” after
Chapter 1, as follows:
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Context
Number Context Physics Topics Chapters

1 Alternative-Fuel Vehicles Classical mechanics 2 – 7
2 Mission to Mars Classical mechanics 8 – 11
3 Earthquakes Vibrations and waves 12 – 14
4 Search for the Titanic Fluids 15
5 Global Warming Thermodynamics 16 – 18
6 Lightning Electricity 19 – 21
7 Magnetic Levitation Vehicles Magnetism 22 – 23
8 Lasers Optics 24 – 27
9 The Cosmic Connection Modern physics 28 – 31

Each Context begins with an introduction, leading to a “central question” that motivates
study within the Context. The final section of each chapter is a “Context Connection,” which
discusses how the material in the chapter relates to the Context and to the central question.
The final chapter in each Context is followed by a “Context Conclusion.” Each Conclusion
uses the principles learned in the Context to respond fully to the central question. Each
chapter, as well as the Context Conclusions, includes problems related to the context
material.

Pitfall Prevention These features are placed in the margins of the text and address
common student misconceptions and situations in which students often follow unproductive
paths. Over 140 Pitfall Preventions are provided to help students avoid common mistakes
and misunderstandings.



Modeling A modeling approach, based on four types of models commonly used by
physicists, is introduced to help students understand they are solving problems that
approximate reality. They must then learn how to test the validity of the model. This
approach also helps students see the unity in physics, as a large fraction of problems can be
solved with a small number of models. The modeling approach is introduced in Chapter 1.

Alternative Representations We emphasize alternative representations of information,
including mental, pictorial, graphical, tabular, and mathematical representations. Many
problems are easier to solve if the information is presented in alternative ways, to reach the
many different methods students use to learn.

Problem-Solving Strategies We have included specific strategies for solving the types of
problems featured both in the examples and in the end-of-chapter problems. These specific
strategies are structured according to the steps in the General Problem-Solving Strategy
introduced in Chapter 1. This feature helps students identify necessary steps in solving
problems and eliminate any uncertainty they might have.

Worked Examples A large number of worked examples of varying difficulty are presented
to promote students’ understanding of concepts. In many cases, the examples serve as
models for solving the end-of-chapter problems. Because of the increased emphasis on
understanding physical concepts, many examples are conceptual in nature. The examples
are set off in boxes, and the answers to examples with numerical solutions are highlighted
with a tan screen.

Thinking Physics We have included many Thinking Physics examples throughout each
chapter. These questions relate the physics concepts to common experiences or extend the
concepts beyond what is discussed in the textual material. Immediately following each of
these questions is a “Reasoning” section that responds to the question. Ideally, the student
will use these features to better understand physical concepts before being presented with
quantitative examples and working homework problems.

Previews Most chapters begin with a brief preview that includes a discussion of the
particular chapter’s objectives and content.

Important Statements and Equations Most important statements and definitions are set
in boldface type or are highlighted with a blue outline for added emphasis and ease of
review. Similarly, important equations are highlighted with a tan background screen to
facilitate location.

Marginal Notes Comments and notes appearing in the margin can be used to locate
important statements, equations, and concepts in the text.

Illustrations and Tables The readability and effectiveness of the text material and worked
examples are enhanced by the large number of figures, diagrams, photographs, and tables.
Full color adds clarity to the artwork and makes illustrations as realistic as possible. For
example, vectors are color coded, and curves in graphs are drawn in color. The color
photographs have been carefully selected, and their accompanying captions have been
written to serve as an added instructional tool.

Mathematical Level We have introduced calculus gradually, keeping in mind that students
often take introductory courses in calculus and physics concurrently. Most steps are shown
when basic equations are developed, and reference is often made to mathematical
appendices at the end of the textbook. Vector products are discussed in detail later in the
text, where they are needed in physical applications. The dot product is introduced in
Chapter 6, which addresses work and energy; the cross product is introduced in Chapter 10,
which deals with rotational dynamics.

Significant Figures Significant figures in both worked examples and end-of-chapter
problems have been handled with care. Most numerical examples and problems are worked
out to either two or three significant figures, depending on the accuracy of the data
provided.

Questions Questions requiring verbal responses are provided at the end of each chapter.
Over 540 questions are included in the text. Some questions provide the student with a
means of self-testing the concepts presented in the chapter. Others could serve as a basis for
initiating classroom discussions. Answers to selected questions are included in the Student
Solutions Manual and Study Guide.
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Problems The end-of-chapter problems are more numerous in this edition and more
varied (in all, over 1980 problems are given throughout the text). For the convenience of
both the student and the instructor, about two thirds of the problems are keyed to specific
sections of the chapter, including Context Connection sections. The remaining problems,
labeled “Additional Problems,” are not keyed to specific sections. The icon identifies
problems dealing with applications to the life sciences and medicine. One or more problems
in each chapter ask students to make an order-of-magnitude calculation based on their own
estimated data. Other types of problems are described in more detail below. Answers to odd-
numbered problems are provided at the end of the book.

Usually, the problems within a given section are presented so that the straightforward
problems (those with black problem numbers) appear first. For ease of identification, the
numbers of intermediate-level problems are printed in blue, and those of challenging prob-
lems are printed in magenta.

Solutions to approximately 20% of the problems in each chapter are in the Student Solu-
tions Manual and Study Guide. Among these, selected problems are identified with

icons and have coached solutions available at www.pop4e.com.

Review Problems Many chapters include review problems requiring the student to relate
concepts covered in the chapter to those discussed in previous chapters. These problems can
be used by students in preparing for tests and by instructors in routine or special assignments
and for classroom discussions.

Paired Problems As an aid for students learning to solve problems symbolically, paired
numerical and symbolic problems are included in Chapters 1 through 4 and 16 through 21.
Paired problems are identified by a common background screen.

Computer- and Calculator-Based Problems Many chapters include one or more problems
whose solution requires the use of a computer or graphing calculator. Modeling of physical
phenomena enables students to obtain graphical representations of variables and to perform
numerical analyses.

Units The international system of units (SI) is used throughout the text. The U.S.
customary system of units is used only to a limited extent in the chapters on mechanics and
thermodynamics.

Summaries Each chapter contains a summary that reviews the important concepts and
equations discussed in that chapter.

Appendices and Endpapers Several appendices are provided at the end of the textbook.
Most of the appendix material represents a review of mathematical concepts and techniques
used in the text, including scientific notation, algebra, geometry, trigonometry, differential
calculus, and integral calculus. Reference to these appendices is made throughout the text.
Most mathematical review sections in the appendices include worked examples and exercises
with answers. In addition to the mathematical reviews, the appendices contain tables of
physical data, conversion factors, atomic masses, and the SI units of physical quantities, as
well as a periodic table of the elements and a list of Nobel Prize recipients. Other useful
information, including fundamental constants and physical data, planetary data, a list of
standard prefixes, mathematical symbols, the Greek alphabet, and standard abbreviations of
units of measure, appears on the endpapers.

ANCILLARIES 
The ancillary package has been updated substantially and streamlined in response to sugges-
tions from users of the third edition. The most essential parts of the student package are the
two-volume Student Solutions Manual and Study Guide with a tight focus on problem-solving
and the Web-based PhysicsNow™ learning system. Instructors will find increased support for
their teaching efforts with new electronic materials.

Student Ancillaries
Student Solutions Manual and Study Guide by John R. Gordon, Ralph McGrew, and
Raymond A. Serway. This two-volume manual features detailed solutions to approximately
20% of the end-of-chapter problems from the textbook. Boxed numbers identify those
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problems in the textbook whose complete solutions are found in the manual. The manual
also features a summary of important chapter notes, a list of important equations and
concepts, a short list of important study skills and strategies as well as answers to selected
end-of-chapter conceptual questions.

Students log into PhysicsNow™ at www.pop4e.com by using the free access
code packaged with this text.* The PhysicsNow™ system is made up of three interrelated
parts:

• How much do you know?
• What do you need to learn?
• What have you learned?

Students maximize their success by starting with the Pre-Test for the relevant chapter. Each
Pre-Test is a mix of conceptual and numerical questions. After completing the Pre-Test,
each student is presented with a detailed Learning Plan. The Learning Plan outlines ele-
ments to review in the text and Web-based media (Active Figures, Interactive Examples, and
Coached Problems) in order to master the chapter’s most essential concepts. After working
through these materials, students move on to a multiple-choice Post-Test presenting them
with questions similar to those that might appear on an exam. Results can be e-mailed to in-
structors.

WebTutor™ on WebCT and Blackboard WebTutor™ offers students real-time access to a
full array of study tools, including a glossary of terms and a selection of animations. 

The Brooks/Cole Physics Resource Center You’ll find additional online quizzes, Web links,
and animations at http://physics.brookscole.com.

Instructor’s Ancillaries
The following ancillaries are available to qualified adopters. Please contact your local
Brooks/Cole • Thomson sales representative for details.

Instructor’s Solutions Manual by Ralph McGrew. This single manual contains worked
solutions to all the problems in the textbook (Volumes 1 and 2) and answers to the end-of-
chapter questions. The solutions to problems new to the fourth edition are marked for easy
identification by the instructor.

Test Bank by Edward Adelson. Contains approximately 2,000 multiple-choice questions. It
is provided in print form for the instructor who does not have access to a computer. The
questions in the Test Bank are also available in electronic format with complete answers and
solutions in iLrn Computerized Testing. The number of conceptual questions has been
increased for the 4th edition.

Multimedia Manager This easy-to-use multimedia lecture tool allows you to quickly
assemble art and database files with notes to create fluid lectures. The CD-ROM set (Volume
1, Chapters 1 – 15; Volume 2, Chapters 16 – 31) includes a database of animations, video
clips, and digital art from the text as well as PowerPoint lectures and electronic files of the
Instructor’s Solutions Manual and Test Bank.

PhysicsNow™ Course Management Tools This extension to the student
tutorial environment of PhysicsNow™ allows instructors to deliver online assignments in an
environment that is familiar to students. This powerful system is your gateway to managing
on-line homework, testing, and course administration all in one shell with the proven
content to make your course a success. PhysicsNow™ is a fully integrated testing, tutorial, and
course management software accessible by instructors and students anytime, anywhere. To
see a demonstration of this powerful system, contact your Thomson representative or go to
www.pop4e.com.

PhysicsNow™ Homework Management PhysicsNow™ gives you a rich
array of problem types and grading options. Its library of assignable questions includes all of
the end-of-chapter problems from the text so that you can select the problems you want to
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include in your online homework assignments. These well-crafted problems are
algorithmically generated so that you can assign the same problem with different variables
for each student. A flexible grading tolerance feature allows you to specify a percentage
range of correct answers so that your students are not penalized for rounding errors. You can
give students the option to work an assignment multiple times and record the highest score
or limit the times they are able to attempt it. In addition, you can create your own problems
to complement the problems from the text. Results flow automatically to an exportable
grade book so that instructors are better able to assess student understanding of the
material, even prior to class or to an actual test.

iLrn Computerized Testing Extend the student experience with PhysicsNow™ into a
testing or quizzing environment. The test item file from the text is included to give you a
bank of well-crafted questions that you can deliver online or print out. As with the homework
problems, you can use the program’s friendly interface to craft your own questions to
complement the Serway/Jewett questions. You have complete control over grading,
deadlines, and availability and can create multiple tests based on the same material.

WebTutor™ on WebCT and Blackboard With WebTutor™’s text-specific, pre-formatted
content and total flexibility, instructors can easily create and manage their own personal Web
site. WebTutor™’s course management tool gives instructors the ability to provide virtual
office hours, post syllabi, set up threaded discussions, track student progress with the quizzing
material, and much more. WebTutor™ also provides robust communication tools, such as a
course calendar, asynchronous discussion, real-time chat, a whiteboard, and an integrated e-
mail system.

Additional Options for Online Homework 
WebAssign: A Web-Based Homework System WebAssign is the most utilized homework
system in physics. Designed by physicists for physicists, this system is a trusted companion to
your teaching. An enhanced version of WebAssign is available for Principles of Physics. This
enhanced version includes animations with conceptual questions and tutorial problems with
feedback and hints to guide student content mastery. Take a look at this new innovation
from the most trusted name in physics homework at www.webassign.net.

LON-CAPA: A Computer-Assisted Personalized Approach LON-CAPA is a Web-based
course management system. For more information, visit the LON-CAPA Web site at www.lon-
capa.org.

University of Texas Homework Service With this service, instructors can browse problem
banks, select those problems they wish to assign to their students, and then let the Homework
Service take over the delivery and grading. Details about and a demonstration of this service
are available at http://hw.ph.utexas.edu/hw.html.

TEACHING OPTIONS
Although some topics found in traditional textbooks have been omitted from this textbook,
instructors may find that the current text still contains more material than can be covered in a
two-semester sequence. For this reason, we would like to offer the following suggestions. If
you wish to place more emphasis on contemporary topics in physics, you should consider
omitting parts or all of Chapters 15, 16, 17, 18, 24, 25, and 26. On the other hand, if you wish
to follow a more traditional approach that places more emphasis on classical physics, you
could omit Chapters 9, 11, 28, 29, 30, and 31. Either approach can be used without any loss in
continuity. Other teaching options would fall somewhere between these two extremes by
choosing to omit some or all of the following sections, which can be considered optional:
3.6 Relative Velocity
7.7 Energy Diagrams and Stability of Equilibrium
9.9 General Relativity

10.11 Rolling Motion of Rigid Objects
12.6 Damped Oscillations
12.7 Forced Oscillations
14.7 Nonsinusoidal Wave Patterns
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15.8 Other Applications of Fluid Dynamics
16.6 Distribution of Molecular Speeds
17.7 Molar Specific Heats of Ideal Gases
17.8 Adiabatic Processes for an Ideal Gas
17.9 Molar Specific Heats and the Equipartition of Energy
20.10 Capacitors with Dielectrics
22.11 Magnetism in Matter
27.9 Diffraction of X-Rays by Crystals
28.13 Tunneling Through a Potential Energy Barrier
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T O  T H E  S T U D E N T

It is appropriate to offer some words of advice that should benefit you, the student. Be-
fore doing so, we assume you have read the Preface, which describes the various features
of the text that will help you through the course.

HOW  TO  STUDY
Very often instructors are asked, “How should I study physics and prepare for examinations?”
There is no simple answer to this question, but we would like to offer some suggestions based
on our own experiences in learning and teaching over the years.

First and foremost, maintain a positive attitude toward the subject matter, keeping in
mind that physics is the most fundamental of all natural sciences. Other science courses that
follow will use the same physical principles, so it is important that you understand and are
able to apply the various concepts and theories discussed in the text.

The Contexts in the text will help you understand how the physical principles relate to
real issues, phenomena, and applications. Be sure to read the Context Introductions, Con-
text Connection sections in each chapter, and Context Conclusions. These will be most help-
ful in motivating your study of physics.

CONCEPTS  AND  PRINCIPLES
It is essential that you understand the basic concepts and principles before attempting to
solve assigned problems. You can best accomplish this goal by carefully reading the text-
book before you attend your lecture on the covered material. When reading the text,
you should jot down those points that are not clear to you. We’ve purposely left wide
margins in the text to give you space for doing this. Also be sure to make a diligent at-
tempt at answering the questions in the Quick Quizzes as you come to them in your
reading. We have worked hard to prepare questions that help you judge for yourself how
well you understand the material. Pay careful attention to the many Pitfall Preventions
throughout the text. These will help you avoid misconceptions, mistakes, and misunder-
standings as well as maximize the efficiency of your time by minimizing adventures along
fruitless paths. During class, take careful notes and ask questions about those ideas that
are unclear to you. Keep in mind that few people are able to absorb the full meaning of
scientific material after only one reading. 

After class, several readings of the text and your notes may be necessary. Be sure to take
advantage of the features available in the PhysicsNow™ learning system, such as the Active
Figures, Interactive Examples, and Coached Problems. Your lectures and laboratory work
supplement your reading of the textbook and should clarify some of the more difficult ma-
terial. You should minimize your memorization of material. Successful memorization of pas-
sages from the text, equations, and derivations does not necessarily indicate that you under-
stand the material. 

Your understanding of the material will be enhanced through a combination of efficient
study habits, discussions with other students and with instructors, and your ability to solve the
problems presented in the textbook. Ask questions whenever you feel clarification of a con-
cept is necessary.

STUDY  SCHEDULE
It is important for you to set up a regular study schedule, preferably a daily one. Make sure
you read the syllabus for the course and adhere to the schedule set by your instructor. The
lectures will be much more meaningful if you read the corresponding textual material be-
fore attending them. As a general rule, you should devote about two hours of study time for
every hour you are in class. If you are having trouble with the course, seek the advice of the
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instructor or other students who have taken the course. You may find it necessary to seek fur-
ther instruction from experienced students. Very often, instructors offer review sessions in
addition to regular class periods. It is important that you avoid the practice of delaying study
until a day or two before an exam. More often than not, this approach has disastrous results.
Rather than undertake an all-night study session, briefly review the basic concepts and equa-
tions and get a good night’s rest. If you feel you need additional help in understanding the
concepts, in preparing for exams, or in problem-solving, we suggest that you acquire a copy
of the Student Solutions Manual and Study Guide that accompanies this textbook; this manual
should be available at your college bookstore.

USE  THE  FEATURES
You should make full use of the various features of the text discussed in the preface. For ex-
ample, marginal notes are useful for locating and describing important equations and con-
cepts, and boldfaced type indicates important statements and definitions. Many useful tables
are contained in the Appendices, but most tables are incorporated in the text where they are
most often referenced. Appendix B is a convenient review of mathematical techniques.

Answers to odd-numbered problems are given at the end of the textbook, answers to
Quick Quizzes are located at the end of each chapter, and answers to selected end-of-chapter
questions are provided in the Student Solutions Manual and Study Guide. Problem-Solving
Strategies are included in selected chapters throughout the text and give you additional in-
formation about how you should solve problems. The Table of Contents provides an
overview of the entire text, while the Index enables you to locate specific material quickly.
Footnotes sometimes are used to supplement the text or to cite other references on the sub-
ject discussed.

After reading a chapter, you should be able to define any new quantities introduced in
that chapter and to discuss the principles and assumptions used to arrive at certain key rela-
tions. The chapter summaries and the review sections of the Student Solutions Manual and
Study Guide should help you in this regard. In some cases, it may be necessary for you to refer
to the index of the text to locate certain topics. You should be able to correctly associate with
each physical quantity the symbol used to represent that quantity and the unit in which the
quantity is specified. Furthermore, you should be able to express each important relation in
a concise and accurate prose statement.

PROBLEM-SOLVING
R. P. Feynman, Nobel laureate in physics, once said, “You do not know anything until you
have practiced.” In keeping with this statement, we strongly advise that you develop the skills
necessary to solve a wide range of problems. Your ability to solve problems will be one of the
main tests of your knowledge of physics; therefore, you should try to solve as many problems
as possible. It is essential that you understand basic concepts and principles before attempt-
ing to solve problems. It is good practice to try to find alternative solutions to the same prob-
lem. For example, you can solve problems in mechanics using Newton’s laws, but very often
an alternative method that draws on energy considerations is more direct. You should not
deceive yourself into thinking you understand a problem merely because you have seen it
solved in class. You must be able to solve the problem and similar problems on your own.

The approach to solving problems should be carefully planned. A systematic plan is espe-
cially important when a problem involves several concepts. First, read the problem several
times until you are confident you understand what is being asked. Look for any key words
that will help you interpret the problem and perhaps allow you to make certain assumptions.
Your ability to interpret a question properly is an integral part of problem-solving. Second,
you should acquire the habit of writing down the information given in a problem and those
quantities that need to be found; for example, you might construct a table listing both the
quantities given and the quantities to be found. This procedure is sometimes used in the
worked examples of the textbook. After you have decided on the method you feel is appro-

they are reasonable and consistent with your initial understanding of the problem. General
problem-solving strategies of this type are included in the text and are set off in their own
boxes. We have also developed a General Problem-Solving Strategy, making use of models, to
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help guide you through complex problems. This strategy is located at the end of Chapter 1.
If you follow the steps of this procedure, you will find it easier to come up with a solution
and also gain more from your efforts.

Often, students fail to recognize the limitations of certain equations or physical laws in a
particular situation. It is very important that you understand and remember the assumptions
underlying a particular theory or formalism. For example, certain equations in kinematics
apply only to a particle moving with constant acceleration. These equations are not valid for
describing motion whose acceleration is not constant, such as the motion of an object con-
nected to a spring or the motion of an object through a fluid.

EXPERIMENTS
Physics is a science based on experimental observations. In view of this fact, we recommend
that you try to supplement the text by performing various types of “hands-on” experiments,
either at home or in the laboratory. For example, the common Slinky™ toy is excellent for
studying traveling waves; a ball swinging on the end of a long string can be used to investi-
gate pendulum motion; various masses attached to the end of a vertical spring or rubber
band can be used to determine their elastic nature; an old pair of Polaroid sunglasses and
some discarded lenses and a magnifying glass are the components of various experiments in
optics; and the approximate measure of the free-fall acceleration can be determined simply
by measuring with a stopwatch the time it takes for a ball to drop from a known height. The
list of such experiments is endless. When physical models are not available, be imaginative
and try to develop models of your own.

NEW  MEDIA
We strongly encourage you to use the PhysicsNow™ Web-based learning system that accompa-
nies this textbook. It is far easier to understand physics if you see it in action, and these new
materials will enable you to become a part of that action. PhysicsNow™ media described in
the Preface are accessed at the URL www.pop4e.com, and feature a three-step learning
process consisting of a Pre-Test, a personalized learning plan, and a Post-Test.

In addition to the Coached Problems identified with icons, PhysicsNow™ includes the fol-
lowing Active Figures and Interactive Examples:
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It is our sincere hope that you too will find physics an exciting and enjoyable experience and
that you will profit from this experience, regardless of your chosen profession. Welcome to
the exciting world of physics!

The scientist does not study nature because it is useful; he studies it because he delights in it,
and he delights in it because it is beautiful. If nature were not beautiful, it would not be worth
knowing, and if nature were not worth knowing, life would not be worth living.

Henri Poincaré
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Physics, the most fundamental physical science, is concerned with the basic
principles of the universe. It is the foundation on which engineering, tech-
nology, and the other sciences—astronomy, biology, chemistry, and geol-

ogy—are based. The beauty of physics lies in the simplicity of its fundamental theo-
ries and in the manner in which just a small number of basic concepts, equations,
and assumptions can alter and expand our view of the world around us.

Classical physics, developed prior to 1900, includes the theories, concepts, laws,
and experiments in classical mechanics, thermodynamics, electromagnetism, and
optics. For example, Galileo Galilei (1564–1642) made significant contributions to
classical mechanics through his work on the laws of motion with constant accelera-
tion. In the same era, Johannes Kepler (1571–1630) used astronomical observa-
tions to develop empirical laws for the motions of planetary bodies.

The most important contributions to classical mechanics, however, were pro-
vided by Isaac Newton (1642–1727), who developed classical mechanics as a system-

An Invitation to Physics

Technicians use electronic devices to test motherboards for computer systems. The principles of physics
are involved in the design, manufacturing, and testing of these motherboards. ■
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atic theory and was one of the originators of calculus as a mathematical tool. Al-
though major developments in classical physics continued in the 18th century, ther-
modynamics and electromagnetism were not developed until the latter part of the
19th century, principally because the apparatus for controlled experiments was ei-
ther too crude or unavailable until then. Although many electric and magnetic phe-
nomena had been studied earlier, the work of James Clerk Maxwell (1831–1879)
provided a unified theory of electromagnetism. In this text, we shall treat the various
disciplines of classical physics in separate sections; we will see, however, that the disci-
plines of mechanics and electromagnetism are basic to all the branches of physics.

A major revolution in physics, usually referred to as modern physics, began near
the end of the 19th century. Modern physics developed mainly because many physi-
cal phenomena could not be explained by classical physics. The two most impor-
tant developments in this modern era were the theories of relativity and quantum
mechanics. Albert Einstein’s theory of relativity completely revolutionized the tradi-
tional concepts of space, time, and energy. This theory correctly describes the mo-
tion of objects moving at speeds comparable to the speed of light. The theory of
relativity also shows that the speed of light is the upper limit of the speed of an ob-
ject and that mass and energy are related. Quantum mechanics was formulated by a
number of distinguished scientists to provide descriptions of physical phenomena
at the atomic level.

Scientists continually work at improving our understanding of fundamental
laws, and new discoveries are made every day. In many research areas, a great deal
of overlap exists among physics, chemistry, and biology. Evidence for this overlap is
seen in the names of some subspecialties in science: biophysics, biochemistry,
chemical physics, biotechnology, and so on. Numerous technological advances in
recent times are the result of the efforts of many scientists, engineers, and techni-
cians. Some of the most notable developments in the latter half of the 20th century
were (1) space missions to the Moon and other planets, (2) microcircuitry and
high-speed computers, (3) sophisticated imaging techniques used in scientific re-
search and medicine, and (4) several remarkable accomplishments in genetic engi-
neering. The impact of such developments and discoveries on society has indeed
been great, and future discoveries and developments will very likely be exciting,
challenging, and of great benefit to humanity.

To investigate the impact of physics on developments in our society, we will use a
contextual approach to the study of the content in this textbook. The book is divided
into nine Contexts, which relate the physics to social issues, natural phenomena, or
technological applications, as outlined here:

Chapters Context

2–7 Alternative-Fuel Vehicles
8–11 Mission to Mars

12–14 Earthquakes
15 Search for the Titanic

16–18 Global Warming
19–21 Lightning
22–23 Magnetic Levitation Vehicles
24–27 Lasers
28–31 The Cosmic Connection 

The Contexts provide a story line for each section of the text, which will help pro-
vide relevance and motivation for studying the material.

Each Context begins with a discussion of the topic, culminating in a central ques-
tion, which forms the focus for the study of the physics in the Context. The final sec-
tion of each chapter is a Context Connection, in which the material in the chapter
is explored with the central question in mind. At the end of each Context, a
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Context Conclusion brings together all the principles necessary to respond as fully
as possible to the central question.

In Chapter 1, we investigate some of the mathematical fundamentals and
problem-solving strategies that we will use in our study of physics. The first Context,
Alternative-Fuel Vehicles, is introduced just before Chapter 2; in this Context, the prin-
ciples of classical mechanics are applied to the problem of designing, developing,
producing, and marketing a vehicle that will help to reduce dependence on foreign
oil and emit fewer harmful by-products into the atmosphere than current gasoline
engines.

AN INVITATION TO PHYSICS ❚ 3

A technician works on the H1
detector in the Hadron Electron
Accelerator Ring at the Deutsche
Elektronen Synchrotron near
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educated in the physical sciences
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The goal of physics is to provide a quantitative understand-
ing of certain basic phenomena that occur in our
Universe. Physics is a science based on experimental ob-

servations and mathematical analyses. The main objectives be-
hind such experiments and analyses are to develop theories that
explain the phenomenon being studied and to relate those theo-
ries to other established theories. Fortunately, it is possible to ex-
plain the behavior of various physical systems using relatively few
fundamental laws. Analytical procedures require the expression
of those laws in the language of mathematics, the tool that pro-
vides a bridge between theory and experiment. In this chapter,
we shall discuss a few mathematical concepts and techniques that
will be used throughout the text. In addition, we will outline an
effective problem-solving strategy that should be adopted and
used in your problem-solving activities throughout the text.

Introduction and Vectors

C H A P T E R 1

These controls in the cockpit of a commer-
cial aircraft assist the pilot in maintaining
control over the velocity of the aircraft—
how fast it is traveling and in what direc-
tion it is traveling—allowing it to land
safely. Quantities that are defined by both
a magnitude and a direction, such as veloc-
ity, are called vectors.

C H A P T E R O U T L I N E
1.1 Standards of Length, Mass, and Time
1.2 Dimensional Analysis
1.3 Conversion of Units
1.4 Order-of-Magnitude Calculations
1.5 Significant Figures
1.6 Coordinate Systems
1.7 Vectors and Scalars
1.8 Some Properties of Vectors
1.9 Components of a Vector and Unit Vectors
1.10 Modeling, Alternative Representations,

and Problem-Solving Strategy
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STANDARDS  OF  LENGTH, MASS, AND  TIME
If we measure a certain quantity and wish to describe it to someone, a unit for the
quantity must be specified and defined. For example, it would be meaningless for a
visitor from another planet to talk to us about a length of 8 “glitches” if we did not
know the meaning of the unit glitch. On the other hand, if someone familiar with
our system of measurement reports that a wall is 2.0 meters high and our unit of
length is defined to be 1.0 meter, we then know that the height of the wall is twice
our fundamental unit of length. An international committee has agreed on a sys-
tem of definitions and standards to describe fundamental physical quantities. It is
called the SI system (Système International) of units. Its units of length, mass, and
time are the meter, kilogram, and second, respectively.

Length
In A.D. 1120, King Henry I of England decreed that the standard of length in his
country would be the yard and that the yard would be precisely equal to the dis-
tance from the tip of his nose to the end of his outstretched arm. Similarly, the orig-
inal standard for the foot adopted by the French was the length of the royal foot of
King Louis XIV. This standard prevailed until 1799, when the legal standard of
length in France became the meter, defined as one ten-millionth of the distance
from the equator to the North Pole.

Many other systems have been developed in addition to those just discussed, but
the advantages of the French system have caused it to prevail in most countries and
in scientific circles everywhere. Until 1960, the length of the meter was defined as
the distance between two lines on a specific bar of platinum–iridium alloy stored
under controlled conditions. This standard was abandoned for several reasons, a
principal one being that the limited accuracy with which the separation be-
tween the lines can be determined does not meet the current requirements of
science and technology. The definition of the meter was modified to be equal to 
1 650 763.73 wavelengths of orange–red light emitted from a krypton-86 lamp. In
October 1983, the meter was redefined to be the distance traveled by light in a vac-
uum during a time interval of 1/299 792 458 second. This value arises from the es-
tablishment of the speed of light in a vacuum as exactly 299 792 458 meters per sec-
ond. We will use the standard scientific notation for numbers with more than three
digits in which groups of three digits are separated by spaces rather than commas.
Therefore, 1 650 763.73 and 299 792 458 in this paragraph are the same as the
more popular American cultural notations of 1,650,763.73 and 299,792,458.
Similarly, � � 3.14159265 is written as 3.141 592 65.

Mass
Mass represents a measure of the resistance of an object to changes in its motion.
The SI unit of mass, the kilogram, is defined as the mass of a specific
platinum–iridium alloy cylinder kept at the International Bureau of Weights and
Measures at Sèvres, France. At this point, we should add a word of caution. Many
beginning students of physics tend to confuse the physical quantities called weight
and mass. For the present we shall not discuss the distinction between them; they
will be clearly defined in later chapters. For now you should note that they are dis-
tinctly different quantities.

Time
Before 1960, the standard of time was defined in terms of the average length of a
solar day in the year 1900. (A solar day is the time interval between successive ap-
pearances of the Sun at the highest point it reaches in the sky each day.) The basic

1.1

STANDARDS OF LENGTH, MASS, AND TIME ❚ 5

■ Definition of the meter

■ Definition of the kilogram



unit of time, the second, was defined to be (1/60)(1/60)(1/24) � 1/86 400 of the
average solar day. In 1967, the second was redefined to take advantage of the great
precision obtainable with a device known as an atomic clock (Fig. 1.1), which uses
the characteristic frequency of the cesium-133 atom as the “reference clock.” The
second is now defined as 9 192 631 770 times the period of oscillation of radiation
from the cesium atom. It is possible today to purchase clocks and watches that re-
ceive radio signals from an atomic clock in Colorado, which the clock or watch uses
to continuously reset itself to the correct time.

Approximate Values for Length, Mass, and Time
Approximate values of various lengths, masses, and time intervals are presented
in Tables 1.1, 1.2, and 1.3, respectively. Note the wide range of values for these
quantities.1 You should study the tables and begin to generate an intuition for what
is meant by a mass of 100 kilograms, for example, or by a time interval of 3.2 � 107

seconds.
Systems of units commonly used in science, commerce, manufacturing, and

everyday life are (1) the SI system, in which the units of length, mass, and time are
the meter (m), kilogram (kg), and second (s), respectively; and (2) the U.S. custom-
ary system, in which the units of length, mass, and time are the foot (ft), slug, and
second, respectively. Throughout most of this text we shall use SI units because they
are almost universally accepted in science and industry. We will make limited use of
U.S. customary units in the study of classical mechanics.

Some of the most frequently used prefixes for the powers of ten and their
abbreviations are listed in Table 1.4. For example, 10�3 m is equivalent to 
1 millimeter (mm), and 103 m is 1 kilometer (km). Likewise, 1 kg is 103 grams (g),
and 1 megavolt (MV) is 106 volts (V).

The variables length, time, and mass are examples of fundamental quantities.
A much larger list of variables contains derived quantities, or quantities that can be
expressed as a mathematical combination of fundamental quantities. Common
examples are area, which is a product of two lengths, and speed, which is a ratio of a
length to a time interval.

6 ❚ CHAPTER 1 INTRODUCTION AND VECTORS
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1 If you are unfamiliar with the use of powers of ten (scientific notation), you should review Appendix B.1.

■ Definition of the second

REASONABLE VALUES The generation
of intuition about typical values of
quantities suggested here is critical.
An important step in solving prob-
lems is to think about your result at
the end of a problem and deter-
mine if it seems reasonable. If you
are calculating the mass of a house-
fly and arrive at a value of 100 kg,
this value is unreasonable; there is an
error somewhere. If you are calcu-
lating the length of a spacecraft on
a launch pad and end up with a
value of 10 cm, this value is unrea-
sonable; and you should look for a
mistake.

� PITFALL PREVENTION 1.1

The nation’s pri-
mary time standard is a cesium foun-
tain atomic clock developed at the Na-
tional Institute of Standards and
Technology laboratories in Boulder,
Colorado. The clock will neither gain
nor lose a second in 20 million years.

FIGURE 1.1



Another example of a derived quantity is density. The density � (Greek letter
rho; a table of the letters in the Greek alphabet is provided at the back of the book)
of any substance is defined as its mass per unit volume:

[1.1]

which is a ratio of mass to a product of three lengths. For example, aluminum has
a density of 2.70 � 103 kg/m3, and lead has a density of 11.3 � 103 kg/m3. An ex-
treme difference in density can be imagined by thinking about holding a 10-
centimeter (cm) cube of Styrofoam in one hand and a 10-cm cube of lead in the
other.

� � 
m
V 
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Approximate Values of Some Measured LengthsTABLE 1.1

Length (m)

Distance from the Earth to the most remote quasar known 1.4 � 1026

Distance from the Earth to the most remote normal galaxies known 4 � 1025

Distance from the Earth to the nearest large galaxy (M 31, the Andromeda galaxy) 2 � 1022

Distance from the Sun to the nearest star (Proxima Centauri) 4 � 1016

One lightyear 9.46 � 1015

Mean orbit radius of the Earth 1.5 � 1011

Mean distance from the Earth to the Moon 3.8 � 108

Distance from the equator to the North Pole 1 � 107

Mean radius of the Earth 6.4 � 106

Typical altitude of an orbiting Earth satellite 2 � 105

Length of a football field 9.1 � 101

Length of this textbook 2.8 � 10�1

Length of a housefly 5 � 10�3

Size of smallest visible dust particles 1 � 10�4

Size of cells of most living organisms 1 � 10�5

Diameter of a hydrogen atom 1 � 10�10

Diameter of a uranium nucleus 1.4 � 10�14

Diameter of a proton 1 � 10�15

Masses of 
Various Objects
(Approximate Values)

TABLE 1.2

Mass 
(kg)

Visible 1052

Universe
Milky Way 1042

galaxy
Sun 2 � 1030

Earth 6 � 1024

Moon 7 � 1022

Shark 3 � 102   

Human 7 � 101

Frog 1 � 10�1

Mosquito 1 � 10�5

Bacterium 1 � 10�15

Hydrogen 1.67 � 10�27

atom
Electron 9.11 � 10�31

Approximate Values of Some Time IntervalsTABLE 1.3

Time
Interval (s)

Age of the Universe 5 � 1017

Age of the Earth 1.3 � 1017

Time interval since the fall of the Roman empire 5 � 1012

Average age of a college student 6.3 � 108

One year 3.2 � 107

One day (time interval for one revolution of the 
Earth about its axis) 8.6 � 104

One class period 3.0 � 103

Time interval between normal heartbeats 8 � 10�1

Period of audible sound waves 1 � 10�3

Period of typical radio waves 1 � 10�6

Period of vibration of an atom in a solid 1 � 10�13

Period of visible light waves 2 � 10�15

Duration of a nuclear collision 1 � 10�22

Time interval for light to cross a proton 3.3 � 10�24

Some Prefixes for 
Powers of Ten

TABLE 1.4

Power Prefix Abbreviation

10�24 yocto y
10�21 zepto z
10�18 atto a
10�15 femto f
10�12 pico p
10�9 nano n
10�6 micro �

10�3 milli m
10�2 centi c
10�1 deci d
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
1018 exa E
1021 zetta Z
1024 yotta Y

■ Definition of density



DIMENSIONAL ANALYSIS
The word dimension has a special meaning in physics. It denotes the physical nature
of a quantity. Whether a distance is measured in units of feet or meters or miles, it
is a distance. We say its dimension is length.

The symbols used in this book to specify the dimensions2 of length, mass, and
time are L, M, and T, respectively. We shall often use square brackets [ ] to denote
the dimensions of a physical quantity. For example, in this notation the dimensions
of velocity v are written [v] � L/T, and the dimensions of area A are [A] � L2. The
dimensions of area, volume, velocity, and acceleration are listed in Table 1.5, along
with their units in the two common systems. The dimensions of other quantities,
such as force and energy, will be described as they are introduced in the text.

In many situations, you may be faced with having to derive or check a specific
equation. Although you may have forgotten the details of the derivation, a useful
and powerful procedure called dimensional analysis can be used as a consistency
check, to assist in the derivation, or to check your final expression. Dimensional
analysis makes use of the fact that dimensions can be treated as algebraic quantities.
For example, quantities can be added or subtracted only if they have the same
dimensions. Furthermore, the terms on both sides of an equation must have the
same dimensions. By following these simple rules, you can use dimensional analysis
to help determine whether an expression has the correct form because the rela-
tionship can be correct only if the dimensions on the two sides of the equation are
the same.

To illustrate this procedure, suppose you wish to derive an expression for the
position x of a car at a time t if the car starts from rest at t � 0 and moves with con-
stant acceleration a. In Chapter 2, we shall find that the correct expression for this
special case is . Let us check the validity of this expression from a dimen-
sional analysis approach.

The quantity x on the left side has the dimension of length. For the equation to
be dimensionally correct, the quantity on the right side must also have the dimen-
sion of length. We can perform a dimensional check by substituting the basic di-
mensions for acceleration, L/T2 (Table 1.5), and time, T, into the equation

. That is, the dimensional form of the equation can be written as

The dimensions of time cancel as shown, leaving the dimension of length, which is
the correct dimension for the position x. Notice that the number in the equation
has no units, so it does not enter into the dimensional analysis.

1
2

[x] �
L
T2 �T2 � L

x � 1
2at2x � 1

2at2

x � 1
2at2

1.2
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Units of Area, Volume, Velocity, and AccelerationTABLE 1.5

System Area (L2) Volume (L3) Velocity (L/T) Acceleration (L/T2)

SI m2 m3 m/s m/s2

U.S. customary ft2 ft3 ft/s ft/s2

2 The dimensions of a variable will be symbolized by a capitalized, nonitalic letter, such as, in the case of
length, L. The symbol for the variable itself will be italicized, such as L for the length of an object or t for
time.

True or false: Dimensional analysis can give you the numerical value
of constants of proportionality that may appear in an algebraic expression.
QUICK QUIZ 1.1



CONVERSION  OF  UNITS
Sometimes it is necessary to convert units from one system to another or to convert
within a system, for example, from kilometers to meters. Equalities between SI and
U.S. customary units of length are as follows:

A more complete list of equalities can be found in Appendix A.
Units can be treated as algebraic quantities that can cancel each other. To per-

form a conversion, a quantity can be multiplied by a conversion factor, which is a
fraction equal to 1, with numerator and denominator having different units, to pro-
vide the desired units in the final result. For example, suppose we wish to convert
15.0 in. to centimeters. Because 1 in. � 2.54 cm, we multiply by a conversion factor
that is the appropriate ratio of these equal quantities and find that

where the ratio in parentheses is equal to 1. Notice that we put the unit of an inch
in the denominator and that it cancels with the unit in the original quantity. The
remaining unit is the centimeter, which is our desired result.

15.0 in. � (15.0 in.) � 2.54 cm
1 in. � � 38.1 cm

1 inch (in.) � 0.025 4 m � 2.54 cm1 m � 39.37 in. � 3.281 ft

1 ft � 0.304 8 m � 30.48 cm1 mile (mi) � 1 609 m � 1.609 km

1.3
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and the dimensions of acceleration are L/T2. There-
fore, the dimensions of at are

and the expression is dimensionally correct. On the
other hand, if the expression were given as vf � vi � at2,
it would be dimensionally incorrect. Try it and see!

[at] �
L
T2 �T �

L
T

Analysis of an EquationEXAMPLE 1.1
Show that the expression vf � vi � at is dimensionally
correct, where vf and vi represent velocities at two in-
stants of time, a is acceleration, and t is an instant of
time.

Solution The dimensions of the velocities are

[vf ] � [vi] �
L
T

ALWAYS INCLUDE UNITS When per-
forming calculations, make it a
habit to include the units with every
quantity and carry the units
through the entire calculation.
Avoid the temptation to drop the
units during the calculation steps
and then apply the expected unit to
the number that results for an
answer. By including the units in
every step, you can detect errors if
the units for the answer are
incorrect.

� PITFALL PREVENTION 1.2

The distance between two cities is 100 mi. The number of kilometers
in the distance between the two cities is (a) smaller than 100, (b) larger than 100, 
(c) equal to 100.

QUICK QUIZ 1.2

Now we convert seconds to hours:

Therefore, the car is exceeding the speed limit and
should slow down.

What is the speed of the car in kilometers per hour?B

(2.36 � 10�2 mi/s)� 60  s
1  min �� 60   min

1  h � � 85.0 mi/h

Is He Speeding?EXAMPLE 1.2
On an interstate highway in a rural region of Wyoming,
a car is traveling at a speed of 38.0 m/s.

Is this car exceeding the speed limit of 75.0 mi/h?

Solution We first convert meters to miles:

(38.0  m/s)�   1 mi
1 609  m � � 2.36 � 10�2 mi/s

A



ORDER-OF-MAGNITUDE  CALCULATIONS
It is often useful to compute an approximate answer to a given physical problem
even when little information is available. This answer can then be used to deter-
mine whether a more precise calculation is necessary. Such an approximation is
usually based on certain assumptions, which must be modified if greater precision
is needed. Therefore, we will sometimes refer to an order of magnitude of a certain
quantity as the power of ten of the number that describes that quantity. Usually,
when an order-of-magnitude calculation is made, the results are reliable to within
about a factor of 10. If a quantity increases in value by three orders of magnitude,
its value increases by a factor of 103 � 1 000. We use the symbol � for “is on the
order of.” Therefore,

0.008 6 � 10�2 0.0021 � 10�3 700 � 103

1.4
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FIGURE 1.2 (Example 1.2) The speedometer of this vehicle
shows speeds in both miles per hour and kilome-
ters per hour. (P
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fore, because 1 cm3 � 10�6 m3, the number of atoms in
the solid is on the order of 10�6/10�30 � 1024 atoms.

A more precise calculation would require additional
knowledge that we could find in tables. Our estimate,
however, agrees with the more precise calculation to
within a factor of 10.

The Number of Atoms in a SolidEXAMPLE 1.3
Estimate the number of atoms in 1 cm3 of a solid.

Solution From Table 1.1 we note that the diameter d of
an atom is about 10�10 m. Let us assume that the atoms
in the solid are spheres of this diameter. Then the vol-
ume of each sphere is about 10�30 m3 (more precisely,
volume � 4�r 3/3 � �d 3/6, where r � d/2). There-

to 20 miles per gallon), each car uses about 5 � 102

gal/year. Multiplying this number by the total number
of cars in the United States gives an estimated total con-
sumption of about 1011 gal, which corresponds to a
yearly consumer expenditure on the order of 102

billion dollars. This estimate is probably low because we
haven’t accounted for commercial consumption.

How Much Gas Do We Use?EXAMPLE 1.4
Estimate the number of gallons of gasoline used by all
cars in the United States each year.

Solution Because there are about 280 million people
in the United States, an estimate of the number of cars
in the country is 7 � 107 (assuming one car and four
people per family). We can also estimate that the aver-
age distance traveled per year is 1 � 104 miles. If we as-
sume gasoline consumption of 0.05 gal/mi (equivalent

Solution We convert our answer in part A to the appro-
priate units:

Figure 1.2 shows the speedometer of an automobile,
with speeds in both miles per hour and kilometers per
hour. Can you check the conversion we just performed
using this photograph?

(85.0  mi/h)� 1.609  km
1  mi � � 137  km/h
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SIGNIFICANT  FIGURES
When certain quantities are measured, the measured values are known only to

depend on various factors, such as the quality of the apparatus, the skill of the
experimenter, and the number of measurements performed. The number of signif-
icant figures in a measurement can be used to express something about the uncer-
tainty.

As an example of significant figures, consider the population of New York State,
as reported in a published road atlas: 18 976 457. Notice that this number reports
the population to the level of one individual. We would describe this number as having
eight significant figures. Can the population really be this accurate? First of all, is
the census process accurate enough to measure the population to one individual?
By the time this number was actually published, had the number of births and im-
migrations into the state balanced the number of deaths and emigrations out of the
state, so that the change in the population is exactly zero?

The claim that the population is measured and known to the level of one
individual is unjustified. We would describe it by saying that there are too many signifi-
cant figures in the measurement. To account for the inherent uncertainty in the census-
taking process and the inevitable changes in population by the time the number is
read in the road atlas, it might be better to report the population as something like
19.0 million. This number has three significant figures rather than the eight signifi-
cant figures in the published population. 

Let us look at a more scientific example. Suppose we are asked in a laboratory
experiment to measure the area of a rectangular plate using a meter stick as a
measuring instrument. Let us assume that the accuracy to which we can measure a
particular dimension of the plate is 	 0.1 cm. If the length of the plate is measured
to be 16.3 cm, we can claim only that its length lies somewhere between 16.2 cm
and 16.4 cm. In this case, we say that the measured value has three significant fig-
ures. Likewise, if its width is measured to be 4.5 cm, the actual value lies between
4.4 cm and 4.6 cm. This measured value has only two significant figures. Note that
the significant figures include the first estimated digit. Therefore, we could write
the measured values as 16.3 	 0.1 cm and 4.5 	 0.1 cm.

Suppose we would now like to find the area of the plate by multiplying the
two measured values. If we were to claim that the area is (16.3 cm)(4.5 cm) �
73.35 cm2, our answer would be unjustifiable because it contains four significant
figures, which is greater than the number of significant figures in either of the mea-
sured lengths. The following is a good rule of thumb to use in determining the
number of significant figures that can be claimed:

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the quantity
having the lowest number of significant figures. The same rule applies to
division.

Applying this rule to the previous multiplication example, we see that the an-
swer for the area can have only two significant figures because the length of 4.5 cm
has only two significant figures. Therefore, all we can claim is that the area is 
73 cm2, realizing that the value can range between (16.2 cm)(4.4 cm) � 71 cm2

and (16.4 cm)(4.6 cm) � 75 cm2.
Zeros may or may not be significant figures. Those used to position the decimal

point in such numbers as 0.03 and 0.007 5 are not significant. Therefore, there are
one and two significant figures, respectively, in these two values. When the position-
ing of zeros comes after other digits, however, there is the possibility of misinterpre-
tation. For example, suppose the mass of an object is given as 1 500 g. This value is
ambiguous because we do not know whether the two zeros are being used to locate

1.5



the decimal point or whether they represent significant figures in the measurement.
To remove this ambiguity, it is common to use scientific notation to indicate
the number of significant figures. In this case, we would express the mass as 
1.5 � 103 g if the measured value has two significant figures, 1.50 � 103 g if it has
three significant figures, and 1.500 � 103 g if it has four significant figures. Likewise,
0.000 150 should be expressed in scientific notation as 1.5 � 10�4 if it has two signif-
icant figures or as 1.50 � 10�4 if it has three significant figures. The three zeros be-
tween the decimal point and the digit 1 in the number 0.000 150 are not counted as
significant figures because they are present only to locate the decimal point. In gen-
eral, a significant figure in a measurement is a reliably known digit (other than a
zero used to locate the decimal point) or the first estimated digit.

For addition and subtraction, the number of decimal places must be considered
when you are determining how many significant figures to report.

When numbers are added or subtracted, the number of decimal places in
the result should equal the smallest number of decimal places of any term in
the sum.

For example, if we wish to compute 123 � 5.35, the answer is 128 and not 128.35. If
we compute the sum 1.000 1 � 0.000 3 � 1.000 4, the result has the correct num-
ber of decimal places; consequently, it has five significant figures even though one
of the terms in the sum, 0.000 3, has only one significant figure. Likewise, if we per-
form the subtraction 1.002 � 0.998 � 0.004, the result has only one significant fig-
ure even though one term has four significant figures and the other has three. In
this book, most of the numerical examples and end-of-chapter problems will yield
answers having three significant figures.

If the number of significant figures in the result of an addition or subtraction
must be reduced, a general rule for rounding numbers states that the last digit re-
tained is to be increased by 1 if the last digit dropped is greater than 5. If the last
digit dropped is less than 5, the last digit retained remains as it is. If the last digit
dropped is equal to 5, the last digit retained should be rounded to the nearest even
number. (This rule helps avoid accumulation of errors in long arithmetic
processes.)
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calculator, you will obtain an answer of 94.816 6 cm2.
How many of these numbers should you claim? Our rule
of thumb for multiplication tells us that you can claim
only the number of significant figures in the quantity
with the smallest number of significant figures. In this 
example, that number is three (in the width 7.46 cm), 
so we should express our final answer as 94.8 cm2.

The Area of a DishEXAMPLE 1.5
A biologist is filling a rectangular dish with growth
culture and wishes to know the area of the dish. The
length of the dish is measured to be 12.71 cm (four
significant figures), and the width is measured to be
7.46 cm (three significant figures). Find the area of the
dish.

Solution If you multiply 12.71 cm by 7.46 cm on your

COORDINATE  SYSTEMS
Many aspects of physics deal in some way or another with locations in space. For ex-
ample, the mathematical description of the motion of an object requires a method
for specifying the object’s position. Therefore, we first discuss how to describe the
position of a point in space by means of coordinates in a graphical representation.
A point on a line can be located with one coordinate, a point in a plane is located
with two coordinates, and three coordinates are required to locate a point in space.

1.6



A coordinate system used to specify locations in space consists of

• A fixed reference point O, called the origin
• A set of specified axes or directions with an appropriate scale and labels on the

axes
• Instructions that tell us how to label a point in space relative to the origin and

axes

One convenient coordinate system that we will use frequently is the Cartesian co-
ordinate system, sometimes called the rectangular coordinate system. Such a system in
two dimensions is illustrated in Figure 1.3. An arbitrary point in this system is
labeled with the coordinates (x, y). Positive x is taken to the right of the origin, and
positive y is upward from the origin. Negative x is to the left of the origin, and
negative y is downward from the origin. For example, the point P, which has coordi-
nates (5, 3), may be reached by going first 5 m to the right of the origin and then
3 m  above the origin (or by going 3 m above the origin and then 5 m to the right).
Similarly, the point Q has coordinates (� 3, 4), which correspond to going 3 m to
the left of the origin and 4 m above the origin.

Sometimes it is more convenient to represent a point in a plane by its plane polar
coordinates (r, 
), as in Active Figure 1.4a. In this coordinate system, r is the length of
the line from the origin to the point, and 
 is the angle between that line and a fixed
axis, usually the positive x axis, with 
 measured counterclockwise. From the right tri-
angle in Active Figure 1.4b, we find that sin 
 � y/r and cos 
 � x/r. (A review of
trigonometric functions is given in Appendix B.4.) Therefore, starting with plane
polar coordinates, one can obtain the Cartesian coordinates through the equations

[1.2]

[1.3]

Furthermore, it follows that

[1.4]

and

[1.5]

You should note that these expressions relating the coordinates (x, y) to the co-
ordinates (r, 
) apply only when 
 is defined as in Active Figure 1.4a, where positive

 is an angle measured counterclockwise from the positive x axis. Other choices are

r � √x 
2 � y 

2

tan 
 �
y
x

y � r sin 


x � r cos 
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(–3, 4)

y

O

Q
P

(x, y)

(5, 3)

x

Designation of
points in a Cartesian coordinate 
system. Each square in the xy plane is
1 m on a side. Every point is labeled
with coordinates (x,y).

FIGURE 1.3

(a) The plane polar coordinates of
a point are represented by the dis-
tance r and the angle 
, where 
 is
measured in a counterclockwise
direction from the positive x axis.
(b) The right triangle used to re-
late (x, y) to (r, 
).

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 1.4 to move
the point and see the changes to
the rectangular and polar coordi-
nates as well as to the sine, cosine,
and tangent of angle 
.

ACTIVE FIGURE 1.4
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made in navigation and astronomy. If the reference axis for the polar angle 
 is
chosen to be other than the positive x axis or if the sense of increasing 
 is chosen
differently, the corresponding expressions relating the two sets of coordinates will
change.

VECTORS  AND  SCALARS
Each of the physical quantities that we shall encounter in this text can be placed in
one of two categories, either a scalar or a vector. A scalar is a quantity that is com-
pletely specified by a positive or negative number with appropriate units. On the
other hand, a vector is a physical quantity that must be specified by both magnitude
and direction.

The number of grapes in a bunch (Fig. 1.5a) is an example of a scalar quantity.
If you are told that there are 38 grapes in the bunch, this statement completely
specifies the information; no specification of direction is required. Other examples
of scalars are temperature, volume, mass, and time intervals. The rules of ordinary
arithmetic are used to manipulate scalar quantities; they can be freely added and
subtracted (assuming that they have the same units!), multiplied and divided.

Force is an example of a vector quantity. To describe the force on an object
completely, we must specify both the direction of the applied force and the magni-
tude of the force.

Another simple example of a vector quantity is the displacement of a particle,
defined as its change in position. The person in Figure 1.5b is pointing out the direc-
tion of your desired displacement vector if you would like to reach a destination
such as the courthouse. She will also tell you the magnitude of the displacement
along with the direction, for example, “5 blocks north.”

Suppose a particle moves from some point � to a point � along a straight 
path, as in Figure 1.6. This displacement can be represented by drawing an arrow
from � to �, where the arrowhead represents the direction of the displacement
and the length of the arrow represents the magnitude of the displacement. If the
particle travels along some other path from � to �, such as the broken line in
Figure 1.6, its displacement is still the vector from � to �. The vector displace-
ment along any indirect path from � to � is defined as being equivalent to the
displacement represented by the direct path from � to �. The magnitude of
the displacement is the shortest distance between the end points. Therefore, the

1.7
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(a) (b)

(a) The number of grapes in this bunch is one example of a scalar quantity. Can you
think of other examples? (b) This helpful person pointing in the correct direction
tells us to travel five blocks north to reach the courthouse. A vector is a physical quan-
tity that is specified by both magnitude and direction.

FIGURE 1.5
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After a particle
moves from � to � along an arbi-
trary path represented by the broken
line, its displacement is a vector
quantity shown by the arrow drawn
from � to �.

FIGURE 1.6



displacement of a particle is completely known if its initial and final coordinates are
known. The path need not be specified. In other words, the displacement is inde-
pendent of the path if the end points of the path are fixed.

Note that the distance traveled by a particle is distinctly different from its dis-
placement. The distance traveled (a scalar quantity) is the length of the path, which
in general can be much greater than the magnitude of the displacement. In Figure
1.6, the length of the curved red path is much larger than the magnitude of the
black displacement vector.

If the particle moves along the x axis from position xi to position xf , as in Figure
1.7, its displacement is given by xf � xi. (The indices i and f refer to the initial and fi-
nal values.) We use the Greek letter delta (�) to denote the change in a quantity.
Therefore, we define the change in the position of the particle (the displacement) as

[1.6]

From this definition we see that �x is positive if xf is greater than xi and negative if
xf is less than xi. For example, if a particle changes its position from xi � � 5 m to 
xf � 3 m, its displacement is �x � � 8 m.

Many physical quantities in addition to displacement are vectors. They include
velocity, acceleration, force, and momentum, all of which will be defined in later
chapters. In this text, we will use boldface letters with an arrow over the letter,
such as , to represent vectors. Another common notation for vectors with which
you should be familiar is a simple boldface character: A. 

The magnitude of the vector is written with an italic letter A or, alternatively,
. The magnitude of a vector is always positive and carries the units of the

quantity that the vector represents, such as meters for displacement or meters per
second for velocity. Vectors combine according to special rules, which will be dis-
cussed in Sections 1.8 and 1.9.

� A
:

�
A
:

A
:

�x � xf � xi
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∆x

A particle moving
along the x axis from xi to xf under-
goes a displacement �x � xf � xi.

FIGURE 1.7

■ Distance

Which of the following are scalar quantities and which are vector
quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass
QUICK QUIZ 1.3

■ Thinking Physics 1.1
Consider your commute to work or school in the morning. Which is larger, the dis-
tance you travel or the magnitude of the displacement vector?

Reasoning Unless you have a very unusual commute, the distance traveled must be
larger than the magnitude of the displacement vector. The distance includes all the
twists and turns you make in following the roads from home to work or school. On
the other hand, the magnitude of the displacement vector is the length of a straight
line from your home to work or school. This length is often described informally as
“the distance as the crow flies.” The only way that the distance could be the same as
the magnitude of the displacement vector is if your commute is a perfect straight
line, which is highly unlikely! The distance could never be less than the magnitude
of the displacement vector because the shortest distance between two points is a
straight line. ■

SOME  PROPERTIES  OF  VECTORS

Equality of Two Vectors
Two vectors and are defined to be equal if they have the same units, the same
magnitude, and the same direction. That is, � only if A � B and and point
in the same direction. For example, all the vectors in Figure 1.8 are equal even

B
:

A
:

B
:

A
:

B
:

A
:

1.8

O

y

x

These four repre-
sentations of vectors are equal
because all four vectors have the same
magnitude and point in the same
direction.

FIGURE 1.8
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though they have different starting points. This property allows us to translate a vec-
tor parallel to itself in a diagram without affecting the vector.

Addition
When two or more vectors are added together, they must all have the same units.
For example, it would be meaningless to add a velocity vector to a displacement
vector because they are different physical quantities. Scalars obey the same rule. For
example, it would be meaningless to add time intervals and temperatures.

The rules for vector sums are conveniently described using geometry. To add vec-
tor to vector , first draw a diagram of vector on graph paper, with its mag-
nitude represented by a convenient scale, and then draw vector to the same scale
with its tail starting from the tip of , as in Active Figure 1.9a. The resultant vector

� � is the vector drawn from the tail of to the tip of . If these vectors are
displacements, is the single displacement that has the same effect as the displace-
ments and performed one after the other. This process is known as the triangle
method of addition because the three vectors can be geometrically modeled as the
sides of a triangle.

When vectors are added, the sum is independent of the order of the addition.
This independence can be seen for two vectors from the geometric construction in
Active Figure 1.9b and is known as the commutative law of addition:

[1.7]

If three or more vectors are added, their sum is independent of the way in
which they are grouped. A geometric demonstration of this property for three
vectors is given in Figure 1.10. It is called the associative law of addition:

[1.8]

Geometric constructions can also be used to add more than three vectors, as
shown in Figure 1.11 for the case of four vectors. The resultant vector � �
� � is the vector that closes the polygon formed by the vectors being added. In other

words, is the vector drawn from the tail of the first vector to the tip of the last vector.
Again, the order of the summation is unimportant.

We conclude that a vector is a quantity that has both magnitude and direction
and also obeys the laws of vector addition described in Figures 1.9 to 1.11.

Negative of a Vector
The negative of the vector is defined as the vector that, when added to , gives
zero for the vector sum. That is, � (� ) � 0. The vectors and � have the
same magnitude but opposite directions.
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Geometric con-
structions for verifying the associative
law of addition.

FIGURE 1.10
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R
  =

  A
  +

  B
  +

  C
  +

  D

A

Geometric con-
struction for summing four vectors.
The resultant vector closes the poly-
gon and points from the tail of the first
vector to the tip of the final vector.

R
:

FIGURE 1.11

(a) When vector is added to vec-
tor , the resultant is the vector
that runs from the tail of to the
tip of . (b) This construction
shows that � � � ; vector
addition is commutative.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 1.9 to ex-
plore the addition of two vectors.
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:

B
:

B
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A
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B
:
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R
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A
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B
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ACTIVE FIGURE 1.9

BR  =  A  +  B

A

B

A

B

R

(b)

A

(a)
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Subtraction of Vectors
The operation of vector subtraction makes use of the definition of the negative of a
vector. We define the operation � as vector � added to vector :

[1.9]

A diagram for subtracting two vectors is shown in Figure 1.12.

Multiplication of a Vector by a Scalar
If a vector is multiplied by a positive scalar quantity s, the product s is a vector
that has the same direction as and magnitude sA. If s is a negative scalar quantity, the
vector s is directed opposite to . For example, the vector 5 is five times greater
in magnitude than and has the same direction as . On the other hand, the
vector has one third the magnitude of and points in the direction opposite

(because of the negative sign).

Multiplication of Two Vectors
Two vectors and can be multiplied in two different ways to produce either a
scalar or a vector quantity. The scalar product (or dot product) � is a scalar
quantity equal to AB cos 
, where 
 is the angle between and . The vector
product (or cross product) � is a vector quantity whose magnitude is equal to
AB sin 
. We shall discuss these products more fully in Chapters 6 and 10, where
they are first used.
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:
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COMPONENTS  OF  A  VECTOR  
AND  UNIT  VECTORS

The geometric method of adding vectors is not the recommended procedure for
situations in which great precision is required or in three-dimensional problems be-
cause we are forced to represent them on two-dimensional paper. In this section,
we describe a method of adding vectors that makes use of the projections of a vector
along the axes of a rectangular coordinate system.

Consider a vector lying in the xy plane and making an arbitrary angle 
 with
the positive x axis, as in Figure 1.13a. The vector can be represented by its rectan-
gular components, Ax and Ay. The component Ax represents the projection of 
along the x axis, and Ay represents the projection of along the y axis. The compo-
nents of a vector, which are scalar quantities, can be positive or negative. For exam-
ple, in Figure 1.13a, Ax and Ay are both positive. The absolute values of the compo-
nents are the magnitudes of the associated component vectors and .

Figure 1.13b shows the component vectors again, but with the y component vec-
tor shifted so that it is added vectorially to the x component vector. This diagram

A
:

yA
:

x

A
:

A
:

A
:

A
:

1.9
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A – B
– B

B

A

This construction
shows how to subtract vector from
vector : Add the vector � to vector

. The vector � is equal in magni-
tude and opposite to the vector .B

:
B
:

A
:

B
:

A
:

B
:

FIGURE 1.12

The magnitudes of two vectors and are A � 12 units and 
B � 8 units. Which of the following pairs of numbers represents the largest and smallest
possible values for the magnitude of the resultant vector � � ? (a) 14.4 units, 
4 units (b) 12 units, 8 units (c) 20 units, 4 units (d) none of these answers

B
:

A
:

R
:

B
:

A
:QUICK QUIZ 1.4

If vector is added to vector , under what condition does the 
resultant vector � have magnitude A � B ? (a) and are parallel and in the same
direction. (b) and are parallel and in opposite directions. (c) and are
perpendicular.

B
:

A
:

B
:

A
:

B
:

A
:

B
:

A
:

A
:

B
:QUICK QUIZ 1.5

VECTOR ADDITION VERSUS SCALAR

ADDITION Keep in mind that
is very different from 

A � B � C. The first is a vector
sum, which must be handled care-
fully, such as with the graphical
method described in Active Figure
1.9. The second is a simple alge-
braic addition of numbers that is
handled with the normal rules of
arithmetic.

A
:

� B
:

� C
:

� PITFALL PREVENTION 1.3



shows us two important features. First, a vector is equal to the sum of its component
vectors. Therefore, the combination of the component vectors is a valid substitute
for the actual vector. The second feature is that the vector and its component vec-
tors form a right triangle. Therefore, we can let the triangle be a model for the vec-
tor and can use right triangle trigonometry to analyze the vector. The legs of the tri-
angle are of lengths proportional to the components (depending on what scale
factor you have chosen), and the hypotenuse is of a length proportional to the
magnitude of the vector.

From Figure 1.13b and the definition of the sine and cosine of an angle, we see
that cos 
 � Ax/A and sin 
 � Ay/A. Hence, the components of are given by

Ax � A cos 
 and Ay � A sin 
 [1.10]

When using these component equations, 
 must be measured counterclockwise
from the positive x axis. From our triangle, it follows that the magnitude of and
its direction are related to its components through the Pythagorean theorem and
the definition of the tangent function:

[1.11]

[1.12]

To solve for 
, we can write 
 � tan�1 (Ay/Ax), which is read “
 equals the angle
whose tangent is the ratio Ay/Ax.” Note that the signs of the components Ax and Ay depend
on the angle 
. For example, if 
 � 120°, Ax is negative and Ay is positive. On the
other hand, if 
 � 225°, both Ax and Ay are negative. Figure 1.14 summarizes the
signs of the components when lies in the various quadrants.

If you choose reference axes or an angle other than those shown in Figure 1.13,
the components of the vector must be modified accordingly. In many applications, it
is more convenient to express the components of a vector in a coordinate system hav-
ing axes that are not horizontal and vertical but are still perpendicular to each other.
Suppose a vector makes an angle 
� with the x� axis defined in Figure 1.15. The
components of along these axes are given by Bx � � B cos 
� and By � � B sin 
�, as in
Equation 1.10. The magnitude and direction of are obtained from expressions
equivalent to Equations 1.11 and 1.12. Therefore, we can express the components of
a vector in any coordinate system that is convenient for a particular situation.

B
:

B
:

B
:

A
:

tan 
 �
Ay

Ax

 A � √Ax 

2 � Ay 

2

A
:

A
:
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Choose the correct response to make the sentence true: A compo-
nent of a vector is (a) always, (b) never, or (c) sometimes larger than the magnitude of
the vector.

QUICK QUIZ 1.6
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(b)

yAAA

(a) A vector lying in the xy plane can be represented by its component vectors 
and . (b) The y component vector can be moved to the right so that it adds to

. The vector sum of the component vectors is . These three vectors form a right
triangle.
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y

x

Ax  positive

Ay  positive

Ax  positive

Ay  negative

Ax  negative

Ay  positive

Ax  negative

Ay  negative

The signs of the
components of a vector depend on
the quadrant in which the vector is
located.

A
:

FIGURE 1.14

x′

y′

B

By′

Bx′

O

θ′

The component
vectors of vector in a coordinate sys-
tem that is tilted.

B
:

FIGURE 1.15

TANGENTS ON CALCULATORS Gener-
ally, the inverse tangent function on
calculators provides an angle be-
tween �90° and �90°. As a conse-
quence, if the vector you are study-
ing lies in the second or third
quadrant, the angle measured from
the positive x axis will be the angle
your calculator returns plus 180°.

� PITFALL PREVENTION 1.4

■ Direction of A:

■ Magnitude of A:



Vector quantities are often expressed in terms of unit vectors. A unit vector is a
dimensionless vector with a magnitude of 1 and is used to specify a given direction.
Unit vectors have no other physical significance. They are used simply as a book-
keeping convenience when describing a direction in space. We will use the symbols
, , and to represent unit vectors pointing in the x, y, and z directions, respec-

tively. The “hat” over the letters is a common notation for a unit vector; for
example, is called “i-hat.” The unit vectors , , and form a set of mutually per-
pendicular vectors as shown in Active Figure 1.16a, where the magnitude of each
unit vector equals 1; that is, .

Consider a vector lying in the xy plane, as in Active Figure 1.16b. The product
of the component Ax and the unit vector is the component vector parallel
to the x axis with magnitude Ax . Likewise, is a component vector of magnitude Ay
parallel to the y axis. When using the unit-vector form of a vector, we are simply multi-
plying a vector (the unit vector) by a scalar (the component). Therefore, the unit-
vector notation for the vector is written

[1.13]

Now suppose we wish to add vector to vector , where has components Bx
and By . The procedure for performing this sum is simply to add the x and y com-
ponents separately. The resultant vector � � is therefore

[1.14]

From this equation, the components of the resultant vector are given by

[1.15]

The magnitude of and the angle it makes with the x axis can then be obtained
from its components using the relationships

[1.16]

[1.17]

The procedure just described for adding two vectors and using the component
method can be checked using a diagram like Figure 1.17.

B
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A
:

 tan � �
Ry

Rx
�

Ay � By

Ax � Bx

 R � √Rx 

2 � Ry 

2 � √(Ax � Bx)2 � (Ay � By)2

R
:

Ry � Ay � By

Rx � Ax � Bx

R
:

� (Ax � Bx) î � (Ay � By) ĵ

B
:
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:

R
:

B
:

A
:

B
:

A
:

� Ax î � Ay ĵ

A
:

Ay ĵ
A
:

x � Ax îî
A
:

� î � � � ĵ � � � k̂ � � 1

k̂ĵîî

k̂ĵî
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(a) The unit vectors , , and are
directed along the x, y, and z axes,
respectively. (b) A vector lying
in the xy plane has component
vectors and , where Ax and
Ay are the components of .

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 1.16 to 
rotate the coordinate axes in 
three-dimensional space and view
a representation of vector in
three dimensions.
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:

Ay ĵAx î

A
:

k̂ĵî

ACTIVE FIGURE 1.16
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A geometric
construction showing the relation
between the components of the
resultant of two vectors and the
individual components.

R
:

FIGURE 1.17

X COMPONENTS Equation 1.10 for
the x and y components of a vector
associates the cosine of the angle
with the x component and the sine
of the angle with the y component.
This association occurs solely be-
cause we chose to measure the an-
gle with respect to the x axis, so
don’t memorize these equations.
Invariably, you will face a problem
in the future in which the angle is
measured with respect to the y axis,
and the equations will be incorrect.
It is much better to always think
about which side of the triangle
containing the components is adja-
cent to the angle and which side is
opposite, and then assign the sine
and cosine accordingly.

� PITFALL PREVENTION 1.5
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The extension of these methods to three-dimensional vectors is straightforward.
If and both have x, y, and z components, we express them in the form

The sum of and is

[1.18]

The same procedure can be used to add three or more vectors.
If a vector has x, y, and z components, the magnitude of the vector is

The angle 
x that makes with the x axis is given by

with similar expressions for the angles with respect to the y and z axes.

cos 
x �
Rx

R

R
:

R � √Rx 

2 � Ry 

2 � Rz 

2
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� (Ax � Bx ) î � (Ay � By ) ĵ � (Az � Bz )k̂

B
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A
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 B
:

� Bx î � By ĵ � Bz k̂

 A
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� Ax î � Ay ĵ � Az k̂

B
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A
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If at least one component of a vector is a positive number, the vector
cannot (a) have any component that is negative, (b) be zero, (c) have three dimensions.
QUICK QUIZ 1.7

If � � 0, the corresponding components of the two vectors 
and must be (a) equal, (b) positive, (c) negative, (d) of opposite sign.B

:
A
:

B
:

A
:QUICK QUIZ 1.8

■ Thinking Physics 1.2
You may have asked someone directions to a destination in a city and been told
something like, “Walk 3 blocks east and then 5 blocks south.” If so, are you experi-
enced with vector components?

Reasoning Yes, you are! Although you may not have thought of vector component
language when you heard these directions, that is exactly what the directions repre-
sent. The perpendicular streets of the city reflect an xy coordinate system; we can
assign the x axis to the east –west streets, and the y axis to the north–south streets.
Thus, the comment of the person giving you directions can be translated as,
“Undergo a displacement vector that has an x component of �3 blocks and a
y component of �5 blocks.” You would arrive at the same destination by undergo-
ing the y component first, followed by the x component, demonstrating the com-
mutative law of addition. ■

or

The magnitude of is

 � √(7.00)2 � (�1.00)2 � √50.0 � 7.07

R � √Rx 

2 � Ry 

2 

R
:

Rx � 7.00,    Ry � �1.00

7.00 î � 1.00 ĵ�

 R
:

� A
:

� B
:

� (2.00 � 5.00) î � (3.00 � 4.00) ĵ

The Sum of Two VectorsEXAMPLE 1.6

Find the sum of two vectors and lying in the xy
plane and given by

Solution It might be helpful for you to draw a diagram
of the vectors to clarify what they look like on the xy
plane. Using the rule given by Equation 1.14, we solve
this problem mathematically as follows. Note that 
Ax � 2.00, Ay � 3.00, Bx � 5.00, and By � � 4.00.
Therefore, the resultant vector isR

:

A
:

� 2.00 î � 3.00 ĵ  and  B
:

� 5.00 î � 4.00 ĵ

B
:

A
:



COMPONENTS OF A VECTOR AND UNIT VECTORS ❚ 21

That is, the resultant displacement has components
Rx � 2.50 cm, Ry � 3.10 cm, and Rz � � 4.80 cm. Its
magnitude is

� 6.24 cm

� √(2.50 cm)2 � (3.10 cm)2 � (� 4.80 cm)2

R � √Rx 

2 � Ry 

2 � Rz
2

The Resultant DisplacementEXAMPLE 1.7
A particle undergoes three consecutive displacements:

cm, 
cm, and cm.

Find the components of the resultant displacement and
its magnitude.

Solution We use Equation 1.18 for three vectors:

(2.50 î � 3.10 ĵ � 4.80k̂) cm�

� (�1.20 � 3.60 � 0)k̂ cm

� (3.00 � 1.40 � 1.50) ĵ  cm

R
:

� � r:1 � � r:2 � � r:3 � (1.50 � 2.30 � 1.30) î  cm

� r:3 � (�1.30 î  � 1.50 ĵ)1.40 ĵ � 3.60k̂)
� r:2 � (2.30 î �� r:1 � (1.50 î � 3.00 ĵ � 1.20k̂)

Taking a HikeEXAMPLE 1.8INTERACTIVE

Displacement has a magnitude of 25.0 km and is
45.0° southeast. Its components are

The positive value of Ax indicates that the x coordinate
increased in this displacement. The negative value of 
Ay indicates that the y coordinate decreased in this
displacement. Notice in the diagram of Figure 1.18 that
vector lies in the fourth quadrant, consistent with the
signs of the components we calculated.

The second displacement has a magnitude of 
40.0 km and is 60.0° north of east. Its components are

Determine the components of the hiker’s total dis-
placement for the trip.

Solution The resultant displacement vector for the
trip, � � , has components given by

In unit-vector form, we can write the total displacement
as

Investigate this vector addition situation
by logging into PhysicsNow at www.pop4e.com and going to In-
teractive Example 1.8.

R
:

� (37.7 î � 16.9 ĵ) km

16.9 kmRy � Ay � By � �17.7 km � 34.6 km �

37.7 kmRx � Ax � Bx � 17.7 km � 20.0 km �

B
:

A
:

R
:

B

34.6 kmBy � B sin 60.0 � (40.0 km)(0.866) �

20.0 kmBx � B cos 60.0 � (40.0 km)(0.500) �

B
:

A
:

�17.7 km�

Ay � A sin(�45.0) � (25.0 km)(�0.707)

17.7 kmAx � A cos(�45.0) � (25.0 km)(0.707) �

A
:

A hiker begins a two-day trip by first walking 25.0 km
due southeast from her car. She stops and sets up her
tent for the night. On the second day she walks 40.0 km
in a direction 60.0° north of east, at which point she
discovers a forest ranger’s tower.

Determine the components of the hiker’s displace-
ments on the first and second days.

Solution If we denote the displacement vectors on the
first and second days by and , respectively, and use
the car as the origin of coordinates, we obtain the
vectors shown in the diagram in Figure 1.18. Notice that
the resultant vector can be drawn in the diagram to
provide an approximation of the final result of the two
hikes.
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(Interactive Example 1.8) The total displacement
of the hiker is the vector � � .B

:
A
:

R
:

FIGURE 1.18
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MODELING, ALTERNATIVE  REPRESENTATIONS,
AND  PROBLEM-SOLVING  STRATEGY

Most courses in general physics require the student to learn the skills of problem
solving, and examinations usually include problems that test such skills. This sec-
tion describes some useful ideas that will enable you to enhance your understand-
ing of physical concepts, increase your accuracy in solving problems, eliminate
initial panic or lack of direction in approaching a problem, and organize your
work.

One of the primary problem-solving methods in physics is to form an appropri-
ate model of the problem. A model is a simplified substitute for the real problem
that allows us to solve the problem in a relatively simple way. As long as the predic-
tions of the model agree to our satisfaction with the actual behavior of the real sys-
tem, the model is valid. If the predictions do not agree, the model must be refined
or replaced with another model. The power of modeling is in its ability to reduce a
wide variety of very complex problems to a limited number of classes of problems
that can be approached in similar ways.

In science, a model is very different from, for example, an architect’s scale
model of a proposed building, which appears as a smaller version of what it repre-
sents. A scientific model is a theoretical construct and may have no visual similar-
ity to the physical problem. A simple application of modeling is presented in
Example 1.9, and we shall encounter many more examples of models as the text
progresses.

Models are needed because the actual operation of the Universe is extremely
complicated. Suppose, for example, we are asked to solve a problem about the
Earth’s motion around the Sun. The Earth is very complicated, with many processes
occurring simultaneously. These processes include weather, seismic activity, and
ocean movements as well as the multitude of processes involving human activity.
Trying to maintain knowledge and understanding of all these processes is an impos-
sible task.

The modeling approach recognizes that none of these processes affects the mo-
tion of the Earth around the Sun to a measurable degree. Therefore, these details
are all ignored. In addition, as we shall find in Chapter 11, the size of the Earth
does not affect the gravitational force between the Earth and the Sun; only the
masses of the Earth and Sun and the distance between them determine this force.
In a simplified model, the Earth is imagined to be a particle, an object with mass
but zero size. This replacement of an extended object by a particle is called the par-
ticle model, which is used extensively in physics. By analyzing the motion of a parti-
cle with the mass of the Earth in orbit around the Sun, we find that the predictions
of the particle’s motion are in excellent agreement with the actual motion of the
Earth.

The two primary conditions for using the particle model are as follows:

• The size of the actual object is of no consequence in the analysis of its motion.
• Any internal processes occurring in the object are of no consequence in the

analysis of its motion.

Both of these conditions are in action in modeling the Earth as a particle. Its radius
is not a factor in determining its motion, and internal processes such as thunder-
storms, earthquakes, and manufacturing processes can be ignored.

Four categories of models used in this book will help us understand and solve
physics problems. The first category is the geometric model. In this model, we form
a geometric construction that represents the real situation. We then set aside the
real problem and perform an analysis of the geometric construction. Consider a
popular problem in elementary trigonometry, as in the following example.

1.10
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gle, we know the length of the horizontal leg and the
angle between the hypotenuse and the horizontal leg.
We can find the height of the tree by calculating the
length of the vertical leg. We do so with the tangent
function:

23.3 m h � (50.0 m)tan 
 � (50.0 m)tan 25.0 �

 tan 
 �
opposite side
adjacent side

�
h

50.0 m

Finding the Height of a TreeEXAMPLE 1.9
You wish to find the height of a tree but cannot mea-
sure it directly. You stand 50.0 m from the tree and de-
termine that a line of sight from the ground to the top
of the tree makes an angle of 25.0° with the ground.
How tall is the tree?

Solution Figure 1.19 shows the tree and a right triangle
corresponding to the information in the problem su-
perimposed over it. (We assume that the tree is exactly
perpendicular to a perfectly flat ground.) In the trian-

25.0°
h

50.0 m

(Example 1.9)
The height of a tree can be found
by measuring the distance from
the tree and the angle of sight to
the top above the ground. This
problem is a simple example of
geometrically modeling the actual
problem.

FIGURE 1.19

You may have solved a problem very similar to Example 1.9 but never thought
about the notion of modeling. From the modeling approach, however, once we
draw the triangle in Figure 1.19, the triangle is a geometric model of the real prob-
lem; it is a substitute. Until we reach the end of the problem, we do not imagine the
problem to be about a tree but to be about a triangle. We use trigonometry to find
the vertical leg of the triangle, leading to a value of 23.3 m. Because this leg repre-
sents the height of the tree, we can now return to the original problem and claim
that the height of the tree is 23.3 m.

Other examples of geometric models include modeling the Earth as a perfect
sphere, a pizza as a perfect disk, a meter stick as a long rod with no thickness, and
an electric wire as a long, straight, cylinder.

The particle model is an example of the second category of models, which we
will call simplification models. In a simplification model, details that are not signifi-
cant in determining the outcome of the problem are ignored. When we study rota-
tion in Chapter 10, objects will be modeled as rigid objects. All the molecules in a
rigid object maintain their exact positions with respect to one another. We adopt
this simplification model because a spinning rock is much easier to analyze than a
spinning block of gelatin, which is not a rigid object. Other simplification models
will assume that quantities such as friction forces are negligible, remain constant, or
are proportional to some power of the object’s speed. 

The third category is that of analysis models, which are general types of prob-
lems that we have solved before. An important technique in problem solving is to
cast a new problem into a form similar to one we have already solved and which can
be used as a model. As we shall see, there are about two dozen analysis models that
can be used to solve most of the problems you will encounter. We will see our first
analysis models in Chapter 2, where we will discuss them in more detail.

The fourth category of models is structural models. These models are generally
used to understand the behavior of a system that is far different in scale from our
macroscopic world—either much smaller or much larger—so that we cannot in-



teract with it directly. As an example, the notion of a hydrogen atom as an electron
in a circular orbit around a proton is a structural model of the atom. We will discuss
this model and structural models in general in Chapter 11.

Intimately related to the notion of modeling is that of forming alternative repre-
sentations of the problem. A representation is a method of viewing or presenting
the information related to the problem. Scientists must be able to communicate
complex ideas to individuals without scientific backgrounds. The best representa-
tion to use in conveying the information successfully will vary from one individual
to the next. Some will be convinced by a well-drawn graph, and others will require a
picture. Physicists are often persuaded to agree with a point of view by examining
an equation, but nonphysicists may not be convinced by this mathematical repre-
sentation of the information.

A word problem, such as those at the ends of the chapters in this book, is one
representation of a problem. In the “real world” that you will enter after gradua-
tion, the initial representation of a problem may be just an existing situation, such
as the effects of global warming or a patient in danger of dying. You may have to
identify the important data and information, and then cast the situation into an
equivalent word problem!

Considering alternative representations can help you think about the informa-
tion in the problem in several different ways to help you understand and solve it.
Several types of representations can be of assistance in this endeavor:

• Mental representation. From the description of the problem, imagine a scene
that describes what is happening in the word problem, then let time progress so
that you understand the situation and can predict what changes will occur in the
situation. This step is critical in approaching every problem.

• Pictorial representation. Drawing a picture of the situation described in the
word problem can be of great assistance in understanding the problem. In
Example 1.9, the pictorial representation in Figure 1.19 allows us to identify the
triangle as a geometric model of the problem. In architecture, a blueprint is a
pictorial representation of a proposed building.

Generally, a pictorial representation describes what you would see if you were
observing the situation in the problem. For example, Figure 1.20 shows a
pictorial representation of a baseball player hitting a short pop foul. Any coordi-
nate axes included in your pictorial representation will be in two dimensions:
x and y axes.

• Simplified pictorial representation. It is often useful to redraw the pictorial repre-
sentation without complicating details by applying a simplification model. This
process is similar to the discussion of the particle model described earlier. In a
pictorial representation of the Earth in orbit around the Sun, you might draw the
Earth and the Sun as spheres, with possibly some attempt to draw continents to
identify which sphere is the Earth. In the simplified pictorial representation, the
Earth and the Sun would be drawn simply as dots, representing particles. 
Figure 1.21 shows a simplified pictorial representation corresponding to the
pictorial representation of the baseball trajectory in Figure 1.20. The notations 
vx and vy refer to the components of the velocity vector for the baseball. We shall
use such simplified pictorial representations throughout the book.

• Graphical representation. In some problems, drawing a graph that describes the
situation can be very helpful. In mechanics, for example, position–time graphs
can be of great assistance. Similarly, in thermodynamics, pressure–volume graphs
are essential to understanding. Figure 1.22 shows a graphical representation of
the position as a function of time of a block on the end of a vertical spring as it
oscillates up and down. Such a graph is helpful for understanding simple har-
monic motion, which we study in Chapter 12.

A graphical representation is different from a pictorial representation, which is
also a two-dimensional display of information but whose axes, if any, represent

24 ❚ CHAPTER 1 INTRODUCTION AND VECTORS

A pictorial repre-
sentation of a pop foul being hit by a
baseball player.

FIGURE 1.20

v vy

vx

A simplified pictor-
ial representation for the situation
shown in Figure 1.20.

FIGURE 1.21



length coordinates. In a graphical representation, the axes may represent any two
related variables. For example, a graphical representation may have axes for tem-
perature and time. Therefore, in comparison to a pictorial representation, a
graphical representation is generally not something you would see when observ-
ing the situation in the problem with your eyes.

• Tabular representation. It is sometimes helpful to organize the information in
tabular form to help make it clearer. For example, some students find that mak-
ing tables of known quantities and unknown quantities is helpful. The periodic
table is an extremely useful tabular representation of information in chemistry
and physics.

• Mathematical representation. The ultimate goal in solving a problem is often the
mathematical representation. You want to move from the information contained
in the word problem, through various representations of the problem that allow
you to understand what is happening, to one or more equations that represent
the situation in the problem and that can be solved mathematically for the de-
sired result.
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A graphical repre-
sentation of the position as a function
of time of a block hanging from a
spring and oscillating.

FIGURE 1.22

An important way to become a skilled problem solver is to
adopt a problem-solving strategy. This General Problem-Solving
Strategy provides useful steps for solving numerical problems.

Conceptualize
• Read the problem carefully at least twice. Be sure you under-

stand the nature of the problem before proceeding further.
Imagine a movie, running in your mind, of what happens in
the problem. This step allows you to set up the mental repre-
sentation of the problem.

• Draw a suitable diagram with appropriate labels and coordi-
nate axes, if needed. This process provides the pictorial rep-
resentation. If appropriate, generate a graphical representa-
tion. If you find it helpful, generate a tabular representation.

• Now focus on the expected result of solving the problem.
Exactly what is the question asking? Will the final result be
numerical or algebraic? Do you know what units to expect?

• Don’t forget to incorporate information from your own ex-
periences and common sense. What should a reasonable an-
swer look like? For example, you wouldn’t expect to calculate
the speed of an automobile to be 5 � 106 m/s.

Categorize
• Once you have a good idea of what the problem is about,

you need to simplify the problem by drawing a simplified pic-
torial representation. Use a simplification model to remove
additional unnecessary details if the conditions for the
model are satisfied. If it helps you solve the problem, identify
a useful geometric model from the diagrams.

• Once the problem is simplified, it is important to categorize
the problem. Is it a simple plug-in problem, such that numbers

GENERAL PROBLEM-SOLVING STRATEGY

can be simply substituted into a definition? If so, the prob-
lem is likely to be finished when this substitution is done. If
not, you face an analysis problem, and the situation must be
analyzed more deeply to reach a solution.

• Once you have eliminated the unnecessary details and have
simplified the problem to its fundamental level, identify an
analysis model for the problem. (We will see how to identify
analysis models as we introduce them throughout the book.)

Analyze
• Now you must analyze the problem and strive for a mathe-

matical representation of the problem. From the analysis
model, identify the basic physical principle or principles that
are involved, listing the knowns and unknowns. Select rele-
vant equations that apply to the model.

• Use algebra (and calculus, if necessary) to solve symbolically
for the unknown variable in terms of what is given. Substitute
in the appropriate numbers, calculate the result, and round
it to the proper number of significant figures.

Finalize
• This final step is the most important part. Examine your nu-

merical answer. Does it have the correct units? Is it of reason-
able value? Does it meet your expectations from your con-
ceptualization of the problem? What about the algebraic
form of the result, before you substituted numerical values?
Does it make sense? Examine the variables in the problem to
see whether the answer would change in a physically mean-
ingful way if the variables were drastically increased, de-
creased, or even became zero. Looking at limiting cases to
see whether they yield expected values is a very useful way to
make sure that you are obtaining reasonable results.



Although this problem-solving strategy may look complicated, it may not be nec-
essary to perform all the steps for a given problem. Examples in this text focus on
how to apply these steps explicitly to help you become an effective problem solver.
Many chapters include a section labeled “Problem-Solving Strategy” that should
help you through the rough spots. These sections are organized according to the
General Problem-Solving Strategy and tailor this strategy to the specific types of
problems addressed in individual chapters. Once you have developed an organized
system for examining problems and extracting relevant information, you will be-
come a more confident problem solver in physics as well as in other areas.
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Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

Mechanical quantities can be expressed in terms of three funda-
mental quantities— length, mass, and time—which in the SI sys-
tem have the units meters (m), kilograms (kg), and seconds (s),
respectively. It is often useful to use the method of dimensional
analysis to check equations and to assist in deriving expressions.

The density of a substance is defined as its mass per unit
volume:

[1.1]

Vectors are quantities that have both magnitude and direc-
tion and obey the vector law of addition. Scalars are quantities
that add algebraically.

Two vectors and can be added using the triangle
method. In this method (see Fig. 1.9), the vector 
runs from the tail of to the tip of .

The x component Ax of the vector is equal to its projec-
tion along the x axis of a coordinate system, where Ax � A cos 

and where 
 is the angle makes with the x axis. Likewise, the
y component Ay of is its projection along the y axis, where
Ay � A sin 
.
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SUMMARY

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. What types of natural phenomena could serve as time
standards? 

Suppose the three fundamental standards of the metric sys-
tem were length, density, and time rather than length, mass,
and time. The standard of density in this system is to be de-
fined as that of water. What considerations about water
would you need to address to make sure that the standard
of density is as accurate as possible?

Express the following quantities using the prefixes given in
Table 1.4: (a) 3 � 10�4 m, (b) 5 � 10�5 s, (c) 72 � 102 g.

4. Suppose two quantities A and B have different dimen-
sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A � B, (b) A/B, 
(c) B � A, (d) AB.

5. If an equation is dimensionally correct, does that mean
that the equation must be true? If an equation is not
dimensionally correct, does that mean that the equation
cannot be true?

6. Find the order of magnitude of your age in seconds.

7. What level of precision is implied in an order-of-magnitude
calculation?

8. In reply to a student’s question, a guard in a natural his-
tory museum says of the fossils near his station, “When
I started work here twenty-four years ago, they
were eighty million years old, so you can add it up.”
What should the student conclude about the age of the
fossils? 

9. Can the magnitude of a particle’s displacement be greater
than the distance traveled? Explain.

10. Which of the following are vectors and which are not:
force, temperature, the volume of water in a can, the

3.

2.

If a vector has an x component equal to Ax and a y compo-
nent equal to Ay , the vector can be expressed in unit-vector
form as . In this notation, is a unit vector
in the positive x direction and is a unit vector in the positive 
y direction. Because and are unit vectors, .
In three dimensions, a vector can be expressed as

, where is a unit vector in the z
direction.

The resultant of two or more vectors can be found by resolv-
ing all vectors into their x, y, and z components and adding
their components:

[1.18]

Problem-solving skills and physical understanding can be
improved by modeling the problem and by constructing
alternative representations of the problem. Models helpful in
solving problems include geometric, simplification, and analy-
sis models. Scientists use structural models to understand sys-
tems larger or smaller in scale than those with which we nor-
mally have direct experience. Helpful representations include
the mental, pictorial, simplified pictorial, graphical, tabular,
and mathematical representations.
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ratings of a TV show, the height of a building, the velocity
of a sports car, the age of the Universe?

A vector lies in the xy plane. For what orientations of 
will both of its components be negative? For what orienta-
tions will its components have opposite signs?

12. A book is moved once around the perimeter of a tabletop
with the dimensions 1.0 m � 2.0 m. If the book ends up at
its initial position, what is its displacement? What is the dis-
tance traveled?

13. While traveling along a straight interstate highway you no-
tice that the mile marker reads 260. You travel until you
reach the 150-mile marker and then retrace your path to
the 175-mile marker. What is the magnitude of your resul-
tant displacement from mile marker 260?

14. If the component of vector along the direction of vector
is zero, what can you conclude about the two vectors?

15. Can the magnitude of a vector have a negative value?
Explain.

16. Under what circumstances would a nonzero vector lying in
the xy plane have components that are equal in magni-
tude?

B
:

A
:

A
:

A
:

11.

Is it possible to add a vector quantity to a scalar quantity?
Explain.

18. In what circumstance is the x component of a vector given
by the magnitude of the vector multiplied by the sine of its
direction angle?

19. Identify the type of model (geometrical, simplification, or
structural) represented by each of the following. (a) In its
orbit around the Sun, the Earth is treated as a particle. 
(b) The distance the Earth travels around the Sun is calcu-
lated as 2� multiplied by the Earth–Sun distance. (c) The
atomic structure of a solid material is imagined to consist
of small objects (atoms) connected to neighboring identi-
cal objects by springs. (d) For an object you drop, air resis-
tance is ignored. (e) The volume of water in a bottle is esti-
mated by calculating the volume of a cylinder. (f) A bat
hits a baseball. In studying the motion of the baseball, any
distortion of the ball while it is in contact with the bat is
not considered. (g) In the early 20th century, the atom was
proposed to consist of electrons in orbit around a very
small but massive nucleus.

17.

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Note: Consult the endpapers, appendices, and tables in the
text whenever necessary in solving problems. For this chap-
ter, Appendix B.3 and Table 15.1 may be particularly useful.
Answers to odd-numbered problems appear in the back of
the book.

Section 1.1 � Standards of Length, Mass, and Time
1. Use information on the endpapers of this book to calcu-

late the average density of the Earth. Where does the value
fit among those listed in Table 15.1? Look up the density of
a typical surface rock like granite in another source and
compare the density of the Earth to it.

2. A major motor company displays a die-cast model of its first
automobile, made from 9.35 kg of iron. To celebrate its
hundredth year in business, a worker will recast the model
in gold from the original dies. What mass of gold is needed
to make the new model? The density of iron is 
7.86 � 103 kg/m3, and that of gold is 19.3 � 103 kg/m3.

3. What mass of a material with density � is required to make
a hollow spherical shell having inner radius r1 and outer
radius r2?

4. Two spheres are cut from a certain uniform rock. One has
radius 4.50 cm. The mass of the other is five times greater.
Find its radius.

Section 1.2 � Dimensional Analysis
The position of a particle moving under uniform accelera-
tion is some function of time and the acceleration. Sup-
pose we write this position as x � kamt n, where k is a di-
mensionless constant. Show by dimensional analysis that
this expression is satisfied if m � 1 and n � 2. Can this
analysis give the value of k?

6. Figure P1.6 shows a frustrum of a cone. Of the following
mensuration (geometrical) expressions, which describes
(a) the total circumference of the flat circular faces, 
(b) the volume, and (c) the area of the curved surface?
(i) �(r1 � r2)[h2 � (r1 � r2)2]1/2 (ii) 2�(r1 � r2)
(iii) �h(r1

2 � r1r2 � r2
2)

5.

h

r1

r2

FIGURE P1.6
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7. Which of the following equations are dimensionally
correct? (a) vf � vi � ax (b) y � (2 m)cos(kx), where 
k � 2 m�1.

Section 1.3 ■ Conversion of Units
8. Suppose your hair grows at the rate in. per day. Find

the rate at which it grows in nanometers (nm) per second.
Because the distance between atoms in a molecule is on
the order of 0.1 nm, your answer suggests how rapidly lay-
ers of atoms are assembled in this protein synthesis.

9. Assume it takes 7.00 minutes to fill a 30.0-gal gasoline tank.
(a) Calculate the rate at which the tank is filled in gallons
per second. (b) Calculate the flow rate of the gasoline in
cubic meters per second. (c) Determine the time interval,
in hours, required to fill a 1.00-m3 volume at the same rate.
(1 U.S. gal � 231 in.3)

10. A section of land has an area of 1 square mile and contains
640 acres. Determine the number of square meters in 1 acre.

11. An ore loader moves 1 200 tons/h from a mine to the
surface. Convert this rate to pounds per second, using
1 ton � 2 000 lb. 

12. At the time of this book’s printing, the U.S. national debt is
about $7 trillion. (a) If payments were made at the rate of
$1 000 per second, how many years would it take to pay off
the debt assuming that no interest were charged? (b) A
one-dollar bill is about 15.5 cm long. If seven trillion one-
dollar bills were laid end to end around the Earth’s equa-
tor, how many times would they encircle the planet? Take
the radius of the Earth at the equator to be 6 378 km.
(Note: Before doing any of these calculations, try to guess at
the answers. You may be very surprised.)

One gallon of paint with a volume of
3.78 � 10�3 m3 covers an area of 25.0 m2. What is the thick-
ness of the paint on the wall?

14. The mass of the Sun is 1.99 � 1030 kg, and the mass of an
atom of hydrogen, of which the Sun is mostly composed, is
1.67 � 10�27 kg. How many atoms are in the Sun?

One cubic meter (1.00 m3) of alu-
minum has a mass of 2.70 � 103 kg, and 1.00 m3 of iron
has a mass of 7.86 � 103 kg. Find the radius of a solid
aluminum sphere that will balance a solid iron sphere of
radius 2.00 cm on an equal-arm balance.

16. Let �Al represent the density of aluminum and �Fe that of
iron. Find the radius of a solid aluminum sphere that
balances a solid iron sphere of radius r Fe on an equal-arm
balance.

17. A hydrogen atom has a diameter of approximately 
1.06 � 10�10 m, as defined by the diameter of the spheri-
cal electron cloud around the nucleus. The hydrogen nu-
cleus has a diameter of approximately 2.40 � 10�15 m.
(a) For a scale model, represent the diameter of the hydro-
gen atom by the playing length of an American football
field (100 yards � 300 ft) and determine the diameter of
the nucleus in millimeters. (b) The atom is how many
times larger in volume than its nucleus?

Section 1.4 ■ Order-of-Magnitude Calculations
18. An automobile tire is rated to last for 50 000 miles. To an

order of magnitude, through how many revolutions will it

15.

13.

1
32

turn? In your solution, state the quantities you measure or
estimate and the values you take for them.

Estimate the number of Ping-Pong balls
that would fit into a typical-size room (without being
crushed). In your solution, state the quantities you mea-
sure or estimate and the values you take for them.

20. Compute the order of magnitude of the mass of a bathtub
half full of water. Compute the order of magnitude of the
mass of a bathtub half full of pennies. In your solution, list
the quantities you take as data and the value you measure
or estimate for each.

21. To an order of magnitude, how many piano tuners are in
New York City? The physicist Enrico Fermi was famous for
asking questions like this one on oral Ph.D. qualifying ex-
aminations. His own facility in making order-of-magnitude
calculations is exemplified in Problem 30.58.

22. Soft drinks are commonly sold in aluminum containers. To
an order of magnitude, how many such containers are
thrown away or recycled each year by U.S. consumers? How
many tons of aluminum does this number represent? In
your solution, state the quantities you measure or estimate
and the values you take for them.

Section 1.5 ■ Significant Figures
23. How many significant figures are in the following 

numbers: (a) 78.9 0.2, (b) 3.788 � 109, (c) 2.46 � 10�6, 
(d) 0.005 3?

24. Carry out the following arithmetic operations: (a) the sum
of the measured values 756, 37.2, 0.83, and 2.5; (b) the
product 0.003 2 � 356.3; (c) the product 5.620 � �.

25. The tropical year, the time interval from vernal equinox to
vernal equinox, is the basis for our calendar. It contains
365.242 199 days. Find the number of seconds in a tropical
year.

Note: Appendix B.8 on propagation of uncertainty may be
useful in solving the next two problems.

26. The radius of a sphere is measured to be (6.50 0.20) cm,
and its mass is measured to be (1.85 0.02) kg. The sphere
is solid. Determine its density in kilograms per cubic meter
and the uncertainty in the density.

27. A sidewalk is to be constructed around a swimming pool
that measures (10.0 0.1) m by (17.0 0.1) m. If the side-
walk is to measure (1.00 0.01) m wide by (9.0 0.1) cm
thick, what volume of concrete is needed and what is the
approximate uncertainty of this volume?

Note: The next four problems call upon mathematical skills
that will be useful throughout the course.

28. Review problem. Prove that one solution of the equation

is x � � 2.22.

29. Review problem. Find every angle 
 between 0 and 360°
for which sin 
 is equal to � 3.00 multiplied by cos 
.

30. Review problem. A highway curve forms a section of a cir-
cle. A car goes around the curve. Its dashboard compass

2.00x4 � 3.00x3 � 5.00x � 70.0
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shows that the car is initially heading due east. After it trav-
els 840 m, it is heading 35.0° south of east. Find the radius
of curvature of its path.

31. Review problem. From the set of equations

involving the unknowns p, q, r, s, and t, find the value of t/r.

Section 1.6 ■ Coordinate Systems
32. The polar coordinates of a point are r � 5.50 m and 


 � 240°. What are the Cartesian coordinates of this point?

A fly lands on one wall of a room. The lower left corner of
the wall is selected as the origin of a two-dimensional
Cartesian coordinate system. If the fly is located at the
point having coordinates (2.00, 1.00) m, (a) how far is it
from the corner of the room? (b) What is its location in
polar coordinates?

34. Two points in the xy plane have Cartesian coordinates (2.00,
� 4.00) m and (� 3.00, 3.00) m. Determine (a) the distance
between these points and (b) their polar coordinates.

35. Let the polar coordinates of the point (x, y) be (r, 
).
Determine the polar coordinates for the points (a) (� x, y),
(b) (� 2x, � 2y), and (c) (3x, � 3y).

Section 1.7 ■ Vectors and Scalars
Section 1.8 ■ Some Properties of Vectors
36. A plane flies from base camp to Lake A, 280 km away in

the direction 20.0° north of east. After dropping off sup-
plies, it flies to Lake B, which is 190 km at 30.0° west of
north from Lake A. Graphically determine the distance
and direction from Lake B to the base camp.

A skater glides along a circular path of
radius 5.00 m. Assuming he coasts around one half of the
circle, find (a) the magnitude of the displacement vector
and (b) how far the person skated. (c) What is the magni-
tude of the displacement if he skates all the way around
the circle?

38. Each of the displacement vectors and shown in Figure
P1.38 has a magnitude of 3.00 m. Find graphically 
(a) � , (b) � , (c) � , and (d) � 2 . Report
all angles counterclockwise from the positive x axis.
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 12 pr2 � 1
2 qs2 � 1

2 qt2

 pr � qs

 p � 3q

A roller coaster car moves 200 ft horizontally and then rises
135 ft at an angle of 30.0° above the horizontal. It then trav-
els 135 ft at an angle of 40.0° downward. What is its displace-
ment from its starting point? Use graphical techniques.

Section 1.9 ■ Components of a Vector and Unit Vectors
40. Find the horizontal and vertical components of the 100-m

displacement of a superhero who flies from the top of a
tall building following the path shown in Figure P1.40.

39.

41. A vector has an x component of � 25.0 units and a y com-
ponent of 40.0 units. Find the magnitude and direction of
this vector.

42. For the vectors and 
(a) draw the vector sum � � and the vector
difference � � . (b) Calculate and , first in
terms of unit vectors and then in terms of polar coordi-
nates, with angles measured with respect to the positive x
axis.

43. A man pushing a mop across a floor causes it to undergo
two displacements. The first has a magnitude of 150 cm
and makes an angle of 120° with the positive x axis. The
resultant displacement has a magnitude of 140 cm and is
directed at an angle of 35.0° to the positive x axis. 
Find the magnitude and direction of the second
displacement.

44. Vector has x and y components of � 8.70 cm and 
15.0 cm, respectively; vector has x and y components
of 13.2 cm and � 6.60 cm, respectively. If � � 3 � 0,
what are the components of ?

Consider the two vectors and .
Calculate (a) � , (b) � , (c) � � �, (d) � � �,
and (e) the directions of � and � .

46. Consider the three displacement vectors ,
, and . Use the compo-

nent method to determine (a) the magnitude and direction
of the vector � � � and (b) the magnitude and
direction of � � � � .

A person going for a walk follows the path shown in Figure
P1.47. The total trip consists of four straight-line paths. At
the end of the walk, what is the person’s resultant displace-
ment measured from the starting point?
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48. Use the component method to add the vectors and 
shown in Figure P1.38. Express the resultant � in
unit-vector notation. 

49. In an assembly operation illustrated in Figure P1.49, a ro-
bot moves an object first straight upward and then also to
the east, around an arc forming one quarter of a circle of
radius 4.80 cm that lies in an east–west vertical plane. The
robot then moves the object upward and to the north,
through a quarter of a circle of radius 3.70 cm that lies in a
north–south vertical plane. Find (a) the magnitude of the
total displacement of the object and (b) the angle the total
displacement makes with the vertical.
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52. (a) Vector has magnitude 17.0 cm and is directed 27.0°
counterclockwise from the �x axis. Express it in unit-
vector notation. (b) Vector has magnitude 17.0 cm and
is directed 27.0° counterclockwise from the �y axis.
Express it in unit-vector notation. (c) Vector has
magnitude 17.0 cm and is directed 27.0° clockwise from
the �y axis. Express it in unit-vector notation.

Three displacement vectors of a cro-
quet ball are shown in Figure P1.53, where �
20.0 units, � � � 40.0 units, and � � � 30.0 units. Find 
(a) the resultant in unit-vector notation and (b) the mag-
nitude and direction of the resultant displacement.

C
:

B
:

� A
:

�
53.

G
:

F
:

E
:

54. Taking units, 
units, and units, determine a and b
such that a � b � � 0.

Section 1.10 � Modeling, Alternative Representations,
and Problem-Solving Strategy

55. A surveyor measures the distance across a straight river by
the following method. Starting directly across from a tree
on the opposite bank, she walks 100 m along the riverbank
to establish a baseline. Then she sights across to the tree.
The angle from her baseline to the tree is 35.0°. How wide
is the river?

56. On December 1, 1955, Rosa Parks stayed seated in her bus
seat when a white man demanded it. Police in
Montgomery, Alabama, arrested her. On December 5,
blacks began refusing to use all city buses. Under the lead-
ership of the Montgomery Improvement Association, an
efficient system of alternative transportation sprang up im-
mediately, providing blacks with about 35 000 essential
trips per day through volunteers, private taxis, carpooling,
and ride sharing. The buses remained empty until they
were integrated under court order on December 21, 1956.
In picking up her riders, suppose a driver in downtown
Montgomery traverses four successive displacements repre-
sented by the expression

� (3.00 cos 50� î � 3.00  sin 50� ĵ)b � (5.00 ĵ)b

(�6.30 î)b �   (4.00 cos 40� î � 4.00 sin 40� ĵ)b

C
:

B
:

A
:
C
:

� (26.0 î  � 19.0 ĵ)
B
:

� (�8.00 î � 3.00 ĵ)A
:

� (6.00 î  � 8.00 ĵ)

50. Vector has x, y, and z components of 4.00, 6.00, and 
3.00 units, respectively. Calculate the magnitude of and
the angles that makes with the coordinate axes.

The vector has x, y, and z components of 8.00, 12.0, and
� 4.00 units, respectively. (a) Write a vector expression for

in unit-vector notation. (b) Obtain a unit-vector expres-
sion for a vector one fourth the length of pointing in
the same direction as . (c) Obtain a unit-vector expres-
sion for a vector three times the length of pointing in
the direction opposite the direction of .A

:
A
:

C
:

A
:

A
:

B
:

A
:

A
:

51.

B
:

B
:

B
:
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Here b represents one city block, a convenient unit
of distance of uniform size; � east and � north. 
(a) Draw a map of the successive displacements. (b) What
total distance did she travel? (c) Compute the magnitude
and direction of her total displacement. The logical struc-
ture of this problem and of several problems in later
chapters was suggested by Alan Van Heuvelen and David
Maloney, American Journal of Physics 67(3) (March 1999)
252–256.

57. A crystalline solid consists of atoms stacked up in a repeat-
ing lattice structure. Consider a crystal as shown in Figure
P1.57a. The atoms reside at the corners of cubes of side
L � 0.200 nm. One piece of evidence for the regular
arrangement of atoms comes from the flat surfaces along
which a crystal separates, or cleaves, when it is broken.
Suppose this crystal cleaves along a face diagonal, as
shown in Figure P1.57b. Calculate the spacing d between
two adjacent atomic planes that separate when the crystal
cleaves.

ĵî
59. The basic function of the carburetor of an automobile is to

“atomize” the gasoline and mix it with air to promote rapid
combustion. As an example, assume that 30.0 cm3 of
gasoline is atomized into N spherical droplets, each with a
radius of 2.00 � 10�5 m. What is the total surface area of
these N spherical droplets?

60. The consumption of natural gas by a company satisfies the
empirical equation V � 1.50t � 0.008 00t2, where V is the
volume in millions of cubic feet and t the time in months.
Express this equation in units of cubic feet and seconds.
Assign proper units to the coefficients. Assume that a
month is 30.0 days.

There are nearly � � 107 s in one year. Find the percent-
age error in this approximation, where “percentage error’’
is defined as

62. In physics, it is important to use mathematical approx-
imations. Demonstrate that for small angles (�20°)

tan � � sin � � � � ��	/180°
where � is in radians and �	 is in degrees. Use a calculator
to find the largest angle for which tan � may be approxi-
mated by � with an error less than 10.0%. 

63. A child loves to watch as you fill a transparent plastic
bottle with shampoo. Every horizontal cross-section is a
circle, but the diameters of the circles have different val-
ues, so the bottle is much wider in some places than oth-
ers. You pour in bright green shampoo with constant
volume flow rate 16.5 cm3/s. At what rate is its level in
the bottle rising (a) at a point where the diameter of the
bottle is 6.30 cm and (b) at a point where the diameter
is 1.35 cm?

64. One cubic centimeter of water has a mass of 
1.00 � 10�3 kg. (a) Determine the mass of 1.00 m3 of wa-
ter. (b) Biological substances are 98% water. Assume that
they have the same density as water to estimate the masses
of a cell that has a diameter of 1.00 
m, a human kidney,
and a fly. Model the kidney as a sphere with a radius of
4.00 cm and the fly as a cylinder 4.00 mm long and
2.00 mm in diameter.

65. The distance from the Sun to the nearest star is
4 � 1016 m. The Milky Way galaxy is roughly a disk of di-
ameter � 1021 m and thickness � 1019 m. Find the order
of magnitude of the number of stars in the Milky Way.
Assume that the distance between the Sun and our near-
est neighbor is typical.

66. Two vectors and have precisely equal magnitudes. For
the magnitude of � to be larger than the magnitude
of � by the factor n, what must be the angle between
them?

67. The helicopter view in Figure P1.67 shows two people
pulling on a stubborn mule. (a) Find the single force
that is equivalent to the two forces shown. The forces
are measured in units of newtons (symbolized N). 
(b) Find the force that a third person would have to
exert on the mule to make the resultant force equal to
zero.

B
:

A
:

B
:

A
:
B
:

A
:

Percentage error �
� assumed value � true value �

true value 
� 100%

61.

L

(b)

(a)

d

FIGURE P1.57

Additional Problems
58. In a situation where data are known to three significant

figures, we write 6.379 m � 6.38 m and 6.374 m � 6.37 m.
When a number ends in 5, we arbitrarily choose to write
6.375 m � 6.38 m. We could equally well write 6.375 m �
6.37 m, “rounding down” instead of “rounding up,”
because we would change the number 6.375 by equal
increments in both cases. Now consider an order-of-
magnitude estimate. Here factors of change, rather than
increments, are important. We write 500 m � 103 m be-
cause 500 differs from 100 by a factor of 5 whereas it dif-
fers from 1 000 by only a factor of 2. We write
437 m � 103 m and 305 m � 102 m. What distance differs
from 100 m and from 1 000 m by equal factors, so that we
could equally well choose to represent its order of magni-
tude either as � 102 m or as � 103 m?
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68. An air-traffic controller observes two aircraft on his radar
screen. The first is at altitude 800 m, horizontal distance
19.2 km, and 25.0° south of west. The second aircraft is at al-
titude 1 100 m, horizontal distance 17.6 km, and 20.0° south
of west. What is the distance between the two aircraft? (Place
the x axis west, the y axis south, and the z axis vertical.) 

69. Long John Silver, a pirate, has buried his treasure on an is-
land with five trees, located at the following points: (30.0 m,
� 20.0 m), (60.0 m, 80.0 m), (� 10.0 m, � 10.0 m),
(40.0 m, � 30.0 m), and (� 70.0 m, 60.0 m), all measured
relative to some origin, as shown in Figure P1.69. His ship’s
log instructs you to start at tree A and move toward tree B,
but to cover only one half of the distance between A and B.
Then move toward tree C, covering one third of the dis-
tance between your current location and C. Next move to-
ward D, covering one fourth of the distance between where
you are and D. Finally, move toward E, covering one fifth of
the distance between you and E, stop, and dig. (a) Assume
that you have correctly determined the order in which
the pirate labeled the trees as A, B, C, D, and E, as shown in
the figure. What are the coordinates of the point where his
treasure is buried? (b) What if you do not really know the
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FIGURE P1.71
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way the pirate labeled the trees? Rearrange the order of
the trees [for instance, B(30 m, � 20 m), A(60 m, 80 m),
E(� 10 m, � 10 m), C(40 m, � 30 m), and D(� 70 m, 
60 m)] and repeat the calculation to show that the answer
does not depend on the order in which the trees are
labeled.

70. Consider a game in which N children position themselves
at equal distances around the circumference of a circle. At
the center of the circle is a rubber tire. Each child holds a
rope attached to the tire and, at a signal, pulls on his or
her rope. All children exert forces of the same magnitude
F. In the case N � 2, it is easy to see that the net force on
the tire will be zero because the two oppositely directed
force vectors add to zero. Similarly, if N � 4, 6, or any even
integer, the resultant force on the tire must be zero be-
cause the forces exerted by each pair of oppositely posi-
tioned children will cancel. When an odd number of chil-
dren are around the circle, it is not as obvious whether the
total force on the central tire will be zero. (a) Calculate the
net force on the tire in the case N � 3 by adding the com-
ponents of the three force vectors. Choose the x axis to lie
along one of the ropes. (b) Determine the net force for
the general case where N is any integer, odd or even,
greater than 1. Proceed as follows: Assume that the total
force is not zero. Then it must point in some particular di-
rection. Let every child move one position clockwise. Give
a reason that the total force must then have a direction
turned clockwise by 360°/N. Argue that the total force
must nevertheless be the same as before. Explain that the
contradiction proves that the magnitude of the force is
zero. This problem illustrates a widely useful technique of
proving a result “by symmetry,” by using a bit of the mathe-
matics of group theory. The particular situation is actually
encountered in physics and chemistry when an array of
electric charges (ions) exerts electric forces on an atom at
a central position in a molecule or in a crystal.

71. A rectangular parallelepiped has dimensions a, b, and c, as
shown in Figure P1.71. (a) Obtain a vector expression for
the face diagonal vector . What is the magnitude of this
vector? (b) Obtain a vector expression for the body diagonal
vector . Note that , c , and make a right triangle
and prove that the magnitude of is √a2 � b2 � c2.R
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1R
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       80.0 N
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      120 N

FIGURE P1.67

72. Vectors and have equal magnitudes of 5.00. The sum
of and is the vector . Determine the angle be-
tween and .B

:
A
:

6.00 ĵB
:

A
:

B
:

A
:
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ANSWERS TO QUICK QUIZZES

1.1 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. Determining its numerical value re-
quires either experimental data or mathematical reason-
ing. For example, in the generation of the equation

, because the factor is dimensionless, there is
no way of determining it using dimensional analysis.

1.2 (b). Because kilometers are shorter than miles, it takes a
larger number of kilometers than miles to represent a
given distance.

1.3 Scalars: (a), (d), (e). None of these quantities has a di-
rection. Vectors: (b), (c). For these quantities, the direc-
tion is important to completely specify the quantity.

1.4 (c). The resultant has its maximum magnitude A � B �
12 � 8 � 20 units when vector is oriented in the same
direction as vector . The resultant vector has its mini-B

:
A
:

1
2x � 1

2at2

mum magnitude A � B � 12 � 8 � 4 units when vector
is oriented in the direction opposite vector .

1.5 (a). The resultant has magnitude A � B when is ori-
ented in the same direction as .

1.6 (b). From the Pythagorean theorem, the magnitude of a
vector is always larger than the absolute value of each
component, unless there is only one nonzero compo-
nent, in which case the magnitude of the vector is equal
to the absolute value of that component.

1.7 (b). From the Pythagorean theorem, we see that the
magnitude of a vector is nonzero if at least one compo-
nent is nonzero.

1.8 (d). Each set of components, for example, the two x
components Ax and Bx, must add to zero, so the compo-
nents must be of opposite sign.

B
:

A
:

B
:

A
:



C O N T E X T 1

Alternative-Fuel Vehicles
The idea of self-propelled vehicles has
been part of the human imagination
for centuries. Leonardo da Vinci drew
plans for a vehicle powered by a wound
spring in 1478. This vehicle was never
built although models have been con-
structed from his plans and appear in
museums. Isaac Newton developed a
vehicle in 1680 that operated by eject-
ing steam out the back, similar to a
rocket engine. This invention did not
develop into a useful device. Despite
these and other attempts, self-
propelled vehicles did not succeed; that
is, they did not begin to replace the
horse as a primary means of transporta-
tion until the 19th century.

The history of successful self-propelled
vehicles begins in 1769 with the
invention of a military tractor by Nicolas
Joseph Cugnot in France. This vehicle,
as well as Cugnot’s follow-up vehicles,
was powered by a steam engine. During
the remainder of the 18th century
and for most of the 19th century,
additional steam-driven vehicles were

developed in France, Great Britain, and
the United States.

After the invention of the electric
battery by Italian Alessandro Volta at
the beginning of the 19th century and
its further development over three
decades came the invention of early
electric vehicles in the 1830s. The de-
velopment in 1859 of the storage bat-
tery, which could be recharged, pro-
vided significant impetus to the
development of electric vehicles. By the
early 20th century, electric cars with a
range of about 20 miles and a top
speed of 15 miles per hour had been
developed.

An internal combustion engine was
designed but never built by Dutch
physicist Christiaan Huygens in 1680.
The invention of modern gasoline-
powered internal combustion vehicles is
generally credited to Gottlieb Daimler
in 1885 and Karl Benz in 1886. Several
earlier vehicles, dating back to 1807,
however, used internal combustion en-
gines operating on various fuels, includ-
ing coal gas and primitive gasoline.

At the beginning of the 20th cen-
tury, steam-powered, gasoline-powered,
and electric cars shared the roadways in
the United States. Electric cars did not
possess the vibration, smell, and noise
of gasoline-powered cars and did not
suffer from the long start-up time inter-
vals, up to 45 minutes, of steam-
powered cars on cold mornings. Elec-
tric cars were especially preferred by
women, who did not enjoy the difficult
task of cranking a gasoline-powered car
to start the engine. The limited range
of electric cars was not a significant
problem because the only roads that
existed were in highly populated areas
and cars were primarily used for short
trips in town.

The end of electric cars in the early
20th century began with the following
developments:A model of a spring-drive car designed by Leonardo da Vinci.FIGURE 1
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● 1901: A major discovery of crude oil
in Texas reduced prices of gasoline
to widely affordable levels.

● 1912: The electric starter for gasoline
engines was invented, removing the
physical task of cranking the engine. 

● During the 1910s: Henry Ford suc-
cessfully introduced mass produc-
tion of internal combustion vehicles,
resulting in a drop in the price of
these vehicles to significantly less
than that of an electric car.

● By the early 1920s : Roadways in the
United States were of much better
quality than previously and con-
nected cities, requiring vehicles
with a longer range than that of
electric cars. 

Because of these factors, the roadways
were ruled by gasoline-powered cars al-
most exclusively by the 1920s. Gasoline,
however, is a finite and short-lived com-
modity. We are approaching the end of
our ability to use gasoline in transporta-
tion; some experts predict that dimin-
ishing supplies of crude oil will push
the cost of gasoline to prohibitively
high levels within two more decades.
Furthermore, gasoline and diesel fuel
result in serious tailpipe emissions that
are harmful to the environment. As we
look for a replacement for gasoline, we
also want to pursue fuels that will be
kinder to the atmosphere. Such fuels
will help reduce the effects of global
warming, which we will study in
Context 5.

What do the steam engine, the elec-
tric motor, and the internal combus-
tion engine have in common? That is,
what do they each extract from a
source, be it a type of fuel or an electric
battery? The answer to this question is
energy. Regardless of the type of auto-
mobile, some source of energy must be

This magazine advertisement for an electric
car is typical of this popular type of car in the
early 20th century.

FIGURE 2

Development of new energy sources requires modifications in the
infrastructure to deliver the energy. In this photograph, a bus powered by
natural gas is refueled in Bristol, Great Britain. 

FIGURE 3
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provided. Energy is one of the physical
concepts that we will investigate in this
Context. A fuel such as gasoline con-
tains energy due to its chemical compo-
sition and its ability to undergo a com-
bustion process. The battery in an
electric car also contains energy, again
related to chemical composition, but in
this case it is associated with an ability
to produce an electric current.

One difficult social aspect of devel-
oping a new energy source for automo-
biles is that there must be a synchro-
nized development of the new

automobile along with the infrastruc-
ture for delivering the new source of
energy. This aspect requires close coop-
eration between automotive corpora-
tions and energy manufacturers and
suppliers. For example, electric cars
cannot be used to travel long distances
unless an infrastructure of charging sta-
tions develops in parallel with the de-
velopment of electric cars.

As we draw near to the time when we
run out of gasoline, our central ques-
tion in this first Context is an impor-
tant one for our future development:

Modern electric cars can take advantage of an infrastructure set up in some
localities to provide charging stations in parking lots.

FIGURE 4
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What source besides gasoline can be used to provide energy for an
automobile while reducing environmentally damaging emissions?



To begin our study of motion, it is important to be able to
describe motion using the concepts of space and time with-
out regard to the causes of the motion. This portion of

mechanics is called kinematics. In this chapter, we shall consider
motion along a straight line, that is, one-dimensional motion.
Chapter 3 extends our discussion to two-dimensional motion.

From everyday experience we recognize that motion repre-
sents continuous change in the position of an object. For exam-
ple, if you are driving from your home to a destination, your posi-
tion on the Earth’s surface is changing.

The movement of an object through space (translation) may
be accompanied by the rotation or vibration of the object. Such
motions can be quite complex. It is often possible to simplify mat-
ters, however, by temporarily ignoring rotation and internal
motions of the moving object. The result is the simplification
model that we call the particle model, discussed in Chapter 1. In

Motion in One Dimension

C H A P T E R 2

One of the physical quantities we will
study in this chapter is the velocity of an
object moving in a straight line. Downhill
skiers can reach velocities with a
magnitude greater than 100 km/h.

C H A P T E R  O U T L I N E
2.1 Average Velocity
2.2 Instantaneous Velocity
2.3 Analysis Models — The Particle Under

Constant Velocity
2.4 Acceleration
2.5 Motion Diagrams
2.6 The Particle Under Constant Acceleration
2.7 Freely Falling Objects
2.8 Context Connection — Acceleration

Required by Consumers
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many situations, an object can be treated as a particle if the only motion being con-
sidered is translation through space. We will use the particle model extensively
throughout this book.

AVERAGE  VELOCITY
We begin our study of kinematics with the notion of average velocity. You may be fa-
miliar with a similar notion, average speed, from experiences with driving. If you
drive your car 100 miles according to your odometer and it takes 2.0 hours to do so,
your average speed is (100 mi)/(2.0 h) � 50 mi/h. For a particle moving through a
distance d in a time interval �t, the average speed vavg is mathematically defined as

[2.1]

Speed is not a vector, so there is no direction associated with average speed.
Average velocity may be a little less familiar to you due to its vector nature. Let

us start by imagining the motion of a particle, which, through the particle model,
can represent the motion of many types of objects. We shall restrict our study at this
point to one-dimensional motion along the x axis.

The motion of a particle is completely specified if the position of the particle in
space is known at all times. Consider a car moving back and forth along the x axis
and imagine that we take data on the position of the car every 10 s. Active Figure
2.1a is a pictorial representation of this one-dimensional motion that shows the posi-
tions of the car at 10-s intervals. The six data points we have recorded are repre-
sented by the letters � through �. Table 2.1 is a tabular representation of the mo-
tion. It lists the data as entries for position at each time. The black dots in Active
Figure 2.1b show a graphical representation of the motion. Such a plot is often
called a position–time graph. The curved line in Active Figure 2.1b cannot be
unambiguously drawn through our six data points because we have no information
about what happened between these points. The curved line is, however, a possible
graphical representation of the position of the car at all instants of time during
the 50 s.

If a particle is moving during a time interval �t � tf � ti, the displacement of
the particle is described as . (Recall that displacement is
defined as the change in the position of the particle, which is equal to its final posi-
tion value minus its initial position value.) Because we are considering only one-
dimensional motion in this chapter, we shall drop the vector notation at this point
and pick it up again in Chapter 3. The direction of a vector in this chapter will be
indicated by means of a positive or negative sign.

The average velocity vx, avg of the particle is defined as the ratio of its displace-
ment �x to the time interval �t during which the displacement takes place:

[2.2]

where the subscript x indicates motion along the x axis. From this definition we see
that average velocity has the dimensions of length divided by time: meters per sec-
ond in SI units and feet per second in U.S. customary units. The average velocity is
independent of the path taken between the initial and final points. This indepen-
dence is a major difference from the average speed discussed at the beginning of
this section. The average velocity is independent of path because it is proportional

vx, avg � 
�x

�t
�

xf � xi

tf � ti

�x: � x:f � x:i � (xf � xi) î

vavg � 
d

�t

2.1

■ Definition of average speed

■ Definition of average velocity

AVERAGE SPEED AND AVERAGE

VELOCITY The magnitude of the
average velocity is not the average
speed. Consider a particle moving
from the origin to x � 10 m and
then back to the origin in a time in-
terval of 4.0 s. The magnitude
of the average velocity is zero be-
cause the particle ends the time in-
terval at the same position at which
it started; the displacement is zero.
The average speed, however, is the
total distance divided by the time
interval: 20 m/4.0 s � 5.0 m/s.

� PITFALL PREVENTION 2.1
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Positions of
the Car at
Various Times

TABLE 2.1

Position t(s) x (m)

� 0 30
� 10 52
� 20 38
� 30 0
� 40 �37
� 50 �53

(a) A pictorial representation of
the motion of a car. The positions
of the car at six instants of time
are shown and labeled. 
(b) A graphical representation,
known as a position–time graph,
of the car’s motion in part (a).
The average velocity vx, avg in the
interval t � 0 to t � 10 s is 
obtained from the slope of the
straight line connecting points 
� and �. (c) A velocity–time
graph of the motion of the car in 
part (a).

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 2.1. You
can move each of the six points 
� through � and observe the
car’s motion in both a pictorial
and a graphical representation as
the car follows a smooth path
through the six points.

ACTIVE FIGURE 2.1
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to the displacement �x, which depends only on the initial and final coordinates
of the particle. Average speed (a scalar) is found by dividing the distance traveled by
the time interval, whereas average velocity (a vector) is the displacement divided by
the time interval. Therefore, average velocity gives us no details of the motion;
rather, it only gives us the result of the motion. Finally, note that the average veloc-
ity in one dimension can be positive or negative, depending on the sign of the
displacement. (The time interval �t is always positive.) If the x coordinate of the
particle increases during the time interval (i.e., if xf � xi), �x is positive and vx, avg is
positive, which corresponds to an average velocity in the positive x direction. On
the other hand, if the coordinate decreases over time (xf � xi), �x is negative;
hence, vx, avg is negative, which corresponds to an average velocity in the negative 
x direction. 

www.pop4e.com


The average velocity can also be interpreted geometrically, as seen in the graphi-
cal representation in Active Figure 2.1b. A straight line can be drawn between any
two points on the curve. Active Figure 2.1b shows such a line drawn between points
� and �. Using a geometric model, this line forms the hypotenuse of a right 
triangle of height �x and base �t. The slope of the hypotenuse is the ratio �x/�t.
Therefore, we see that the average velocity of the particle during the time interval ti
to tf is equal to the slope of the straight line joining the initial and final points on
the position–time graph. For example, the average velocity of the car between
points � and � is vx, avg � (52 m � 30 m)/(10 s � 0) � 2.2 m/s.

We can also identify a geometric interpretation for the total displacement dur-
ing the time interval. Active Figure 2.1c shows the velocity– time graphical repre-
sentation of the motion in Active Figures 2.1a and 2.1b. The total time interval for
the motion has been divided into small increments of duration �tn. During each
of these increments, if we model the velocity as constant during the short incre-
ment, the displacement of the particle is given by �xn � vn �tn. 

Geometrically, the product on the right side of this expression represents the
area of a thin rectangle associated with each time increment in Active Figure 2.1c;
the height of the rectangle (measured from the time axis) is vn , and the width is
�tn. The total displacement of the particle will be the sum of the displacements dur-
ing each of the increments:

This sum is an approximation because we have modeled the velocity as constant in
each increment, which is not the case. The term on the right represents the total
area of all the thin rectangles. Now let us take the limit of this expression as the
time increments shrink to zero, in which case the approximation becomes exact:

In this limit, the sum of the areas of all the very thin rectangles becomes equal to
the total area under the curve. Therefore, the displacement of a particle during the
time interval ti to tf is equal to the area under the curve between the initial and final
points on the velocity–time graph. We will make use of this geometric interpreta-
tion in Section 2.6.

�x � lim
�tn : 0

 �
n

�xn � lim
�tn : 0

 �
n

vn �tn 

�x � �
n

 �xn � �
n

 vn �tn
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Under which of the following conditions is the magnitude of the
average velocity of a particle moving in one dimension smaller than the average speed
over some time interval? (a) A particle moves in the �x direction without reversing. 
(b) A particle moves in the �x direction without reversing. (c) A particle moves in the 
�x direction and then reverses the direction of its velocity. (d) There are no conditions
for which it is true.

QUICK QUIZ 2.1

SLOPES OF GRAPHS The word slope is
often used in reference to the
graphs of physical data. Regardless
of what data are plotted, the word
slope will represent the ratio of the
change in the quantity represented
on the vertical axis to the change in
the quantity represented on the
horizontal axis. Remember that 
a slope has units (unless both axes
have the same units). Therefore,
the units of the slope in Active 
Figure 2.1b are m/s, the units of 
velocity. 

� PITFALL PREVENTION 2.2

representation, but for this simple example, we will go
straight to the mathematical representation. The
displacement is

The average velocity is, according to Equation 2.2,

� 4  m/svx, avg �
�x
�t

�
4 m � 12 m

3 s � 1 s
�

� 8  m�x � xf � xi � 4 m � 12 m �

Calculate the Average VelocityEXAMPLE 2.1
A particle moving along the x axis is located at 
xi � 12 m at ti � 1 s and at xf � 4 m at tf � 3 s. Find its
displacement and average velocity during this time 
interval.

Solution First, establish the mental representation.
Imagine the particle moving along the axis. Based on
the information in the problem, which way is it 
moving? You may find it useful to draw a pictorial
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We add these two displacements to find the total 

displacement of 

What is the magnitude of her average velocity dur-
ing this entire time interval of 7.00 min?

Solution We now have the data we need to find the av-
erage velocity for the entire time interval using Equa-
tion 2.2:

Notice that the average velocity is not calculated as the
simple arithmetic mean of the two velocities given in
the problem.

  4.57  m/svx, avg �
�x
�t

�
1.92 � 103 m

7.00 min
 � 1 min

60 s � �

B

1.92 � 103 m.

 � 7.20 � 102 m

�xportion 2 � (4.00 m/s)(3.00 min) � 60 s
1 min �

Motion of a JoggerEXAMPLE 2.2
A jogger runs in a straight line, with a magnitude of av-
erage velocity of 5.00 m/s for 4.00 min and then with a
magnitude of average velocity of 4.00 m/s for 3.00 min. 

What is the magnitude of the final displacement
from her initial position? 

Solution That this problem involves a jogger is not im-
portant; we model the jogger as a particle. We have
data for two separate portions of the motion, so we use
these data to find the displacement for each portion,
using Equation 2.2: 

 � 1.20 � 103 m

�xportion 1 � (5.00 m/s)(4.00 min) � 60 s
1 min �

 vx, avg �
�x
�t

 :  �x � vx, avg �t

A

INSTANTANEOUS  VELOCITY
Suppose you drive your car through a displacement of magnitude 40 miles and it
takes exactly 1 hour to do so, from 1:00:00 P.M. to 2:00:00 P.M. Then the magnitude
of your average velocity is 40 mi/h for the 1-h interval. How fast, though, were you
going at the particular instant of time 1:20:00 P.M.? It is likely that your velocity varied
during the trip, owing to hills, traffic lights, slow drivers ahead of you, and the like,
so that there was not a single velocity maintained during the entire hour of travel.
The velocity of a particle at any instant of time is called the instantaneous velocity.

Consider again the motion of the car shown in Active Figure 2.1a. Active Figure
2.2a is the graphical representation again, with two blue lines representing average ve-
locities over very different time intervals. One blue line represents the average velocity
we calculated earlier over the interval from � to �. The second blue line represents
the average velocity over the much longer interval � to �. How well does either of
these represent the instantaneous velocity at point �? In Active Figure 2.1a, the car
begins to move to the right, which we identify as a positive velocity. The average veloc-
ity from � to � is negative (because the slope of the line from � to � is negative), so
this velocity clearly is not an accurate representation of the instantaneous velocity at
�. The average velocity from interval � to � is positive, so this velocity at least has the
right sign.

In Active Figure 2.2b, we show the result of drawing the lines representing the
average velocity of the car as point � is brought closer and closer to point �. As

2.2

in time. After ti � 1 s, it could have moved to the right,
turned around, and ended up farther to the left than its
original position by the time tf � 3 s. To be completely
confident that we know the motion of the particle, we
would need to have information about its location at
every instant of time.

Because the displacement is negative for this time inter-
val, we conclude that the particle has moved to the left,
toward decreasing values of x. Is this conclusion consis-
tent with your mental representation? Keep in mind
that it may not have always been moving to the left. We
only have information about its location at two points



that occurs, the slope of the blue line approaches that of the green line, which is
the line drawn tangent to the curve at point �. As � approaches �, the time
interval that includes point � becomes infinitesimally small. Therefore, the aver-
age velocity over this interval as the interval shrinks to zero can be interpreted as
the instantaneous velocity at point �. Furthermore, the slope of the line tangent to
the curve at � is the instantaneous velocity at the time tA. In other words, the
instantaneous velocity vx equals the limiting value of the ratio �x/�t as �t ap-
proaches zero:1

In calculus notation, this limit is called the derivative of x with respect to t, written
dx/dt :

[2.3]

The instantaneous velocity can be positive, negative, or zero. When the slope of the
position–time graph is positive, such as at point � in Figure 2.3, vx is positive. At
point �, vx is negative because the slope is negative. Finally, the instantaneous
velocity is zero at the peak � (the turning point), where the slope is zero. From
here on, we shall usually use the word velocity to designate instantaneous velocity.

The instantaneous speed of a particle is defined as the magnitude of the instan-
taneous velocity vector. Hence, by definition, speed can never be negative.

vx � lim
�t : 0

 
�x
�t

�
dx
dt

vx � lim
�t : 0

 
�x
�t

42 ❚ CHAPTER 2 MOTION IN ONE DIMENSION

1 Note that the displacement �x also approaches zero as �t approaches zero. As �x and �t become
smaller and smaller, however, the ratio �x/�t approaches a value equal to the true slope of the line
tangent to the x versus t curve.

�

�

vx = 0

t

x

vx < 0

vx > 0
�

In the position–
time graph shown, the velocity is posi-
tive at �, where the slope of the tan-
gent line is positive; the velocity is
zero at �, where the slope of the tan-
gent line is zero; and the velocity is
negative at �, where the slope of the
tangent line is negative.

FIGURE 2.3

■ Definition of instantaneous
velocity

(a) Position–time graph for the motion of the car in Active Figure 2.1. (b) An enlargement of the upper left-hand
corner of the graph in part (a) shows how the blue line between positions � and � approaches the green tangent line
as point � is moved closer to point �.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 2.2. You can move point � as
suggested in part (b) and observe the blue line approaching the green tangent line.

ACTIVE FIGURE 2.2
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2 Simply to make it easier to read, we write the equation as x � 3t 2 rather than as x � (3.00 m/s2)t2.00.
When an equation summarizes measurements, consider its coefficients to have as many significant
digits as other data quoted in a problem. Also consider its coefficients to have the units required for
dimensional consistency. When we start our clocks at t � 0, we usually do not mean to limit precision to
a single digit. Consider any zero value in this book to have as many significant figures as you need.

particle at time t is xi � 3t2, the coordinate at a later
time t � �t is

Therefore, the displacement in the time interval �t is

 � 6t �t � 3(�t)2

�x � xf � xi � (3t 2 � 6t �t � 3(�t)2) � (3t 2)

 � 3t 2 � 6t �t � 3(�t)2

xf � 3(t � �t)2 � 3[t 2 � 2t �t � (�t)2]

The Limiting ProcessEXAMPLE 2.3
The position of a particle moving along the x axis varies
in time according to the expression2 x � 3t2, where x is
in meters and t is in seconds. Find the velocity in terms
of t at any time.

Solution The position–time graphical representation
for this motion is shown in Figure 2.4. We can compute
the velocity at any time t by using the definition of the
instantaneous velocity. If the initial coordinate of the

Are members of the highway patrol more interested in (a) your aver-
age speed or (b) your instantaneous speed as you drive?
QUICK QUIZ 2.2

If you are familiar with calculus, you should recognize that specific rules exist
for taking the derivatives of functions. These rules, which are listed in Appendix
B.6, enable us to evaluate derivatives quickly.

Suppose x is proportional to some power of t, such as

x � At n

where A and n are constants. (This equation is a very common functional form.)
The derivative of x with respect to t is

For example, if x � 5t 3, we see that dx/dt � 3(5)t 3�1 � 15t 2.

■ Thinking Physics 2.1
Consider the following motions of an object in one dimension. (a) A ball is thrown
directly upward, rises to its highest point, and falls back into the thrower’s hand.
(b) A race car starts from rest and speeds up to 100 m/s along a straight line. (c) A
spacecraft on the way to another star drifts through empty space at constant veloc-
ity. Are there any instants of time in the motion of these objects at which the instan-
taneous velocity at the instant and the average velocity over the entire interval are
the same? If so, identify the point(s).

Reasoning (a) The average velocity over the entire interval for the thrown ball is
zero; the ball returns to the starting point at the end of the time interval. There is
one point—at the top of the motion—at which the instantaneous velocity is zero.
(b) The average velocity for the motion of the race car cannot be evaluated unam-
biguously with the information given, but its magnitude must be some value be-
tween 0 and 100 m/s. Because the magnitude of the instantaneous velocity of the
car will have every value between 0 and 100 m/s at some time during the interval,
there must be some instant at which the instantaneous velocity is equal to the aver-
age velocity over the entire interval. (c) Because the instantaneous velocity of the
spacecraft is constant, its instantaneous velocity at any time and its average velocity
over any time interval are the same. ■

dx
dt

� n At 
n�1
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The average velocity in this time interval is

To find the instantaneous velocity, we take the limit
of this expression as �t approaches zero. In doing so,
we see that the term 3 �t goes to zero; therefore,

Notice that this expression gives us the velocity at any
general time t. It tells us that vx is increasing linearly in
time. It is then a straightforward matter to find the ve-
locity at some specific time from the expression vx � 6t
by substituting the value of the time. For example, at 
t � 3.0 s, the velocity is vx � 6(3) � 18 m/s. Again, this
answer can be checked from the slope at t � 3.0 s (the
green line in Fig. 2.4).

We can also find vx by taking the first derivative of 
x with respect to time, as in Equation 2.3. In this example,
x � 3t2, and we see that vx � dx/dt � 6t, in agreement
with our result from taking the limit explicitly.

6tvx � lim
�t : 0

 
�x
�t

 �

vx, avg �
�x
�t

�
6t �t � 3(�t)2

�t
� 6t � 3 �t

FIGURE 2.4 (Example 2.3) Position–time graph for a particle
having an x coordinate that varies in time accord-
ing to x � 3t 2. Note that the instantaneous veloc-
ity at t � 3.0 s is obtained from the slope of the
green line tangent to the curve at this point.
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x direction for the first second of motion, stops instan-
taneously at t � 1 s, and then heads back in the positive
x direction for t � 1 s. Remember that it is a one-
dimensional problem, so the curve in Figure 2.5 does
not represent the path the particle follows through
space; be sure not to confuse a graphical representation
with a pictorial representation of the motion in space
(see Active Fig. 2.1 for a comparison). In your mental
representation, you should imagine the particle moving
to the left and then to the right, with all the motion tak-
ing place along a single line.

In the first time interval (� to �), we set ti � 0 and
tf � 1 s. Because x � � 4t � 2t2, the displacement dur-
ing the first time interval is

�

Likewise, in the second time interval (� to �), we can 
set ti � 1 s and tf � 3 s. Therefore, the displacement in
this interval is

�

These displacements can also be read directly from the 
position–time graph (see Fig. 2.5).

Calculate the average velocity in the time intervals 
t � 0 to t � 1 s and t � 1 s to t � 3 s.

B

8 m

�x BD � xf � xi � � 4(3) � 2(3)2 � [� 4(1) � 2(1)2]

�2 m

�xAB � xf � xi � � 4(1) � 2(1)2 � [� 4(0) � 2(0)2]

Average and Instantaneous VelocityEXAMPLE 2.4
A particle moves along the x axis. Its x coordinate 
varies with time according to the expression 
x � � 4t � 2t 2, where x is in meters and t is in seconds.
The position–time graph for this motion is shown in
Figure 2.5.

Determine the displacement of the particle in the
time intervals t � 0 to t � 1 s and t � 1 s to t � 3 s.

Solution This problem provides a graphical representa-
tion of the motion in Figure 2.5. In your mental repre-
sentation, note that the particle moves in the negative 

A

FIGURE 2.5 (Example 2.4) Position–time graph for a particle
having an x coordinate that varies in time accord-
ing to x � �4t � 2t 2.
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ANALYSIS  MODELS — THE  PARTICLE  UNDER
CONSTANT  VELOCITY

As mentioned in Section 1.10, the third category of models used in this book is that
of analysis models. Such models help us analyze the situation in a physics problem
and guide us toward the solution. An analysis model is a problem we have solved
before. It is a description of either (1) the behavior of some physical entity or
(2) the interaction between that entity and the environment. When you encounter a
new problem, you should identify the fundamental details of the problem and at-
tempt to recognize which, if any, of the types of problems you have already solved
might be used as a model for the new problem. For example, suppose an automo-
bile is moving along a straight freeway at a constant speed. Is it important that it is
an automobile? Is it important that it is a freeway? If the answers to both questions
are “no,” we model the situation as a particle under constant velocity, which we will dis-
cuss in this section.

This method is somewhat similar to the common practice in the legal profession
of finding “legal precedents.” If a previously resolved case can be found that is very
similar legally to the present one, it is offered as a model and an argument is made
in court to link them logically. The finding in the previous case can then be used to
sway the finding in the present case. We will do something similar in physics. For a
given problem, we search for a “physics precedent,” a model with which we are al-
ready familiar and that can be applied to the present problem.

We shall generate analysis models based on four fundamental simplification
models. The first simplification model is the particle model discussed in Chapter 1.
We will look at a particle under various behaviors and environmental interactions.
Further analysis models are introduced in later chapters based on simplification
models of a system, a rigid object, and a wave. Once we have introduced these analysis
models, we shall see that they appear over and over again later in the book in differ-
ent situations.

Let us use Equation 2.2 to build our first analysis model for solving problems.
We imagine a particle moving with a constant velocity. The particle under constant
velocity model can be applied in any situation in which an entity that can be
modeled as a particle is moving with constant velocity. This situation occurs fre-
quently, so it is an important model.

If the velocity of a particle is constant, its instantaneous velocity at any instant
during a time interval is the same as the average velocity over the interval, 
vx � vx, avg. Therefore, we start with Equation 2.2 to generate an equation to be

2.3

Solution We can find the instantaneous velocity at any
time t by taking the first derivative of x with respect to t:

Therefore, at t � 2.5 s, we find that

We can also obtain this result by measuring the
slope of the position–time graph at t � 2.5 s. Do you
see any symmetry in the motion? For example, are
there points at which the speed is the same? Is the ve-
locity the same at these points?

6  m/svx � � 4 � 4(2.5) �

vx �
dx
dt

�
d
dt

 (� 4t � 2t 
2) � � 4 � 4t

Solution In the first time interval, �t � tf � ti � 1 s. 
Therefore, using Equation 2.2 and the result from part 
A gives

Likewise, in the second time interval, �t � 2 s; therefore,

These values agree with the slopes of the lines joining
these points in Figure 2.5.

Find the instantaneous velocity of the particle at 
t � 2.5 s (point �).

C

4  m/svx, avg �
�x BD

�t
�

8 m
2 s

�

� 2  m/svx, avg �
�xAB

�t
�

� 2 m
1 s

�



used in the mathematical representation of this situation:

[2.4]

Remembering that �x � xf � xi, we see that vx � (xf � xi)/�t, or

This equation tells us that the position of the particle is given by the sum of its origi-
nal position xi plus the displacement vx �t that occurs during the time interval �t.
In practice, we usually choose the time at the beginning of the interval to be ti � 0
and the time at the end of the interval to be tf � t, so our equation becomes

(for constant vx) [2.5]

Equations 2.4 and 2.5 are the primary equations used in the model of a particle un-
der constant velocity. They can be applied to particles or objects that can be mod-
eled as particles.

Figure 2.6 is a graphical representation of the particle under constant velocity.
On the position–time graph, the slope of the line representing the motion is con-
stant and equal to the velocity. It is consistent with the mathematical representa-
tion, Equation 2.5, which is the equation of a straight line. The slope of the straight
line is vx and the y intercept is xi in both representations.

xf � xi � vxt

xf � xi � vx �t

vx � vx, avg �
�x
�t
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xi

x

t

Slope = = vx
∆x
∆t

Position–time
graph for a particle under constant
velocity. The value of the constant
velocity is the slope of the line.

FIGURE 2.6

■ Position of a particle under
constant velocity

constant, allows us to use Equation 2.4 to find the
velocity:

What is the position of the runner after 10 s has
passed?

Solution In this part of the problem, we use Equation
2.5 to find the position of the particle at the time 
t � 10 s. Using the velocity found in part A,

45  mxf � xi � vxt � 0 � (4.5 m/s)(10 s) �

B

4.5  m/svx �
�x

�t
  �

xf � xi

�t
�

20 m � 0

4.4 s
�

Modeling a Runner as a ParticleEXAMPLE 2.5
A scientist is studying the biomechanics of the human
body. She determines the velocity of an experimental
subject while he runs at a constant rate. The scientist
starts the stopwatch at the moment the runner passes a
given point and stops it at the moment the runner
passes another point 20 m away. The time interval indi-
cated on the stopwatch is 4.4 s.

What is the runner’s velocity?

Solution We model the runner as a particle, as we did
in Example 2.2, because the size of the runner and the
movement of arms and legs are unnecessary details.
This choice, in combination with the velocity being

A

The mathematical manipulations for the particle under constant velocity stem
from Equation 2.4 and its descendent, Equation 2.5. These equations can be used
to solve for any variable in the equations that happens to be unknown if the other
variables are known. For example, in part B of Example 2.5, we find the position
when the velocity and the time are known. Similarly, if we know the velocity and the
final position, we could use Equation 2.5 to find the time at which the runner is at
this position. We shall present more examples of a particle under constant velocity
in Chapter 3.

A particle under constant velocity moves with a constant speed along a straight
line. Now consider a particle moving with a constant speed along a curved path. It
can be represented with the particle under constant speed model. The primary equa-
tion for this model is Equation 2.1, with the average speed vavg replaced by the con-
stant speed v. As an example, imagine a particle moving at a constant speed in a



ACCELERATION ❚ 47

circular path. If the speed is 5.00 m/s and the radius of the path is 10.0 m, we can
calculate the time interval required to complete one trip around the circle:

ACCELERATION
When the velocity of a particle changes with time, the particle is said to be accelerat-
ing. For example, the speed of a car increases when you “step on the gas,” the car
slows down when you apply the brakes, and it changes direction when you turn the
wheel; these changes are all accelerations. We will need a precise definition of ac-
celeration for our studies of motion.

Suppose a particle moving along the x axis has a velocity vxi at time ti and a ve-
locity vxf at time tf. The average acceleration ax, avg of the particle in the time inter-
val �t � tf � ti is defined as the ratio �vx/�t, where �vx � vxf � vxi is the change in
velocity of the particle in this time interval:

[2.6]

Therefore, acceleration is a measure of how rapidly the velocity is changing. Accel-
eration is a vector quantity having dimensions of length divided by (time)2, or
L/T2. Some of the common units of acceleration are meters per second per second
(m/s2) and feet per second per second (ft/s2). For example, an acceleration of 
2 m/s2 means that the velocity changes by 2 m/s during each second of time that
passes.

In some situations, the value of the average acceleration may be different for dif-
ferent time intervals. It is therefore useful to define the instantaneous acceleration
as the limit of the average acceleration as �t approaches zero, analogous to the defi-
nition of instantaneous velocity discussed in Section 2.2:

[2.7]

That is, the instantaneous acceleration equals the derivative of the velocity with re-
spect to time, which by definition is the slope of the velocity– time graph. Note that
if ax is positive, the acceleration is in the positive x direction, whereas negative ax
implies acceleration in the negative x direction. A negative acceleration does not
necessarily mean that the particle is moving in the negative x direction, a point we
shall address in more detail shortly. From now on, we use the term acceleration to
mean instantaneous acceleration.

Because vx � dx/dt, the acceleration can also be written

[2.8]

This equation shows that the acceleration equals the second derivative of the position
with respect to time.

Figure 2.7 shows how the acceleration–time curve in a graphical representation
can be derived from the velocity– time curve. In these diagrams, the acceleration of
a particle at any time is simply the slope of the velocity– time graph at that time.
Positive values of the acceleration correspond to those points (between tA and tB)

ax �
dvx

dt
�

d
dt

 � dx
dt � �

d 2x
dt2

ax � lim
�t : 0

 
�vx

�t
�

dvx

dt

ax, avg � 
vxf � vxi

tf � ti
�

�vx

�t

2.4

v �
d
�t

  :  �t �
d
v

�
2�r

v
�

2�(10.0 m)
5.00 m/s

� 12.6 s

■ Definition of average accelera-
tion

■ Definition of instantaneous
acceleration



where the velocity in the positive x direction is increasing in magnitude (the
particle is speeding up) or those points (between t � 0 and tA) where the velocity
in the negative x direction is decreasing in magnitude (the particle is slowing
down). The acceleration reaches a maximum at time tA, when the slope of the
velocity– time graph is a maximum. The acceleration then goes to zero at time tB,
when the velocity is a maximum (i.e., when the velocity is momentarily not chang-
ing and the slope of the v versus t graph is zero). Finally, the acceleration is nega-
tive when the velocity in the positive x direction is decreasing in magnitude
(between tB and tC) or when the velocity in the negative direction is increasing in
magnitude (after tC).
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(Quick Quiz 2.3) Parts (a), (b),
and (c) are velocity– time graphs
of objects in one-dimensional mo-
tion. The possible acceleration–
time graphs of each object are
shown in scrambled order in parts
(d), (e), and (f).

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 2.8 to
practice matching appropriate 
velocity versus time graphs and 
acceleration versus time graphs.

ACTIVE FIGURE 2.8

t

vx

(a)

t

ax

(d)

t

vx

(b)

t

ax

(e)

t

vx

(c)

t

ax

(f)

Using Active Figure 2.8, match each of the velocity– time graphical
representations on the top with the acceleration–time graphical representation on the
bottom that best describes the motion.

QUICK QUIZ 2.3

As an example of the computation of acceleration, consider the pictorial repre-
sentation of a car’s motion in Figure 2.9. In this case, the velocity of the car has
changed from an initial value of 30 m/s to a final value of 15 m/s in a time interval
of 2.0 s. The average acceleration during this time interval is

The negative sign in this example indicates that the acceleration vector is in the
negative x direction (to the left in Figure 2.9). For the case of motion in a straight
line, the direction of the velocity of an object and the direction of its acceleration
are related as follows. When the object’s velocity and acceleration are in the same
direction, the object is speeding up in that direction. On the other hand, when the
object’s velocity and acceleration are in opposite directions, the speed of the object
decreases in time.

To help with this discussion of the signs of velocity and acceleration, let us take a
peek ahead to Chapter 4, where we shall relate the acceleration of an object to the
force on the object. We will save the details until that later discussion, but for now, let
us borrow the notion that force is proportional to acceleration:

This proportionality indicates that acceleration is caused by force. What’s more, as
indicated by the vector notation in the proportionality, force and acceleration are
in the same direction. Therefore, let us think about the signs of velocity and

F
:

 	 a:

ax,  avg �
15 m/s � 30 m/s

2.0 s
� � 7.5 m/s2

vf

vi
30 m/s
t i = 0

15 m/s
t f  = 2.0 s

The velocity of the
car decreases from 30 m/s to 15 m/s
in a time interval of 2.0 s.

FIGURE 2.9

NEGATIVE ACCELERATION Keep in
mind that negative acceleration does
not necessarily mean that an object is
slowing down. If the acceleration is
negative and the velocity is nega-
tive, the object is speeding up!

� PITFALL PREVENTION 2.3

DECELERATION The word deceleration
has a common popular connotation
as slowing down. When combined
with the misconception in Pitfall
Prevention 2.3 that negative accel-
eration means slowing down, the
situation can be further confused
by the use of the word deceleration.
We will not use this word in this
text.

� PITFALL PREVENTION 2.4

t

(b)

ax

tA tB

tC

tA tB tC

(a)

vx

t

The instantaneous
acceleration can be obtained from the
velocity– time graph (a). At each in-
stant the acceleration in the ax versus
t graph (b) equals the slope of the
line tangent to the vx versus t curve.

FIGURE 2.7
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acceleration by forming a mental representation in which a force is applied to the
object to cause the acceleration. Again consider the case in which the velocity and
acceleration are in the same direction. This situation is equivalent to an object mov-
ing in a given direction and experiencing a force that pulls on it in the same direc-
tion. It is clear in this case that the object speeds up! If the velocity and acceleration
are in opposite directions, the object moves one way and a force pulls in the oppo-
site direction. In this case, the object slows down! It is very useful to equate the di-
rection of the acceleration in these situations to the direction of a force because it
is easier from our everyday experience to think about what effect a force will have
on an object than to think only in terms of the direction of the acceleration.

If a car is traveling eastward and slowing down, what is the direction
of the force on the car that causes it to slow down? (a) eastward (b) westward
(c) neither of these directions

QUICK QUIZ 2.4

sion given for the velocity:

Therefore, the average acceleration in the specified
time interval �t � tB � tA is

The negative sign is consistent with the negative slope
of the line joining the initial and final points on the
velocity– time graph.

Determine the acceleration at t � 2.0 s.

Solution Because this question refers to a specific in-
stant of time, it is asking for an instantaneous accelera-
tion. The velocity at time t is vxi � 40 � 5t2, and the ve-
locity at time t � �t is

Therefore, the change in velocity over the time interval
�t is

Dividing this expression by �t and taking the limit of
the result as �t approaches zero gives the acceleration
at any time t :

Therefore, at t � 2.0 s we find that

This result can also be obtained by measuring the slope
of the velocity– time graph at t � 2.0 s (see Fig. 2.10) or
by taking the derivative of the velocity expression.

� 20  m/s2ax � (� 10)(2.0) m/s2 �

ax � lim
�t : 0

 
�vx

�t
� lim

�t : 0
 (� 10t � 5�t) � � 10t

�vx � vxf � vxi � � 10t �t � 5(�t)2

vxf � 40 � 5(t � �t)2 � 40 � 5t2 � 10t �t � 5(�t)2

B

�10  m/s2ax, avg �
20 m/s � 40 m/s

2.0 s
�

vx B � 40 � 5tB 

  2 � 40 � 5(2.0)2 � 20 m/s

vx A � 40 � 5tA   2 � 40 � 5(0)2 � 40 m/s

Average and Instantaneous AccelerationEXAMPLE 2.6
The velocity of a particle moving along the x axis varies
in time according to the expression vx � 40 � 5t 2,
where t is in seconds.

Find the average acceleration in the time interval 
t � 0 to t � 2.0 s.

Solution Build your mental representation from the
mathematical expression given for the velocity. For ex-
ample, which way is the particle moving at t � 0? How
does the velocity change in the first few seconds? Does
it move faster or slower? The velocity– time graphical
representation for this function is given in Figure 2.10.
The velocities at ti � tA � 0 and tf � tB � 2.0 s are
found by substituting these values of t into the expres-

A

FIGURE 2.10 (Example 2.6) The velocity– time graph for a par-
ticle moving along the x axis according to the rela-
tion vx � 40 � 5t2. The acceleration at t � 2.0 s is
obtained from the slope of the green tangent line
at that time.



MOTION  DIAGRAMS
The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. It is instructive to make use of the special-
ized pictorial representation called a motion diagram to describe the velocity and
acceleration vectors while an object is in motion.

A stroboscopic photograph of a moving object shows several images of the object
taken as the strobe light flashes at a constant rate. Active Figure 2.11 represents
three sets of strobe photographs of cars moving along a straight roadway in a single
direction, from left to right. The time intervals between flashes of the stroboscope
are equal in each part of the diagram. To distinguish between the two vector quan-
tities, we use red for velocity vectors and violet for acceleration vectors in Active
Figure 2.11. The vectors are sketched at several instants during the motion of the
object. Let us describe the motion of the car in each diagram.

In Active Figure 2.11a, the images of the car are equally spaced, and the car
moves through the same displacement in each time interval. Therefore, the
car moves with constant positive velocity and has zero acceleration. We could model the
car as a particle and describe it as a particle under constant velocity.

In Active Figure 2.11b, the images of the car become farther apart as time pro-
gresses. In this case, the velocity vector increases in time because the car’s displace-
ment between adjacent positions increases as time progresses. Therefore, the car is
moving with a positive velocity and a positive acceleration. The velocity and acceleration
are in the same direction. In terms of our earlier force discussion, imagine a force
pulling on the car in the same direction it is moving: it speeds up.

In Active Figure 2.11c, we interpret the car as slowing down as it moves to the
right because its displacement between adjacent positions decreases as time pro-
gresses. In this case, the car moves initially to the right with a positive velocity and a
negative acceleration. The velocity vector decreases in time and eventually reaches
zero. (This type of motion is exhibited by a car that skids to a stop after its brakes
are applied.) From this diagram we see that the acceleration and velocity vectors
are not in the same direction. The velocity and acceleration are in opposite direc-
tions. In terms of our earlier force discussion, imagine a force pulling on the car
opposite to the direction it is moving: it slows down.

2.5
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(a) Motion diagram for a car
moving at constant velocity. 
(b) Motion diagram for a car
whose constant acceleration is in
the direction of its velocity. The 
velocity vector at each instant is 
indicated by a red arrow, and the
constant acceleration vector is 
indicated by a violet arrow. 
(c) Motion diagram for a car
whose constant acceleration is in
the direction opposite the velocity
at each instant.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 2.11 to 
select the constant acceleration
and initial velocity of the car and
observe pictorial and graphical
representations of its motion.

ACTIVE FIGURE 2.11

(a)

(b)

(c)

v

v

a

v

a

v
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■ Velocity as a function of time
for a particle under constant
acceleration

The violet acceleration vectors in Active Figures 2.11b and 2.11c are all the same
length. Therefore, these diagrams represent a motion with constant acceleration.
This important type of motion is discussed in the next section.

Which of the following is true? (a) If a car is traveling eastward, its ac-
celeration is eastward. (b) If a car is slowing down, its acceleration must be negative. (c) A
particle with constant acceleration can never stop and stay stopped.

QUICK QUIZ 2.5

THE  PARTICLE  UNDER  CONSTANT  ACCELERATION
If the acceleration of a particle varies in time, the motion may be complex and diffi-
cult to analyze. A very common and simple type of one-dimensional motion occurs
when the acceleration is constant, such as for the motion of the cars in Active
Figures 2.11b and 2.11c. In this case, the average acceleration over any time interval
equals the instantaneous acceleration at any instant of time within the interval.
Consequently, the velocity increases or decreases at the same rate throughout the
motion. The particle under constant acceleration model is a common analysis model
that we can apply to appropriate problems. It is often used to model situations such
as falling objects and braking cars.

If we replace ax, avg with the constant ax in Equation 2.6, we find that

For convenience, let ti � 0 and tf be any arbitrary time t. With this notation, we can
solve for vxf :

(for constant ax) [2.9]

This expression enables us to predict the velocity at any time t if the initial veloc-
ity and constant acceleration are known. It is the first of four equations that can be
used to solve problems using the particle under constant acceleration model. A
graphical representation of position versus time for this motion is shown in Active
Figure 2.12a. The velocity– time graph shown in Active Figure 2.12b is a straight
line, the slope of which is the constant acceleration ax. The straight line on this

vxf � vxi � axt

ax �
vxf � vxi

tf � ti

2.6

Graphical representations of a par-
ticle moving along the x axis with
constant acceleration ax . (a) The
position–time graph, (b) the
velocity– time graph, and (c) the
acceleration–time graph.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 2.12 to 
adjust the constant acceleration
and observe the effect on the 
position and velocity graphs.

ACTIVE FIGURE 2.12

(b)
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0
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Slope  =  ax

(a)
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0
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Slope = vxi

t

(c)

ax

0

ax

t

Slope  =  0

Slope = vxf
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graph is consistent with being a constant. From this graph and from
Equation 2.9, we see that the velocity at any time t is the sum of the initial velocity
vxi and the change in velocity axt due to the acceleration. The graph of acceleration
versus time (Active Fig. 2.12c) is a straight line with a slope of zero because the ac-
celeration is constant. If the acceleration were negative, the slope of Active Figure
2.12b would be negative and the horizontal line in Active Figure 2.12c would be be-
low the time axis. 

We can generate another equation for the particle under constant acceleration
model by recalling a result from Section 2.1 that the displacement of a particle is
the area under the curve on a velocity– time graph. Because the velocity varies lin-
early with time (see Active Fig. 2.12b), the area under the curve is the sum of a rec-
tangular area (under the horizontal dashed line in Active Fig. 2.12b) and a triangu-
lar area (from the horizontal dashed line upward to the curve). Therefore,

which can be simplified as follows:

In general, from Equation 2.2, the displacement for a time interval is

Comparing these last two equations, we find that the average velocity in any time in-
terval is the arithmetic mean of the initial velocity vxi and the final velocity vxf :

(for constant ax) [2.10]

Remember that this expression is valid only when the acceleration is constant, that
is, when the velocity varies linearly with time.

We now use Equations 2.2 and 2.10 to obtain the position as a function of time.
Again we choose ti � 0, at which time the initial position is xi , which gives

(for constant ax) [2.11]

We can obtain another useful expression for the position by substituting Equa-
tion 2.9 for vxf in Equation 2.11:

(for constant ax) [2.12]

Note that the position at any time t is the sum of the initial position xi , the dis-
placement vxi t that would result if the velocity remained constant at the initial
velocity, and the displacement because the particle is accelerating. Consider
again the position–time graph for motion under constant acceleration shown in
Active Figure 2.12a. The curve representing Equation 2.12 is a parabola, as shown
by the t2 dependence in the equation. The slope of the tangent to this curve at 
t � 0 equals the initial velocity vxi , and the slope of the tangent line at any time 
t equals the velocity at that time.

Finally, we can obtain an expression that does not contain the time by substitut-
ing the value of t from Equation 2.9 into Equation 2.11, which gives

(for constant ax) [2.13] vxf 

 2 � vxi 

 2 � 2ax(xf � xi)

xf � xi � 1
2(vxi � vxf )� vxf � vxi

ax
� � xi �

vxf 

 2 � vxi 

 2

2ax

1
2axt2

xf � xi � vxit � 1
2axt2

xf � xi � 1
2[vxi � (vxi � axt)]t

xf � xi � 1
2(vxi � vxf )t

�x � vx, avg �t � 1
2(vxi � vxf )t

vx, avg � 1
2(vxi � vxf )

�x � vx, avg �t

�x � (vxi � 1
2vxf � 1

2vxi)�t � 1
2(vxi � vxf )�t

�x � vxi �t � 1
2(vxf � vxi)�t

ax � dvx/dt
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■ Average velocity for a particle 
under constant acceleration

■ Position as a function of velocity
and time for a particle under 
constant acceleration

■ Position as a function of time 
for a particle under constant
acceleration

■ Velocity as a function of position
for a particle under constant
acceleration
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This expression is not an independent equation because it arises from combining
Equations 2.9 and 2.11. It is useful, however, for those problems in which a value
for the time is not involved.

If motion occurs in which the constant value of the acceleration is zero, Equa-
tions 2.9 and 2.12 become

That is, when the acceleration is zero, the velocity remains constant and the posi-
tion changes linearly with time. In this case, the particle under constant acceleration
becomes the particle under constant velocity (Equation 2.5).

Equations 2.9, 2.11, 2.12, and 2.13 are four kinematic equations that may be
used to solve any problem in one-dimensional motion of a particle (or an object
that can be modeled as a particle) under constant acceleration. Keep in mind that
these relationships were derived from the definitions of velocity and acceleration
together with some simple algebraic manipulations and the requirement that the
acceleration be constant. It is often convenient to choose the initial position of the
particle as the origin of the motion so that xi � 0 at t � 0. We will see cases, how-
ever, in which we must choose the value of xi to be something other than zero.

The four kinematic equations for the particle under constant acceleration are
listed in Table 2.2 for convenience. The choice of which kinematic equation or
equations you should use in a given situation depends on what is known before-
hand. Sometimes it is necessary to use two of these equations to solve for two un-
knowns, such as the position and velocity at some instant. You should recognize
that the quantities that vary during the motion are velocity vxf , position xf , and
time t. The other quantities—xi , vxi , and ax — are parameters of the motion and
remain constant.

vxf � vxi   
  xf � xi � vxit

 �  when  ax � 0

Kinematic Equations for Motion in a Straight
Line Under Constant Acceleration

TABLE 2.2

Equation Information Given by Equation

Velocity as a function of time

Position as a function of velocity and time

Position as a function of time

Velocity as a function of positionvxf
2 � vxi

 2 � 2ax(xf � xi)

xf  �   xi  �   vxit  �   
1
2axt2

xf  �   xi  �   
1
2(vxf  �   vxi)t

vxf � vxi � axt

Note: Motion is along the x axis. At t � 0, the position of the particle is xi and its velocity 
is vxi .

The following procedure is recommended for solving problems
that involve an object undergoing a constant acceleration. As
mentioned in Chapter 1, individual strategies such as this one
will follow the outline of the General Problem-Solving Strategy
from Chapter 1, with specific hints regarding the application of
the general strategy to the material in the individual chapters.

1. Conceptualize Think about what is going on physically in
the problem. Establish the mental representation.

2. Categorize Simplify the problem as much as possible.
Confirm that the problem involves either a particle or an 

object that can be modeled as a particle and that it is moving
with a constant acceleration. Construct an appropriate pictorial
representation, such as a motion diagram, or a graphical repre-
sentation. Make sure all the units in the problem are consistent.
That is, if positions are measured in meters, be sure that veloci-
ties have units of m/s and accelerations have units of m/s2.
Choose a coordinate system to be used throughout the 
problem.

3. Analyze Set up the mathematical representation. Choose
an instant to call the “initial” time t � 0 and another to call the
“final” time t. Let your choice be guided by what you know

Particle Under Constant AccelerationPROBLEM-SOLVING STRATEGY
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about the particle and what you want to know about it. The
initial instant need not be when the particle starts to move, and
the final instant will only rarely be when the particle stops mov-
ing. Identify all the quantities given in the problem and a sepa-
rate list of those to be determined. A tabular representation of
these quantities may be helpful to you. Select from the list of

kinematic equations the one or ones that will enable you to 
determine the unknowns. Solve the equations.

4. Finalize Once you have determined your result, check to
see if your answers are consistent with the mental and pictorial
representations and that your results are realistic.

We are now ready to move on to step 3 (Analyze), in
which we develop the mathematical representation of
the problem. Notice that no acceleration is given in the
problem and that the time interval is requested, which
provides a hint that we should use an equation that
does not involve acceleration. We can find the time at
which the particle is at the end of the 2.00-cm distance
from Equation 2.11:

�

Finally, we check if the answer is reasonable (step 4,
Finalize). The average speed is on the order of 106 m/s.
Let us estimate the time interval required to move 1 cm
at this speed:

This result is the same order of magnitude as our
answer, providing confidence that our answer is
reasonable.

�t �
�x
v

�
0.01 m

106 m/s
� 10�8 s � 10 � 10�9 s

7.95 � 10�9 s

t �
2(0.020 0 m)

3.00 � 104 m/s � 5.00 � 106 m/s

xf � xi � 1
2(vxi � vxf )t  : t �

2(xf � xi)

vxi � vxf

Accelerating an ElectronEXAMPLE 2.7
An electron in the cathode-ray tube of a television set
enters a region in which it accelerates uniformly in a
straight line from a speed of 3.00 � 104 m/s to a speed
of 5.00 � 106 m/s in a distance of 2.00 cm. For what
time interval is the electron accelerating?

Solution For this example, we shall identify the
individual steps in the General Problem-Solving Strat-
egy in Chapter 1. In subsequent examples, you should
identify the portions of the solution that correspond to
each step. For step 1 (Conceptualize), think about the
electron moving through space. Note that it is moving
faster at the end of the interval than before, so imagine
it speeding up as it covers the 2.00-cm displacement. In
step 2 (Categorize), ignore that it is an electron and that
it is in a television. The electron is easily modeled as a
particle, and the phrase “accelerates uniformly” tells us
that it is a particle under constant acceleration. All the
parts of Active Figure 2.12 represent the motion of the
particle as a function of time, although you may want 
to graph velocity versus position because no time is
given in the problem. Note that all units are metric, al-
though we must convert 2.00 cm to meters to put all
units in SI. We make the simple choice of the x axis ly-
ing along the straight line mentioned in the text of the
problem.

Watch Out for the Speed Limit!EXAMPLE 2.8INTERACTIVE

lems, a quick thought about the mental representation
may be enough to allow you to skip pictorial represen-
tations and go right to the mathematics. Let us model
the speeding car as a particle under constant velocity
and the trooper’s motorcycle as a particle under con-
stant acceleration (Categorize). We shall ignore that they
are vehicles and instead will imagine the speeder and
the trooper as point particles undergoing the motion
described in the problem.

Note that all units are in the same system. To solve
this problem algebraically, we will write an expression
for the position of each vehicle as a function of time. It
is convenient to choose the origin at the position of 
the billboard and take t B � 0 as the time the trooper

A car traveling at a constant velocity of magnitude 
45.0 m/s passes a trooper hidden behind a billboard.
One second after the speeding car passes the billboard,
the trooper sets out from the billboard to catch it, ac-
celerating at a constant rate of 3.00 m/s2. How long
does it take her to overtake the speeding car?

Solution We will point out again in this example steps
in the General Problem-Solving Strategy. A pictorial
representation of the situation is shown in Figure 2.13.
Establish the mental representation (Conceptualize) of
this situation for yourself; in the following solution, we
will go straight to the mathematical representation. As
you become more proficient at solving physics prob-
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FREELY  FALLING  OBJECTS
It is well known that all objects, when dropped, fall toward the Earth with nearly
constant acceleration. Legend has it that Galileo Galilei first discovered this fact by
observing that two different weights dropped simultaneously from the Leaning
Tower of Pisa hit the ground at approximately the same time. (Air resistance plays a
role in the falling of an object, but for now we shall model falling objects as if they
are falling through a vacuum; this is a simplification model.) Although there is
some doubt that this particular experiment was actually carried out, it is well estab-
lished that Galileo did perform many systematic experiments on objects moving on
inclined planes. Through careful measurements of distances and time intervals, he
was able to show that the displacement from an origin of an object starting from
rest is proportional to the square of the time interval during which the object is in
motion. This observation is consistent with one of the kinematic equations we de-
rived for a particle under constant acceleration (Eq. 2.12, with vxi � 0). Galileo’s
achievements in mechanics paved the way for Newton in his development of the
laws of motion.

If a coin and a crumpled-up piece of paper are dropped simultaneously from
the same height, there will be a small time difference between their arrivals at the

2.7

Now we set up the mathematical representation (An-
alyze). Because the car moves with constant velocity, its
acceleration is zero, and applying Equation 2.5 gives us

Note that at t � 0, this expression gives the car’s correct
initial position, xcar � 45.0 m.

For the trooper, who starts from the origin at t � 0,
we have xi � 0, vxi � 0, and ax � 3.00 m/s2. Hence,
from Equation 2.12 for a particle under constant accel-
eration, the position of the trooper as a function of
time is

The trooper overtakes the car at the instant that 
xtrooper � xcar, which is at position � in Figure 2.13:

This result gives the quadratic equation (dropping the
units)

whose positive solution is 
From your everyday experience, is this value reason-

able (Finalize)? (For help in solving quadratic equa-
tions, see Appendix B.2.). 

You can study the motion of the car and
the trooper for various velocities of the car by logging into
PhysicsNow at www.pop4e.com and going to Interactive
Example 2.8.

t � 31.0 s.

1.50t2 � 45.0t � 45.0 � 0

1
2(3.00 m/s2)t2 � 45.0 m � (45.0 m/s)t

� 1
2(3.00 m/s2)t2

 xf � xi � vxit � 1
2axt2  : xtrooper � 1

2axt2

xf � xB � vxt  : xcar � 45.0 m � (45.0 m/s)t

vx car = 45.0 m/s

ax car = 0

ax trooper = 3.00 m/s2

tC = ?

��

tA = –1.00 s tB = 0

�

FIGURE 2.13 (Interactive Example 2.8) A speeding car passes a
hidden trooper. The trooper catches up to the car
at point �.

begins moving. At that instant, the speeding car has al-
ready traveled a distance of 45.0 m because it has trav-
eled at a constant speed of vx � 45.0 m/s for 1.00 s; it is
at point � in Figure 2.13. Therefore, the initial posi-
tion of the speeding car is xi � xB � 45.0 m. We do not
choose t � 0 as the time at which the car passes the
trooper (point � in Fig. 2.13), because then the accel-
eration of the trooper is not constant during the prob-
lem. Her acceleration is ax � 0 for the first second and
then 3.00 m/s2 after that. Therefore, we could not
model the trooper as a particle under constant acceler-
ation with this choice.

www.pop4e.com


floor. If this same experiment could be conducted in a good vacuum, however,
where air friction is truly negligible, the paper and coin would fall with the same ac-
celeration, regardless of the shape or weight of the paper, even if the paper were
still flat. In the idealized case, where air resistance is ignored, such motion is re-
ferred to as free-fall. This point is illustrated very convincingly in Figure 2.14, which
is a photograph of an apple and a feather falling in a vacuum. On August 2, 1971,
such an experiment was conducted on the Moon by astronaut David Scott. He si-
multaneously released a geologist’s hammer and a falcon’s feather, and in unison
they fell to the lunar surface. This demonstration surely would have pleased
Galileo!

We shall denote the magnitude of the free-fall acceleration with the symbol g,
representing a vector acceleration . At the surface of the Earth, g is approximately
9.80 m/s2, or 980 cm/s2, or 32 ft/s2. Unless stated otherwise, we shall use the value
9.80 m/s2 when doing calculations. Furthermore, we shall assume that the vector 
is directed downward toward the center of the Earth. 

When we use the expression freely falling object, we do not necessarily mean an
object dropped from rest. A freely falling object is an object moving freely under
the influence of gravity alone, regardless of its initial motion. Therefore, objects
thrown upward or downward and those released from rest are all freely falling ob-
jects once they are released! Because the value of g is constant as long as we are
close to the surface of the Earth, we can model a freely falling object as a particle
under constant acceleration.

In previous examples in this chapter, the particles were undergoing constant ac-
celeration, as stated in the problem. Therefore, it may have been difficult to under-
stand the need for modeling. We can now begin to see the need for modeling; we
are modeling a real falling object with an analysis model. Notice that we are (1) ig-
noring air resistance and (2) assuming that the free-fall acceleration is constant.
Therefore, the model of a particle under constant acceleration is a replacement for
the real problem, which could be more complicated. If air resistance and any varia-
tion in g are small, however, the model should make predictions that agree closely
with the real situation.

The equations developed in Section 2.6 for objects moving with constant accel-
eration can be applied to the falling object. The only necessary modification that
we need to make in these equations for freely falling objects is to note that the

g:

g:
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a v

Galileo Galilei (1564 – 1642)
Italian physicist and astronomer
Galileo formulated the laws that
govern the motion of objects in
free-fall. He also investigated the
motion of an object on an inclined
plane, established the concept of
relative motion, invented the ther-
mometer, and discovered that the
motion of a swinging pendulum
could be used to measure time in-
tervals. After designing and con-
structing his own telescope, he dis-
covered four of Jupiter’s moons,
found that the Moon’s surface is
rough, discovered sunspots and the
phases of Venus, and showed that
the Milky Way consists of an enor-
mous number of stars. Galileo pub-
licly defended Nicolaus Copernicus’s
assertion that the Sun is at the cen-
ter of the Universe (the heliocentric
system). He published Dialogue Con-
cerning Two New World Systems to
support the Copernican model, a
view that the Catholic Church de-
clared to be heretical. After being
taken to Rome in 1633 on a charge of
heresy, he was sentenced to life im-
prisonment and later was confined
to his villa at Arcetri, near Florence,
where he died.
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An apple and a
feather, released from rest in a vac-
uum chamber, fall at the same rate,
regardless of their masses. Ignoring
air resistance, all objects fall to the
Earth with the same acceleration of
magnitude 9.80 m/s2, as indicated by
the violet arrows in this multiflash
photograph. The velocity of the two
objects increases linearly with time, as
indicated by the series of red arrows. 

FIGURE 2.14
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motion is in the vertical direction, so we will use y instead of x, and that the acceler-
ation is downward and of magnitude 9.80 m/s2. Therefore, for a freely falling ob-
ject we commonly take ay � � g � � 9.80 m/s2, where the negative sign indicates
that the acceleration of the object is downward. The choice of negative for the
downward direction is arbitrary, but common.

THE SIGN OF g Keep in mind that
g is a positive number. It is tempting
to substitute � 9.80 m/s2 for g, but
resist the temptation. That the 
gravitational acceleration is 
downward is indicated explicitly by
stating the acceleration as ay � � g.

� PITFALL PREVENTION 2.6

A ball is thrown upward. While the ball is in free-fall, does its acceler-
ation (a) increase, (b) decrease, (c) increase and then decrease, (d) decrease and then
increase, or (e) remain constant?

QUICK QUIZ 2.6

■ Thinking Physics 2.2
A sky diver steps out of a stationary helicopter. A few seconds later, another sky
diver steps out, so that both sky divers fall along the same vertical line. Ignore air re-
sistance, so that both sky divers fall with the same acceleration, and model the sky
divers as particles under constant acceleration. Does the vertical separation dis-
tance between them stay the same? Does the difference in their speeds stay the
same?

Reasoning At any given instant of time, the speeds of the sky divers are definitely
different, because one had a head start over the other. In any time interval,
however, each sky diver increases his or her speed by the same amount, because
they have the same acceleration. Therefore, the difference in speeds remains the
same. The first sky diver will always be moving with a higher speed than the second.
In a given time interval, then, the first sky diver will have a larger displacement than
the second. Therefore, the separation distance between them increases. ■

FIGURE 2.15 (Example 2.9) 
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You might want to try this “trick” on one of your
friends.

Try to Catch the DollarEXAMPLE 2.9
Emily challenges David to catch a dollar bill as follows.
She holds the bill vertically, as in Figure 2.15, with the
center of the bill between David’s index finger and
thumb. David must catch the bill after Emily releases it
without moving his hand downward. The reaction time
of most people is at best about 0.2 s. Who would you
bet on?

Solution Place your bets on Emily. There is a time
delay between the instant Emily releases the bill and
the time David reacts and closes his fingers. We model
the bill as a particle. When released, the bill will
probably flutter downward to the floor due to the ef-
fects of the air, but for the very early part of its motion,
we will assume that it can be modeled as a particle
falling through a vacuum. Because the bill is in 
free-fall and undergoes a downward acceleration of
magnitude 9.80 m/s2, in 0.2 s it falls a distance of

. This distance is about twice
the distance between the center of the bill and its top
edge Therefore, David will be unsuccessful.(� 8 cm).

y � 1
2g t2 � 0.2 m � 20 cm

ACCELERATION AT THE TOP OF THE

MOTION Imagine throwing a base-
ball straight up into the air. It is a
common misconception that the ac-
celeration of a projectile at the top
of its trajectory is zero. This miscon-
ception generally arises owing to
confusion between velocity and ac-
celeration. Although the velocity at
the top of the motion of an object
thrown upward momentarily goes
to zero, the acceleration is still that due
to gravity at this point. Remember
that acceleration is proportional to
force and that the gravitational
force still acts at the moment that
the object has stopped. If the veloc-
ity and acceleration were both zero,
the projectile would stay at the top!

� PITFALL PREVENTION 2.5
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(point �) and then begins to fall downward again. Dur-
ing the entire motion, it is accelerating downward be-
cause the gravitational force is always pulling downward
on it. Ignoring air resistance, we model the stone as a
particle under constant acceleration.

To begin the mathematical representation, we con-
sider the portion of the motion from � to � and find
the time at which the stone reaches the maximum
height, point �. We use the vertical modification of 
Equation 2.9, noting that vyf � 0 at the maximum
height:

Determine the maximum height of the stone
above the roof top.

Solution The value of time from part A can be substi-
tuted into Equation 2.12 to give the maximum height
measured from the position of the thrower:

�

Determine the time at which the stone returns to
the level of the thrower. 

Solution Now we identify the initial point of the mo-
tion as � and the final point as �. When the stone is
back at the height of the thrower, the y coordinate is
zero. From Equation 2.12, letting yf � yC � 0, we 
obtain the expression

This result is a quadratic equation and has two solu-
tions for tC. The equation can be factored to give

One solution is tC � 0, corresponding to the time the
stone starts its motion. The other solution—the one we
are after—is . Note that this value is twice 
the value for tB. The fall from � to � is the reverse
of the rise from � to �, and the stone requires exactly
the same time interval to undergo each part of the
motion.

Determine the velocity of the stone at this instant.

Solution The value for tC found in part C can be in-
serted into Equation 2.9 to give

D

tC � 4.08 s

tC(20.0 � 4.90tC) � 0

yC � yA � vyAtC � 1
2aytC 

2 : 0 � 20.0tC � 4.90tC 

2

C

20.4 m

� 0 �(20.0 m/s)(2.04 s)� 1
2(� 9.80 m/s2)(2.04 s)2

ymax � y B � y A � vy AtB � 1
2ayt B 

2

B

2.04 st B �
20.0 m/s
9.80 m/s2 �

vyf � vyi � ayt : 0 � 20.0 m/s � (� 9.80 m/s2)t B

Not a Bad Throw for a Rookie!

A stone is thrown at point � from the top of a building
with an initial velocity of 20.0 m/s straight upward. The
building is 50.0 m high, and the stone just misses the
edge of the roof on its way down, as in the pictorial rep-
resentation of Figure 2.16. 

Determine the time at which the stone reaches its
maximum height.

Solution Think about the mental representation: the
stone rises upward, slowing down. It stops momentarily

A

EXAMPLE 2.10INTERACTIVE

FIGURE 2.16 (Interactive Example 2.10) Position, velocity, and
acceleration at various instants of time for a freely
falling particle initially thrown upward with a
velocity vy � 20.0 m/s.

�

�

�

�

�

tD = 5.00 s
yD = –22.5 m
vyD = –29.0 m/s
ayD = –9.80 m/s2

tC = 4.08 s
yC = 0
vyC = –20.0 m/s
ayC = –9.80 m/s2

tB = 2.04 s
yB = 20.4 m
vyB = 0
ayB = –9.80 m/s2

50.0 m

tE = 5.83 s
yE = –50.0 m
vyE = –37.1 m/s
ayE = –9.80 m/s2

tA = 0
yA = 0
vyA = 20.0 m/s
ayA = –9.80 m/s2

�
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�

Determine the position of the stone at t � 6.00 s.
How does the model fail this last part of the problem?

Solution We use Equation 2.12 again to find the posi-
tion of the stone at t � 6.00 s:

�

The failure of the model is that the building is only 
50.0 m high, so the stone cannot be at a position 6.4 m
below ground. Our model does not include that the
ground exists at y � � 50.0 m, so the mathematical 
representation gives us an answer that is not consistent
with our expectations in this case.

You can study the motion of the thrown
ball by logging into PhysicsNow at www.pop4e.com and going to
Interactive Example 2.10.

� 56.4 m

y � 0 � (20.0 m/s)(6.00 s) � 1
2(� 9.80 m/s2)(6.00 s)2

F

� 22.5 m

 � 0 � (20.0 m/s)(5.00 s) � 1
2(� 9.80 m/s2)(5.00 s)2

yD � yA � vyAtD � 1
2aytD 

2

ACCELERATION  REQUIRED  BY  CONSUMERS
We now have our first opportunity to address a Context in a closing section, as we
will do in each remaining chapter. Our present Context is Alternative-Fuel Vehicles,
and our central question is, What source besides gasoline can be used to provide energy for
an automobile while reducing environmentally damaging emissions?

Consumers have been driving gasoline-powered vehicles for decades and have
become used to a certain amount of acceleration, such as that required to enter a
freeway on-ramp. This experience raises the question as to what kind of accelera-
tion today’s consumer would expect for an alternative-fuel vehicle that might re-
place a gasoline-powered vehicle. In turn, developers of alternative-fuel vehicles
should strive for such an acceleration so as to satisfy consumer expectations and
hope to generate a demand for the new vehicle.

If we consider published time intervals for accelerations from 0 to 60 mi/h for a
number of automobile models, we find the data shown in the middle column of
Table 2.3. The average acceleration of each vehicle is calculated from these data
using Equation 2.6. It is clear from the upper part of this table (Performance vehicles)
that acceleration upward of 10 mi/h 
 s is very expensive. The highest accelerations
are 16.7 mi/h 
 s and cost either $480,000 for the Ferrari F50 or a bargain at
$292,000 for the Lamborghini Diablo GT. For the less affluent driver, the accelera-
tions in the middle part of the table (Traditional vehicles) have an average value
of 7.8 mi/h· s. This number is typical of consumer-oriented gasoline-powered
vehicles and provides an approximate standard for the acceleration desired in an
alternative-fuel vehicle. 

In the lower part of Table 2.3, we see data for three alternative vehicles. The
General Motors EV1 is an electric car that was discontinued in 2001, even though it
was a technological success. Notice that its acceleration is similar to those in the

2.8 CONTEXT 
connection

�

Note that the velocity of the stone when it arrives back
at its original height is equal in magnitude to its initial
velocity but opposite in direction. This equal magni-
tude, along with the equal time intervals noted at the
end of part C, indicates that the motion to this point is
symmetric.

Determine the velocity and position of the stone at
t � 5.00 s.

Solution For this part of the problem, we analyze the
portion of the motion from � to �. From Equation 
2.9, the velocity at � after 5.00 s is

�

We can use Equation 2.12 to find the position of the
stone at t � 5.00 s:

� 29.0 m/s

 � 20.0 m/s � (� 9.80 m/s2)(5.00 s)

vyD � vyA � aytD

E

� 20.0 m/s

 � 20.0 m/s � (� 9.80 m/s2)(4.08 s)

vyC � vyA � aytC

www.pop4e.com


middle part of Table 2.3. This acceleration is sufficiently large that it satisfies con-
sumer demand for a car with “get-up-and-go.”

The Toyota Prius and Honda Insight are hybrid vehicles, which we will discuss fur-
ther in the Context Conclusion. These vehicles combine a gasoline engine and an
electric motor. The accelerations for these vehicles are the lowest in the table. The
disadvantage of the low acceleration is offset by other factors. These vehicles obtain
relatively high gas mileage, have very low emissions, and do not require recharging
as does a pure electric vehicle.

In comparison to the vehicles in the upper part of the table, consider the
acceleration of an even higher-level “performance vehicle,” a typical drag racer, as
shown in Figure 2.17. Typical data show that such a vehicle covers a distance of 
0.25 mi in 5.0 s, starting from rest. We can find the acceleration from 
Equation 2.12:

This value is much larger than any accelerations in the table, as would be expected.
We can show that the acceleration due to gravity has the following value in units of
mi/h· s:

g � 9.80 m/s2 � 21.9 mi/h · s

 �
2(0.25 mi)

(5.0 s)2 � 0.020 mi/s2 � 3 600 s
1 h � � 72 mi/h 
s

 xf � xi � vit � 1
2axt 2 � 0 � 0(t) � 1

2(ax)(t)2 : ax �
2xf

t 2
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Accelerations of Various Vehicles, 0– 60 mi/hTABLE 2.3

Time Interval, Average
Model 0–60 mi/h Acceleration 

Automobile Year (s) (mi/h · s) Price

Performance vehicles
Aston Martin DB7 Vantage 2001 5.0 12.0 $170,000
BMW Z8 2001 4.6 13.0 $134,000
Chevrolet Corvette 2000 4.6 13.0 $46,000
Dodge Viper GTS-R 1998 4.2 14.3 $92,000
Ferrari F50 1997 3.6 16.7 $480,000
Ferrari 360 Spider F1 2000 4.6 13.0 $171,000
Lamborghini Diablo GT 2000 3.6 16.7 $292,000
Porsche 911 GT2 2002 4.0 15.0 $182,000

Traditional vehicles
Acura Integra GS 2000 7.9 7.6 $22,000
BMW Mini Cooper S 2003 6.9 8.7 $17,500
Cadillac Escalade (SUV) 2002 8.6 7.0 $51,000
Dodge Stratus 2002 7.5 8.0 $22,000
Lexus ES300 1997 8.6 7.0 $29,000
Mitsubishi Eclipse GT 2000 7.0 8.6 $23,000
Nissan Maxima 2000 6.7 9.0 $25,000
Pontiac Grand Prix 2003 8.5 7.1 $25,000
Toyota Sienna (SUV) 2004 8.3 7.2 $23,000
Volkswagen Beetle 1999 7.6 7.9 $19,000

Alternative vehicles
GM EV1 1998 7.6 7.9 (lease only)

$399/month
Toyota Prius 2004 12.7 4.7 $21,000
Honda Insight 2001 11.6 5.2 $21,000

Note: Data given in this table as well as in similar tables in Chapters 3 through 6 were gathered from a number of web-
sites. Other data, such as the accelerations in this table, were calculated from the raw data.
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In drag racing, 
acceleration is a highly desired quan-
tity. In a distance of 1/4 mile, speeds
of over 320 mi/h are reached, with
the entire distance being covered in
under 5 s. 

FIGURE 2.17
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Therefore, the drag racer is moving horizontally with 3.3 times as much accelera-
tion as it would move vertically if you pushed it off a cliff! (Of course, the horizontal
acceleration can only be maintained for a very short time interval.)

As we investigate two-dimensional motion in the next chapter, we shall consider
a different type of acceleration for vehicles , that associated with the vehicle turning
in a sharp circle at high speed. ■

Take a practice test by logging into 
PhysicsNow at www.pop4e.com and clicking
on the Pre-Test link for this chapter.

The average speed of a particle during some time interval is
equal to the ratio of the distance d traveled by the particle and
the time interval �t :

[2.1]

The average velocity of a particle moving in one dimension
during some time interval is equal to the ratio of the displace-
ment �x and the time interval �t :

[2.2]

The instantaneous velocity of a particle is defined as the
limit of the ratio �x/�t as �t approaches zero:

[2.3]

The instantaneous speed of a particle is defined as the mag-
nitude of the instantaneous velocity vector.

If the velocity vx is constant, the preceding equations can be
modified and used to solve problems describing the motion of
a particle under constant velocity:

[2.4]

[2.5]

The average acceleration of a particle moving in one dimen-
sion during some time interval is defined as the ratio of the
change in its velocity �vx and the time interval �t :

[2.6]

The instantaneous acceleration is equal to the limit of the
ratio �vx/�t as �t : 0. By definition, this limit equals the
derivative of vx with respect to t, or the time rate of change of
the velocity:

[2.7]

The slope of the tangent to the x versus t curve at any in-
stant gives the instantaneous velocity of the particle.

The slope of the tangent to the v versus t curve gives the in-
stantaneous acceleration of the particle.

The kinematic equations for a particle under constant accelera-
tion ax (constant in magnitude and direction) are

[2.9]

[2.11]

[2.12]

[2.13]

An object falling freely experiences an acceleration 
directed toward the center of the Earth. If air friction is 
ignored and if the altitude of the motion is small compared
with the Earth’s radius, one can assume that the magnitude of
the free-fall acceleration g is constant over the range of 
motion, where g is equal to 9.80 m/s2, or 32 ft/s2. Assuming y
to be positive upward, the acceleration is given by �g, and 
the equations of kinematics for an object in free-fall are the
same as those already given, with the substitutions x : y
and ay : �g.

vxf 

2 � vxi 

2 � 2ax(xf � xi)

xf � xi � vxit � 1
2axt2

xf � xi � 1
2(vxi � vxf )t

vxf � vxi � axt

ax � lim
�t : 0

 
�vx

�t
�

dvx

dt

ax, avg � 
�vx

�t

xf � xi � vxt

vx �
�x
�t

vx � lim
�t : 0

 
�x
�t

�
dx
dt

vx, avg � 
�x
�t

vavg � 
d

�t

SUMMARY

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. The speed of sound in air is 331 m/s. During the next
thunderstorm, try to estimate your distance from a light-
ning bolt by measuring the time lag between the flash and
the thunderclap. You can ignore the time interval it takes
for the light flash to reach you. Why?

2. The average velocity of a particle moving in one dimension
has a positive value. Is it possible for the instantaneous ve-
locity to have been negative at any time in the interval?
Suppose the particle started at the origin x � 0. If its aver-
age velocity is positive, could the particle ever have been in
the �x region of the axis?

If the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject for that interval?

3.

www.pop4e.com
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4. Can the instantaneous velocity of an object at an instant of
time ever be greater in magnitude than the average veloc-
ity over a time interval containing the instant? Can it ever
be less?

5. If an object’s average velocity is nonzero over some time in-
terval, does that mean that its instantaneous velocity is
never zero during the interval? Explain your answer.

6. An object’s average velocity is zero over some time interval.
Show that its instantaneous velocity must be zero at some
time during the interval. It may be useful in your proof to
sketch a graph of x versus t and to note that vx(t) is a con-
tinuous function.

7. If the velocity of a particle is nonzero, can its acceleration
be zero? Explain.

8. If the velocity of a particle is zero, can its acceleration be
nonzero? Explain.

Two cars are moving in the same direction in parallel 
lanes along a highway. At some instant, the velocity of car 
A exceeds the velocity of car B. Does that mean that the 
acceleration of A is greater than that of B? Explain.

10. Is it possible for the velocity and the acceleration of an ob-
ject to have opposite signs? If not, state a proof. If so, give
an example of such a situation and sketch a velocity–time
graph to prove your point.

Consider the following combinations of signs and values
for velocity and acceleration of a particle with respect to a
one-dimensional x axis:

Velocity Acceleration

a. Positive Positive
b. Positive Negative
c. Positive Zero
d. Negative Positive

e. Negative Negative
f. Negative Zero
g. Zero Positive
h. Zero Negative

Describe what a particle is doing in each case and give a
real-life example for an automobile on an east–west one-
dimensional axis, with east considered the positive
direction.

12. Can the kinematic equations (Eqs. 2.9 through 2.13) be
used in a situation where the acceleration varies in time?
Can they be used when the acceleration is zero?

13. A child throws a marble into the air with an initial speed vi.
Another child drops a ball at the same instant. Compare
the accelerations of the two objects while they are in flight. 

14. An object falls freely from height h. It is released at time
zero and strikes the ground at time t. (a) When the object
is at height 0.5h, is the time earlier than 0.5t, equal to 0.5t,
or later than 0.5t ? (b) When the time is 0.5t, is the height
of the object greater than 0.5h, equal to 0.5h, or less than
0.5h? Give reasons for your answers.

A student at the top of a building of height h throws one
ball upward with a speed of vi and then throws a second
ball downward with the same initial speed. How do the
final velocities of the balls compare when they reach the
ground?

16. You drop a ball from a window on an upper floor of a build-
ing. It strikes the ground with speed v. You now repeat the
drop, but you have a friend down on the street who throws
another ball upward at speed v. Your friend throws the ball
upward at precisely the same time that you drop yours from
the window. At some location, the balls pass each other. Is
this location at the halfway point between window and
ground, above this point, or below this point?

15.

11.

9.

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 2.1 ■ Average Velocity
1. The position of a pinewood derby car was observed at vari-

ous times; the results are summarized in the following table.
Find the average velocity of the car for (a) the first second,
(b) the last 3 s, and (c) the entire period of observation.

t (s) 0 1.0 2.0 3.0 4.0 5.0
x(m) 0 2.3 9.2 20.7 36.8 57.5

2. A particle moves according to the equation x � 10t2, 
where x is in meters and t is in seconds. (a) Find the aver-
age velocity for the time interval from 2.00 s to 3.00 s. 
(b) Find the average velocity for the time interval from
2.00 s to 2.10 s. 

The position versus time for a certain particle moving
along the x axis is shown in Figure P2.3. Find the average
velocity in the time intervals (a) 0 to 2 s, (b) 0 to 4 s, (c) 2 s
to 4 s, (d) 4 s to 7 s, and (e) 0 to 8 s.

4. A person walks first at a constant speed of 5.00 m/s along a
straight line from point A to point B and then back along
the line from B to A at a constant speed of 3.00 m/s. 
(a) What is her average speed over the entire trip? 
(b) What is her average velocity over the entire trip?

Section 2.2 ■ Instantaneous Velocity 
A position–time graph for a particle

moving along the x axis is shown in Figure P2.5. (a) Find
5.

3.
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Section 2.3 ■ Analysis Models — The Particle Under
Constant Velocity

9. A hare and a tortoise compete in a race over a course 
1.00 km long. The tortoise crawls straight and steadily at its
maximum speed of 0.200 m/s toward the finish line. The
hare runs at its maximum speed of 8.00 m/s toward the
goal for 0.800 km and then stops to taunt the tortoise. How
close to the goal can the hare let the tortoise approach be-
fore resuming the race, which the tortoise wins in a photo
finish? Assume that, when moving, both animals move
steadily at their respective maximum speeds.

Section 2.4 ■ Acceleration
10. A 50.0-g superball traveling at 25.0 m/s bounces off a brick

wall and rebounds at 22.0 m/s. A high-speed camera
records this event. If the ball is in contact with the wall for
3.50 ms, what is the magnitude of the average acceleration
of the ball during this time interval? (Note: 1 ms � 10�3 s.)

11. A particle starts from rest and accelerates as shown 
in Figure P2.11. Determine (a) the particle’s speed at 
t � 10.0 s and at t � 20.0 s, and (b) the distance traveled
in the first 20.0 s. 

2

ax (m/s  )2

0

1

–3

–2

5 10 15 20
t (s)

–1

FIGURE P2.11

1 2 3 4 5 6 7 8
t (s)
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–2

0
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4

6

8

10

x (m)

FIGURE P2.3 Problems 2.3 and 2.8.

the average velocity in the time interval t � 1.50 s to 
t � 4.00 s. (b) Determine the instantaneous velocity at 
t � 2.00 s by measuring the slope of the tangent line
shown in the graph. (c) At what value of t is the velocity
zero?

6. The position of a particle moving along the x axis varies in
time according to the expression x � 3t2, where x is 
in meters and t is in seconds. Evaluate its position 
(a) at t � 3.00 s and (b) at 3.00 s � �t. (c) Evaluate the
limit of �x/�t as �t approaches zero to find the velocity at
t � 3.00 s.

7. (a) Use the data in Problem 2.1 to construct a smooth
graph of position versus time. (b) By constructing tangents
to the x(t) curve, find the instantaneous velocity of the car
at several instants. (c) Plot the instantaneous velocity ver-
sus time and, from this information, determine the aver-
age acceleration of the car. (d) What was the initial velocity
of the car?

8. Find the instantaneous velocity of the particle described in
Figure P2.3 at the following times: (a) t � 1.0 s, (b) t � 3.0 s,
(c) t � 4.5 s, (d) t � 7.5 s.

12. An object moves along the x axis according to the equation
x(t) � (3.00t2 � 2.00t � 3.00)m, where t is in seconds. 
Determine (a) the average speed between t � 2.00 s and 
t � 3.00 s, (b) the instantaneous speed at t � 2.00 s and at 
t � 3.00 s, (c) the average acceleration between t � 2.00 s
and t � 3.00 s, and (d) the instantaneous acceleration at 
t � 2.00 s and t � 3.00 s.

A particle moves along the x axis accord-
ing to the equation x � 2.00 � 3.00t – 1.00t2, where x is in
meters and t is in seconds. At t � 3.00 s, find (a) the
position of the particle, (b) its velocity, and (c) its accelera-
tion.

14. A student drives a moped along a straight road as
described by the velocity versus time graph in Figure P2.14.
Sketch this graph in the middle of a sheet of graph paper.
(a) Directly above your graph, sketch a graph of the

13.
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position versus time, aligning the time coordinates of the
two graphs. (b) Sketch a graph of the acceleration versus
time directly below the vx-t graph, again aligning the time
coordinates. On each graph, show the numerical values 
of x and ax for all points of inflection. (c) What is the accel-
eration at t � 6 s? (d) Find the position (relative to the
starting point) at t � 6 s. (e) What is the moped’s final
position at t � 9 s? 

18. The minimum distance required to stop a car moving at
35.0 mi/h is 40.0 ft. What is the minimum stopping dis-
tance for the same car moving at 70.0 mi/h, assuming the
same rate of acceleration?

An object moving with uniform accelera-
tion has a velocity of 12.0 cm/s in the positive x direction
when its x coordinate is 3.00 cm. If its x coordinate 2.00 s
later is � 5.00 cm, what is its acceleration?

20. A speedboat moving at 30.0 m/s approaches a no-wake
buoy marker 100 m ahead. The pilot slows the boat with a
constant acceleration of � 3.50 m/s2 by reducing the
throttle. (a) How long does it take the boat to reach the
buoy? (b) What is the velocity of the boat when it reaches
the buoy? 

A jet plane comes in for a landing with a speed of 100 m/s
and can accelerate at a maximum rate of � 5.00 m/s2 as
it comes to rest. (a) From the instant the plane touches
the runway, what is the minimum time interval needed
before it can come to rest? (b) Can this plane land at a
small tropical island airport where the runway is 0.800 km
long?

22. A particle moves along the x axis. Its position is given by the
equation x � 2 � 3t � 4t2 with x in meters and t in sec-
onds. Determine (a) its position when it changes direction
and (b) its velocity when it returns to the position it had at
t � 0.

23. The driver of a car slams on the brakes when he sees a tree
blocking the road. The car slows uniformly with an acceler-
ation of � 5.60 m/s2 for 4.20 s, making straight skid marks
62.4 m long ending at the tree. With what speed does the
car then strike the tree?

24. Help! One of our equations is missing! We describe constant-
acceleration motion with the variables and parameters vxi ,
vxf , ax, t, and xf � xi . Of the equations in Table 2.2, the
first does not involve xf � xi . The second does not contain
ax , the third omits vx f , and the last leaves out t. So, to com-
plete the set there should be an equation not involving vxi .
Derive it from the others. Use it to solve Problem 2.23 in
one step.

25. A truck on a straight road starts from rest, accelerating at
2.00 m/s2 until it reaches a speed of 20.0 m/s. Then the
truck travels for 20.0 s at constant speed until the brakes
are applied, stopping the truck in a uniform manner in an
additional 5.00 s. (a) How long is the truck in motion? 
(b) What is the average velocity of the truck for the motion
described?

26. An electron in a cathode-ray tube accelerates uniformly
from 2.00 104 m/s to 6.00 106 m/s over 1.50 cm. 
(a) In what time interval does the electron travel this 
1.50 cm? (b) What is its acceleration?

27. Speedy Sue, driving at 30.0 m/s, enters a one-lane tunnel.
She then observes a slow-moving van 155 m ahead
traveling at 5.00 m/s. Sue applies her brakes but can
accelerate only at � 2.00 m/s2 because the road is wet. Will
there be a collision? If yes, determine how far into the tun-
nel and at what time the collision occurs. If no, determine
the distance of closest approach between Sue’s car and
the van.

��

21.

19.

15. Figure P2.15 shows a graph of vx versus t for the motion of
a motorcyclist as he starts from rest and moves along the
road in a straight line. (a) Find the average acceleration
for the time interval t � 0 to t � 6.00 s. (b) Estimate the
time at which the acceleration has its greatest positive
value and the value of the acceleration at that instant. 
(c) When is the acceleration zero? (d) Estimate the maxi-
mum negative value of the acceleration and the time at
which it occurs.

Section 2.5 ■ Motion Diagrams
16. Draw motion diagrams for (a) an object moving to the

right at constant speed, (b) an object moving to the right
and speeding up at a constant rate, (c) an object moving to
the right and slowing down at a constant rate, (d) an ob-
ject moving to the left and speeding up at a constant rate,
and (e) an object moving to the left and slowing down at a
constant rate. (f) How would your drawings change if the
changes in speed were not uniform, that is, if the speed
were not changing at a constant rate?

Section 2.6 ■ The Particle Under Constant Acceleration
17. A truck covers 40.0 m in 8.50 s while smoothly slowing

down to a final speed of 2.80 m/s. (a) Find its original
speed. (b) Find its acceleration.
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Section 2.7 ■ Freely Falling Objects

Note: In all problems in this section, ignore the effects of air
resistance.

28. In a classic clip on America’s Funniest Home Videos, a sleeping
cat rolls gently off the top of a warm TV set. Ignoring air
resistance, calculate the position and velocity of the cat af-
ter (a) 0.100 s, (b) 0.200 s, and (c) 0.300 s.

A baseball is hit so that it travels straight upward after be-
ing struck by the bat. A fan observes that it takes 3.00 s for
the ball to reach its maximum height. Find (a) its initial ve-
locity and (b) the height it reaches. 

30. Every morning at seven o’clock
There’s twenty terriers drilling on the rock.
The boss comes around and he says, “Keep still
And bear down heavy on the cast-iron drill
And drill, ye terriers, drill.” And drill, ye terriers, drill.
It’s work all day for sugar in your tea
Down beyond the railway. And drill, ye terriers, drill.

The foreman’s name was John McAnn.
By God, he was a blamed mean man.
One day a premature blast went off
And a mile in the air went big Jim Goff. And drill . . .
Then when next payday came around
Jim Goff a dollar short was found.
When he asked what for, came this reply:
“You were docked for the time you were up in the sky.” 
And drill . . .

— American folksong

What was Goff’s hourly wage? State the assumptions you
make in computing it.

A student throws a set of keys vertically
upward to her sorority sister, who is in a window 4.00 m
above. The keys are caught 1.50 s later by the sister’s out-
stretched hand. (a) With what initial velocity were the keys
thrown? (b) What was the velocity of the keys just before
they were caught?

32. A ball is thrown directly downward, with an initial speed of
8.00 m/s, from a height of 30.0 m. After what time interval
does the ball strike the ground?

A daring ranch hand sitting on a tree
limb wishes to drop vertically onto a horse galloping under
the tree. The constant speed of the horse is 10.0 m/s, and
the distance from the limb to the level of the saddle is 
3.00 m. (a) What must be the horizontal distance between
the saddle and limb when the ranch hand makes his move?
(b) How long is he in the air?

34. It is possible to shoot an arrow at a speed as high as 
100 m/s. (a) If friction can be ignored, how high would
an arrow launched at this speed rise if shot straight up? 
(b) How long would the arrow be in the air?

Section 2.8 ■ Context Connection — Acceleration 
Required by Consumers

35. (a) Show that the largest and smallest average accelera-
tions in Table 2.3 are correctly computed from the mea-
sured time intervals required for the cars to speed up from

33.

31.

29.

0 to 60 mi/h. (b) Convert both of these accelerations to
the standard SI unit. (c) Modeling each acceleration as
constant, find the distance traveled by both cars as they
speed up. (d) If an automobile were able to maintain an
acceleration of magnitude a � g � 9.80 m/s2 on a hori-
zontal roadway, what time interval would be required to ac-
celerate from zero to 60.0 mi/h?

36. A certain automobile manufacturer claims that its deluxe
sports car will accelerate from rest to a speed of 42.0 m/s
in 8.00 s. (a) Determine the average acceleration of the
car. (b) Assume that the car moves with constant accelera-
tion. Find the distance the car travels in the first 8.00 s. 
(c) What is the speed of the car 10.0 s after it begins its mo-
tion if it can continue to move with the same acceleration?

37. A steam catapult launches a jet aircraft from the aircraft
carrier John C. Stennis, giving it a speed of 175 mi/h in 
2.50 s. (a) Find the average acceleration of the plane. 
(b) Modeling the acceleration as constant, find the dis-
tance the plane moves in this time interval.

38. Vroom—vroom! As soon as a traffic light turns green, a car
speeds up from rest to 50.0 mi/h with constant accelera-
tion 9.00 mi/h 
 s. In the adjoining bike lane, a cyclist
speeds up from rest to 20.0 mi/h with constant accelera-
tion 13.0 mi/h 
 s. Each vehicle maintains constant velocity
after reaching its cruising speed. (a) For what time interval
is the bicycle ahead of the car? (b) By what maximum dis-
tance does the bicycle lead the car?

Additional Problems

Note: The human body can undergo brief accelerations up
to 15 times the free-fall acceleration without injury or with
only strained ligaments. Acceleration of long duration can
do damage by preventing circulation of blood. Acceleration
of larger magnitude can cause severe internal injuries, such
as by tearing the aorta away from the heart. Problems 2.35,
2.37, and 2.39 through 2.41 deal with variously large acceler-
ations of the human body that you can compare with the
15g datum.

For many years Colonel John P. Stapp, USAF, held the
world’s land speed record. He participated in studying
whether a jet pilot could survive emergency ejection. On
March 19, 1954, he rode a rocket-propelled sled that
moved down a track at 632 mi/h. He and the sled were
safely brought to rest in 1.40 s (Fig. P2.39). Determine 
(a) the negative acceleration he experienced and (b) the
distance he traveled during this negative acceleration,
assumed to be constant.

40. A woman is reported to have fallen 144 ft from the
17th floor of a building, landing on a metal ventilator box
that she crushed to a depth of 18.0 in. She suffered only
minor injuries. Ignoring air resistance, calculate (a) the
speed of the woman just before she collided with the venti-
lator and (b) her average acceleration while in contact
with the box. (c) Modeling her acceleration as constant,
calculate the time interval it took to crush the box. 

41. Jules Verne in 1865 suggested sending people to the
Moon by firing a space capsule from a 220-m-long cannon
with a final velocity of 10.97 km/s. What would have been

39.
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the unrealistically large acceleration experienced by the
space travelers during launch? Compare your answer with
the free-fall acceleration 9.80 m/s2.

42. Review problem. The biggest stuffed animal in the world is
a snake 420 m long constructed by Norwegian children.
Suppose the snake is laid out in a park as shown in Figure
P2.42, forming two straight sides of a 105� angle, with one
side 240 m long. Olaf and Inge run a race they invent. Inge
runs directly from the tail of the snake to its head and Olaf
starts from the same place at the same time but runs along
the snake. If both children run steadily at 12.0 km/h, Inge
reaches the head of the snake how much earlier than Olaf?

44. A glider on an air track carries a flag of length � through a
stationary photogate, which measures the time interval �td
during which the flag blocks a beam of infrared light pass-
ing across the photogate. The ratio vd � �/�td is the aver-
age velocity of the glider over this part of its motion.
Assume that the glider moves with constant acceleration. 
(a) Argue for or against the idea that vd is equal to the in-
stantaneous velocity of the glider when it is halfway
through the photogate in space. (b) Argue for or against
the idea that vd is equal to the instantaneous velocity of the
glider when it is halfway through the photogate in time.

45. Liz rushes down onto a subway platform to find her train
already departing. She stops and watches the cars go by.
Each car is 8.60 m long. The first moves past her in 1.50 s
and the second in 1.10 s. Find the constant acceleration of
the train.

46. The Acela is the Porsche of American trains. Shown in
Figure P2.46a, the electric train whose name is pronounced
ah-SELL-ah is in service on the Washington–New
York–Boston run. With two power cars and six coaches, it
can carry 304 passengers at 170 mi/h. The carriages tilt as
much as 6� from the vertical to prevent passengers from feel-
ing pushed to the side as they go around curves. Its braking
mechanism uses electric generators to recover its energy of
motion. A velocity–time graph for the Acela is shown in Fig-
ure P2.46b. (a) Describe the motion of the train in each suc-
cessive time interval. (b) Find the peak positive acceleration
of the train in the motion graphed. (c) Find the train’s dis-
placement in miles between t � 0 and t � 200 s. 

47. A test rocket is fired vertically upward from a well. A cata-
pult gives it initial speed 80.0 m/s at ground level. Its en-
gines then fire and it accelerates upward at 4.00 m/s2 until
it reaches an altitude of 1 000 m. At that point its engines
fail and the rocket goes into free-fall, with an acceleration
of � 9.80 m/s2. (a)How long is the rocket in motion above
the ground? (b) What is its maximum altitude? (c) What is
its velocity just before it collides with the Earth? (You will
need to consider the motion while the engine is operating
separately from the free-fall motion.)

48. A motorist drives along a straight road at a constant speed
of 15.0 m/s. Just as she passes a parked motorcycle police
officer, the officer starts to accelerate at 2.00 m/s2 to over-
take her. Assuming that the officer maintains this accelera-
tion, (a) determine the time interval required for the
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FIGURE P2.42

FIGURE P2.39 (Left) Col. John Stapp on the rocket sled. (Right) Col. Stapp’s face is contorted by
the stress of rapid negative acceleration. 
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43. A ball starts from rest and accelerates at 0.500 m/s2 while
moving down an inclined plane 9.00 m long. When it
reaches the bottom, the ball rolls up another plane, where
it comes to rest after moving 15.0 m on that plane. 
(a) What is the speed of the ball at the bottom of the first
plane? (b) During what time interval does the ball roll
down the first plane? (c) What is the acceleration along
the second plane? (d) What is the ball’s speed 8.00 m
along the second plane?
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(a)

FIGURE P2.46 (a) The Acela, 1 171 000 lb of cold steel thundering
along at 150 mi/h. (b) Velocity versus time graph for the Acela.
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police officer to reach the motorist. Find (b) the speed
and (c) the total displacement of the officer as he over-
takes the motorist.

Setting a world record in a 100-m race, Maggie and Judy
cross the finish line in a dead heat, both taking 10.2 s.
Accelerating uniformly, Maggie took 2.00 s and Judy 3.00 s
to attain maximum speed, which they maintained for the
rest of the race. (a) What was the acceleration of each
sprinter? (b) What were their respective maximum speeds?
(c) Which sprinter was ahead at the 6.00-s mark and by
how much?

50. A commuter train travels between two downtown stations.
Because the stations are only 1.00 km apart, the train never
reaches its maximum possible cruising speed. During rush
hour the engineer minimizes the time interval �t between
two stations by accelerating at a rate a1 � 0.100 m/s2 for a
time interval �t1 and then immediately braking with accel-
eration a2 � � 0.500 m/s2 for a time interval �t2. Find the
minimum time interval of travel �t and the time inter-
val �t1.

An inquisitive physics student and mountain climber
climbs a 50.0-m cliff that overhangs a calm pool of water.
He throws two stones vertically downward, 1.00 s apart, and
observes that they cause a single splash. The first stone has
an initial speed of 2.00 m/s. (a) How long after release of
the first stone do the two stones hit the water? (b) What
initial velocity must the second stone have if the two stones
are to hit simultaneously? (c) What is the speed of each
stone at the instant the two hit the water?

51.

49.

52. A hard rubber ball, released at chest height, falls to the
pavement and bounces back to nearly the same height.
When it is in contact with the pavement, the lower side of
the ball is temporarily flattened. Suppose the maximum
depth of the dent is on the order of 1 cm. Compute an
order-of-magnitude estimate for the maximum accelera-
tion of the ball while it is in contact with the pavement.
State your assumptions, the quantities you estimate, and
the values you estimate for them.

53. To protect his food from hungry bears, a Boy Scout raises
his food pack with a rope that is thrown over a tree limb at
height h above his hands. He walks away from the vertical
rope with constant velocity v boy, holding the free end of
the rope in his hands (Fig. P2.53). (a) Show that the speed
v of the food pack is given by x(x2 � h2)�1/2 v boy where x
is the distance he has walked away from the vertical rope. 
(b) Show that the acceleration a of the food pack is

v2
boy. (c) What values do the acceleration

and velocity v have shortly after the boy leaves the point
under the pack (x � 0)? (d) What values do the pack’s ve-
locity and acceleration approach as the distance x contin-
ues to increase? 

h2(x2 � h2)�3/2

m

h

v a

x
boy

v

vv

FIGURE P2.53 Problems 2.53 and 2.54.
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54. In Problem 2.53, let the height h equal 6.00 m and the
speed vboy equal 2.00 m/s. Assume that the food pack
starts from rest. (a) Tabulate and graph the speed–time
graph. (b) Tabulate and graph the acceleration–time
graph. Let the range of time be from 0 s to 5.00 s and the
time intervals be 0.500 s.

55. A rock is dropped from rest into a well. (a) The sound of
the splash is heard 2.40 s after the rock is released from
rest. How far below the top of the well is the surface of the
water? The speed of sound in air (at the ambient tempera-
ture) is 336 m/s. (b) If the travel time for the sound is ig-
nored, what percentage error is introduced when the
depth of the well is calculated?
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56. Astronauts on a distant planet toss a rock into the air.
With the aid of a camera that takes pictures at a steady
rate, they record the height of the rock as a function of
time as given in the Table P2.56. (a) Find the average ve-
locity of the rock in the time interval between each mea-
surement and the next. (b) Using these average velocities
to approximate instantaneous velocities at the midpoints
of the time intervals, make a graph of velocity as a function
of time. Does the rock move with constant acceleration? If
so, plot a straight line of best fit on the graph and calculate
its slope to find the acceleration.

Two objects, A and B, are connected by a rigid rod that has
a length L. The objects slide along perpendicular guide
rails, as shown in Figure P2.57. If A slides to the left with a
constant speed v, find the velocity of B when � � 60.0°.

57.

Height of a Rock Versus TimeTABLE P2.56

Time (s) Height (m) Time (s) Height (m)

0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90
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FIGURE P2.57

ANSWERS TO QUICK QUIZZES

2.1 (c). If the particle moves along a line without changing di-
rection, the displacement and distance over any time inter-
val will be the same. As a result, the magnitude of the aver-
age velocity and the average speed will be the same. If the
particle reverses direction, however, the displacement will
be less than the distance. In turn, the magnitude of the av-
erage velocity will be smaller than the average speed.

2.2 (b). Regardless of your speeds at all other times, if your in-
stantaneous speed at the instant that it is measured is
higher than the speed limit, you may receive a speeding
ticket.

2.3 Graph (a) has a constant slope, indicating a constant ac-
celeration; this situation is represented by graph (e).
Graph (b) represents a speed that is increasing constantly
but not at a uniform rate. Therefore, the acceleration
must be increasing, and the graph that best indicates this
situation is (d). Graph (c) depicts a velocity that first in-
creases at a constant rate, indicating constant acceleration.

Then the velocity stops increasing and becomes constant,
indicating zero acceleration. The best match to this situa-
tion is graph (f).

2.4 (b). If the car is slowing down, a force must be acting in
the direction opposite to its velocity.

2.5 (c). If a particle with constant acceleration stops and its ac-
celeration remains constant, it must begin to move again
in the opposite direction. If it did not, the acceleration
would change from its original constant value to zero.
Choice (a) is not correct because the direction of accelera-
tion is independent of the direction of the velocity. Choice
(b) is not correct either. For example, a car moving in the
negative x direction and slowing down has a positive accel-
eration.

2.6 (e). For the entire time interval the ball is in free-fall, the
acceleration is that due to gravity.



In this chapter, we shall study the kinematics of an object that
can be modeled as a particle moving in a plane. This motion
is two dimensional. Some common examples of motion in a

plane are the motions of satellites in orbit around the Earth, pro-
jectiles such as a thrown baseball, and the motion of electrons in
uniform electric fields. We shall also study a particle in uniform
circular motion and discuss various aspects of particles moving in
curved paths.

THE  POSITION, VELOCITY, AND
ACCELERATION  VECTORS

In Chapter 2, we found that the motion of a particle moving
along a straight line is completely specified if its position is
known as a function of time. Now let us extend this idea to

3.1

Motion in Two Dimensions

C H A P T E R 3

Lava spews from a volcanic eruption. Notice
the parabolic paths of embers projected into
the air. We will find in this chapter that all pro-
jectiles follow a parabolic path in the absence
of air resistance.

C H A P T E R O U T L I N E
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3.2 Two-Dimensional Motion with Constant

Acceleration
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motion in the xy plane. We will find equations for position and velocity that are the
same as those in Chapter 2 except for their vector nature.

We begin by describing the position of a particle with a position vector , drawn
from the origin of a coordinate system to the location of the particle in the xy
plane, as in Figure 3.1. At time ti, the particle is at the point �, and at some later
time tf , the particle is at �, where the subscripts i and f refer to initial and final
values. As the particle moves from � to � in the time interval �t � tf � ti , the posi-
tion vector changes from to . As we learned in Chapter 2, the displacement of a
particle is the difference between its final position and its initial position:

[3.1]

The direction of is indicated in Figure 3.1.
The average velocity of the particle during the time interval �t is defined as

the ratio of the displacement to the time interval:

[3.2]

Because displacement is a vector quantity and the time interval is a scalar quantity,
we conclude that the average velocity is a vector quantity directed along . The av-
erage velocity between points � and � is independent of the path between the two
points. That is because the average velocity is proportional to the displacement,
which in turn depends only on the initial and final position vectors and not on the
path taken between those two points. As with one-dimensional motion, if a particle
starts its motion at some point and returns to this point via any path, its average ve-
locity is zero for this trip because its displacement is zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 3.2. As the time intervals over which we observe the motion be-
come smaller and smaller, the direction of the displacement approaches that of the
line tangent to the path at the point �.

The instantaneous velocity is defined as the limit of the average velocity /�t
as �t approaches zero:

[3.3]

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a
particle’s path is along a line that is tangent to the path at that point and in the di-
rection of motion. The magnitude of the instantaneous velocity is called the speed.

As a particle moves from point � to point � along some path as in Figure 3.3,
its instantaneous velocity changes from at time ti to at time tf . The average
acceleration of a particle over a time interval is defined as the ratio of the
change in the instantaneous velocity to the time interval �t:

[3.4]

Because the average acceleration is the ratio of a vector quantity and a scalar
quantity �t, we conclude that is a vector quantity directed along . As�v:a: avg

�v:

a:avg � 
v:f � v:i

tf � ti
�

�v:

�t

�v:
a:avg

v:fv:i

v: � lim
�t : 0

 
� r:

�t
�

d  r:

dt

� r:v:

� r:

v:avg � 
� r:

�t

v:avg

� r:

� r:  � r:f � r:i

rf
:ri

:

r:

Path of
particle

x

y

� ti

ri

∆r
� t f

rf

O

A particle moving
in the xy plane is located with the po-
sition vector drawn from the origin
to the particle. The displacement of
the particle as it moves from � to �
in the time interval �t � tf � ti is
equal to the vector .� r:  � r:f � r:i

r:

FIGURE 3.1

Direction of v  at �

O

y

x

�

∆r3∆r2∆r1

�"

�'

�

As a particle moves
between two points, its average veloc-
ity is in the direction of the displace-
ment vector . As the end point of
the path is moved from � to �� to
��, the respective displacements and
corresponding time intervals become
smaller and smaller. In the limit that
the end point approaches �, �t ap-
proaches zero and the direction of

approaches that of the line tan-
gent to the curve at �. By definition,
the instantaneous velocity at � is in
the direction of this tangent line.

� r:

� r:

FIGURE 3.2

■ Definition of average velocity

■ Definition of average acceleration
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indicated in Figure 3.3, the direction of is found by adding the vector 
(the negative of ) to the vector because by definition .

The instantaneous acceleration is defined as the limiting value of the ratio 
/�t as �t approaches zero:

[3.5]

That is, the instantaneous acceleration equals the derivative of the velocity vector
with respect to time.

It is important to recognize that various changes can occur that represent a par-
ticle undergoing an acceleration. First, the magnitude of the velocity vector (the
speed) may change with time as in straight-line (one-dimensional) motion. Second,
the direction of the velocity vector may change with time as its magnitude remains
constant. Finally, both the magnitude and the direction of the velocity vector may
change.

a: �  lim
�t  : 0

 
�v:

�t
�

d v:

dt

�v:
a:

�v: � v:f � v:iv:fv:i

�v:i�v:

x

y

O

� vi

ri

rf

vf

�

–vi

∆v vf

or
vi

∆vvf

A particle moves from
position � to position �. Its velocity
vector changes from at time ti to at
time tf . The vector addition diagrams at
the upper right show two ways of deter-
mining the vector from the initial
and final velocities.

�v:

v:fv:i

FIGURE 3.3

Consider the following controls in an automobile: gas pedal, brake,
steering wheel. The controls in this list that cause an acceleration of the car are (a) all three
controls, (b) the gas pedal and the brake, (c) only the brake, or (d) only the gas pedal.

QUICK QUIZ 3.1

TWO-DIMENSIONAL  MOTION  WITH  
CONSTANT ACCELERATION

Let us consider two-dimensional motion during which the magnitude and direction
of the acceleration remain unchanged. In this situation, we shall investigate motion
as a two-dimensional version of the analysis in Section 2.6.

The motion of a particle can be determined if its position vector is known at
all times. The position vector for a particle moving in the xy plane can be written

[3.6]

where x, y, and change with time as the particle moves. If the position vector is
known, the velocity of the particle can be obtained from Equations 3.3 and 3.6:

[3.7]

Because we are assuming that is constant in this discussion, its components ax
and ay are also constants. Therefore, we can apply the equations of kinematics to
the x and y components of the velocity vector separately. Substituting vx � vxf �
vxi � axt and vy � vyf � vyi � ayt into Equation 3.7 gives

a:

v: �
d r:

dt
�

dx
dt

 i ˆ �
dy
dt

 j ˆ � vx î � vy ĵ

r:

r: � x î � y ĵ

r:

3.2

■ Definition of instantaneous
acceleration

VECTOR ADDITION The vector
addition that was discussed in
Chapter 1 involves displacement
vectors. Because we are familiar
with movements through space in
our everyday experience, the addi-
tion of displacement vectors can be
understood easily. The notion of
vector addition can be applied to
any type of vector quantity. Figure
3.3, for example, shows the
addition of velocity vectors using
the tip-to-tail approach.

� PITFALL PREVENTION 3.1



[3.8]

This result states that the velocity of a particle at some time t equals the vector
sum of its initial velocity and the additional velocity acquired at time t as a re-
sult of its constant acceleration. This result is the same as Equation 2.9, except for
its vector nature.

Similarly, from Equation 2.12 we know that the x and y coordinates of a particle
moving with constant acceleration are

and

Substituting these expressions into Equation 3.6 gives

[3.9]

This equation implies that the final position vector is the vector sum of the initial
position vector plus a displacement , arising from the initial velocity of the
particle, and a displacement , resulting from the uniform acceleration of the
particle. It is the same as Equation 2.12 except for its vector nature.

Pictorial representations of Equations 3.8 and 3.9 are shown in Active Figures 3.4a
and 3.4b. Note from Active Figure 3.4b that is generally not along the direction
of or because the relationship between these quantities is a vector expression.
For the same reason, from Active Figure 3.4a we see that is generally not along
the direction of or . Finally, if we compare the two figures, we see that and 
are not in the same direction.

Because Equations 3.8 and 3.9 are vector expressions, we may also write their x
and y component equations:

 r:f � r:i � v:i t � 1
2 a:t 2 :  �xf � xi � vxit � 1

2axt 2

yf � yi � vyit � 1
2ayt 2

v:f � v:i � a:t :  �vxf � vxi � axt
vyf � vyi � ayt

r:fv:fa:v:i

v:f

a:v:i

r:f

1
2 a:t 2

v:i tr:i

r:f

r:f � r:i � v:i t � 1
2 a:t2

 � (xi î � yi ĵ) � (vxi î � vyi ĵ)t � 1
2(ax î � ay ĵ)t 2

r:f � (xi � vxit � 1
2axt 2) î � (yi � vyit � 1

2ayt 2) ĵ

yf � yi � vyit � 1
2ayt 2xf � xi � vxit � 1

2axt 2

a:tv:i

v:f

v:f � v:i � a:t

 � (vxi î � vyi ĵ) � (ax î � ay ĵ)t

 v:f � (vxi � axt) î � (vyi � ayt) ĵ
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y

x

ayt

vyf

vyi

vf

vi

at

vxi axt

vxf

(a)

y

x

yf

yi

rf

vit

vxit

xf

(b)

ayt
21

2

vyit

ri

at21
2

axt
21

2
xi

Vector representations and com-
ponents of (a) the velocity and 
(b) the position of a particle un-
der constant acceleration .

Log into 
PhysicsNow at www.pop4e.com
and go to Active Figure 3.4 to
investigate the effect of different
initial positions and velocities on
the final position and velocity 
(for constant acceleration).

a:

ACTIVE FIGURE 3.4

■ Velocity vector as a function 
of time for a particle under 
constant acceleration

■ Position vector as a function
of time for a particle under 
constant acceleration
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These components are illustrated in Active Figure 3.4. In other words, two-
dimensional motion having constant acceleration is equivalent to two independent
motions in the x and y directions having constant accelerations ax and ay. Motion
in the x direction does not affect motion in the y direction and vice versa. Therefore,
there is no new model for a particle under two-dimensional constant acceleration;
the appropriate model is just the one-dimensional particle under constant accelera-
tion applied twice, in the x and y directions separately!

PROJECTILE  MOTION
Anyone who has observed a baseball in motion (or, for that matter, any object
thrown into the air) has observed projectile motion. The ball moves in a curved
path when thrown at some angle with respect to the Earth’s surface. This very com-
mon form of motion is surprisingly simple to analyze if the following two assump-
tions are made when building a model for these types of problems: (1) the free-fall
acceleration g is constant over the range of motion and is directed downward,1 and
(2) the effect of air resistance is negligible.2 With these assumptions, the path of a

3.3

Note that only the x component varies in time,
reflecting that acceleration occurs only in the x
direction.

Calculate the velocity and speed of the particle at
t � 5.0 s.

Solution At t � 5.0 s, the velocity expression from part
A gives

That is, at t � 5.0 s, vxf � 40 m/s and vyf � �15 m/s.
To determine the angle � that makes with the x axis,
use tan � � vyf/vxf , or

The speed is the magnitude of :

�

Now we finalize. In examining our result, we find that
vf � vi . Does that make sense to you? Is it consistent
with your mental representation?

43  m/s

 vf �   � v:f � � √vxf 

2 � vyf 

2 � √(40)2 � (� 15)2 m/s

v:f

� � tan�1 � vyf

vxf
� � tan�1 � � 15 m/s

40 m/s � � � 21	

v:f

 (40 î � 15 ĵ) m/sv:f � {[20 � 4(5.0)] î � 15 ĵ} m/s �

B

[(20 � 4.0t) î � 15 ĵ]v:f � vxf i
 ˆ � vyf ĵ �

Motion in a PlaneEXAMPLE 3.1
A particle moves through the origin of an xy coordinate
system at t � 0 with initial velocity m/s.
The particle moves in the xy plane with an acceleration

.

Determine the components of velocity as a func-
tion of time and the total velocity vector at any time.

Solution Conceptualize by establishing the mental repre-
sentation and thinking about what the particle is doing.
From the given information we see that the particle
starts off moving to the right and downward and accel-
erates only toward the right. What will the particle do
under these conditions? It may help if you draw a picto-
rial representation. To categorize consider that because
the acceleration is only in the x direction, the moving
particle can be modeled as one under constant acceler-
ation in the x direction and one under constant velocity
in the y direction.

To analyze the situation, we identify vxi � 20 m/s and
ax � 4.0 m/s2. The equations of kinematics give us, for
the x direction,

Also, with vyi � �15 m/s and ay � 0,

Therefore, using these results and noting that the ve-
locity vector has two components, we findv:f

� 15 m/svyf � vyi � ayt �

(20 � 4.0t)vxf � vxi � axt �

A

a: � 4.0 î   m/s2

v:i � (20 î   � 15 ĵ)

1In effect, this approximation is equivalent to assuming that the Earth is flat within the range of motion
considered and that the maximum height of the object is small compared to the radius of the Earth.
2This approximation is often not justified, especially at high velocities. In addition, the spin of a
projectile, such as a baseball, can give rise to some very interesting effects associated with aerodynamic
forces (for example, a curve ball thrown by a pitcher).



projectile, called its trajectory, is always a parabola. We shall use a simplification
model based on these assumptions throughout this chapter.

If we choose our reference frame such that the y direction is vertical and positive
upward, ay � �g (as in one-dimensional free-fall) and ax � 0 (because the only
possible horizontal acceleration is due to air resistance, and it is ignored).
Furthermore, let us assume that at t � 0, the projectile leaves the origin (point �,
xi � yi � 0) with speed vi , as in Active Figure 3.5. If the vector makes an angle �i
with the horizontal, we can identify a right triangle in the diagram as a geometric
model, and from the definitions of the cosine and sine functions we have

and

Therefore, the initial x and y components of velocity are

and

Substituting these expressions into Equations 3.8 and 3.9 with ax � 0 and ay � � g
gives the velocity components and position coordinates for the projectile at any
time t :

[3.10]

[3.11]

[3.12]

[3.13]

From Equation 3.10 we see that vxf remains constant in time and is equal to vxi ;
there is no horizontal component of acceleration. Therefore, we model the hori-
zontal motion as that of a particle under constant velocity. For the y motion, note
that the equations for vyf and yf are similar to Equations 2.9 and 2.12 for freely
falling objects. Therefore, we can apply the model of a particle under constant ac-
celeration to the y component. In fact, all the equations of kinematics developed in
Chapter 2 are applicable to projectile motion.

 yf � yi � vyit � 
1
2gt 2 � (vi sin �i)t � 

1
2gt 2

 xf � x i � vxit � (vi cos �i)t

 vyf � vyi � gt � vi sin �i � gt

 vxf � vxi � vi cos �i � constant

vyi � vi sin �ivxi � vi cos �i

sin �i �
vyi

vi
cos �i �

vxi

vi

v:i
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x
vxi

v

vxi

θ
vy v

gvy = 0

vxi

vy
v

vi

vy

vy

i

vxi

y

θ

iθ

iθ�

�

�
�

�

v

The parabolic path of a projectile
that leaves the origin (point �)
with a velocity . The velocity vec-
tor changes with time in both
magnitude and direction. The
change in the velocity vector is the
result of acceleration in the nega-
tive y direction. The x component
of velocity remains constant in time
because no acceleration occurs in
the horizontal direction. The y
component of velocity is zero at the
peak of the path (point �).

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 3.5 to
change the launch angle and 
initial speed. You can also observe
the changing components of 
velocity along the trajectory of the
projectile.

v:
v:i

ACTIVE FIGURE 3.5

A welder cuts holes through a heavy
metal construction beam with a hot
torch. The sparks generated in the
process follow parabolic paths. ■
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If we solve for t in Equation 3.12 and substitute this expression for t into Equa-
tion 3.13, we find that

[3.14]

which is valid for angles in the range 0 
 �i 
 �/2. This expression is of the form
y � ax � bx2, which is the equation of a parabola that passes through the origin.
Thus, we have proven that the trajectory of a projectile can be geometrically mod-
eled as a parabola. The trajectory is completely specified if vi and �i are known.

The vector expression for the position of the projectile as a function of time fol-
lows directly from Equation 3.9, with :

This equation gives the same information as the combination of Equations 3.12 and
3.13 and is plotted in Figure 3.6. Note that this expression for is consistent with
Equation 3.13 because the expression for is a vector equation and 
when the upward direction is taken to be positive.

The position of a particle can be considered the sum of its original position ,
the term , which would be the displacement if no acceleration were present, and
the term which arises from the acceleration caused by gravity. In other words,
if no gravitational acceleration occurred, the particle would continue to move
along a straight path in the direction of .v:i

1
2 g:t 2,
v:i t

r:i

a: � g: � �g ĵr:f

r:f

r:f � r:i � v:i t � 1
2 g:t 2

a: � g:

yf � (tan �i)xf � � g
2vi 

2 cos2 �i
� xf 

2

As a projectile thrown upward moves in its parabolic path (such as in
Figure 3.6), at what point along its path are the velocity and acceleration vectors for the
projectile perpendicular to each other? (a) nowhere (b) the highest point (c) the
launch point At what point are the velocity and acceleration vectors for the projectile
parallel to each other? (d) nowhere (e) the highest point (f) the launch point

QUICK QUIZ 3.2

rf
x

(x,y)vit

O

y

gt21
2

The position vec-
tor of a projectile whose initial
velocity at the origin is . The vector

would be the position vector of the
projectile if gravity were absent and
the vector is the particle’s 
vertical displacement due to its 
downward gravitational acceleration.

1
2 g:t 2

v:it
v:i

r:f

FIGURE 3.6

Horizontal Range and Maximum Height of a Projectile
Let us assume that a projectile is launched over flat ground from the origin at t � 0
with a positive vy component, as in Figure 3.7. There are two special points that are
interesting to analyze: the peak point �, which has Cartesian coordinates (R/2, h),
and the landing point �, having coordinates (R , 0). The distance R is called the 
horizontal range of the projectile, and h is its maximum height. Because of the symme-
try of the trajectory, the projectile is at the maximum height h when its x position is
half the range R. Let us find h and R in terms of vi , �i , and g.

We can determine h by noting that at the peak vyA � 0. Therefore, Equation
3.11 can be used to determine the time tA at which the projectile reaches the peak:

Substituting this expression for tA into Equation 3.13 and replacing yf with h
gives h in terms of vi and �i :

[3.15]

Notice from the mathematical representation how you could increase the maxi-
mum height h: You could launch the projectile with a larger initial velocity, at a
higher angle, or at a location with lower free-fall acceleration, such as on the Moon.
Is that consistent with your mental representation of this situation?

The range R is the horizontal distance traveled in twice the time interval re-
quired to reach the peak. Equivalently, we are seeking the position of the projectile

 h �
vi 

2 sin2�i

2g

 h � (vi sin �i) 
vi sin �i

g
� 1

2g � vi sin �i

g �
2

tA �
vi sin �i

g

R

x

y

h

vi

vyA = 0

�

�θ i

O

A projectile
launched from the origin at t � 0
with an initial velocity . The maxi-
mum height of the projectile is h, and
its horizontal range is R. At �, the
peak of the trajectory, the projectile
has coordinates (R/2, h).

v:i

FIGURE 3.7



at a time 2tA. Using Equation 3.12 and noting that xf � R at t � 2tA, we find that

Because sin 2� � 2 sin � cos �, R can be written in the more compact form

[3.16]

Notice from the mathematical expression how you could increase the range R:
You could launch the projectile with a larger initial velocity or at a location with
lower free-fall acceleration, such as on the Moon. Is that consistent with your men-
tal representation of this situation?

The range also depends on the angle of the initial velocity vector. The maxi-
mum possible value of R from Equation 3.16 is given by Rmax � vi

2/g. This re-
sult follows from the maximum value of sin 2�i being unity, which occurs when
2�i � 90°. Therefore, R is a maximum when �i � 45°.

Active Figure 3.8 illustrates various trajectories for a projectile of a given initial
speed. As you can see, the range is a maximum for �i � 45°. In addition, for any �i
other than 45°, a point with coordinates (R , 0) can be reached by using either one
of two complementary values of �i , such as 75° and 15°. Of course, the maximum
height and the time of flight will be different for these two values of �i .

R �
vi 

2 sin 2�i

g

R � (vi cos �i)2tA � (vi cos �i) 
2vi sin �i

g
�

2vi 

2 sin �i cos �i

g
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THE HEIGHT AND RANGE EQUATIONS

Keep in mind that Equations 3.15
and 3.16 are useful for calculating h
and R only for a symmetric path, as
shown in Figure 3.7. If the path is
not symmetric, do not use these equa-
tions. The general expressions given
by Equations 3.10 through 3.13 are
the more important results because
they give the coordinates and veloc-
ity components of the projectile at
any time t for any trajectory.

� PITFALL PREVENTION 3.2

x (m)

50

100

150

y (m)

75°

60°

45°

30°

15°

vi = 50 m/s

50 100 150 200 250

A projectile launched from the
origin with an initial speed of 
50 m/s at various angles of projec-
tion. Note that complementary
values of �i will result in the same
value of R. 

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 3.8, where
you can vary the projection angle
to observe the effect on the trajec-
tory and measure the flight time.

ACTIVE FIGURE 3.8

Rank the launch angles for the five paths in Active Figure 3.8 with
respect to time of flight, from the shortest time of flight to the longest.
QUICK QUIZ 3.3

We suggest that you use the following approach when solving
projectile motion problems:

1. Conceptualize Think about what is going on physically in
the problem. Establish the mental representation by imagining
the projectile moving along its trajectory.

2. Categorize Confirm that the problem involves a particle
in free-fall and that air resistance is neglected. Select a coordi-
nate system with x in the horizontal direction and y in the verti-
cal direction.

3. Analyze If the initial velocity vector is given, resolve it into
x and y components. Treat the horizontal motion and the
vertical motion independently. Analyze the horizontal motion
of the projectile as a particle under constant velocity. Analyze
the vertical motion of the projectile as a particle under con-
stant acceleration.

4. Finalize Once you have determined your result, check to
see if your answers are consistent with the mental and pictorial
representations and that your results are realistic.

Projectile MotionPROBLEM-SOLVING STRATEGY

www.pop4e.com
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■ Thinking Physics 3.1
A home run is hit in a baseball game. The ball is hit from home plate into the
stands along a parabolic path. What is the acceleration of the ball (a) while it is ris-
ing, (b) at the highest point of the trajectory, and (c) while it is descending after
reaching the highest point? Ignore air resistance.

Reasoning The answers to all three parts are the same: the acceleration is that due to
gravity, ay � � 9.80 m/s2, because the gravitational force is pulling downward on the
ball during the entire motion. During the rising part of the trajectory, the downward
acceleration results in the decreasing positive values of the vertical component of the
ball’s velocity. During the falling part of the trajectory, the downward acceleration re-
sults in the increasing negative values of the vertical component of the velocity. ■

The initial x and y components of the velocity are

To find t, we use the vertical motion, in which we 
model the stone as a particle under constant accelera-
tion. We use Equation 3.13 with yf � � 45.0 m and 
vyi � 10.0 m/s (we have chosen the top of the building
as the origin, as in Figure 3.9):

Solving the quadratic equation for t gives, for the posi-
tive root, Does the negative root have any
physical meaning? (Can you think of another way of
finding t from the information given?)

What is the speed of the stone just before it strikes
the ground?

Solution The y component of the velocity just before
the stone strikes the ground can be obtained using
Equation 3.11, with t � 4.22 s:

In the horizontal direction, the appropriate model 
is the particle under constant velocity. Because 
vxf � vxi � 17.3 m/s, the speed as the stone strikes the
ground is

Investigate this projectile situation by logging

into PhysicsNow at www.pop4e.com and going to Interactive

Example 3.2.

35.9 m/s� √(17.3)2 � (� 31.4)2 m/s �

vf � √vxf 

2 � vyf 

2 

 � 10.0 m/s � (9.80 m/s2)(4.22 s) � � 31.4 m/s

 vyf � vyi � gt

B

t � 4.22 s.

 � 45.0 m � 0 � (10.0 m/s)t � 1
2(9.80 m/s2)t 2

 yf � yi � vyi t � 1
2gt 2

 vyi � vi sin �i � (20.0 m/s)(sin 30.0	) � 10.0 m/s

 vxi � vi cos �i � (20.0 m/s)(cos 30.0	) � 17.3 m/s

A stone is thrown from the top of a building at an angle
of 30.0° to the horizontal and with an initial speed of
20.0 m/s, as in Figure 3.9.

If the height of the building is 45.0 m, how long is
the stone “in flight’’?

Solution Looking at the pictorial representation in
Figure 3.9, it is clear that this trajectory is not symmet-
ric. Therefore, we cannot use Equations 3.15 and 3.16.
We use the more general approach described by the
Problem-Solving Strategy and represented by Equations
3.10 to 3.13.

A

�

45.0 m

(0, 0)

y

x

vi = 20.0 m/s

θi = 30.0°

yf  = – 45.0 m

xf = ?

xf

(Interactive Example 3.2) A stone is thrown from
the top of a building. 

FIGURE 3.9

That’s Quite an ArmEXAMPLE 3.2INTERACTIVE
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The Stranded Explorers
tion. The coordinate system for this problem is selected
as shown in Figure 3.10, with the positive x direction to
the right and the positive y direction upward.

Consider first the horizontal motion of the pack-
age. From Equation 3.12, the position is given by 
xf � xi � vxi t. The initial x component of the package
velocity is the same as that of the plane when the pack-
age is released, 40.0 m/s. We define the initial position
xi � 0 right under the plane at the instant the package
is released. Therefore, 

If we know t, the time at which the package strikes
the ground, we can determine xf , the final position and
therefore the distance traveled by the package in the
horizontal direction. At present, however, we have no
information about t. To find t, we turn to the equations
for the vertical motion of the package, modeling the
package as a particle under constant acceleration. We
know that at the instant the package hits the ground, its
y coordinate is � 100 m. We also know that the initial
component of velocity vyi of the package in the vertical
direction is zero because the package was released with
only a horizontal component of velocity. From Equa-
tion 3.13, we have

This value for the time at which the package strikes
the ground is substituted into the equation for the x co-
ordinate to give us

The package hits the ground 181 m to the right of the
point at which it was dropped in Figure 3.10.

181 mxf � (40.0 m/s)(4.52 s) �

 t � 4.52 s

 t2 � 20.4 s2

 � 100 m � 0 � 0 � 1
2(9.80 m/s2)t2

 yf � yi � vyit � 1
2gt2

xf � xi � vxi t � 0 � (40.0 m/s)t

An Alaskan rescue plane drops a package of emergency
rations to a stranded party of explorers, as shown in the
pictorial representation in Figure 3.10. If the plane is
traveling horizontally at 40.0 m/s at a height of 100 m
above the ground, where does the package strike the
ground relative to the point at which it is released?

Solution We ignore air resistance, so we model this
problem as a particle in two-dimensional free-fall,
which, as we have seen, is modeled by a combination of
a particle under constant velocity in the x direction and
a particle under constant acceleration in the y direc-

100 m

x

40.0 m/s

y

(Example 3.3) A package of emergency supplies is
dropped from a plane to stranded explorers.

FIGURE 3.10

Javelin Throwing at the OlympicsEXAMPLE 3.4
adopt the free-fall model for the javelin. Track and field
events are normally held on flat fields. Therefore, we
surmise that the javelin returns to the same vertical po-
sition from which it was thrown and therefore that the
trajectory is symmetric. These assumptions allow us to
use Equations 3.15 and 3.16 to analyze the motion. The
difference in range is due to the difference in the free-
fall acceleration at the two locations.

To solve this problem, we will set up a ratio based
on the range of the projectile being mathematically

An athlete throws a javelin a distance of 80.0 m at the
Olympics held at the equator, where g � 9.78 m/s2.
Four years later the Olympics are held at the North
Pole, where g � 9.83 m/s2. Assuming that the thrower
provides the javelin with exactly the same initial velocity
as she did at the equator, how far does the javelin travel
at the North Pole?

Solution In the absence of any information about how
the javelin is affected by moving through the air, we

EXAMPLE 3.3
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THE  PARTICLE  IN  UNIFORM  CIRCULAR  MOTION
Figure 3.11a shows a car moving in a circular path with constant speed v. Such mo-
tion is called uniform circular motion and serves as the basis for a new group of
problems we can solve.

It is often surprising to students to find that even though an object moves at a
constant speed in a circular path, it still has an acceleration. To see why, consider
the defining equation for average acceleration, (Eq. 3.4). The accel-
eration depends on the change in the velocity vector. Because velocity is a vector quan-
tity, an acceleration can be produced in two ways, as mentioned in Section 3.1: by a
change in the magnitude of the velocity or by a change in the direction of the velocity.
The latter situation is occurring for an object moving with constant speed in a cir-
cular path. The velocity vector is always tangent to the path of the object and per-
pendicular to the radius of the circular path. We now show that the acceleration
vector in uniform circular motion is always perpendicular to the path and always
points toward the center of the circle. An acceleration of this nature is called a cen-
tripetal acceleration (centripetal means center seeking), and its magnitude is

[3.17]

where r is the radius of the circle. The subscript on the acceleration symbol re-
minds us that the acceleration is centripetal.

ac �
v 2

r

a: avg � �v:/�t

3.4

express the range of the particle at each of the two
locations:

We divide the first equation by the second to establish a
relationship between the ratio of the ranges and the ra-
tio of the free-fall accelerations. Because the problem
states that the same initial velocity is provided to the
javelin at both locations, vi and �i are the same in the
numerator and denominator of the ratio, which gives us

We can now solve this equation for the range at the
North Pole and substitute the numerical values:

R North Pole

R equator
�

� vi 

2 sin 2�i
g North Pole

�
� vi 

2 sin 2�i
g equator

�
�

gequator

g North Pole

 R equator �
vi 

2 sin 2�i

gequator

 R North Pole �
vi 

2 sin 2�i

gNorth Pole

� 79.6 m

 R North Pole �
gequator

gNorth Pole
 R equator �

9.78 m/s2

9.83 m/s2  (80.0 m)

Notice one of the advantages of this powerful tech-
nique of setting up ratios; we do not need to know the
magnitude (vi) nor the direction (�i) of the initial ve-
locity. As long as they are the same at both locations,
they cancel in the ratio.

A javelin can be thrown over a very long distance by a world class
athlete. ■

related to the acceleration due to gravity. This tech-
nique of solving by ratios is very powerful and should
be studied and understood so that it can be applied in
future problem solving. We use Equation 3.16 to
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ACCELERATION OF A PARTICLE IN

UNIFORM CIRCULAR MOTION Many
students have trouble with the no-
tion of a particle moving in a circu-
lar path at constant speed and yet
having an acceleration because the
everyday interpretation of accelera-
tion means speeding up or slowing
down. Remember, though, that ac-
celeration is defined as a change in
the velocity, not a change in the
speed. In circular motion, the veloc-
ity vector is changing in direction,
so there is indeed an acceleration.

� PITFALL PREVENTION 3.3

■ Magnitude of centripetal
acceleration



(a) A car moving along a circular path at constant speed is in uniform circular mo-
tion. (b) As the particle moves from � to �, its velocity vector changes from to 

. (c) The construction for determining the direction of the change in velocity ,
which is toward the center of the circle for small ��.

�v:v:f

v:i

Let us first argue conceptually that the acceleration must be perpendicular to
the path followed by the particle. If not, there would be a component of the accel-
eration parallel to the path and therefore parallel to the velocity vector. Such an
acceleration component would lead to a change in the speed of the object, which
we model as a particle, along the path. This change, however, is inconsistent with
our setup of the problem in which the particle moves with constant speed along
the path. Therefore, for uniform circular motion, the acceleration vector can only
have a component perpendicular to the path, which is toward the center of the
circle.

To derive Equation 3.17, consider the pictorial representation of the position and
velocity vectors in Figure 3.11b. In addition, the figure shows the vector representing
the change in position, . The particle follows a circular path, part of which is
shown by the dashed curve. The particle is at � at time ti , and its velocity at that time
is ; it is at � at some later time tf , and its velocity at that time is . Let us also as-
sume that and differ only in direction; their magnitudes are the same (i.e., vi �
vf � v, because it is uniform circular motion). To calculate the acceleration of the par-
ticle, let us begin with the defining equation for average acceleration (Eq. 3.4):

In Figure 3.11c, the velocity vectors in Figure 3.11b have been redrawn tail to tail.
The vector connects the tips of the vectors, representing the vector addition,

. In Figures 3.11b and 3.11c, we can identify triangles that can serve
as geometric models to help us analyze the motion. The angle �� between the two
position vectors in Figure 3.11b is the same as the angle between the velocity vec-
tors in Figure 3.11c because the velocity vector is always perpendicular to the po-
sition vector . Therefore, the two triangles are similar. (Two triangles are similar if
the angle between any two sides is the same for both triangles and if the ratio of the
lengths of these sides is the same.) This similarity enables us to write a relationship
between the lengths of the sides for the two triangles:

where v � vi � vf and r � ri � rf . This equation can be solved for and the ex-
pression so obtained can be substituted into (Eq. 3.4) to give the
magnitude of the average acceleration over the time interval for the particle to
move from � to �:

Now imagine that we bring points � and � in Figure 3.11b very close together.
As � and � approach each other, �t approaches zero and the ratio � � r: �/�t

� a: avg � �
v
r

 
� � r: �

�t

a: avg � �v:/�t
� �v: �

� �v: �
v

�
� � r: �

r

r:
v:

v:f � v:i �   �v:
�v:

a: avg �
v:f � v:i

tf � ti
�

�v:

�t

v:fv:i

v:fv:i

� r:
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(a)

v
r

O

(c)

∆v∆θθ
vf

vi

(b)

∆r

vi
vf�

ri rf

�

∆θθ

FIGURE 3.11
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approaches the speed v. In addition, the average acceleration becomes the instanta-
neous acceleration at point �. Hence, in the limit �t : 0, the magnitude of the ac-
celeration is

Therefore, in uniform circular motion, the acceleration is directed inward toward
the center of the circle and has magnitude v2/r.

In many situations, it is convenient to describe the motion of a particle moving
with constant speed in a circle of radius r in terms of the period T, which is defined
as the time interval required for one complete revolution. In the time interval
T, the particle moves a distance of 2�r, which is equal to the circumference of the
particle’s circular path. Therefore, because its speed is equal to the circumference
of the circular path divided by the period, or v � 2�r/T, it follows that

[3.18]

The particle in uniform circular motion is a very common physical situation and is use-
ful as an analysis model for problem solving.

T �   
2�r
v

ac �
v2

r

■ Thinking Physics 3.2
An airplane travels from Los Angeles to Sydney, Australia. After cruising altitude is
reached, the instruments on the plane indicate that the ground speed holds rock-
steady at 700 km/h and that the heading of the airplane does not change. Is the ve-
locity of the airplane constant during the flight?

Reasoning The velocity is not constant because of the curvature of the Earth. Even
though the speed does not change and the heading is always toward Sydney (is that
actually true?), the airplane travels around a significant portion of the Earth’s cir-
cumference. Therefore, the direction of the velocity vector does indeed change. We
could extend this situation by imagining that the airplane passes over Sydney and
continues (assuming it has enough fuel!) around the Earth until it arrives at Los
Angeles again. It is impossible for an airplane to have a constant velocity (relative to
the Universe, not to the Earth’s surface) and return to its starting point. ■

CENTRIPETAL ACCELERATION IS NOT

CONSTANT We derived the magni-
tude of the centripetal acceleration
vector and found it to be constant
for uniform circular motion, but the
centripetal acceleration vector is not con-
stant. It always points toward the
center of the circle, but it continu-
ously changes direction as the
particle moves around the circular
path.

� PITFALL PREVENTION 3.4

Which of the following correctly describes the centripetal accelera-
tion vector for a particle moving in a circular path? (a) constant and always perpen-
dicular to the velocity vector for the particle (b) constant and always parallel to the
velocity vector for the particle (c) of constant magnitude and always perpendicular to
the velocity vector for the particle (d) of constant magnitude and always parallel to the
velocity vector for the particle

QUICK QUIZ 3.4

�

Note that this small acceleration can also be expressed
as 6.0 � 10�4 g.

5.9 � 10�3 m/s2

 �
4�2(1.5 � 1011 m)

(1 yr)2  � 1 yr
3.16 � 107 s �

2

 ac �
v 2

r
�

� 2�r
T �

2

r
�

4�2r
T 2

The Centripetal Acceleration of the EarthEXAMPLE 3.5
What is the centripetal acceleration of the Earth as it
moves in its orbit around the Sun?

Solution We shall model the Earth as a particle and
approximate the Earth’s orbit as circular (it’s actually
slightly elliptical, as we discuss in Chapter 11). Al-
though we don’t know the orbital speed of the Earth,
with the help of Equation 3.18 we can recast Equation
3.17 in terms of the period of the Earth’s orbit, which
we know is one year:

■ Period of a particle in uniform
circular motion



TANGENTIAL  AND  RADIAL  ACCELERATION
Let us consider the motion of a particle along a curved path where the velocity
changes both in direction and in magnitude, as described in Active Figure 3.12. In
this situation, the velocity vector is always tangent to the path; the acceleration vec-
tor , however, is at some angle to the path. At each of three points �, �, and �
in Active Figure 3.12, we draw dashed circles that form geometric models of circu-
lar paths for the actual path at each point. The radius of the model circle is equal
to the radius of curvature of the path at each point.

As the particle moves along the curved path in Active Figure 3.12, the direction
of the total acceleration vector changes from point to point. This vector can be
resolved into two components based on an origin at the center of the model circle:
a radial component ar along the radius of the model circle and a tangential compo-
nent at perpendicular to this radius. The total acceleration vector can be written
as the vector sum of the component vectors:

[3.19]

The tangential acceleration arises from the change in the speed of the particle and
is given by

[3.20]

The radial acceleration is a result of the change in direction of the velocity vector
and is given by

where r is the radius of curvature of the path at the point in question, which is the
radius of the model circle. We recognize the radial component of the acceleration
as the centripetal acceleration discussed in Section 3.4. The negative sign indicates
that the direction of the centripetal acceleration is toward the center of the model
circle, opposite the direction of the radial unit vector , which always points away
from the center of the circle.

Because and are perpendicular component vectors of , it follows that
At a given speed, ar is large when the radius of curvature is small 

(as at points � and � in Active Fig. 3.12) and small when r is large (such as at
a � √ar 

2 � at 

2.
a:a:ta:r

r̂

ar � �ac � � 
v 2

r

at �
d � v: �

dt

a: � a:r � a:t

a:

a:

a:

3.5
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Path of
particle

at

ar

a

at

ar a

�

�

�
at

ar

a

The
motion of a particle along an
arbitrary curved path lying in the
xy plane. If the velocity vector 
(always tangent to the path)
changes in direction and magni-
tude, the acceleration vector has
a tangential component at and a
radial component ar .

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 3.12 to
study the acceleration compo-
nents of the particle moving on
the curved path.

a:

v:

ACTIVE FIGURE 3.12

■ Tangential acceleration

■ Radial acceleration

www.pop4e.com


Two observers measure the speed of the red car. Observer O is standing on the
ground beside the highway. Observer O� is in the blue car.
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point �). The direction of is either in the same direction as (if v is increasing)
or opposite (if v is decreasing).

In the case of uniform circular motion, where v is constant, at � 0 and the accel-
eration is always radial, as described in Section 3.4. In other words, uniform circular
motion is a special case of motion along a curved path. Furthermore, if the direc-
tion of doesn’t change, no radial acceleration occurs and the motion is one di-
mensional (ar � 0, but at may not be zero).

v:

v:
v:a:t

RELATIVE  VELOCITY
In Section 1.6, we discussed the need for a fixed reference point as the origin of a
coordinate system used to locate the position of a point. We have made observa-
tions of position, velocity, and acceleration of a particle with respect to this refer-
ence point. Now imagine that we have two observers making measurements of a
particle located in space and that one of them moves with respect to the other at
constant velocity. Each observer can define a coordinate system with an origin fixed
with respect to him or her. The origins of the two coordinate systems are in motion
with respect to each other. In this section, we explore how we relate the measure-
ments of one observer to that of the other.

As an example, consider two cars, a red one and a blue one, moving on a high-
way in the same direction, both with speeds of 60 mi/h, as in Figure 3.13. We iden-
tify the red car as a particle to be observed, and an observer on the side of the road
measures a speed for this car of 60 mi/h. Now consider an observer riding in the
blue car. This observer looks out the window and sees that the red car is always in
the same position with respect to the blue car. Therefore, this observer measures a
speed for the red car of zero. This simple example demonstrates that speed mea-
surements differ in different frames of reference. Both observers look at the same
particle (the red car) and arrive at different values for its speed. Both are correct;
the difference in their measurements is a result of the relative velocity of their
frames of reference.

Let us now generate a mathematical representation that will allow us to calcu-
late one observer’s measurements from the other’s. Consider a particle located at
point P in an xy plane, as shown in Figure 3.14. Imagine that the motion of this par-
ticle is being observed by two observers. Observer O is in reference frame S. Ob-
server O� is in reference frame S�, which moves with velocity with respect to S,v:O�O

3.6

A particle moves along a path and its speed increases with time. 
(i) In which of the following cases are its acceleration and velocity vectors parallel?
(a) The path is circular. (b) The path is straight. (c) The path is a parabola.
(d) Never. (ii) From the same choices, in which case are its acceleration and velocity 
vectors perpendicular everywhere along the path?

QUICK QUIZ 3.5

60 mi/h

60 mi/h

FIGURE 3.13



where the first subscript describes what is being observed and the second describes
who is doing the observing. Therefore, is the velocity of observer O� as mea-
sured by observer O. At t � 0, the origins of the reference frames coincide. There-
fore, when modeling the origin of S� as a particle under constant velocity, the ori-
gins of the two reference frames are separated by a displacement at time t.
This displacement is shown in Figure 3.14. Also shown in the figure are the position
vectors and for point P from each of the two origins. They are the position
vectors that the two observers would use to describe the location of point P, using
the same subscript notation. From the diagram, we see that these three vectors
form a vector addition triangle:

Notice the order of subscripts in this expression. The subscripts on the left side are
the same as the first and last subscripts on the right. The second and third sub-
scripts on the right are both O�. These subscripts are helpful in analyzing these
types of situations. On the left, we are looking at the position vector that points di-
rectly to P from O, as described by the subscripts. On the right, the same point P is
located by first going to P from O� and then describing where O� is relative to O,
again as suggested by the subscripts.

Let us now differentiate this expression with respect to time to find an expres-
sion for the velocity of a particle located at point P :

[3.21]

This expression relates the velocity of the particle as measured by O to that mea-
sured by O� and the relative velocity of the two reference frames.

In the one-dimensional case, this equation reduces to

Often, this equation is expressed in terms of the observer O� as

[3.22]

and is called the relative velocity, the velocity of a particle as measured by a moving
observer (moving with respect to another observer). In our car example, observer
O is standing on the side of the road. Observer O� is in the blue car. Both observers
are measuring the speed of the red car, which is located at point P. Therefore,

and, using Equation 3.22,

vPO � � vPO � vO�O � 60 mi/h � 60 mi/h � 0

 vO�O � 60 mi/h

 vPO � 60 mi/h

vPO � � vPO � vO �O

vPO � vPO � � vO �O

 v:PO � v:PO � � v:O �O
d
dt

 ( r:PO) �
d
dt

 ( r:PO � � v:O �Ot) :

r:PO � r:PO � � v:O�Ot

r:PO �r:PO

v:O �Ot

v:O �O
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y

rPO

vO′O t

y ′

O ′O

vO′O

S S ′

rPO′

P

x

Position vectors for an
event occurring at point P for two observers.
Observer O� is moving to the right at speed
vO�O with respect to observer O.

FIGURE 3.14
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The result of our calculation agrees with our previous intuitive discussion. This
equation will be used in Chapter 9, when we discuss special relativity. We shall find
that this simple expression is valid for low-speed particles but is no longer valid
when the particle or observers are moving at speeds close to the speed of light.

The speed of the boat relative to the Earth is

�

Investigate the crossing of the river for various

boat speeds and current speeds by logging into PhysicsNow at

www.pop4e.com and going to Interactive Example 3.6.

8.66 km/h

 vbE � √vbw 

2 � vwE 
2 � √(10.0)2 � (5.00)2 km/h

A Boat Crossing a RiverEXAMPLE 3.6
A boat heading due north crosses a wide river with a
speed of 10.0 km/h relative to the water. The river has
a current such that the water moves with uniform speed
of 5.00 km/h due east relative to the ground.

What is the velocity of the boat relative to a station-
ary observer on the side of the river?

Solution It is often useful to use subscripts other than
O and P that make it easy to identify the observers and
the object being observed. Observer O is standing on
the side of the river. Because he is at rest with respect to
the Earth, we will use the subscript E for this observer.
Let us identify an imaginary observer O� at rest in the
water, floating with the current. Because he is at rest
with respect to the water, we will use the subscript w for
this observer. Both observers are looking at the boat,
denoted by the subscript b. We can identify the velocity
of the boat relative to the water as .
The velocity of the water relative to the Earth is that of
the current in the river, .

We are looking for the velocity of the boat relative to
the Earth, so, from Equation 3.21,

This vector addition is shown in Figure 3.15a. The
speed of the boat relative to the observer on shore is
found from the Pythagorean theorem:

�

The direction of the velocity vector can be found with
the inverse tangent function:

At what angle should the boat be headed if it is to
travel directly north across the river, and what is the
speed of the boat relative to the Earth?

Solution We now want to be pointed due north, as
shown in Figure 3.15b. From the vector triangle,

30.0	� � sin�1 � vwE

vbw
� � sin�1 � 5.00 km/h

10.0 km/h � �

v:bE

B

26.6	� � tan�1 � vwE

vbw
� � tan�1 � 5.00

10.0 � �

11.2 km/h

vbE � √vbw 

2 � vwE 

2 � √(10.0)2 � (5.00)2 km/h

v:bE � v:bw � v:wE � (10.0 ĵ � 5.00 î) km/h

v:wE � 5.00 î   km/h

v:bw � 10.0 ĵ   km/h

A

E

N

S

W

vwE

vbw

vbE

θ

E

N

S

W

vwE

vbw

vbE

θ

(a)

(b)

(Interactive Example 3.6) (a) A boat aims directly
across a river and ends up downstream. (b) To
move directly across the river, the boat must aim
upstream.

FIGURE 3.15

INTERACTIVE
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LATERAL  ACCELERATION  OF  AUTOMOBILES
An automobile does not travel in a straight line. It follows a two-dimensional path
on a flat Earth surface and a three-dimensional path if there are hills and valleys.
Let us restrict our thinking at this point to an automobile traveling in two dimen-
sions on a flat roadway. During a turn, the automobile can be modeled as following
an arc of a circular path at each point in its motion. Consequently, the automobile
will have a centripetal acceleration.

A desired characteristic of automobiles is that they can negotiate a curve without
rolling over. This characteristic depends on the centripetal acceleration. Imagine
standing a book upright on a strip of sandpaper. If the sandpaper is moved slowly
across the surface of a table with a very small acceleration, the book will stay up-
right. If the sandpaper is moved with a large acceleration, however, the book will
fall over. That is what we would like to avoid in a car.

Imagine that instead of accelerating a book in one dimension we are cen-
tripetally accelerating a car in a circular path. The effect is the same. If there is too
much centripetal acceleration, the car will “fall over” and will go into a sideways
roll. The maximum possible centripetal acceleration that a car can exhibit without
rolling over in a turn is called lateral acceleration. Two contributions to the lateral ac-
celeration of a car are the height of the center of mass of the car above the ground
and the side-to-side distance between the wheels. (We will study center of mass in
Chapter 8.) The book in our demonstration has a relatively large ratio of the height
of the center of mass to the width of the book upon which it is sitting, so it falls over
relatively easily at low accelerations. An automobile has a much lower ratio of the
height of the center of mass to the distance between the wheels. Therefore, it can
withstand higher accelerations. 

Consider the documented lateral acceleration of the performance vehicles from
Table 2.3 listed in Table 3.1. These values are given as multiples of g, the accelera-
tion due to gravity. Notice that all the vehicles have a lateral acceleration close to
that due to gravity and that the lateral acceleration of the Ferrari F50 is 20% larger
than that due to gravity. The Ferrari is a very stable vehicle!

In contrast, the lateral acceleration of nonperformance cars is lower because
they generally are not designed to travel around turns at such a high speed as the
performance cars. For example, the Honda Insight has a lateral acceleration of
0.80g. Sport utility vehicles have lateral accelerations as low as 0.62g. As a result,
they are highly prone to rollovers in emergency maneuvers. ■

3.7

Lateral Accelerations of
Various Performance
Vehicles

TABLE 3.1

Lateral 
Automobile Acceleration

Aston Martin 0.90g
DB7 Vantage

BMW Z8 0.92g
Chevrolet 1.00g

Corvette
Dodge Viper 0.98g

GTS-R
Ferrari F50 1.20g
Ferrari 360 0.94g

Spider F1
Lamborghini 0.99g

Diablo GT
Porsche 911 0.96g

GT2

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

If a particle moves with constant acceleration and has velocity
and position at t � 0, its velocity and position vectors at

some later time t are

[3.8]

[3.9]

For two-dimensional motion in the xy plane under constant ac-
celeration, these vector expressions are equivalent to two com-
ponent expressions, one for the motion along x and one for
the motion along y.

Projectile motion is a special case of two-dimensional mo-
tion under constant acceleration, where ax � 0 and ay � �g. In

this case, the horizontal components of Equations 3.8 and 3.9
reduce to those of a particle under constant velocity:

[3.10]

[3.12]

The vertical components of Equations 3.8 and 3.9 are those of
a particle under constant acceleration:

[3.11]

[3.13]

where vxi � vi cos �i , vyi � vi sin �i , vi is the initial speed of
the projectile, and �i is the angle makes with the positive
x axis.

v:i

 yf � yi � vyit � 1
2gt2

 vyf � vyi � gt

 xf � xi � vxit

 vxf � vxi � constant

 r:f � r:i � v:it � 1
2 a:t 2

 v:f � v:i � a:t

r:iv:i

a:

SUMMARY
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A particle moving in a circle of radius r with constant speed
v undergoes a centripetal acceleration because the direction of

changes in time. The magnitude of this acceleration is

[3.17]

and its direction is always toward the center of the circle.
If a particle moves along a curved path in such a way

that the magnitude and direction of change in time,
the particle has an acceleration vector that can be
described by two components: (1) a radial component 

v:

ac �
v 2

r

v:

ar � �ac arising from the change in direction of and (2) a
tangential component at arising from the change in magni-
tude of .

If an observer O� is moving with velocity with respect to
observer O, their measurements of the velocity of a particle lo-
cated at point P are related according to

[3.21]

The velocity is called the relative velocity, the velocity of a
particle as measured by a moving observer (moving at constant
velocity with respect to another observer).

v:PO �

v:PO � v:PO � � v:O �O

v:O�O

v:

v:

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

If you know the position vectors of a particle at two points
along its path and also know the time interval it took to
move from one point to the other, can you determine the
particle’s instantaneous velocity? Its average velocity?
Explain.

2. Construct motion diagrams showing the velocity and accel-
eration of a projectile at several points along its path, as-
suming that (a) the projectile is launched horizontally and
(b) the projectile is launched at an angle � with the hori-
zontal.

3. A baseball is thrown such that its initial x and y compo-
nents of velocity are known. Ignoring air resistance, de-
scribe how you would calculate, at the instant the ball
reaches the top of its trajectory, (a) its coordinates, (b) its
velocity, and (c) its acceleration. How would these results
change if air resistance were taken into account?

4. A ball is projected horizontally from the top of a building.
One second later another ball is projected horizontally
from the same point with the same velocity. At what point
in the motion will the balls be closest to each other? Will
the first ball always be traveling faster than the second ball?
What will be the time interval between the moments when
the two balls hit the ground? Can the horizontal projection
velocity of the second ball be changed so that the balls ar-
rive at the ground at the same time?

A spacecraft drifts through space at a constant velocity.
Suddenly a gas leak in the side of the spacecraft gives it a
constant acceleration in a direction perpendicular to the
initial velocity. The orientation of the spacecraft does not
change, so the acceleration remains perpendicular to the
original direction of the velocity. What is the shape of the
path followed by the spacecraft in this situation?

6. State which of the following quantities, if any, remain con-
stant as a projectile moves through its parabolic trajectory:
(a) speed, (b) acceleration, (c) horizontal component of
velocity, (d) vertical component of velocity.

A projectile is launched at some angle to the horizontal
with some initial speed vi , and air resistance is negligible.

Is the projectile a freely falling body? What is its accelera-
tion in the vertical direction? What is its acceleration in the
horizontal direction?

8. The maximum range of a projectile occurs when it is
launched at an angle of 45.0° with the horizontal, if air re-
sistance is ignored. If air resistance is not ignored, will the
optimum angle be greater or less than 45.0°? Explain.

9. A projectile is launched on the Earth with some initial ve-
locity. Another projectile is launched on the Moon with
the same initial velocity. If air resistance can be ignored,
which projectile has the greater range? Which reaches the
greater altitude? (Note that the free-fall acceleration on
the Moon is about 1.6 m/s2.)

10. Correct the following statement: “The racing car rounds
the turn at a constant velocity of 90 miles per hour.”

Explain whether or not the following particles have an ac-
celeration: (a) a particle moving in a straight line with con-
stant speed, (b) a particle moving around a curve with con-
stant speed.

12. An object moves in a circular path with constant speed v.
(a) Is the velocity of the object constant? (b) Is its accelera-
tion constant? Explain.

13. Describe how a driver can steer a car traveling at constant
speed so that (a) the acceleration is zero or (b) the magni-
tude of the acceleration remains constant.

14. An ice skater is executing a figure eight, consisting of two
equal, tangent circular paths. Throughout the first loop
she increases her speed uniformly, and during the second
loop she moves at a constant speed. Draw a motion dia-
gram showing her velocity and acceleration vectors at sev-
eral points along the path of motion.

15. A sailor drops a wrench from the top of a sailboat’s mast
while the boat is moving rapidly and steadily in a straight
line. Where will the wrench hit the deck? (Galileo posed
this question.)

16. A ball is thrown upward in the air by a passenger on a train
that is moving with constant velocity. (a) Describe the path
of the ball as seen by the passenger. Describe the path as
seen by an observer standing by the tracks outside the
train. (b) How would these observations change if the
train were accelerating along the track?

11.

7.

5.

1.
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PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 3.1 ■ The Position, Velocity, and 
Acceleration Vectors

A motorist drives south at 20.0 m/s for
3.00 min, then turns west and travels at 25.0 m/s for
2.00 min, and finally travels northwest at 30.0 m/s 
for 1.00 min. For this 6.00-min trip, find (a) the total 
vector displacement, (b) the average speed, and (c) the 
average velocity. Let the positive x axis point east.

2. Suppose the position vector for a particle is given 
as a function of time by , with 
x(t) � at � b and y(t) � ct 2 � d, where a � 1.00 m/s, 
b � 1.00 m, c � 0.125 m/s2, and d � 1.00 m. (a) Calculate
the average velocity during the time interval from t � 2.00 s
to t � 4.00 s. (b) Determine the velocity and the speed at
t � 2.00 s.

Section 3.2 ■ Two-Dimensional Motion with Constant
Acceleration

A fish swimming in a horizontal plane has velocity
at a point in the ocean where the 

position relative to a certain rock is 
After the fish swims with constant acceleration for 20.0 s, its
velocity is (a) What are the com-
ponents of the acceleration? (b) What is the direction of the
acceleration with respect to unit vector ? (c) If the fish
maintains constant acceleration, where is it at t � 25.0 s and
in what direction is it moving?

4. At t � 0, a particle moving in the xy plane with constant
acceleration has a velocity of and
is at the origin. At t � 3.00 s, the particle’s velocity is

. Find (a) the acceleration of the
particle and (b) its coordinates at any time t.

5. A particle initially located at the origin has an acceleration
of and an initial velocity of

Find (a) the vector position and velocity
at any time t and (b) the coordinates and speed of the
particle at t � 2.00 s.

6. It is not possible to see very small objects, such as
viruses, using an ordinary light microscope. An electron
microscope, however, can view such objects using an elec-
tron beam instead of a light beam. Electron microscopy
has proved invaluable for investigations of viruses, cell
membranes and subcellular structures, bacterial surfaces,
visual receptors, chloroplasts, and the contractile proper-
ties of muscles. The “lenses” of an electron microscope

consist of electric and magnetic fields that control the elec-
tron beam. As an example of the manipulation of an elec-
tron beam, consider an electron traveling away from the
origin along the x axis in the xy plane with initial velocity

. As it passes through the region x � 0 to x � d,
the electron experiences acceleration ,
where ax and ay are constants. Taking vi � 1.80 � 107 m/s,
ax � 8.00 � 1014 m/s2, and ay � 1.60 � 1015 m/s2, deter-
mine at x � d � 0.010 0 m (a) the position of the electron,
(b) the velocity of the electron, (c) the speed of the
electron, and (d) the direction of travel of the electron
(i.e., the angle between its velocity and the x axis).

Section 3.3 ■ Projectile Motion

Note: Ignore air resistance in all problems and take 
g � 9.80 m/s2 at the Earth’s surface.

In a local bar, a customer slides an
empty beer mug down the counter for a refill. The bar-
tender is just deciding to go home and rethink his life. He
does not see the mug, which slides off the counter and
strikes the floor 1.40 m from the base of the counter. If the
height of the counter is 0.860 m, (a) with what velocity did
the mug leave the counter and (b) what was the direction
of the mug’s velocity just before it hit the floor?

8. In a local bar, a customer slides an empty beer mug down
the counter for a refill. The bartender is momentarily dis-
tracted and does not see the mug, which slides off the
counter and strikes the floor at distance d from the base of
the counter. The height of the counter is h. (a) With what
velocity did the mug leave the counter? (b) What was the
direction of the mug’s velocity just before it hit the floor?

9. Mayan kings and many school sports teams are named
for the puma, cougar, or mountain lion Felis concolor, the
best jumper among animals. It can jump to a height of
12.0 ft when leaving the ground at an angle of 45.0°. With
what speed, in SI units, does it leave the ground to make
this leap?

10. An astronaut on a strange planet finds that she can jump a
maximum horizontal distance of 15.0 m if her initial speed
is 3.00 m/s. What is the free-fall acceleration on the planet?

11. A cannon with a muzzle speed of 1 000 m/s is used to start
an avalanche on a mountain slope. The target is 2 000 m
from the cannon horizontally and 800 m above the can-
non. At what angle, above the horizontal, should the can-
non be fired? 

12. A ball is tossed from an upper-story window of a building.
The ball is given an initial velocity of 8.00 m/s at an angle
of 20.0° below the horizontal. It strikes the ground 3.00 s
later. (a) How far horizontally from the base of the building
does the ball strike the ground? (b) Find the height from
which the ball was thrown. (c) How long does it take the
ball to reach a point 10.0 m below the level of launching? 

13. The speed of a projectile when it reaches its maximum
height is one half its speed when it is at half its maximum

7.

a: � ax î � ay ĵ
v:i � vi î

v:i � 5.00 î  m/s.
a: � 3.00 ĵ  m/s2

v:f � (9.00 î � 7.00 ĵ) m/s

v:i � (3.00 î � 2.00 ĵ) m/s

î

v:f � (20.0 î � 5.00 ĵ) m/s.

r:i � (10.0 î � 4.00 ĵ) m.
v:i � (4.00 î � 1.00 ĵ) m/s

3.

r:(t) � x(t) î   �   y(t) ĵ

1.
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height. What is the initial projection angle of the pro-
jectile?

14. The small archerfish (length 20 to 25 cm) lives in
brackish waters of Southeast Asia from India to the Philip-
pines. This aptly named creature captures its prey by shoot-
ing a stream of water drops at an insect, either flying or at
rest. The bug falls into the water and the fish gobbles it up.
The archerfish has high accuracy at distances of 1.2 m to
1.5 m, and it sometimes makes hits at distances up to 
3.5 m. A groove in the roof of its mouth, along with a
curled tongue, forms a tube that enables the fish to impart
high velocity to the water in its mouth when it suddenly
closes its gill flaps. Suppose the archerfish shoots at a tar-
get that is 2.00 m away, measured along a line at an angle
of 30.0° above the horizontal. With what velocity must the
water stream be launched if it is not to drop more than
3.00 cm vertically on its path to the target? 

A placekicker must kick a football from a
point 36.0 m (about 40 yards) from the goal, and half the
crowd hopes the ball will clear the crossbar, which is
3.05 m high. When kicked, the ball leaves the ground with
a speed of 20.0 m/s at an angle of 53.0° to the horizontal.
(a) By how much does the ball clear or fall short of clear-
ing the crossbar? (b) Does the ball approach the crossbar
while still rising or while falling?

16. A firefighter a distance d from a burning building directs a
stream of water from a fire hose at angle �i above the hori-
zontal as shown in Figure P3.16. If the initial speed of the
stream is vi , at what height h does the water strike the
building? 

17. A playground is on the flat roof of a city school, 6.00 m
above the street below. The vertical wall of the building is
7.00 m high, forming a 1 m-high railing around the play-
ground. A ball has fallen to the street below, and a passerby
returns it by launching it at an angle of 53.0° above the
horizontal at a point 24.0 m from the base of the building
wall. The ball takes 2.20 s to reach a point vertically above
the wall. (a) Find the speed at which the ball was launched.
(b) Find the vertical distance by which the ball clears the
wall. (c) Find the distance from the wall to the point on
the roof where the ball lands.

18. The motion of a human body through space can be pre-
cisely modeled as the motion of a particle at the body’s
center of mass, as we will study in Chapter 8. The compo-
nents of the displacement of an athlete’s center of mass
from the beginning to the end of a certain jump are de-
scribed by the two equations

where t is the time at which the athlete lands after taking
off at time t � 0. Identify (a) his position and (b) his vec-
tor velocity at the takeoff point. (c) The world long jump
record is 8.95 m. How far did the athlete in this problem
jump? (d) Make a sketch of the motion of his center of
mass.

19. A soccer player kicks a rock horizontally off a 40.0-m-high
cliff into a pool of water. If the player hears the sound of
the splash 3.00 s later, what was the initial speed given
to the rock? Assume that the speed of sound in air is
343 m/s.

20. A basketball star covers 2.80 m horizontally in a jump to
dunk the ball (Fig. P3.20). His motion through space can
be modeled precisely as that of a particle at his center of
mass, which we will define in Chapter 8. His center of mass
is at elevation 1.02 m when he leaves the floor. It reaches a
maximum height of 1.85 m above the floor and is at eleva-
tion 0.900 m when he touches down again. Determine
(a) his time of flight (his “hang time”), (b) his horizontal
and (c) vertical velocity components at the instant of take-
off, and (d) his takeoff angle. (e) For comparison, deter-
mine the hang time of a whitetail deer making a jump with
center of mass elevations yi � 1.20 m, ymax � 2.50 m, and 
yf � 0.700 m.

 � 1
2(9.80 m/s2)t 2

 0.360 m � 0.840 m � (11.2 m/s)(sin 18.5	)t

x f � 0 � (11.2 m/s)(cos 18.5	)t

15.

FIGURE P3.16
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21. A fireworks rocket explodes at height h, the peak of its ver-
tical trajectory. It throws out burning fragments in all di-
rections, but all at the same speed v. Pellets of solidified
metal fall to the ground without air resistance. Find the
smallest angle that the final velocity of an impacting frag-
ment makes with the horizontal.

Section 3.4 ■ The Particle in Uniform Circular Motion
22. From information on the endsheets of this book, compute

the radial acceleration of a point on the surface of the
Earth at the equator owing to the rotation of the Earth
about its axis.

The athlete shown in Figure P3.23 ro-
tates a 1.00-kg discus along a circular path of radius
1.06 m. The maximum speed of the discus is 20.0 m/s.
Determine the magnitude of the maximum radial acceler-
ation of the discus.

23.

24. Casting of molten metal is important in many industrial
processes. Centrifugal casting is used for manufacturing
pipes, bearings, and many other structures. A variety of
sophisticated techniques have been invented, but the
basic idea is as illustrated in Figure P3.24. A cylindrical
enclosure is rotated rapidly and steadily about a hori-
zontal axis. Molten metal is poured into the rotating
cylinder and then cooled, forming the finished product.
Turning the cylinder at a high rotation rate forces the
solidifying metal strongly to the outside. Any bubbles
are displaced toward the axis, so unwanted voids will not
be present in the casting. Sometimes it is desirable to
form a composite casting, such as for a bearing. Here a
strong steel outer surface is poured and then inside it a
lining of special low-friction metal. In some applica-
tions, a very strong metal is given a coating of corrosion-
resistant metal. Centrifugal casting results in strong
bonding between the layers.

Suppose a copper sleeve of inner radius 2.10 cm and
outer radius 2.20 cm is to be cast. To eliminate bubbles
and give high structural integrity, the centripetal accelera-
tion of each bit of metal should be at least 100g. What rate
of rotation is required? State the answer in revolutions per
minute. 

25. A tire 0.500 m in radius rotates at a constant rate of
200 rev/min. Find the speed and acceleration of a small
stone lodged in the tread of the tire (on its outer edge). 

26. As their booster rockets separate, Space Shuttle astronauts
typically feel accelerations up to 3g, where g � 9.80 m/s2.
In their training, astronauts ride in a device where they ex-
perience such an acceleration as a centripetal acceleration.
Specifically, the astronaut is fastened securely at the end of
a mechanical arm, which then turns at constant speed in a
horizontal circle. Determine the rotation rate, in revolu-
tions per second, required to give an astronaut a cen-
tripetal acceleration of 3.00g while in circular motion with
radius 9.45 m.

27. The astronaut orbiting the Earth in Figure P3.27 is
preparing to dock with a Westar VI satellite. The satellite
is in a circular orbit 600 km above the Earth’s surface,
where the free-fall acceleration is 8.21 m/s2. Take the ra-
dius of the Earth as 6 400 km. Determine the speed of
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the satellite and the time interval required to complete
one orbit around the Earth, which is the period of the
satellite.

Section 3.5 ■ Tangential and Radial Acceleration 
28. A point on a rotating turntable 20.0 cm from the center ac-

celerates from rest to a final speed of 0.700 m/s in 1.75 s.
At t � 1.25 s, find the magnitude and direction of (a) the
radial acceleration, (b) the tangential acceleration, and 
(c) the total acceleration of the point.

A train slows down as it rounds a sharp horizontal turn,
slowing from 90.0 km/h to 50.0 km/h in the 15.0 s that it
takes to round the bend. The radius of the curve is 150 m.
Compute the acceleration at the moment the train speed
reaches 50.0 km/h. Assume that it continues to slow down
at this time at the same rate.

30. A ball swings in a vertical circle at the end of a rope 1.50 m
long. When the ball is 36.9° past the lowest point on its
way up, its total acceleration is . At
that instant, (a) sketch a vector diagram showing the com-
ponents of its acceleration, (b) determine the magnitude
of its radial acceleration, and (c) determine the speed and
velocity of the ball.

Figure P3.31 represents the total acceleration of a particle
moving clockwise in a circle of radius 2.50 m at a certain
instant of time. At this instant, find (a) the radial accelera-
tion, (b) the speed of the particle, and (c) its tangential ac-
celeration.

31.

(�22.5 î � 20.2 ĵ)  m/s2

29.

Section 3.6 ■ Relative Velocity
32. How long does it take an automobile traveling in the left

lane at 60.0 km/h to pull alongside a car traveling in the
right lane at 40.0 km/h if the cars’ front bumpers are ini-
tially 100 m apart?

A river has a steady speed of 0.500 m/s. A student swims
upstream a distance of 1.00 km and swims back to the start-
ing point. If the student can swim at a speed of 1.20 m/s in
still water, how long does the trip take? Compare this an-
swer with the time interval the trip would take if the water
were still.

34. A car travels due east with a speed of 50.0 km/h. Rain-
drops are falling at constant speed vertically with respect to
the Earth. The traces of the rain on the side windows of
the car make an angle of 60.0° with the vertical. Find the
velocity of the rain with respect to (a) the car and (b) the
Earth.

35. The pilot of an airplane notes that the compass indicates a
heading due west. The airplane’s speed relative to the air is
150 km/h. The air is moving in a wind at 30.0 km/h to-
ward the north. Find the velocity of the airplane relative to
the ground. 

36. Two swimmers, Alan and Beth, start together at the same
point on the bank of a wide stream that flows with a speed
v. Both move at the same speed c (c � v) relative to the wa-
ter. Alan swims downstream a distance L and then upstream
the same distance. Beth swims so that her motion relative to
the Earth is perpendicular to the banks of the stream. She
swims the distance L and then back the same distance, so
that both swimmers return to the starting point. Which
swimmer returns first? (Note: First, guess the answer.)

A science student is riding on a flatcar of a train traveling
along a straight horizontal track at a constant speed of
10.0 m/s. The student throws a ball into the air along a path
that he judges to make an initial angle of 60.0° with the hor-
izontal and to be in line with the track. The student’s profes-
sor, who is standing on the ground nearby, observes the ball
to rise vertically. How high does she see the ball rise?

38. A Coast Guard cutter detects an unidentified ship at a dis-
tance of 20.0 km in the direction 15.0° east of north. The
ship is traveling at 26.0 km/h on a course at 40.0° east of
north. The Coast Guard wishes to send a speedboat to in-
tercept the vessel and investigate it. If the speedboat travels
50.0 km/h, in what direction should it head? Express the
direction as a compass bearing with respect to due north.

Section 3.7 ■ Context Connection —Lateral Acceleration
of Automobiles

39. The cornering performance of an automobile is evaluated
on a skid pad, where the maximum speed a car can main-
tain around a circular path on a dry, flat surface is mea-
sured. Then the magnitude of the centripetal accelera-
tion, also called the lateral acceleration, is calculated as a
multiple of the free-fall acceleration g. Along with the
height and width of the car, factors affecting its perfor-
mance are the tire characteristics and the suspension sys-
tem. A Dodge Viper GTS-R can negotiate a skid pad of ra-
dius 156 m at 139 km/h. Calculate its maximum lateral
acceleration from these data to verify the corresponding
entry in Table 3.1.

37.

33.
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40. A certain light truck can go around an unbanked curve
having a radius of 150 m with a maximum speed of
32.0 m/s. With what maximum speed can it go around a
curve having a radius of 75.0 m?

Additional Problems
41. The “Vomit Comet.” In zero-gravity astronaut training and

equipment testing, NASA flies a KC135A aircraft along a
parabolic flight path. As shown in Figure P3.41, the aircraft
climbs from 24 000 ft to 31 000 ft, where it enters the zero-
g parabola with a velocity of 143 m/s at 45.0° nose high
and exits with velocity 143 m/s at 45.0° nose low. During
this portion of the flight, the aircraft and objects inside its
padded cabin are in free-fall; they have gone ballistic. The
aircraft then pulls out of the dive with an upward accelera-
tion of 0.800g, moving in a vertical circle with radius 
4.13 km. (During this portion of the flight, occupants of
the plane perceive an acceleration of 1.800g.) What are the
aircraft (a) speed and (b) altitude at the top of the maneu-
ver? (c) What is the time interval spent in zero gravity? 
(d) What is the speed of the aircraft at the bottom of the
flight path?

the architect wants to build a model to standard scale, one-
twelfth actual size. How fast should the water in the chan-
nel flow in the model?

43. A ball on the end of a string is whirled around in a hori-
zontal circle of radius 0.300 m. The plane of the circle is
1.20 m above the ground. The string breaks and the ball
lands 2.00 m (horizontally) away from the point on the
ground directly beneath the ball’s location when the string
breaks. Find the radial acceleration of the ball during its
circular motion.

44. A projectile is fired up an incline (incline angle ) with an
initial speed vi at an angle �i with respect to the horizontal
(�i � ), as shown in Figure P3.44. (a) Show that the pro-
jectile travels a distance d up the incline, where

(b) For what value of �i is d a maximum, and what is that
maximum value?

d �
2v 2

i   cos�i  sin(�i � )
g cos2

Barry Bonds hits a home run so that the baseball just clears
the top row of bleachers, 21.0 m high, located 130 m from
home plate. The ball is hit at an angle of 35.0° to the hori-
zontal, and air resistance is negligible. Find (a) the initial
speed of the ball, (b) the time interval that elapses before
the ball reaches the top row, and (c) the velocity compo-
nents and the speed of the ball when it passes over the top
row. Assume that the ball is hit at a height of 1.00 m above
the ground. 

46. An astronaut on the surface of the Moon fires a cannon to
launch an experiment package, which leaves the barrel
moving horizontally. (a) What must be the muzzle speed of
the probe so that it travels completely around the Moon
and returns to its original location? (b) How long does this
trip around the Moon take? Assume that the free-fall accel-
eration on the Moon is one sixth that on the Earth.

47. A basketball player who is 2.00 m tall is standing on the
floor 10.0 m from the basket, as shown in Figure P3.47. If
he shoots the ball at a 40.0° angle with the horizontal, at
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42. A landscape architect is planning an artificial waterfall in a
city park. Water flowing at 1.70 m/s will leave the end of a
horizontal channel at the top of a vertical wall 2.35 m high
and from there fall into a pool. (a) Will there be a wide
enough space for a walkway on which people can go be-
hind the waterfall? (b) To sell her plan to the city council,
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what initial speed must he throw so that it goes through
the hoop without striking the backboard? The basket
height is 3.05 m.

48. When baseball players throw the ball in from the outfield,
they usually allow it to take one bounce before it reaches
the infield, on the theory the ball arrives sooner that way.
Suppose the angle at which a bounced ball leaves the
ground is the same as the angle at which the outfielder
threw it, as shown in Figure P3.48, but that the ball’s speed
after the bounce is one half what it was before the bounce.
(a) Assume that the ball is always thrown with the same ini-
tial speed. At what angle � should the fielder throw the ball
to make it go the same distance D with one bounce (blue
path) as a ball thrown upward at 45.0° with no bounce
(green path)? (b) Determine the ratio of the time intervals
required for the one-bounce and no-bounce throws.

49. Your grandfather is copilot of a bomber, flying horizontally
over level terrain, with a speed of 275 m/s relative to the
ground at an altitude of 3 000 m. (a) The bombardier re-
leases one bomb. How far will the bomb travel horizontally
between its release and its impact on the ground? Ignore
the effects of air resistance. (b) Firing from the people on
the ground suddenly incapacitates the bombardier before
he can call, “Bombs away!” Consequently, the pilot main-
tains the plane’s original course, altitude, and speed
through a storm of flak. Where will the plane be when the
bomb hits the ground? (c) The plane has a telescopic
bomb sight set so that the bomb hits the target seen in the
sight at the moment of release. At what angle from the ver-
tical was the bomb sight set?

50. A person standing at the top of a hemispherical rock of ra-
dius R kicks a ball (initially at rest on the top of the rock)
to give it horizontal velocity as shown in Figure P3.50.v:i

(a) What must be its minimum initial speed if the ball is
never to hit the rock after it is kicked? (b) With this initial
speed, how far from the base of the rock does the ball hit
the ground?

A car is parked on a steep incline over-
looking the ocean, where the incline makes an angle of
37.0° below the horizontal. The negligent driver leaves
the car in neutral, and the parking brakes are defective.
The car rolls from rest down the incline with a constant
acceleration of 4.00 m/s2, traveling 50.0 m to the edge of
a vertical cliff. The cliff is 30.0 m above the ocean. Find
(a) the speed of the car when it reaches the edge of the
cliff and the time interval it takes to get there, (b) the ve-
locity of the car when it lands in the ocean, (c) the total
time interval during which the car is in motion, and 
(d) the position of the car when it lands in the ocean, rel-
ative to the base of the cliff.

52. A truck loaded with cannonball watermelons stops sud-
denly to avoid running over the edge of a washed-out
bridge (Fig. P3.52). The quick stop causes a number of
melons to fly off the truck. One melon rolls over the edge
with an initial speed vi � 10.0 m/s in the horizontal direc-
tion. A cross-section of the bank has the shape of the bot-
tom half of a parabola with its vertex at the edge of the
road and with the equation y2 � 16x, where x and y are
measured in meters. What are the x and y coordinates of
the melon when it splatters on the bank?

51.

53. The determined coyote is out once more in pursuit of the
elusive roadrunner. The coyote wears a pair of Acme jet-
powered roller skates, which provide a constant horizontal
acceleration of 15.0 m/s2 (Fig. P3.53). The coyote starts at
rest 70.0 m from the brink of a cliff at the instant the road-
runner zips past him in the direction of the cliff. (a) The
roadrunner moves with constant speed. Determine the
minimum speed he must have so as to reach the cliff be-
fore the coyote. At the edge of the cliff, the roadrunner es-
capes by making a sudden turn, while the coyote continues
straight ahead. The coyote’s skates remain horizontal and
continue to operate while he is in flight so that his acceler-
ation while in the air is . (b) The cliff
is 100 m above the flat floor of a wide canyon. Determine

(15.0 î � 9.80 ĵ)m/s2

45.0°
θ

D

θ

FIGURE P3.48
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where the coyote lands in the canyon. (c) Determine the
components of the coyote’s impact velocity. 

54. A ball is thrown with an initial speed vi at an angle �i with
the horizontal. The horizontal range of the ball is R, and
the ball reaches a maximum height R/6. In terms of R and
g, find (a) the time interval during which the ball is in mo-
tion, (b) the ball’s speed at the peak of its path, (c) the ini-
tial vertical component of its velocity, (d) its initial speed,
and (e) the angle �i . (f) Suppose the ball is thrown at the
same initial speed found in (d) but at the angle appropri-
ate for reaching the greatest height that it can. Find this
height. (g) Suppose the ball is thrown at the same initial
speed but at the angle for greatest possible range. Find this
maximum horizontal range.

55. A catapult launches a rocket at an angle of 53.0° above the
horizontal with an initial speed of 100 m/s. The rocket en-
gine immediately starts a burn, and for 3.00 s the rocket
moves along its initial line of motion with an acceleration
of 30.0 m/s2. Then its engine fails, and the rocket pro-
ceeds to move in free-fall. Find (a) the maximum altitude
reached by the rocket, (b) its total time of flight, and 
(c) its horizontal range.

56. Do not hurt yourself; do not strike your hand against
anything. Within these limitations, describe what you do to

give your hand a large acceleration. Compute an order-of-
magnitude estimate of this acceleration, stating the quanti-
ties you measure or estimate and their values.

A skier leaves the ramp of a ski jump with a velocity of
10.0 m/s, 15.0° above the horizontal, as shown in Figure
P3.57. The slope is inclined at 50.0°, and air resistance is
negligible. Find (a) the distance from the ramp to where
the jumper lands and (b) the velocity components just be-
fore the landing. (How do you think the results might be
affected if air resistance were included? Note that jumpers
lean forward in the shape of an airfoil, with their hands at
their sides, to increase their distance. Why does this
method work?)

58. In a television picture tube (a cathode-ray tube), elec-
trons are emitted with velocity from a source at the ori-
gin of coordinates. The initial velocities of different elec-
trons make different angles � with the x axis. As they
move a distance D along the x axis, the electrons are
acted on by a constant electric field, giving each a con-
stant acceleration in the x direction. At x � D, the elec-
trons pass through a circular aperture, oriented perpen-
dicular to the x axis. At the aperture, the velocity
imparted to the electrons by the electric field is much
larger than in magnitude. Show that velocities of the
electrons going through the aperture radiate from a cer-
tain point on the x axis, which is not the origin. Deter-
mine the location of this point. This point is called a vir-
tual source, and it is important in determining where the
electron beam hits the screen of the tube.

59. An angler sets out upstream from Metaline Falls on the
Pend Oreille River in northwestern Washington State. His
small boat, powered by an outboard motor, travels at a con-
stant speed v in still water. The water flows at a lower con-
stant speed vw. He has traveled upstream for 2.00 km when
his ice chest falls out of the boat. He notices that the chest
is missing only after he has gone upstream for another
15.0 minutes. At that point, he turns around and heads
back downstream, all the time traveling at the same speed
relative to the water. He catches up with the floating ice
chest just as it is about to go over the falls at his starting
point. How fast is the river flowing? Solve this problem in
two ways. (a) First, use the Earth as a reference frame.
With respect to the Earth, the boat travels upstream at
speed v � vw and downstream at v � vw. (b) A second
much simpler and more elegant solution is obtained by us-
ing the water as the reference frame. This approach has
important applications in many more complicated prob-
lems, such as calculating the motion of rockets and Earth
satellites and analyzing the scattering of subatomic parti-
cles from massive targets.

60. The water in a river flows uniformly at a constant speed of
2.50 m/s between parallel banks 80.0 m apart. You are to
deliver a package directly across the river, but you can swim
only at 1.50 m/s. (a) If you choose to minimize the time
you spend in the water, in what direction should you head?
(b) How far downstream will you be carried? (c) If you
choose to minimize the distance downstream that the river
carries you, in what direction should you head? (d) How
far downstream will you be carried? 

v:i

a:

v:i

57.
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2 500 m 300 m

1 800 mvi
vi = 250 m/s

θHθ θLθ

61. An enemy ship is on the east side of a mountain island, as
shown in Figure P3.61. The enemy ship has maneuvered to
within 2 500 m of the 1 800-m-high mountain peak and
can shoot projectiles with an initial speed of 250 m/s. If

the western shoreline is horizontally 300 m from the peak,
what are the distances from the western shore at which a
ship can be safe from the bombardment of the enemy
ship?

FIGURE P3.61 View looking south.

ANSWERS TO QUICK QUIZZES

3.1 (a) Because acceleration occurs whenever the velocity
changes in any way—with an increase or decrease in
speed, a change in direction, or both—all three controls
are accelerators. The gas pedal causes the car to speed
up; the brake pedal causes the car to slow down.
The steering wheel changes the direction of the velocity
vector.

3.2 (b), (d). At only one point—the peak of the trajectory—
are the velocity and acceleration vectors perpendicular
to each other. The velocity vector is horizontal at that
point and the acceleration vector is downward. The ac-
celeration vector is always directed downward. The veloc-
ity vector is never vertical if the object follows a path such
as that in Figure 3.6. 

3.3 15°, 30°, 45°, 60°, 75°. The greater the maximum height,
the longer it takes the projectile to reach that altitude
and then fall back down from it. So, as the launch angle
increases, the time of flight increases.

3.4 (c). We cannot choose (a) or (b) because the centripetal
acceleration vector is not constant; it continuously

changes in direction. Of the remaining choices, only (c)
gives the correct perpendicular relationship between 
and .

3.5 (i), (b). The velocity vector is tangent to the path. If the
acceleration vector is to be parallel to the velocity vector,
it must also be tangent to the path. To be tangent re-
quires that the acceleration vector have no component
perpendicular to the path. If the path were to change di-
rection, the acceleration vector would have a radial com-
ponent, perpendicular to the path. Therefore, the path
must remain straight. (ii), (d). If the acceleration vector
is to be perpendicular to the velocity vector, it must have
no component tangent to the path. On the other hand,
if the speed is changing, there must be a component of
the acceleration tangent to the path. Therefore, the ve-
locity and acceleration vectors are never perpendicular
in this situation. They can only be perpendicular if there
is no change in the speed.

v:
a:c



In the preceding two chapters on kinematics, we described the
motion of particles based on the definitions of position, veloc-
ity, and acceleration. Aside from our discussion of gravity for

objects in free-fall, we did not address what causes an object to
move as it does. We would like to be able to answer general ques-
tions related to the causes of motion, such as “What mechanism
causes changes in motion?” and “Why do some objects accelerate
at higher rates than others?” In this first chapter on dynamics, we
shall discuss the causes of the change in motion of particles using
the concepts of force and mass. We will discuss the three funda-
mental laws of motion, which are based on experimental observa-
tions and were formulated about three centuries ago by Sir Isaac
Newton.

The Laws of Motion

C H A P T E R 4

A small tugboat exerts a force on a large ship,
causing it to move. How can such a small boat
move such a large object?

C H A P T E R  O U T L I N E
4.1 The Concept of Force
4.2 Newton’s First Law
4.3 Mass
4.4 Newton’s Second Law — The Particle 

Under a Net Force
4.5 The Gravitational Force and Weight
4.6 Newton’s Third Law
4.7 Applications of Newton’s Laws
4.8 Context Connection — Forces on 

Automobiles
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THE  CONCEPT  OF  FORCE
As a result of everyday experiences, everyone has a basic understanding of the con-

force when you throw or kick a ball. In these examples, the word force is associated
with the result of muscular activity and with some change in the state of motion of
an object. Forces do not always cause an object to move, however. For example, as
you sit reading this book, the gravitational force acts on your body and yet you re-
main stationary. You can push on a heavy block of stone and yet fail to move it.

This chapter is concerned with the relation between the force on an object and
the change in motion of that object. If you pull on a spring, as in Figure 4.1a, the
spring stretches. If the spring is calibrated, the distance it stretches can be used to
measure the strength of the force. If a child pulls on a wagon, as in Figure 4.1b, the
wagon moves. When a football is kicked, as in Figure 4.1c, it is both deformed and
set in motion. These examples all show the results of a class of forces called contact
forces. That is, these forces represent the result of physical contact between two
objects.

There exist other forces that do not involve physical contact between two ob-
jects. These forces, known as field forces, can act through empty space. The gravita-
tional force between two objects that causes the free-fall acceleration described in
Chapters 2 and 3 is an example of this type of force and is illustrated in Figure 4.1d.
This gravitational force keeps objects bound to the Earth and gives rise to what we
commonly call the weight of an object. The planets of our solar system are bound to
the Sun under the action of gravitational forces. Another common example of a
field force is the electric force that one electric charge exerts on another electric

4.1

Field forcesContact forces

(d)(a)

(b)

(c)

(e)

(f)

m M

– q + Q

Iron N S

Some examples of
forces applied to various objects. In
each case, a force is exerted on the
particle or object within the boxed
area. The environment external to
the boxed area provides this force.

FIGURE 4.1



charge, as in Figure 4.1e. These charges might be an electron and proton forming
a hydrogen atom. A third example of a field force is the force that a bar magnet ex-
erts on a piece of iron, as shown in Figure 4.1f.

The distinction between contact forces and field forces is not as sharp as you
may have been led to believe by the preceding discussion. At the atomic level, all
the forces classified as contact forces turn out to be caused by electric (field) forces
similar in nature to the attractive electric force illustrated in Figure 4.1e. Neverthe-
less, in understanding macroscopic phenomena, it is convenient to use both classifi-
cations of forces.

We can use the linear deformation of a spring to measure force, as in the case of
a common spring scale. Suppose a force is applied vertically to a spring that has a
fixed upper end, as in Figure 4.2a. The spring can be calibrated by defining the
unit force as the force that produces an elongation of 1.00 cm. If a force , ap-
plied as in Figure 4.2b, produces an elongation of 2.00 cm, the magnitude of is
2.00 units. If the two forces and are applied simultaneously, as in Figure 4.2c,
the elongation of the spring is 3.00 cm because the forces are applied in the
same direction and their magnitudes add. If the two forces and are ap-
plied in perpendicular directions, as in Figure 4.2d, the elongation is

. The single force that would
produce this same elongation is the vector sum of and , as described in
Figure 4.2d. That is, 2.24 units, and its direction is 
� � tan�1(�0.500) � � 26.6°. Because forces have been experimentally verified to
behave as vectors, you must use the rules of vector addition to obtain the total
force on an object.

NEWTON’S  FIRST  LAW
We begin our study of forces by imagining that you place a puck on a perfectly level
air hockey table (Fig. 4.3). You expect that the puck will remain where it is placed.
Now imagine putting your air hockey table on a train moving with constant velocity.
If the puck is placed on the table, the puck again remains where it is placed. If the
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The vector nature
of a force is tested with a spring scale.
(a) A downward vertical force 
elongates the spring 1.00 cm. (b) A
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Air flow

Electric blower

On an air hockey
table, air blown through holes in the
surface allows the puck to move al-
most without friction. If the table is
not accelerating, a puck placed on the
table will remain at rest with respect
to the table if there are no horizontal
forces acting on it.

FIGURE 4.3
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train were to accelerate, however, the puck would start moving along the table, just
as a set of papers on your dashboard falls onto the front seat of your car when you
step on the gas.

As we saw in Section 3.6, a moving object can be observed from any number of
reference frames. Newton’s first law of motion, sometimes called the law of inertia,
defines a special set of reference frames called inertial frames. This law can be stated
as follows:

If an object does not interact with other objects, it is possible to identify a
reference frame in which the object has zero acceleration.

Such a reference frame is called an inertial frame of reference. When the puck is
on the air hockey table located on the ground, you are observing it from an inertial
reference frame; there are no horizontal interactions of the puck with any other ob-
jects, and you observe it to have zero acceleration in the horizontal direction. When
you are on the train moving at constant velocity, you are also observing the puck
from an inertial reference frame. Any reference frame that moves with constant ve-
locity relative to an inertial frame is itself an inertial frame. When the train acceler-
ates, however, you are observing the puck from a noninertial reference frame be-
cause you and the train are accelerating relative to the inertial reference frame of
the surface of the Earth. Although the puck appears to be accelerating according to
your observations, we can identify a reference frame in which the puck has zero ac-
celeration. For example, an observer standing outside the train on the ground sees
the puck moving with the same velocity as the train had before it started to acceler-
ate (because there is almost no friction to “tie” the puck and the train together).
Therefore, Newton’s first law is still satisfied even though your observations say
otherwise.

A reference frame that moves with constant velocity relative to the distant stars is
the best approximation of an inertial frame, and for our purposes we can consider
the Earth as being such a frame. The Earth is not really an inertial frame because of
its orbital motion around the Sun and its rotational motion about its own axis, both
of which are related to centripetal accelerations. These accelerations, however, are
small compared with g and can often be neglected. (This is a simplification model.)
For this reason, we assume that the Earth is an inertial frame, as is any other frame
attached to it.

Let us assume that we are observing an object from an inertial reference frame.
Before about 1600, scientists believed that the natural state of matter was the state
of rest. Observations showed that moving objects eventually stopped moving.
Galileo was the first to take a different approach to motion and the natural state of
matter. He devised thought experiments and concluded that it is not the nature of
an object to stop once set in motion; rather, it is its nature to resist changes in its
motion. In his words, “Any velocity once imparted to a moving body will be rigidly
maintained as long as the external causes of retardation are removed.” 

Given our assumption of observations made from inertial reference frames, we
can pose a more practical statement of Newton’s first law of motion:

In the absence of external forces, when viewed from an inertial reference
frame, an object at rest remains at rest and an object in motion continues in
motion with a constant velocity (that is, with a constant speed in a straight line).

In simpler terms, we can say that when no force acts on an object, the accelera-
tion of the object is zero. If nothing acts to change the object’s motion, its velocity
does not change. From the first law, we conclude that any isolated object (one that
does not interact with its environment) is either at rest or moving with constant

■ Newton’s first law

■ Inertial frame of reference

Isaac Newton (1642 – 1727)
Newton, an English physicist and
mathematician, was one of the
most brilliant scientists in history.
Before the age of 30, he formulated
the basic concepts and laws of me-
chanics, discovered the law of uni-
versal gravitation, and invented the
mathematical methods of calculus.
As a consequence of his theories,
Newton was able to explain the mo-
tions of the planets, the ebb and
flow of the tides, and many special
features of the motions of the Moon
and the Earth. His contributions to
physical theories dominated scien-
tific thought for two centuries and
remain important today.
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first law



velocity. The tendency of an object to resist any attempt to change its velocity is
called inertia.

Consider a spacecraft traveling in space, far removed from any planets or other
matter. The spacecraft requires some propulsion system to change its velocity. If the
propulsion system is turned off when the spacecraft reaches a velocity , however,
the spacecraft “coasts” in space with that velocity and the astronauts enjoy a “free
ride” (i.e., no propulsion system is required to keep them moving at the velocity ).

Finally, recall our discussion in Chapter 2 about the proportionality between
force and acceleration:

Newton’s first law tells us that the velocity of an object remains constant if no force
acts on an object; the object maintains its state of motion. The preceding propor-
tionality tells us that if a force does act, a change does occur in the motion, mea-
sured by the acceleration. This notion will form the basis of Newton’s second law,
and we shall provide more details on this concept shortly.

F
:

 � a:

v:

v:
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Which of the following statements is most correct? (a) It is possible
for an object to have motion in the absence of forces on the object. (b) It is possible to
have forces on an object in the absence of motion of the object. (c) Neither (a) nor (b) is
correct. (d) Both (a) and (b) are correct.

QUICK QUIZ 4.1

MASS
Imagine playing catch with either a basketball or a bowling ball. Which ball is more
likely to keep moving when you try to catch it? Which ball has the greater tendency
to remain motionless when you try to throw it? The bowling ball is more resistant to
changes in its velocity than the basketball. How can we quantify this concept?

Mass is that property of an object that specifies how much resistance an object
exhibits to changes in its velocity, and as we learned in Section 1.1, the SI unit of
mass is the kilogram. The greater the mass of an object, the less that object acceler-
ates under the action of a given applied force.

To describe mass quantitatively, we begin by experimentally comparing the
accelerations a given force produces on different objects. Suppose a force acting on
an object of mass m1 produces an acceleration and the same force acting on an
object of mass m2 produces an acceleration . The ratio of the two masses is de-
fined as the inverse ratio of the magnitudes of the accelerations produced by the
force:

[4.1]

For example, if a given force acting on a 3-kg object produces an acceleration of 
4 m/s2, the same force applied to a 6-kg object produces an acceleration of 2 m/s2.
If one object has a known mass, the mass of the other object can be obtained from
acceleration measurements.

Mass is an inherent property of an object and is independent of the object’s sur-
roundings and of the method used to measure it. Also, mass is a scalar quantity and
therefore obeys the rules of ordinary arithmetic. That is, several masses can be
combined in simple numerical fashion. For example, if you combine a 3-kg mass
with a 5-kg mass, their total mass is 8 kg. We can verify this result experimentally by
comparing the acceleration that a known force gives to several objects separately
with the acceleration that the same force gives to the same objects combined as
one unit.

m1

m2
 � 

a2

a1

a:2

a:1

4.3

NEWTON’S FIRST LAW Newton’s first
law does not say what happens for
an object with zero net force, that is,
multiple forces that cancel; it says
what happens in the absence of a force.
This subtle but important differ-
ence allows us to define force as
that which causes a change in the
motion. The description of an
object under the effect of forces
that balance is covered by Newton’s
second law.

� PITFALL PREVENTION 4.1

■ Definition of mass
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Mass should not be confused with weight. Mass and weight are two different
quantities. As we shall see later in this chapter, the weight of an object is equal to
the magnitude of the gravitational force exerted on the object and varies with loca-
tion. For example, a person who weighs 180 lb on the Earth weighs only about 30 lb
on the Moon. On the other hand, the mass of an object is the same everywhere. An
object having a mass of 2 kg on Earth also has a mass of 2 kg on the Moon.

NEWTON’S  SECOND  LAW — THE  PARTICLE  
UNDER  A  NET  FORCE

Newton’s first law explains what happens to an object when no force acts on it: It ei-
ther remains at rest or moves in a straight line with constant speed. This law allows
us to define an inertial frame of reference. It also allows us to identify force as that
which changes motion. Newton’s second law answers the question of what happens
to an object that has a nonzero net force acting on it, based on our discussion of
mass in the preceding section.

Imagine you are pushing a block of ice across a frictionless horizontal surface.
When you exert some horizontal force , the block moves with some acceleration

Experiments show that if you apply a force twice as large to the same object, the
acceleration doubles. If you increase the applied force to , the original accelera-
tion is tripled, and so on. From such observations, we conclude that the accelera-
tion of an object is directly proportional to the net force acting on it. We alluded to
this proportionality in our discussion of acceleration in Chapter 2. We are now
ready to extend that discussion.

These observations and those in Section 4.3 relating mass and acceleration are
summarized in Newton’s second law:

The acceleration of an object is directly proportional to the net force acting
on it and inversely proportional to its mass.

We write this law as

where is the net force, which is the vector sum of all forces acting on the object
of mass m. If the object consists of a system of individual elements, the net force is
the vector sum of all forces external to the system. Any internal forces—that is, forces
between elements of the system—are not included because they do not affect the
motion of the entire system. The net force is sometimes called the resultant force, the
sum of the forces, the total force, or the unbalanced force.

Newton’s second law in mathematical form is a statement of this relationship
that makes the preceding proportionality an equality:1

[4.2]

Note that Equation 4.2 is a vector expression and hence is equivalent to the follow-
ing three component equations:

[4.3]

Newton’s second law introduces us to a new analysis model, the particle under a
net force. If a particle, or an object that can be modeled as a particle, is under the
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1 Equation 4.2 is valid only when the speed of the object is much less than the speed of light. We will
treat the relativistic situation in Chapter 9.

■ Mass and weight are different
quantities

FORCE IS THE CAUSE OF CHANGES IN

MOTION Be sure that you are clear
on the role of force. Many times,
students make the mistake of think-
ing that force is the cause of mo-
tion. We can, though, have motion
in the absence of forces, as de-
scribed in Newton’s first law. Be
sure to understand that force is 
the cause of changes in motion.

� PITFALL PREVENTION 4.2

■ Newton’s second law 

■ Mathematical representation of
Newton’s second law

IS NOT A FORCE Equation 4.2
does not say that the product is
a force. All forces on an object are
added vectorially to generate the
net force on the left side of the
equation. This net force is then
equated to the product of the mass
of the object and the acceleration
that results from the net force. Do
not include an “ force” in your
analysis. 

ma:

ma:
ma:
� PITFALL PREVENTION 4.3

■ Newton’s second law in compo-
nent form



influence of a net force, Equation 4.2, the mathematical statement of Newton’s sec-
ond law, can be used to describe its motion. The acceleration is constant if the net
force is constant. Therefore, the particle under a constant net force will have its
motion described as a particle under constant acceleration. Of course, not all
forces are constant, and when they are not, the particle cannot be modeled as one
under constant acceleration. We shall investigate situations in this chapter and the
next involving both constant and varying forces.
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An object experiences no acceleration. Which of the following cannot
be true for the object? (a) A single force acts on the object. (b) No forces act on the ob-
ject. (c) Forces act on the object, but the forces cancel.

QUICK QUIZ 4.2

Unit of Force
The SI unit of force is the newton, which is defined as the force that, when acting
on a 1-kg mass, produces an acceleration of 1 m/s2.

From this definition and Newton’s second law, we see that the newton can be ex-
pressed in terms of the fundamental units of mass, length, and time:

[4.4]

The units of mass, acceleration, and force are summarized in Table 4.1. Most of the
calculations we shall make in our study of mechanics will be in SI units. Equalities
between units in the SI and U.S. customary systems are given in Appendix A.

■ Thinking Physics 4.1
In a train, the cars are connected by couplers. The couplers between the cars exert
forces on the cars as the train is pulled by the locomotive in the front. Imagine that
the train is speeding up in the forward direction. As you imagine moving from the
locomotive to the last car, does the force exerted by the couplers increase, decrease, or
stay the same ? What if the engineer applies the brakes? How does the force vary
from locomotive to last car in this case? (Assume that the only brakes applied are
those on the engine.)

Reasoning The force decreases from the front of the train to the back. The coupler
between the locomotive and the first car must apply enough force to accelerate all
the remaining cars. As we move back along the train, each coupler is accelerating
less mass behind it. The last coupler only has to accelerate the last car, so it exerts
the smallest force. If the brakes are applied, the force decreases from front to back
of the train also. The first coupler, at the back of the locomotive, must apply a large
force to slow down all the remaining cars. The final coupler must only apply a force
large enough to slow down the mass of the last car. ■

1 N � 1 kg �m/s2

You push an object, initially at rest, across a frictionless floor with a
constant force for a time interval �t, resulting in a final speed of v for the object. You re-
peat the experiment, but with a force that is twice as large. What time interval is now re-
quired to reach the same final speed v ? (a) 4 �t (b) 2 �t (c) �t (d) �t/2 (e) �t/4

QUICK QUIZ 4.3

Units of Mass, Acceleration, and Force TABLE 4.1

System of Units Mass (M) Acceleration (L/T2) Force (ML/T2)

SI kg m/s2 N � kg � m/s2

U.S. customary slug ft/s2 lb � slug � ft/s2

■ Definition of the newton
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Solution The puck is modeled as a particle under a net
force. We first find the components of the net force.
The component of the net force in the x direction is

The component of the net force in the y direction is

Now we use Newton’s second law in component form to
find the x and y components of acceleration:

The acceleration has a magnitude of

and its direction is

relative to the positive x axis.

30�� � tan�1 ay

ax
� tan�1 

17 m/s2

29 m/s2 �

 34  m/s2a � √(29  m/s2)2 � (17  m/s2)2 �

ay � � Fy

m
�

5.2 N
0.30 kg

� 17 m/s2

ax � � Fx

m
�

8.7 N
0.30 kg

� 29 m/s2

 � �(5.0 N)(0.342) � (8.0 N)(0.866) � 5.2 N

 � Fy � F1y � F2y � �F1 sin 20� � F2 sin 60�

 � (5.0 N)(0.940) � (8.0 N)(0.500) � 8.7 N

 � Fx � F1x � F2x � F1 cos 20� � F2 cos 60�

An Accelerating Hockey PuckEXAMPLE 4.1
A 0.30-kg hockey puck slides on the horizontal friction-
less surface of an ice rink. It is struck simultaneously 
by two different hockey sticks. The two constant forces
that act on the puck as a result of the hockey sticks 
are parallel to the ice surface and are shown in the 
pictorial representation in Figure 4.4. The force has
a magnitude of 5.0 N, and has a magnitude of 8.0 N.
Determine the acceleration of the puck while it is in
contact with the two sticks.

F
:

2

F
:

1

FIGURE 4.4 (Example 4.1) A hockey puck moving on a
frictionless surface accelerates in the direction of
the net force, .�F

:
� F

:
1 � F

:
2

x

y

60°

F2

F2  =  8.0 N
F1  =  5.0 N

20°

1F

THE  GRAVITATIONAL  FORCE  AND  WEIGHT
We are well aware that all objects are attracted to the Earth. The force exerted by
the Earth on an object is the gravitational force . This force is directed toward
the center of the Earth.2 The magnitude of the gravitational force is called the
weight Fg of the object.

We have seen in Chapters 2 and 3 that a freely falling object experiences an ac-
celeration directed toward the center of the Earth. A freely falling object has only
one force on it, the gravitational force, so the net force on the object in this situa-
tion is equal to the gravitational force:

Because the acceleration of a freely falling object is equal to the free-fall acceler-
ation , it follows that

or, in magnitude,

[4.5]Fg � mg

� F
:

� ma: : F
:

g � mg:
g:

� F
:

� F
:

g

g:

F
:

g

4.5

2 This statement represents a simplification model in that it ignores that the mass distribution of the
Earth is not perfectly spherical.

� Relation between mass and
weight of an object



Because it depends on g, weight varies with location, as we mentioned in Section
4.3. Objects weigh less at higher altitudes than at sea level because g decreases with
increasing distance from the center of the Earth. Hence, weight, unlike mass, is not
an inherent property of an object. For example, if an object has a mass of 70 kg, its
weight in a location where g � 9.80 m/s2 is mg � 686 N. At the top of a mountain
where g � 9.76 m/s2, the object’s weight would be 683 N. Therefore, if you want to
lose weight without going on a diet, climb a mountain or weigh yourself at 30 000 ft
during an airplane flight.

Because Fg � mg, we can compare the masses of two objects by measuring their
weights with a spring scale. At a given location (so that g is fixed) the ratio of the
weights of two objects equals the ratio of their masses.

Equation 4.5 quantifies the gravitational force on the object, but notice that this
equation does not require the object to be moving. Even for a stationary object, or an
object on which several forces act, Equation 4.5 can be used to calculate the magni-
tude of the gravitational force. This observation results in a subtle shift in the inter-
pretation of m in the equation. The mass m in Equation 4.5 is playing the role of de-
termining the strength of the gravitational attraction between the object and the
Earth. This role is completely different from that previously described for mass, that
of measuring the resistance to changes in motion in response to an external force.
Therefore, we call m in this type of equation the gravitational mass. Despite this quan-
tity being different from inertial mass (the type of mass defined in Section 4.3), it is
one of the experimental conclusions in Newtonian dynamics that gravitational mass
and inertial mass have the same value at the present level of experimental refinement.
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Astronaut Edwin E. Aldrin Jr., walking
on the Moon after the Apollo 11 lunar
landing. Aldrin’s weight on the Moon
is less than it is on the Earth, but his
mass is the same in both places. ■

(N
AS

A)

Suppose you are talking by interplanetary telephone to your friend,
who lives on the Moon. He tells you that he has just won a newton of gold in a contest. Ex-
citedly, you tell him that you entered the Earth version of the same contest and also won a
newton of gold! Who is richer? (a) You are. (b) Your friend is. (c) You are equally rich.

QUICK QUIZ 4.4

NEWTON’S  THIRD  LAW
Newton’s third law conveys the notion that forces are always interactions between
two objects: If two objects interact, the force exerted by object 1 on object 2 is
equal in magnitude but opposite in direction to the force exerted by object 2
on object 1:

[4.6]

When it is important to designate forces as interactions between two objects, we will
use this subscript notation, where means “the force exerted by a on b.” The third
law, illustrated in Figure 4.5a, is equivalent to stating that forces always occur in pairs
or that a single isolated force cannot exist. The force that object 1 exerts on object 2
may be called the action force, and the force of object 2 on object 1 may be called the
reaction force. In reality, either force can be labeled the action or reaction force. The
action force is equal in magnitude to the reaction force and opposite in direction. In
all cases, the action and reaction forces act on different objects and must be of the
same type. For example, the force acting on a freely falling projectile is the gravi-
tational force exerted by the Earth on the projectile (E � Earth, p � projec-
tile), and the magnitude of this force is mg. The reaction to this force is the gravita-
tional force exerted by the projectile on the Earth . The reaction force

must accelerate the Earth toward the projectile just as the action force accel-
erates the projectile toward the Earth. Because the Earth has such a large mass, how-
ever, its acceleration as a result of this reaction force is negligibly small.
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DIFFERENTIATE BETWEEN g AND g Be
sure not to confuse the italicized
letter g that we use for the magni-
tude of the free-fall acceleration
with the abbreviation g that is used
for grams.

� PITFALL PREVENTION 4.4

■ Newton’s third law 

NEWTON’S THIRD LAW Newton’s
third law is such an important and
often misunderstood notion that it
is repeated here in a Pitfall Preven-
tion. In Newton’s third law, action
and reaction forces act on different
objects. Two forces acting on the
same object, even if they are equal
in magnitude and opposite in direc-
tion, cannot be an action–reaction
pair.

� PITFALL PREVENTION 4.5
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Another example of Newton’s third law in action is shown in Figure 4.5b. The
force exerted by the hammer on the nail (the action) is equal in magnitude
and opposite the force exerted by the nail on the hammer (the reaction). This
latter force stops the forward motion of the hammer when it strikes the nail.

The Earth exerts a gravitational force on any object. If the object is a com-
puter monitor at rest on a table, as in the pictorial representation in Figure 4.6a,
the reaction force to is the force exerted by the monitor on the Earth

. The monitor does not accelerate because it is held up by the table.
The table exerts on the monitor an upward force , called the normal
force.3 This force prevents the monitor from falling through the table; it can have
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FIGURE 4.5 Newton’s third law. (a) The force exerted by object 1 on object 2 is equal in mag-
nitude and opposite in direction to the force exerted by object 2 on object 1. 
(b) The force exerted by the hammer on the nail is equal in magnitude and
opposite in direction to the force exerted by the nail on the hammer. F
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3 The word normal is used because the direction of is always perpendicular to the surface.n:

� Normal force

Fg  = FEm

(b)

n = Ftmn = Ftm

Fg  = FEm

Fmt

(a)

FmE

FIGURE 4.6 (a) When a computer monitor is sitting on a table, several forces are acting. (b) The
free-body diagram for the monitor. The forces acting on the monitor are the normal
force and the gravitational force . F

:
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:
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any value needed, up to the point at which the table breaks. From Newton’s second
law we see that, because the monitor has zero acceleration, it follows that

, or n � mg. The normal force balances the gravitational force
on the monitor, so the net force on the monitor is zero. The reaction to n is the
force exerted by the monitor downward on the table, .

Note that the forces acting on the monitor are and , as shown in Figure 4.6b.
The two reaction forces and are exerted by the monitor on the Earth 
and the table, respectively. Remember that the two forces in an action–
reaction pair always act on two different objects.

Figure 4.6 illustrates an extremely important difference between a pictorial
representation and a simplified pictorial representation for solving problems in-
volving forces. Figure 4.6a shows many of the forces in the situation: those on
the monitor, one on the table, and one on the Earth. Figure 4.6b, by contrast,
shows only the forces on one object, the monitor. This illustration is a critical sim-
plified pictorial representation called a free-body diagram. When analyzing a
particle under a net force, we are interested in the net force on one object, an
object of mass m, which we will model as a particle. Therefore, a free-body dia-
gram helps us isolate only those forces on the object and eliminate the other
forces from our analysis. The free-body diagram can be simplified further, if you
wish, by representing the object, such as the monitor in this case, as a particle by
simply drawing a dot.

F
:

mtF
:

mE

n:F
:

g

F
:

mt � �F
:

tm

�F
:

� n: � mg: � 0

106 ❚ CHAPTER 4 THE LAWS OF MOTION

If a fly collides with the windshield of a fast-moving bus, which expe-
riences an impact force with a larger magnitude? (a) The fly does. (b) The bus does. 
(c) The same force is experienced by both. Which experiences the greater acceleration?
(d) The fly does. (e) The bus does. (f) The same acceleration is experienced by both. 

QUICK QUIZ 4.5

FREE-BODY DIAGRAMS The most
important step in solving a problem
using Newton’s laws is to draw a
proper simplified pictorial repre-
sentation, the free-body diagram.
Be sure to draw only those forces
that act on the object you are isolat-
ing. Be sure to draw all forces act-
ing on the object, including any
field forces, such as the gravita-
tional force. Do not include veloc-
ity, position, or acceleration vectors.
Do not include a vector for the net
force or for .ma:

� PITFALL PREVENTION 4.7

Which of the following is the reaction force to the gravitational force
acting on your body as you sit in your desk chair? (a) the normal force from the chair
(b) the force you apply downward on the seat of the chair (c) neither of these forces

QUICK QUIZ 4.6

n DOES NOT ALWAYS EQUAL mg In the
situation shown in Figure 4.6, we
find that n � mg. There are many
situations in which the normal
force has the same magnitude as
the gravitational force, but do not
adopt this equality as a general rule
(a common student pitfall). If the
problem involves an object on an
incline, if there are applied forces
with vertical components, or if
there is a vertical acceleration of
the system, n � mg. Always apply
Newton’s second law to find the
relationship between n and mg.

� PITFALL PREVENTION 4.6

■ Thinking Physics 4.2
A horse pulls on a sled with a horizontal force, causing the sled to accelerate as in
Figure 4.7a. Newton’s third law says that the sled exerts a force of equal magnitude
and opposite direction on the horse. In view of this situation, how can the sled ac-
celerate? Don’t these forces cancel?

Reasoning When applying Newton’s third law, it is important to remember that
the forces involved act on different objects. Notice that the force exerted by the
horse acts on the sled, whereas the force exerted by the sled acts on the horse. Because
these forces act on different objects, they cannot cancel.

The horizontal forces exerted on the sled alone are the forward force ex-
erted by the horse and the backward force of friction between sled and sur-
face (Fig. 4.7b). When exceeds , the sled accelerates to the right.

The horizontal forces exerted on the horse alone are the forward friction force
from the ground and the backward force exerted by the sled (Fig. 4.7c).

The resultant of these two forces causes the horse to accelerate. When ex-
ceeds , the horse accelerates to the right. ■F
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APPLICATIONS  OF  NEWTON’S  LAWS
In this section, we present some simple applications of Newton’s laws to objects that
are either in equilibrium ( ) or are accelerating under the action of constant
external forces. We shall assume that the objects behave as particles so that we need
not worry about rotational motion or other complications. In this section, we also
apply some additional simplification models. We ignore the effects of friction for
those problems involving motion, which is equivalent to stating that the surfaces
are frictionless. We usually ignore the masses of any ropes or strings involved. In this
approximation, the magnitude of the force exerted at any point along a string
is the same. In problem statements, the terms light and of negligible mass are used to
indicate that a mass is to be ignored when you work the problem. These two terms
are synonymous in this context.

When an object such as a block is being pulled by a rope or string attached to it,
the rope exerts a force on the object. Its direction is along the rope, away from
the object. The magnitude T of this force is called the tension in the rope.

Consider a crate being pulled to the right on a frictionless, horizontal surface, as
in Figure 4.8a. Suppose you are asked to find the acceleration of the crate and the
force the floor exerts on it. Note that the horizontal force being applied to the
crate acts through the rope. 

Because we are interested only in the motion of the crate, we must be able to
identify any and all external forces acting on it. These forces are illustrated in the free-
body diagram in Figure 4.8b. In addition to the force , the free-body diagram for
the crate includes the gravitational force and the normal force n exerted by the
floor on the crate. The reactions to the forces we have listed—namely, the force ex-
erted by the crate on the rope, the force exerted by the crate on the Earth, and the
force exerted by the crate on the floor—are not included in the free-body diagram
because they act on other objects and not on the crate.

Now let us apply Newton’s second law to the crate. First, we must choose an ap-
propriate coordinate system. In this case, it is convenient to use the coordinate sys-
tem shown in Figure 4.8b, with the x axis horizontal and the y axis vertical. We can
apply Newton’s second law in the x direction, y direction, or both, depending on
what we are asked to find in the problem. In addition, we may be able to use the
equations of motion for the particle under constant acceleration that we discussed
in Chapter 2. You should use these equations only when the acceleration is con-
stant, however, which is the case if the net force is constant. For example, if the
force in Figure 4.8 is constant, the acceleration in the x direction is also constant
because . 

The Particle in Equilibrium
Objects that are either at rest or moving with constant velocity are said to be in
equilibrium. From Newton’s second law with , this condition of equilibriuma: � 0
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FIGURE 4.7 (Thinking Physics 4.2) (a) A horse pulls a sled through the snow. (b) The forces on the sled. (c) The forces on
the horse.

(b)

F

fsled

hs
sh

(a) (c)

F

horsef

(a)

T

n

Fg

y

x

(b)

(a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
that represents the external forces 
on the crate.

FIGURE 4.8

■ Tension



can be expressed as

[4.7]

This statement signifies that the vector sum of all the forces (the net force) acting
on an object in equilibrium is zero.4 If a particle is subject to forces but exhibits an
acceleration of zero, we use Equation 4.7 to analyze the situation, as we shall see in
some of the following examples.

Usually, the problems we encounter in our study of equilibrium are easier to
solve if we work with Equation 4.7 in terms of the components of the external
forces acting on an object. In other words, in a two-dimensional problem, the sum
of all the external forces in the x and y directions must separately equal zero; that is,

[4.8]

The extension of Equations 4.8 to a three-dimensional situation can be made by
adding a third component equation, ΣFz � 0.

In a given situation, we may have balanced forces on an object in one direction
but unbalanced forces in the other. Therefore, for a given problem, we may need to
model the object as a particle in equilibrium for one component and a particle un-
der a net force for the other.

� Fy � 0� Fx � 0

� F
:

� 0
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(i)

(ii)

(Quick Quiz 4.7)
(i) An individual pulls with a force of
magnitude F on a spring scale at-
tached to a wall. (ii) Two individuals
pull with forces of magnitude F in
opposite directions on a spring scale
attached between two ropes.

FIGURE 4.9 Consider the two situations shown in Figure 4.9, in which no acceler-
ation occurs. In both cases, all individuals pull with a force of magnitude F on a rope
attached to a spring scale. Is the reading on the spring scale in part (i) of the figure 
(a) greater than, (b) less than, or (c) equal to the reading in part (ii)?

QUICK QUIZ 4.7

The Particle Under a Net Force
In a situation in which a nonzero net force is acting on an object, the object is ac-
celerating. We use Newton’s second law to determine the features of the motion:

In practice, this equation is broken into components so that two (or three) equa-
tions can be handled independently. The representative suggestions and problems
that follow should help you solve problems of this kind.

� F
:

� ma:

4 This statement is only one condition of equilibrium for an object. An object that can be modeled as a
particle moving through space is said to be in translational motion. If the object is spinning, it is said to
be in rotational motion. A second condition of equilibrium is a statement of rotational equilibrium.
This condition will be discussed in Chapter 10 when we discuss spinning objects. Equation 4.7 is suffi-
cient for analyzing objects in translational motion, which are those of interest to us at this point.

The following procedure is recommended when dealing with
problems involving Newton’s law.

1. Conceptualize Draw a simple, neat diagram of the system
to help establish the mental representation. Establish conve-
nient coordinate axes for each object in the system.

2. Categorize If an acceleration component for an object is
zero, it is modeled as a particle in equilibrium in this direction

and ΣF � 0. If not, the object is modeled as a particle under a
net force in this direction and ΣF � ma.

3. Analyze Isolate the object whose motion is being analyzed.
Draw a free-body diagram for this object. For systems
containing more than one object, draw separate free-body dia-
grams for each object. Do not include in the free-body diagram
forces exerted by the object on its surroundings.

Find the components of the forces along the coordinate
axes. Apply Newton’s second law, , in component�F

:
  �   ma:

Applying Newton’s LawsPROBLEM-SOLVING STRATEGY
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We now embark on a series of examples that demonstrate how to solve problems
involving a particle in equilibrium or a particle under a net force. You should read
and study these examples very carefully.

forces into their x and y components, as shown in the
following tabular representation:

A Traffic Light at RestEXAMPLE 4.2
A traffic light weighing 122 N hangs from a cable
tied to two other cables fastened to a support, as in
Figure 4.10a. The upper cables make angles of 37.0°
and 53.0° with the horizontal. These upper cables are
not as strong as the vertical cable and will break if the
tension in them exceeds 100 N. Does the traffic light re-
main in this situation, or will one of the cables break?

Solution Let us assume that the cables do not break, so
no acceleration of any sort occurs in any direction.
Therefore, we use the model of a particle in equilib-
rium for both x and y components for any part of the
system. We shall construct two free-body diagrams. The
first is for the traffic light, shown in Figure 4.10b; the
second is for the knot that holds the three cables to-
gether, as in Figure 4.10c. The knot is a convenient
point to choose because all the forces in which we are
interested act through this point. Because the accelera-
tion of the system is zero, we can use the equilibrium
conditions that the net force on the light is zero and
that the net force on the knot is zero.

Considering Figure 4.10b, we apply the equilibrium
condition in the y direction, ΣFy � 0 : T3 � Fg � 0, 
which leads to T3 � Fg � 122 N. Thus, the force ex-
erted by the vertical cable balances the weight of the
light.

Considering the knot next, we choose the coordi-
nate axes as shown in Figure 4.10c and resolve the

T
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FIGURE 4.10 (Example 4.2) (a) A traffic light
suspended by cables. (b) The
free-body diagram for the traffic
light. (c) The free-body diagram
for the knot in the cable. T2T1
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form. Check your dimensions to make sure all terms have units
of force.

Solve the component equations for the unknowns. Remem-
ber that to obtain a complete solution, you must have as many
independent equations as you have unknowns.

4. Finalize Make sure your results are consistent with the
free-body diagram. Also check the predictions of your solutions
for extreme values of the variables. By doing so, you can often
detect errors in your results.

Equations 4.8 give us

(1) 

(2) 

We solve (1) for T2 in terms of T1 to give

This value for T2 is substituted into (2) to give

We then calculate T2:

Both of these values are less than 100 N ( just barely for
T2!), so the cables do not break.

97.4 NT2 � 1.33T1 �

73.4 NT1 �

T1 sin 37.0� � (1.33T1)(sin 53.0�) � 122 N � 0

T2 � T1 � cos 37.0�

cos 53.0� � � 1.33T1

� Fy � T1 sin 37.0� � T2 sin 53.0� � 122 N � 0

� Fx � T2 cos 53.0� � T1 cos 37.0� � 0
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component of the gravitational force perpendicular to
the incline is balanced by the normal force; that is, 
n � mg cos �. (Notice, as pointed out in Pitfall Preven-
tion 4.6, that n does not equal mg in this case.)

Special Cases When � � 90°, (3) gives us ax � g and 
(2) gives us n � 0. This case corresponds to the particle
in free-fall. (For our choice of coordinate system,
positive x is in the downward direction when � � 90°;
hence, the acceleration is �g rather than �g.) When 
� � 0°, ax � 0 and n � mg (its maximum value), which
corresponds to the situation in which the particle is on
a level surface and not accelerating.

This technique of looking at special cases of limiting
situations is often useful in checking an answer. In this
situation, if the angle � goes to 90°, we know intuitively
that the object should be falling parallel to the surface
of the incline. That (3) mathematically reduces to
ax � g when � � 90° gives us confidence in our answer.
It doesn’t prove that the answer is correct, but if the ac-
celeration does not reduce to g, it would tell us that the
answer is incorrect.

Suppose the sled is released from rest at the top of
the hill and the distance from the front of the sled to
the bottom of the hill is d. How long does it take the
front of the sled to reach the bottom, and what is its
speed just as it arrives at that point?

Solution In part A, we found ax � g sin �, which is con-
stant. Hence, we can model the system as a particle un-
der constant acceleration for the motion parallel to the
incline. We use Equation 2.12, , to
describe the position of the sled’s front edge. We define
the initial position as xi � 0 and the final position as 
xf � d. Because the sled starts sliding from rest, vxi � 0.
With these values, Equation 2.12 becomes simply

, or

This equation answers the first question as to the time
interval required to reach the bottom. Now, to deter-
mine the speed when the sled arrives at the bottom, 
we use Equation 2.13, with 
vxi � 0, and we find that vxf

2 � 2axd, or

As with the acceleration parallel to the incline, t and vxf
are independent of the mass of the sled and child.

√2gd sin �vxf � √2axd �

vxf 

 

2 � vxi 

 

2 � 2ax (xf � xi)

√ 2d
g sin �

t � √ 2d
ax

�

d � 1
2axt2

xf � xi � vxit � 1
2axt2

B

A Sled on Frictionless SnowEXAMPLE 4.3
A child on a sled is released on a frictionless hill of
angle �, as in Figure 4.11a.

Determine the acceleration of the sled after it is
released.

Solution We identify the combination of the sled and
the child as our object of interest. We model the object
as a particle of mass m. Newton’s second law can be
used to determine the acceleration of the particle. First,
we construct the free-body diagram for the particle as
in Figure 4.11b. The only forces on the particle are the
normal force acting perpendicularly to the incline
and the gravitational force acting vertically down-
ward. For problems of this type involving inclines, it is
convenient to choose the coordinate axes with x along
the incline and y perpendicular to it. Then, we replace

by a combination of a component vector of magni-
tude mg sin � along the positive x axis (down the incline)
and one of magnitude mg cos � in the negative y direc-
tion.

Applying Newton’s second law in component form
to the particle and noting that ay � 0 gives

(1)

(2)

From (1) we see that the acceleration along the incline
is provided by the component of the gravitational force
parallel to the incline, which gives us

(3) ax �

Note that the acceleration given by (3) is independent of
the mass of the particle; it depends only on the angle of
inclination and on g. From (2) we conclude that the

g sin �

� Fy � n � mg cos � � 0

� Fx � mg sin � � max

mg:

mg:
n:

A

(a) (b)

d

θ

a

θ

x

n

mg

mg sin

θmg cos θ

y

FIGURE 4.11 (Example 4.3) (a) A child on a sled sliding down
a frictionless incline. (b) The free-body diagram.
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The Atwood MachineEXAMPLE 4.4INTERACTIVE

tion with up as positive for m1 and down as positive for
m2, as shown in Active Figure 4.12a.

With this sign convention, the net force exerted on
m 1 is T � m1g, whereas the net force exerted on m2 is
m2g � T. We have chosen the signs of the forces to be
consistent with the choices of the positive direction for
each object.

When Newton’s second law is applied to m1, we find

(1)

Similarly, for m 2 we find

(2)

Note that a is the same for both objects. When (2) is
added to (1), T cancels and we have

Solving for the acceleration a give us

(3)

If m2 � m1, the acceleration given by (3) is positive: m1
goes up and m2 goes down. Is that consistent with your
mental representation? If m1 � m 2, the acceleration is
negative and the masses move in the opposite direc-
tion.

If (3) is substituted into (1), we find

(4)

To finalize the problem, let us consider some special
cases. For example, when m1 � m 2, (3) and (4) give us
a � 0 and T � m 1g � m 2g, as we would intuitively ex-
pect for the balanced case. Also, if m 2 �� m1, a � g (a
freely falling object) and T � 0. For such a large mass

� 2m1m2

m1 � m2
� gT  �

� m2 � m1

m1 � m2
� ga  �

�m1g � m2g � m1a � m2a

� Fy � m2g � T � m2a

� Fy � T � m1g � m1a

When two objects with unequal masses are hung
vertically over a light, frictionless pulley as in Active
Figure 4.12a, the arrangement is called an Atwood
machine. The device is sometimes used in the laboratory
to measure the free-fall acceleration. Calculate the
magnitude of the acceleration of the two objects and
the tension in the string.

Solution Conceptualize the problem by thinking about
the mental representation suggested by Active Figure
4.12a: As one object moves upward, the other object
moves downward. Because the objects are connected by
an inextensible string, they must have the same magni-
tude of acceleration. The objects in the Atwood ma-
chine are subject to the gravitational force as well as to
the forces exerted by the strings connected to them. In
categorizing the problem, we model the objects as parti-
cles under a net force.

We begin to analyze the problem by drawing free-
body diagrams for the two objects, as in Active Figure
4.12b. Two forces act on each object: the upward force

exerted by the string and the downward gravitational
force. In a problem such as this one in which the pulley
is modeled as massless and frictionless, the tension in
the string on both sides of the pulley is the same. If the
pulley has mass or is subject to a friction force, the ten-
sions in the string on either side of the pulley are not
the same and the situation requires the techniques of
Chapter 10.

In these types of problems, involving strings that pass
over pulleys, we must be careful about the sign conven-
tion. Notice that if m1 goes up, m2 goes down. There-
fore, m1 going up and m2 going down should be repre-
sented equivalently as far as a sign convention is
concerned. We can do so by defining our sign conven-

T
:

(Interactive Example 4.4) The
Atwood machine. (a) Two objects
connected by a light string over a
frictionless pulley. (b) The free-
body diagrams for m1 and m2.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 4.12 to ad-
just the masses of the objects on
the Atwood machine and observe
the motion.

ACTIVE FIGURE 4.12

(a)

m1
m2

+

+

(b)

m1

T

m1g

T

m2g

m2

www.pop4e.com
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Investigate the motion of the Atwood machine

for different masses by logging into PhysicsNow at www.pop4e.com
and going to Interactive Example 4.4.

m2, we would expect m1 to have little effect so that m2 is
simply falling. Our results are consistent with our intu-
itive predictions in both of these limiting situations.

One Block Pushes AnotherEXAMPLE 4.5INTERACTIVE

Two blocks of masses m1 and m2, with m1 	 m2, are
placed in contact with each other on a frictionless,
horizontal surface, as in Active Figure 4.13a. A constant
horizontal force is applied to m1 as shown.

Find the magnitude of the acceleration of the
system of two blocks.

Solution Both blocks must experience the same acceler-
ation because they are in contact with each other and
remain in contact with each other. We model the com-
bination of both blocks as a particle under a net force.
Because is the only horizontal force exerted on the
particle, we have

(1)

Determine the magnitude of the contact force be-
tween the two blocks.

Solution The contact force is internal to the
combination of two blocks. Therefore, we cannot find
this force by modeling the combination as a single
particle. We now need to treat each of the two blocks
individually as a particle under a net force. We first
construct a free-body diagram for each block, as shown
in Active Figures 4.13b and 4.13c, where the contact
force is denoted by . From Active Figure 4.13c we see
that the only horizontal force acting on m2 is the
contact force (the force exerted by m1 on m2),
which is directed to the right. Applying Newton’s
second law to m2 gives

(2)

Substituting the value of the acceleration a given by (1)
into (2) gives

(3)

From this result we see that the contact force P12 is less
than the applied force F. That is consistent with the fact
that the force required to accelerate m2 alone must be
less than the force required to produce the same accel-
eration for the combination of two blocks. Compare

� m2

m1 � m2
� FP12 � m2a �

� Fx � P12 � m2a

P
:

12

P
:

B

 
F

m1 � m2
a  �   

� Fx  (system) � F � (m1 � m2)a

F
:

A

F
:

m2
m1

F

(a)

(b)

n1

F P21

m1

m1

g

y

x

(c)

P12

m2g

n2

m2

(Interactive Example 4.5) A force is applied to a 
block of mass m1, which pushes on a second block
of mass m2. (b) The free-body diagram for m1. 
(c) The free-body diagram for m2.

Log into PhysicsNow at
www.pop4e.com and go to Active Figure 4.13 to 
study the forces involved in this two-block system.

ACTIVE FIGURE 4.13

this result with the forces in the couplers in the train of
Thinking Physics 4.1.

It is instructive to check this expression for P12 by
considering the forces acting on m1, shown in Active
Figure 4.13b. The horizontal forces acting on m1 are
the applied force to the right and the contact force

to the left (the force exerted by m2 on m1). From
Newton’s third law, is the reaction to , so 
P21 � P12. Applying Newton’s second law to m 1 gives

(4)

Solving for P12 and substituting the value of a from (1)
into (4) gives

Which agrees with (3), as it must.

Imagine that the force in Active Figure 4.13 is
applied toward the left on the right-hand block of mass

F
:C

� F � m1� F
m1 � m2

� � � m2

m1 � m2
� F

P12 � F � m1a

� Fx � F � P21 � F � P12 � m1a

P
:

12P
:

21

P
:

21

F
:

www.pop4e.com
www.pop4e.com
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m1 � m2, more force is required, so the magnitude
of is greater.

Investigate the motion of the blocks for differ-

ent mass combinations and applied forces by logging into Physics-

Now at www.pop4e.com and going to Interactive Example 4.5.

P
:

12

m2. Is the magnitude of the force the same as it was
when the force was applied toward the right on m 1?

Solution With the force applied toward the left on m2,
the contact force must accelerate m1. In the original
situation, the contact force accelerates m2. Because 

P
:

12

and the upward force exerted on it by the hook
hanging from the bottom of the scale. (It might be
more fruitful in your mental representation to imagine
that the hook is a string connecting the fish to the
spring in the scale.) Because the tension is the same
everywhere in the hook supporting the fish, the hook
pulls downward with a force of magnitude T on the
spring scale. Therefore, the tension T in the hook is
also the reading of the spring scale.

If the elevator is either at rest or moves at constant
velocity, the fish is not accelerating and is a particle
in equilibrium, which gives us ΣFy � T � mg � 0

T
:

Weighing a Fish in an ElevatorEXAMPLE 4.6
A person weighs a fish on a spring scale attached to the
ceiling of an elevator, as shown in Figure 4.14. Show
that if the elevator accelerates, the spring scale reads
an apparent weight different from the fish’s true
weight.

Solution An observer on the accelerating elevator is
not in an inertial frame. We need to analyze this situa-
tion in an inertial frame, so let us imagine observing it
from the stationary ground. We model the fish as a
particle under a net force. The external forces acting
on the fish are the downward gravitational force F

:
g

FIGURE 4.14 (Example 4.6) (a) When the elevator accelerates upward, the spring
scale reads a value greater than the fish’s true weight. (b) When the
elevator accelerates downward, the spring scale reads a value less than
the fish’s true weight.

m g

a

T

a

m g

T

(b)(a)

Observer in
inertial frame

www.pop4e.com
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If ay � �2.00 m/s2 so that is downward,

Hence, if you buy a fish in an elevator, make sure the
fish is weighed while the elevator is at rest or is acceler-
ating downward!

Special Case If the cable breaks, the elevator falls freely
so that ay � �g, and from (1) we see that the tension T
is zero; that is, the fish appears to be weightless.

31.8 N� (40.0 N)�1 �
�2.00 m/s2

9.80 m/s2 � �

T � mg �1 �
ay

g �
a:

48.2 N � (40.0 N)�1 �
2.00 m/s2

9.80 m/s2 � �

T � mg � may � mg �1  �
ay

g �: T � mg. If the elevator accelerates either up or
down, however, the tension is no longer equal to the
weight of the fish because T � mg does not equal zero.

If the elevator accelerates with an acceleration 
relative to an observer in an inertial frame outside the
elevator, Newton’s second law applied to the fish in the
vertical direction gives us

which leads to

(1)

We conclude from (1) that the scale reading T is
greater than the weight mg if is upward as in Figure
4.14a. Furthermore, we see that T is less than mg
if is downward as in Figure 4.14b. For example, if 
the weight of the fish is 40.0 N and is upward with 
ay � 2.00 m/s2, the scale reading is

a:
a:

a:

T � mg � may

� Fy � T � mg � may

a:

CONTEXT 
connectionFORCES  ON  AUTOMOBILES

In the Context Connections of Chapters 2 and 3, we focused on two types of accelera-
tion exhibited by a number of vehicles. In this chapter, we learned how the
acceleration of an object is related to the force on the object. Let us apply this
understanding to an investigation of the forces that are applied to automobiles when
they are exhibiting their maximum acceleration in speeding up from rest to 60 mi/h.

The force that accelerates an automobile is the friction force from the ground.
(We will study friction forces in detail in Chapter 5.) The engine applies a force to
the wheels, attempting to rotate them so that the bottoms of the tires apply forces
backward on the road surface. By Newton’s third law, the road surface applies
forces in the forward direction on the tires, causing the car to move forward. If we
ignore air resistance, this force can be modeled as the net force on the automobile
in the horizontal direction.

In Chapter 2, we investigated the 0 to 60 mi/h acceleration of a number of vehi-
cles. Table 4.2 repeats this acceleration information and also shows the weight of
the vehicle in pounds and the mass in kilograms. With both the acceleration and
the mass, we can find the force driving the car forward, as shown in the last column
of Table 4.2.

We can see some interesting results in Table 4.2. Notice that the forces in the
performance vehicle section are all large compared with forces in the other parts of
the table. Notice also that the masses of performance vehicles are similar to those
of the non-SUV vehicles in the traditional vehicle portion of the table. Thus, the
large forces for the performance vehicles translate into the very large accelerations
exhibited by these vehicles. One standout in this portion of the table is the Lam-
borghini Diablo GT. The driving force on it is 15% larger than the next largest, the
Porsche 911 GT2. This vehicle is not the most massive in the group, so the large
force results in the largest acceleration in the group. The other car with the same
acceleration, the Ferrari F50, has a mass only 81% of that of the Lamborghini. Con-
sequently, although the force on the Ferrari is higher than the average in the
group, it is only the fourth largest.

As expected, the forces exerted on the traditional vehicles are smaller than
those of the performance vehicles, corresponding to the smaller accelerations of

4.8



SUMMARY ❚ 115

this group. Notice, however, that the forces for the two SUVs are large. Because
these two vehicles have accelerations that are somewhat similar to those of the
other vehicles in this portion of the table, we can identify these large forces as be-
ing required to accelerate the larger mass of the SUVs.

Also as expected, the forces driving the two hybrid vehicles, the Toyota Prius
and the Honda Insight, are the lowest in the table. This finding is consistent with
the accelerations of these vehicles being much lower than those elsewhere in the
table. ■

Driving Forces on Various VehiclesTABLE 4.2

Model Acceleration Weight Mass
Automobile Year (mi/h� s) (lb) (kg) Force (N)

Performance vehicles:
Aston Martin DB7 Vantage 2001 12.0 3 285 1 493 8.01 
 103

BMW Z8 2001 13.0 3 215 1 461 8.52 
 103

Chevrolet Corvette 2000 13.0 3 115 1 416 8.25 
 103

Dodge Viper GTS-R 1998 14.3 2 865 1 302 8.32 
 103

Ferrari F50 1997 16.7 2 655 1 207 8.99 
 103

Ferrari 360 Spider F1 2000 13.0 3 400 1 545 9.01 
 103

Lamborghini Diablo GT 2000 16.7 3 285 1 493 11.12 
 103

Porsche 911 GT2 2002 15.0 3 175 1 443 9.68 
 103

Traditional vehicles:
Acura Integra GS 2000 7.6 2 725 1 239 4.20 
 103

BMW Mini Cooper S 2003 8.7 2 678 1 217 4.73 
 103

Cadillac Escalade (SUV) 2002 7.0 5 542 2 519 7.86 
 103

Dodge Stratus 2002 8.0 3 192 1 451 5.19 
 103

Lexus ES300 1997 7.0 3 296 1 498 4.67 
 103

Mitsubishi Eclipse GT 2000 8.6 3 186 1 448 5.55 
 103

Nissan Maxima 2000 9.0 3 221 1 464 5.86 
 103

Pontiac Grand Prix 2003 7.1 3 384 1 538 4.85 
 103

Toyota Sienna (SUV) 2004 7.2 3 912 1 778 5.74 
 103

Volkswagen Beetle 1999 7.9 2 771 1 260 4.44 
 103

Alternative vehicles:
GM EV1 1998 7.9 2 970 1 350 4.76 
 103

Toyota Prius 2004 4.7 2 765 1 257 2.65 
 103

Honda Insight 2001 5.2 1 967 894 2.07 
 103

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

Newton’s first law states that if an object does not interact with
other objects, it is possible to identify a reference frame in
which the object has zero acceleration. Thus, if we observe an
object from such a frame and no force is exerted on the object,
an object at rest remains at rest and an object in uniform mo-
tion in a straight line maintains that motion.

Newton’s first law defines an inertial frame of reference,
which is a frame in which Newton’s first law is valid.

Newton’s second law states that the acceleration of an object
is directly proportional to the net force acting on the object
and inversely proportional to the object’s mass. Therefore, the
net force on an object equals the product of the mass of the ob-
ject and its acceleration, or

[4.2]

The weight of an object is equal to the product of its mass (a
scalar quantity) and the magnitude of the free-fall acceleration,
or

[4.5]

If the acceleration of an object is zero, the object is modeled
as a particle in equilibrium, with the appropriate equations
being

[4.8]

Newton’s third law states that if two objects interact, the
force exerted by object 1 on object 2 is equal in magnitude but
opposite in direction to the force exerted by object 2 on object
1. Therefore, an isolated force cannot exist in nature.

� Fy � 0� Fx � 0

Fg � mg

� F
:

� ma:

SUMMARY

www.pop4e.com
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. A ball is held in a person’s hand. (a) Identify all the
external forces acting on the ball and the reaction to each.
(b) If the ball is dropped, what force is exerted on it while
it is falling? Identify the reaction force in this case. 

2. What is wrong with the statement, “Because the car is at
rest, there are no forces acting on it”? How would you
correct this sentence?

In the motion picture It Happened One Night (Columbia
Pictures, 1934), Clark Gable is standing inside a stationary
bus in front of Claudette Colbert, who is seated. The bus
suddenly starts moving forward and Clark falls into
Claudette’s lap. Why did that happen?

4. As you sit in a chair, the chair pushes up on you with a
normal force. The force is equal to your weight and in the
opposite direction. Is this force the Newton’s third law
reaction to your weight?

5. A passenger sitting in the rear of a bus claims that she was
injured as the driver slammed on the brakes, causing a
suitcase to come flying toward her from the front of the
bus. If you were the judge in this case, what disposition
would you make? Why?

6. A space explorer is moving through space in a space ship
far from any planet or star. She notices a large rock, taken
as a specimen from an alien planet, floating around the
cabin of the ship. Should she push it gently or kick it
toward the storage compartment? Why?

A rubber ball is dropped onto the floor. What force causes
the ball to bounce?

8. While a football is in flight, what forces act on it? What are
the action–reaction pairs while the football is being kicked
and while it is in flight?

9. If gold were sold by weight, would you rather buy it in
Denver or in Death Valley? If it were sold by mass, at which
of the two locations would you prefer to buy it? Why?

10. If you hold a horizontal metal bar several centimeters
above the ground and move it through grass, each leaf of
grass bends out of the way. If you increase the speed of the
bar, each leaf of grass will bend more quickly. How then
does a rotary power lawn mower manage to cut grass? How
can it exert enough force on a leaf of grass to shear it off?

A weightlifter stands on a bathroom scale. He pumps a bar-
bell up and down. What happens to the reading on the
bathroom scale as he does so? What if he is strong enough
to actually throw the barbell upward? How does the reading
on the scale vary now?

12. The mayor of a city decides to fire some city employees be-
cause they will not remove the obvious sags from the cables
that support the city traffic lights. If you were a lawyer, what
defense would you give on behalf of the employees? Who
do you think would win the case in court?

13. Suppose a truck loaded with sand accelerates along a high-
way. If the driving force on the truck remains constant,

11.

7.

3.

what happens to the truck’s acceleration if its trailer leaks
sand at a constant rate through a hole in its bottom?

14. As a rocket is fired from a launching pad, its speed and ac-
celeration increase with time as its engines continue to op-
erate. Explain why that occurs even though the thrust of
the engines remains constant.

15. Twenty people participate in a tug-of-war. The two teams of
ten people are so evenly matched that neither team wins.
After the game they notice that one person’s car is mired
in mud. They attach the tug-of-war rope to the bumper of
the car, and all the people pull on the rope. The heavy car
has just moved a couple of decimeters when the rope
breaks. Why did the rope break in this situation when it
did not break when the same twenty people pulled on it in
a tug-of-war?

16. “When the locomotive in Figure Q4.16 broke through the
wall of the train station, the force exerted by the locomo-
tive on the wall was greater than the force the wall could
exert on the locomotive.” Is this statement true or in need
of correction? Explain your answer.

FIGURE Q4.16
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17. An athlete grips a light rope that passes over a low-friction
pulley attached to the ceiling of a gym. A sack of sand pre-
cisely equal in weight to the athlete is tied to the rope’s
other end. Both the sand and the athlete are initially at
rest. The athlete climbs the rope, sometimes speeding up
and slowing down as he does so. What happens to the sack
of sand? Explain.

18. If action and reaction forces are always equal in magnitude
and opposite in direction to each other, doesn’t the net
vector force on any object necessarily add up to zero?
Explain your answer. 

19. Can an object exert a force on itself? Argue for your answer.
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PROBLEMS

(a)

90.0°

F2

F1m

(b)

60.0°

F2

F1m

FIGURE P4.7

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions Man-

ual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 4.3 � Mass
1. A force applied to an object of mass m1 produces an

acceleration of 3.00 m/s2. The same force applied to a
second object of mass m2 produces an acceleration of
1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If
m 1 and m2 are combined, find their acceleration under
the action of the force .

2. (a) A car with a mass of 850 kg is moving to the right with a
constant speed of 1.44 m/s. What is the total force on the
car? (b) What is the total force on the car if it is moving to
the left?

Section 4.4 � Newton’s Second Law—The Particle 
Under a Net Force

3. A 3.00-kg object undergoes an acceleration given by 
. Find the resultant force acting

on it and the magnitude of the resultant force.

4. Two forces, and ,
act on a particle of mass 2.00 kg that is initially at rest at
coordinates (� 2.00 m, � 4.00 m). (a) What are the com-
ponents of the particle’s velocity at t � 10.0 s? (b) In what
direction is the particle moving at t � 10.0 s? (c) What dis-
placement does the particle undergo during the first
10.0 s? (d) What are the coordinates of the particle at 
t � 10.0 s?

To model a spacecraft, a toy rocket en-
gine is securely fastened to a large puck that can glide with
negligible friction over a horizontal surface, taken as the
xy plane. The 4.00-kg puck has a velocity of at 
one instant. Eight seconds later, its velocity is to be

. Assuming that the rocket engine
exerts a constant horizontal force, find (a) the compo-
nents of the force and (b) its magnitude.

6. A 3.00-kg object is moving in a plane, with its x and y coor-
dinates given by x � 5t2 � 1 and y � 3t 3 � 2, where x and
y are in meters and t is in seconds. Find the magnitude of
the net force acting on this object at t � 2.00 s.

Two forces and act on a 5.00-kg object. If F1 � 20.0 N
and F2 � 15.0 N, find the accelerations in (a) and (b) of
Figure P4.7.

8. Three forces, given by ,
, and , act on an

object to give it an acceleration of magnitude 3.75 m/s2.
F
:

3 �  (�45.0 î)  NF
:

2 � (5.00 î � 3.00 ĵ)  N
F
:

1 �  (�2.00 î  � 2.00 ĵ)  N

F
:

2F
:

17.

(8.00 î � 10.0 ĵ)  m/s

3.00 î   m/s

5.

F
:

2 � (�3 î � 7 ĵ) NF
:

1 � (�6 î � 4 ĵ) N

a: � (2.00 î  �  5.00 ĵ)  m/s2

F
:

F
:

(a) What is the direction of the acceleration? (b) What is
the mass of the object? (c) If the object is initially at rest,
what is its speed after 10.0 s? (d) What are the velocity
components of the object after 10.0 s?

Section 4.5 � The Gravitational Force and Weight
9. A woman weighs 120 lb. Determine (a) her weight in new-

tons and (b) her mass in kilograms.

10. If a man weighs 900 N on the Earth, what would he weigh
on Jupiter, where the free-fall acceleration is 25.9 m/s2?

11. The distinction between mass and weight was discovered
after Jean Richer transported pendulum clocks from Paris,
France, to Cayenne, French Guiana in 1671. He found that
they quite systematically ran slower in Cayenne than in
Paris. The effect was reversed when the clocks returned to
Paris. How much weight would you personally lose in trav-
eling from Paris, where g � 9.809 5 m/s2, to Cayenne,
where g � 9.780 8 m/s2? (We will consider how the free-
fall acceleration influences the period of a pendulum in
Section 12.4.)

12. The gravitational force on a baseball is . A pitcher
throws the baseball with velocity by uniformly accelerat-
ing it straight forward horizontally for a time interval 
�t � t � 0 � t. If the ball starts from rest, (a) through
what distance does it accelerate before its release? 
(b) What force does the pitcher exert on the ball?

An electron of mass 9.11 � 10�31 kg has an initial speed of
3.00 � 105 m/s. It travels in a straight line, and its speed
increases to 7.00 � 105 m/s in a distance of 5.00 cm. As-
suming that its acceleration is constant, (a) determine the
net force exerted on the electron and (b) compare this
force with the weight of the electron.

14. Besides its weight, a 2.80-kg object is subjected to one
other constant force. The object starts from rest and
in 1.20 s experiences a displacement of 
where the direction of is the upward vertical direction.
Determine the other force.

Section 4.6 � Newton’s Third Law
15. You stand on the seat of a chair and then hop off. (a) Dur-

ing the time you are in flight down to the floor, the Earth
is lurching up toward you with an acceleration of what or-
der of magnitude? In your solution, explain your logic.
Model the Earth as a perfectly solid object. (b) The Earth
moves up through a distance of what order of magnitude?

ĵ
(4.20 î  � 3.30 ĵ)  m,

13.

v î
�Fg ĵ

www.pop4e.com
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16. The average speed of a nitrogen molecule in air is about
6.70 � 102 m/s, and its mass is 4.68 � 10�26 kg. (a) If it
takes 3.00 � 10�13 s for a nitrogen molecule to hit a wall
and rebound with the same speed but moving in the oppo-
site direction, what is the average acceleration of the mole-
cule during this time interval? (b) What average force does
the molecule exert on the wall?

17. A 15.0-lb block rests on the floor. (a) What force does the
floor exert on the block? (b) A rope is tied to the block
and is run vertically over a pulley. The other end of the
rope is attached to a free-hanging 10.0-lb weight. What is
the force exerted by the floor on the 15.0-lb block? (c) If
we replace the 10.0-lb weight in part (b) with a 20.0-lb
weight, what is the force exerted by the floor on the 15.0-lb
block?

Section 4.7 � Applications of Newton’s Laws
18. A bag of cement of weight 325 N hangs in equilibrium

from three wires as suggested in Figure P4.18. Two of the
wires make angles �1 � 60.0° and �2 � 25.0° with the hori-
zontal. Find the tensions T1, T2, and T3 in the wires. 

forces as constant over a short interval of time to find the
velocity of the boat 0.450 s after the moment described.

21. You are a judge in a children’s kite-flying contest, and two
children will win prizes for the kites that pull most strongly
and least strongly on their strings. To measure string ten-
sions, you borrow a weight hanger, some slotted weights,
and a protractor from your physics teacher, and you use
the following protocol, illustrated in Figure P4.21: Wait for
a child to get her kite well controlled, hook the hanger
onto the kite string about 30 cm from her hand, pile on
weight until that section of string is horizontal, record the
mass required, and record the angle between the horizon-
tal and the string running up to the kite. (a) Explain how
this method works. As you construct your explanation,
imagine that the children’s parents ask you about your
method, that they might make false assumptions about
your ability without concrete evidence, and that your

20. Figure P4.20 shows a worker poling a boat—a very efficient
mode of transportation—across a shallow lake. He pushes
parallel to the length of the light pole, exerting on the bot-
tom of the lake a force of 240 N. The pole lies in the verti-
cal plane containing the keel of the boat. At one moment
the pole makes an angle of 35.0° with the vertical and the
water exerts a horizontal drag force of 47.5 N on the boat,
opposite to its forward motion at 0.857 m/s. The mass of
the boat including its cargo and the worker is 370 kg. 
(a) The water exerts a buoyant force vertically upward on
the boat. Find the magnitude of this force. (b) Model the

1θ 2θ

T1 T2

T3

FIGURE P4.18  Problems 4.18 and 4.19.

FIGURE P4.20

FIGURE P4.21

A bag of cement of weight Fg hangs in equilibrium from
three wires as shown in Figure P4.18. Two of the wires
make angles �1 and �2 with the horizontal. Show that the
tension in the left-hand wire is

T1 �
Fg cos �2

sin (�1 � �2)

19.
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explanation is an opportunity to give them confidence in
your evaluation technique. (b) Find the string tension as-
suming that the mass is 132 g and the angle of the kite
string is 46.3°.

22. The systems shown in Figure P4.22 are in equilibrium. If
the spring scales are calibrated in newtons, what do they
read? (Ignore the masses of the pulleys and strings, and
assume that the incline is frictionless.)

25. Two people pull as hard as they can on horizontal ropes at-
tached to a boat that has a mass of 200 kg. If they pull in
the same direction, the boat has an acceleration of
1.52 m/s2 to the right. If they pull in opposite directions,
the boat has an acceleration of 0.518 m/s2 to the left. What
is the magnitude of the force each person exerts on the
boat? Disregard any other horizontal forces on the boat.

26. Draw a free-body diagram of a block that slides down a
frictionless plane having an inclination of � � 15.0°
(Fig. P4.26). Assuming that the block starts from rest at the
top and that the length of the incline is 2.00 m, find 
(a) the acceleration of the block and (b) its speed when it
reaches the bottom of the incline.

50.0°40.0°

T1 T2

T3

5.00 kg

(a)

60.0°

T1

T3

10.0 kg

(b)

T2

FIGURE P4.24

5.00 kg

9.00 kg

FIGURE P4.28

θ

FIGURE P4.26 Problems 4.26, 4.29, and 4.46.

1

30.0°

F2

a = 10.0 m/s2

1.00 kg
F

FIGURE P4.27

5.00 kg

(a)

5.00 kg

5.00 kg 5.00 kg

(b)

5.00 kg

(c)

30.0°

FIGURE P4.22

28. A 5.00-kg object placed on a frictionless, horizontal table is
connected to a cable that passes over a pulley and then is
fastened to a hanging 9.00-kg object as shown in Figure
P4.28. Draw free-body diagrams of both objects. Find the
acceleration of the two objects and the tension in the
string.

A 1.00-kg object is observed to accelerate
at 10.0 m/s2 in a direction 30.0° north of east (Fig. P4.27).
The force acting on the object has magnitude 5.00 N
and is directed north. Determine the magnitude and direc-
tion of the force acting on the object.F

:
1

F
:

2

27.

23. A simple accelerometer is constructed inside a car by sus-
pending an object of mass m from a string of length L that
is tied to the car’s ceiling. As the car accelerates the
string–object system makes a constant angle of � with the
vertical. (a) Assuming that the string mass is negligible
compared with m, derive an expression for the car’s accel-
eration in terms of � and show that it is independent of the
mass m and the length L. (b) Determine the acceleration
of the car when � � 23.0°.

24. Figure P4.24 shows loads hanging from the ceiling of an el-
evator that is moving at constant velocity. Find the tension
in each of the three strands of cord supporting each load.
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m2
m1

θ

FIGURE P4.30

A block is given an initial velocity of 
5.00 m/s up a frictionless 20.0° incline (Fig. P4.26). How
far up the incline does the block slide before coming to
rest?

30. Two objects are connected by a light string that passes over
a frictionless pulley as shown in Figure P4.30. Draw free-
body diagrams of both objects. The incline is frictionless,
and m1 � 2.00 kg, m2 � 6.00 kg, and � � 55.0°. Find
(a) the accelerations of the objects, (b) the tension in the
string, and (c) the speed of each of the objects 2.00 s after
they are released simultaneously from rest. 

29. 32. Two objects with masses of 3.00 kg and 5.00 kg are con-
nected by a light string that passes over a light frictionless
pulley to form an Atwood machine as shown in Active Fig-
ure 4.12a. Determine (a) the tension in the string, (b) the
acceleration of each object, and (c) the distance each ob-
ject will move in the first second of motion if they start
from rest.

33. In Figure P4.33, the man and the platform together weigh
950 N. The pulley can be modeled as frictionless. Deter-
mine how hard the man has to pull on the rope to lift him-
self steadily upward above the ground. (Or is it impossible?
If so, explain why.)

31. A car is stuck in the mud. A tow truck pulls on the car with
a force of 2 500 N as shown in Fig. P4.31. The tow cable is
under tension and therefore pulls downward and to the
left on the pin at its upper end. The light pin is held in
equilibrium by forces exerted by the two bars A and B.
Each bar is a strut; that is, each is a bar whose weight is
small compared to the forces it exerts and which exerts
forces only through hinge pins at its ends. Each strut
exerts a force directed parallel to its length. Determine the
force of tension or compression in each strut. Proceed as
follows. Make a guess as to which way (pushing or pulling)
each force acts on the top pin. Draw a free-body diagram
of the pin. Use the condition for equilibrium of the pin to
translate the free-body diagram into equations. From the
equations calculate the forces exerted by struts A and B. If
you obtain a positive answer, you correctly guessed the
direction of the force. A negative answer means that the
direction should be reversed, but the absolute value
correctly gives the magnitude of the force. If a strut pulls
on a pin, it is in tension. If it pushes, the strut is in
compression. Identify whether each strut is in tension or in
compression.

34. In the Atwood machine shown in Active Figure 4.12a, 
m1 � 2.00 kg and m2 � 7.00 kg. The masses of the pulley
and string are negligible by comparison. The pulley turns
without friction, and the string does not stretch. The
lighter object is released with a sharp push that sets it into
motion at vi � 2.40 m/s downward. (a) How far will m1 de-
scend below its initial level? (b) Find the velocity of m1 af-
ter 1.80 s.

In the system shown in Figure P4.35, a
horizontal force acts on the 8.00-kg object. The hori-
zontal surface is frictionless. (a) For what values of Fx does
the 2.00-kg object accelerate upward? (b) For what values
of Fx is the tension in the cord zero? (c) Plot the accelera-
tion of the 8.00-kg object versus Fx . Include values of Fx
from � 100 N to � 100 N.

F
:

x

35.

60.0°
50.0°A

B

FIGURE P4.31

FIGURE P4.33

8.00
kg

2.00
kg

Fx

FIGURE P4.35
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36. A frictionless plane is 10.0 m long and inclined at 35.0°. A
sled starts at the bottom with an initial speed of 5.00 m/s
up the incline. When it reaches the point at which it mo-
mentarily stops, a second sled is released from the top of
this incline with an initial speed vi . Both sleds reach the
bottom of the incline at the same moment. (a) Determine
the distance that the first sled traveled up the incline. 
(b) Determine the initial speed of the second sled.

A 72.0-kg man stands on a spring scale in an elevator. Start-
ing from rest, the elevator ascends, attaining its maximum
speed of 1.20 m/s in 0.800 s. It travels with this constant
speed for the next 5.00 s. The elevator then undergoes a
uniform acceleration in the negative y direction for 1.50 s
and comes to rest. What does the spring scale register 
(a) before the elevator starts to move, (b) during the first
0.800 s, (c) while the elevator is traveling at constant
speed, and (d) during the time it is slowing down?

38. An object of mass m1 on a frictionless horizontal table is
connected to an object of mass m2 through a very light pul-
ley P1 and a light fixed pulley P2 as shown in Figure P4.38.
(a) If a1 and a2 are the accelerations of m1 and m2, respec-
tively, what is the relation between these accelerations? Ex-
press (b) the tensions in the strings and (c) the accelera-
tions a1 and a 2 in terms of g and the masses m1 and m2.

37.

connected to a rope that passes over a frictionless pulley
(Fig. P4.41), Pat pulls on the loose end of the rope with
such a force that the spring scale reads 250 N. Pat’s true
weight is 320 N, and the chair weighs 160 N. (a) Draw free-
body diagrams for Pat and the chair considered as separate
systems and another diagram for Pat and the chair consid-
ered as one system. (b) Show that the acceleration of the
system is upward and find its magnitude. (c) Find the force
Pat exerts on the chair.

FIGURE P4.41  Problems 4.41 and 4.42.

m1 m2 m3F

FIGURE P4.43

m2

P2
P1

m1

FIGURE P4.38

Section 4.8 � Context Connection — Forces 
on Automobiles

39. A young woman buys an inexpensive used car for stock car
racing. It can attain highway speed with an acceleration of
8.40 mi/h � s. By making changes to its engine, she can
increase the net horizontal force on the car by 24.0%. With
much less expense, she can remove material from the body
of the car to decrease its mass by 24.0%. (a) Which of
these two changes, if either, will result in the greater
increase in the car’s acceleration? (b) If she makes both
changes, what acceleration can she attain? 

40. A 1 000-kg car is pulling a 300-kg trailer. Together the 
car and trailer move forward with an acceleration of 
2.15 m/s2. Ignore any force of air drag on the car and all
frictional forces on the trailer. Determine (a) the net force
on the car, (b) the net force on the trailer, (c) the force ex-
erted by the trailer on the car, and (d) the resultant force
exerted by the car on the road.

Additional Problems
An inventive child named Pat wants to reach an apple in a
tree without climbing the tree. While sitting in a chair

41.

42. In the situation described in Problem 4.41 and Figure
P4.41, the masses of the rope, spring balance, and pulley
are negligible. Pat’s feet are not touching the ground. 
(a) Assume that Pat is momentarily at rest when he stops
pulling down on the rope and passes the end of the rope
to another child, of weight 440 N, who is standing on the
ground next to him. The rope does not break. Describe
the ensuing motion. (b) Instead, assume that Pat is mo-
mentarily at rest when he ties the rope to a strong hook
projecting from the tree trunk. Explain why this action can
make the rope break.

43. Three blocks are in contact with one another on a friction-
less, horizontal surface as shown in Figure P4.43. A hori-
zontal force is applied to m1. Taking m1 � 2.00 kg, 
m2 � 3.00 kg, m3 � 4.00 kg, and F � 18.0 N, draw a sepa-
rate free-body diagram for each block and find (a) the ac-
celeration of the blocks, (b) the resultant force on each
block, and (c) the magnitudes of the contact forces be-
tween the blocks. (d) You are working on a construction
project. A coworker is nailing up plasterboard on one side
of a light partition, and you are on the opposite side, pro-
viding “backing” by leaning against the wall with your back
pushing on it. Every hammer blow makes your back sting.

F
:
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m

θ

h

H

R

FIGURE P4.44  Problems 4.44 and 4.55.

The supervisor helps you put a heavy block of wood be-
tween the wall and your back. Using the situation analyzed
in parts (a), (b), and (c) as a model, explain how this
change works to make your job more comfortable.

44. Review problem. A block of mass m � 2.00 kg is released
from rest at h � 0.500 m above the surface of a table, at
the top of a � � 30.0° incline as shown in Figure P4.44.
The frictionless incline is fixed on a table of height
H � 2.00 m. (a) Determine the acceleration of the block as
it slides down the incline. (b) What is the velocity of the
block as it leaves the incline? (c) How far from the table
will the block hit the floor? (d) What time interval elapses
between when the block is released and when it hits the
floor? (e) Does the mass of the block affect any of the
above calculations? 

(a) the tension in each section of rope, T1, T2, T3, T4, and
T5 and (b) the magnitude of . Suggestion: Draw a free-
body diagram for each pulley.

46. A student is asked to measure the acceleration of a
cart on a “frictionless” inclined plane as shown in Figure
P4.26 and analyzed in Example 4.3, using an air track, a
stopwatch, and a meter stick. The height of the incline is
measured to be 1.774 cm, and the total length of the 
incline is measured to be d � 127.1 cm. Hence, the 
angle of inclination � is determined from the relation 
sin � � 1.774/127.1. The cart is released from rest at the
top of the incline, and its position x along the incline is
measured as a function of time, where x � 0 refers to the
initial position of the cart. For x values of 10.0 cm, 20.0 cm,
35.0 cm, 50.0 cm, 75.0 cm, and 100 cm, the measured times
at which these positions are reached (averaged over five
runs) are 1.02 s, 1.53 s, 2.01 s, 2.64 s, 3.30 s, and 3.75 s, 
respectively. Construct a graph of x versus t2 and perform a
linear least-squares fit to the data. Determine the accelera-
tion of the cart from the slope of this graph and compare
it with the value you would get using a � g sin �, where 
g � 9.80 m/s2.

What horizontal force must be applied to the cart shown in
Figure P4.47 so that the blocks remain stationary relative
to the cart? Assume that all surfaces, wheels, and pulley are
frictionless. (Suggestion: Note that the force exerted by the
string accelerates m1.)

47.

F
:

An object of mass M is held in place by
an applied force and a pulley system as shown in Figure
P4.45. The pulleys are massless and frictionless. Find 

F
:

45.

48. Initially, the system of objects shown in Figure P4.47 is held
motionless. The pulley and all surfaces and wheels are fric-
tionless. Let the force be zero and assume that m2 can
move only vertically. At the instant after the system of ob-
jects is released, find (a) the tension T in the string, 
(b) the acceleration of m2, (c) the acceleration of M, and
(d) the acceleration of m1. (Note: The pulley accelerates
along with the cart.)

49. A 1.00-kg glider on a horizontal air track is pulled by a
string at an angle �. The taut string runs over a pulley and
is attached to a hanging object of mass 0.500 kg as shown
in Figure P4.49. (a) Show that the speed vx of the glider
and the speed �y of the hanging object are related by 
vx � uvy , where u � z(z2 � h0

2)�1/2. (b) The glider is re-
leased from rest. Show that at that instant the acceleration
ax of the glider and the acceleration ay of the hanging ob-
ject are related by ax � uay . (c) Find the tension in the
string at the instant the glider is released for h0 � 80.0 cm
and � � 30.0°.

F
:

T4

T1 T2 T3

T5

F
M

FIGURE P4.45

m1

m2
F M

FIGURE P4.47  Problems 4.47 and 4.48.
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51. If you jump from a desktop and land stiff-legged on a
concrete floor, you run a significant risk that you will break
a leg. To see how that happens, consider the average force
stopping your body when you drop from rest from a height
of 1.00 m and stop in a much shorter distance d. Your leg is
likely to break at the point where the cross-sectional area
of the bone (the tibia) is smallest. This point is just above
the ankle, where the cross-sectional area of one bone is
about 1.60 cm2. A bone will fracture when the compressive
stress on it exceeds about 1.60 � 108 N/m2. If you land on
both legs, the maximum force that your ankles can safely
exert on the rest of your body is then about

2(1.60 � 108 N/m2)(1.60 � 10�4 m2) � 5.12 � 104 N.

Calculate the minimum stopping distance d that will not
result in a broken leg if your mass is 60.0 kg. Don’t try it!
Bend your knees!

52. Any device that allows you to increase the force you exert is
a kind of machine. Some machines, such as the prybar or
the inclined plane, are very simple. Some machines do not
even look like machines. For example, your car is stuck in
the mud and you can’t pull hard enough to get it out. You
do, however, have a long cable that you connect taut be-
tween your front bumper and the trunk of a stout tree. You
now pull sideways on the cable at its midpoint, exerting a
force f. Each half of the cable is displaced through a small
angle � from the straight line between the ends of the ca-
ble. (a) Deduce an expression for the force acting on the
car. (b) Evaluate the cable tension for the case where 
� � 7.00° and f � 100 N.

A van accelerates down a hill (Fig. P4.53), going from rest
to 30.0 m/s in 6.00 s. During the acceleration, a toy 
(m � 0.100 kg) hangs by a string from the van’s ceiling.
The acceleration is such that the string remains perpendic-
ular to the ceiling. Determine (a) the angle � and (b) the
tension in the string.

53.
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θ vy
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m

FIGURE P4.49

θ

θ

FIGURE P4.53

3.50 kg 8.00 kg

35.0° 35.0°

FIGURE P4.54  Problems 4.54 and 5.41.
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FIGURE P4.50

50. Cam mechanisms are used in many machines. For exam-
ple, cams open and close the valves in your car engine to
admit gasoline vapor to each cylinder and to allow the
escape of exhaust. The principle is illustrated in
Figure P4.50, showing a follower rod (also called a
pushrod) of mass m resting on a wedge of mass M. The
sliding wedge duplicates the function of a rotating eccen-
tric disk on a car’s camshaft. Assume that there is no fric-
tion between the wedge and the base, between the
pushrod and the wedge, or between the rod and the guide
through which it slides. When the wedge is pushed to the
left by the force , the rod moves upward and does some-
thing such as opening a valve. By varying the shape of the
wedge, the motion of the follower rod could be made
quite complex, but assume that the wedge makes a con-
stant angle of � � 15.0°. Suppose you want the wedge and
the rod to start from rest and move with constant accelera-
tion, with the rod moving upward 1.00 mm in 8.00 ms.
Take m � 0.250 kg and M � 0.500 kg. What force F must
be applied to the wedge?

F
:

54. Two blocks of mass 3.50 kg and 8.00 kg are connected by a
massless string that passes over a frictionless pulley
(Fig. P4.54). The inclines are frictionless. Find (a) the
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magnitude of the acceleration of each block and (b) the
tension in the string.

55. In Figure P4.44, the incline has mass M and is fastened to
the stationary horizontal tabletop. The block of mass m is
placed near the bottom of the incline and is released with
a quick push that sets it sliding upward. It stops near the
top of the incline, as shown in the figure, and then slides
down again, always without friction. Find the force that 
the tabletop exerts on the incline throughout this 
motion.

56. An 8.40-kg object slides down a fixed, frictionless in-
clined plane. Use a computer to determine and tabulate
the normal force exerted on the object and its acceleration
for a series of incline angles (measured from the horizon-
tal) ranging from 0° to 90° in 5° increments. Plot a graph
of the normal force and the acceleration as functions of
the incline angle. In the limiting cases of 0° and 90°, are
your results consistent with the known behavior?

57. A mobile is formed by supporting four metal butterflies of
equal mass m from a string of length L. The points of 
support are evenly spaced a distance � apart as shown in
Figure P4.57. The string forms an angle �1 with the ceiling
at each end point. The center section of string is
horizontal. (a) Find the tension in each section of string in

�

��
�

D

1
2�

m

m

m

m

L = 5�

θ 1θ
θ 2θ

FIGURE P4.57

terms of �1, m, and g. (b) In terms of �1, find the angle �2
that the sections of string between the outside butterflies
and the inside butterflies form with the horizontal.
(c) Show that the distance D between the end points of the
string is

D �
L
5

 (2 cos �1 � 2 cos[tan�1(1
2 tan�1)] � 1)

ANSWERS TO QUICK QUIZZES

4.1 (d). Choice (a) is true. Newton’s first law tells us that mo-
tion requires no force: An object in motion continues to
move at constant velocity in the absence of external
forces. Choice (b) is also true: A stationary object can
have several forces acting on it, but if the vector sum of
all these external forces is zero, there is no net force and
the object remains stationary. 

4.2 (a). If a single force acts, this force constitutes the net
force and there is an acceleration according to Newton’s
second law.

4.3 (d). With twice the force, the object will experience twice
the acceleration. Because the force is constant, the accel-
eration is constant, and the speed of the object, starting
from rest, is given by v � at. With twice the acceleration,
the object will arrive at speed v at half the time.

4.4 (b). Because the value of g is smaller on the Moon than
on the Earth, more mass of gold would be required to
represent 1 N of weight on the Moon. Therefore, your
friend on the Moon is richer, by about a factor of 6!

4.5 (c), (d). In accordance with Newton’s third law, the fly
and the bus experience forces that are equal in magni-

tude but opposite in direction. Because the fly has such a
small mass, Newton’s second law tells us that it under-
goes a very large acceleration. The huge mass of the bus
means that it more effectively resists any change in its
motion and exhibits a small acceleration.

4.6 (c). The reaction force to the gravitational force on you
is an upward gravitational force on the Earth caused by
you.

4.7 (c). The scale is in equilibrium in both situations, so it
experiences a net force of zero. Because each individual
pulls with a force F and there is no acceleration, each in-
dividual is in equilibrium. Therefore, the tension in the
ropes must be equal to F. In case (i), the individual pulls
with force F on a spring mounted rigidly to a brick wall.
The resulting tension F in the rope causes the scale to
read a force F. In case (ii), the individual on the left can
be modeled as simply holding the rope tightly while the
individual on the right pulls. Therefore, the individual
on the left is doing the same thing that the wall does in
case (i). The resulting scale reading is the same whether
a wall or a person is holding the left side of the scale.



In Chapter 4, we introduced Newton’s laws of motion and ap-
plied them to situations in which we ignored friction. In this
chapter, we shall expand our investigation to objects moving

in the presence of friction, which will allow us to model situations
more realistically. Such objects include those sliding on rough
surfaces and those moving through viscous media such as liquids
and air. We also apply Newton’s laws to the dynamics of circular
motion so that we can understand more about objects moving in
circular paths under the influence of various types of forces.

More Applications 
of Newton’s Laws

C H A P T E R 5

C H A P T E R  O U T L I N E
5.1 Forces of Friction
5.2 Newton’s Second Law Applied to a Particle

in Uniform Circular Motion
5.3 Nonuniform Circular Motion
5.4 Motion in the Presence of Velocity-

Dependent Resistive Forces
5.5 The Fundamental Forces of Nature
5.6 Context Connection — Drag Coefficients

of Automobiles
SUMMARY

The London Eye, a ride on the River Thames in
downtown London. Riders travel in a large 
vertical circle for a breathtaking view of the city.
In this chapter, we will study the forces 
involved in circular motion.
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FORCES  OF  FRICTION
When an object moves either on a surface or through a viscous medium such as air
or water, there is resistance to the motion because the object interacts with its sur-
roundings. We call such resistance a force of friction. Forces of friction are very im-
portant in our everyday lives. They allow us to walk or run and are necessary for the
motion of wheeled vehicles.

Imagine you are working in your garden and have filled a trash can with yard
clippings. You then try to drag the trash can across the surface of your concrete
patio as in Active Figure 5.1a. The patio surface is real, not an idealized, frictionless
surface in a simplification model. If we apply an external horizontal force to the
trash can, acting to the right, the trash can remains stationary if is small. The
force that counteracts and keeps the trash can from moving acts to the left and is
called the force of static friction . As long as the trash can is not moving, it is
modeled as a particle in equilibrium and fs � F. Therefore, if is increased in mag-
nitude, the magnitude of also increases. Likewise, if decreases, also de-
creases. Experiments show that the friction force arises from the nature of the two
surfaces; because of their roughness, contact is made only at a few points, as shown
in the magnified surface view in Active Figure 5.1a.

If we increase the magnitude of , as in Active Figure 5.1b, the trash can eventu-
ally slips. When the trash can is on the verge of slipping, fs is a maximum as shown
in Active Figure 5.1c. If F exceeds fs,max, the trash can moves and accelerates to the
right. While the trash can is in motion, the friction force is less than fs,max
(Active Fig. 5.1c). We call the friction force for an object in motion the force of
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fk =    kn
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Static region

(c)
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Kinetic region
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Motion
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(a) The force of static friction 
between a trash can and a con-
crete patio is opposite the applied
force . The magnitude of the
force of static friction equals that
of the applied force. (b) When the
magnitude of the applied force ex-
ceeds the magnitude of the force
of kinetic friction , the trash can
accelerates to the right. (c) A
graph of the magnitude of the fric-
tion force versus that of the ap-
plied force. In our model, the
force of kinetic friction is indepen-
dent of the applied force and the
relative speed of the surfaces.
Note that fs,max � fk.

You can vary
the load in the trash can and prac-
tice sliding it on surfaces of vary-
ing roughness by logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 5.1. Note
the effect on the trash can’s 
motion and the corresponding 
behavior of the graph in (c).
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f
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ACTIVE FIGURE 5.1

www.pop4e.com


kinetic friction . The net force F � fk in the x direction produces an acceleration
to the right, according to Newton’s second law. If we reduce the magnitude of so
that F � fk, the acceleration is zero and the trash can moves to the right with con-
stant speed. If the applied force is removed, the friction force acting to the left pro-
vides an acceleration of the trash can in the �x direction and eventually brings it to
rest.

Experimentally, one finds that, to a good approximation, both fs,max and fk for
an object on a surface are proportional to the normal force exerted by the surface
on the object; thus, we adopt a simplification model in which this approximation is
assumed to be exact. The assumptions in this simplification model can be summa-
rized as follows:

• The magnitude of the force of static friction between any two surfaces in contact
can have the values

[5.1]

where the dimensionless constant �s is called the coefficient of static friction and
n is the magnitude of the normal force. The equality in Equation 5.1 holds when
the surfaces are on the verge of slipping, that is, when fs � fs,max � �sn. This situa-
tion is called impending motion. The inequality holds when the component of the
applied force parallel to the surfaces is less than this value.

• The magnitude of the force of kinetic friction acting between two surfaces is 

[5.2]

where �k is the coefficient of kinetic friction. In our simplification model, this
coefficient is independent of the relative speed of the surfaces.

• The values of �k and �s depend on the nature of the surfaces, but �k is generally
less than �s. Table 5.1 lists some measured values.

• The direction of the friction force on an object is opposite to the actual motion
(kinetic friction) or the impending motion (static friction) of the object relative
to the surface with which it is in contact.

The approximate nature of Equations 5.1 and 5.2 is easily demonstrated by try-
ing to arrange for an object to slide down an incline at constant speed. Especially at
low speeds, the motion is likely to be characterized by alternate stick and slip
episodes. The simplification model described in the bulleted list above has been de-
veloped so that we can solve problems involving friction in a relatively straightfor-
ward way.

fk � �kn

fs � �sn

F
:

f
:

k
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Coefficients of FrictionTABLE 5.1

�s �k

Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25–0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003

Note: All values are approximate.

■ Force of static friction

■ Force of kinetic friction

THE EQUAL SIGN IS USED IN LIMITED

SITUATIONS In Equation 5.1, the
equal sign is used only when the
surfaces are just about to break 
free and begin sliding. Do not fall
into the common trap of using 
fs � �sn in any static situation.

� PITFALL PREVENTION 5.1

THE DIRECTION OF THE FRICTION

FORCE Sometimes, an incorrect
statement about the friction force
between an object and a surface is
made—“The friction force on an
object is opposite to its motion or
impending motion”—rather than
the correct phrasing, “The friction
force on an object is opposite to its
motion or impending motion rela-
tive to the surface.” Think carefully
about Quick Quiz 5.2.

� PITFALL PREVENTION 5.2



Now that we have identified the characteristics of the friction force, we can
include the friction force in the net force on an object in the model of a particle
under a net force.
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You press your physics textbook flat against a vertical wall with your
hand, which applies a normal force perpendicular to the book. What is the direction of
the friction force on the book due to the wall? (a) downward (b) upward (c) out
from the wall (d) into the wall

QUICK QUIZ 5.1

A crate is located in the center of a flatbed truck. The truck acceler-
ates to the east and the crate moves with it, not sliding at all. What is the direction of 
the friction force exerted by the truck on the crate? (a) It is to the west. (b) It is to the
east. (c) No friction force exists because the crate is not sliding.

QUICK QUIZ 5.2

You are playing with your daughter in the snow. She sits on a sled and
asks you to slide her across a flat, horizontal field. You have a choice of (a) pushing her
from behind, by applying a force downward on her shoulders at 30° below the horizontal
(Fig. 5.2a) or (b) attaching a rope to the front of the sled and pulling with a force at 30°
above the horizontal (Fig 5.2b). Which would require less force for a given acceleration
of the daughter?

QUICK QUIZ 5.3

30°
F 30°

(a) (b)

F

FIGURE 5.2 (Quick Quiz 5.3) A father tries to slide his daughter on a sled over snow by (a) push-
ing downward on her shoulders or (b) pulling upward on a rope attached to the sled.
Which is easier?

■ Thinking Physics 5.1
In the motion picture The Abyss (Twentieth Century Fox, 1989), an underwater oil
exploration rig is located at the ocean bottom in very deep water. It is connected to
a ship on the ocean surface by a cable called an “umbilical cord” as suggested in
Figure 5.3a. On the ship, the umbilical cord is attached to a gantry. During a hurri-
cane, the gantry structure breaks loose from the ship, falls into the water, and sinks
to the bottom, passing over the edge of an extremely deep abyss. As a result, the rig
is dragged by the umbilical cord along the ocean bottom as described in Figure
5.3b. As the rig approaches the edge of the abyss, however, it is not pulled over the
edge but rather, stops just short of the edge as shown in Figure 5.3c. Is this scenario
purely a cinematic edge-of-the-seat situation, or do the principles of physics suggest
why the moving rig does not topple over the edge?

Reasoning Physics can explain this phenomenon. While the rig is being pulled
across the ocean floor (Fig. 5.3b), it is pulled by the section of the umbilical cord
that is almost horizontal and therefore almost parallel to the ocean floor. There-
fore, the rig is subject to two horizontal forces: the tension in the umbilical cord



pulling it forward and friction with the ocean floor pulling back. Let us assume that
these forces are equal in magnitude so that the rig moves with constant speed. As
the rig nears the edge of the abyss, the angle the umbilical cord makes with the
horizontal increases. As a result, the component of the force from the cord parallel
to the ocean floor decreases and the downward vertical component increases. As a
result of the increased vertical force, the rig is pulled downward more strongly to
the ocean floor, increasing the normal force on it and, in turn, increasing the fric-
tion force between the rig and the ocean floor. Therefore, with less force pulling it
forward (from the umbilical cord) and more force opposing the motion (as a result
of friction), the rig slows down. By the time the rig reaches the edge of the abyss,
the force from the umbilical cord is almost straight down (Fig. 5.3c), resulting in lit-
tle forward force. Furthermore, this large downward force pulls the rig into the
ocean floor, resulting in a very large friction force that stops the rig. ■
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Gantry

Bow of ship

"Umbilical cord"

Oil rig

(a) (b)

Abyss

"Umbilical cord" is almost
horizontal

Oil rig moves toward abyss

(c)

"Umbilical cord" is almost
vertical

Abyss

Oil rig stops
short of edge

FIGURE 5.3 (Thinking Physics 5.1) An oil rig at the bottom of the ocean is dragged by a cable.

The Skidding TruckEXAMPLE 5.1
The driver of an empty speeding truck slams on the
brakes and skids to a stop through a distance d.

If the truck carries a heavy load such that the mov-
ing mass is doubled, what would be its skidding dis-
tance if it starts from the same initial speed? 

Solution Figure 5.4 shows a free-body diagram for 
the skidding truck. The only force in the horizontal di-
rection is the friction force, which is assumed to be in-
dependent of speed in our simplification model for
friction. Therefore, from Newton’s second law,

� Fx � � fk � ma

A

fk

mg

n

g

n

f

FIGURE 5.4 (Example 5.1) A truck skids to a stop.



(Example 5.2) A block on an adjustable incline is
used to determine the coefficients of friction.
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where m is the mass of the truck and we have
expressed the friction force as acting to the left, in the
�x direction. In the vertical direction, there is no ac-
celeration, so we model the truck as a particle in 
equilibrium:

Finally, from the relation between the friction force and
the normal force, we combine these two equations:

Because both �k and g are constant, the acceleration of
the truck is constant. We therefore model the truck as a
particle under constant acceleration. We use Equation
2.13 to find the position of the truck when the velocity
is zero:

We can argue from the mathematical representation
as follows. The expression for the skidding distance d
does not include the mass. Therefore, the truck skids
the same distance regardless of the mass of the load.
Conceptually, we can argue that the truck with twice 
the mass requires twice the friction force to exhibit the

 xf � d �
v 2

xi

2�k g

 0 � vxi
2 � 2(�k g)(xf � 0)

 vxf
2 � vxi

2 � 2ax(xf � xi)

fk � �kn : � �k(mg) � ma : a � � �k g

� Fy � n � mg � 0 : n � mg

same acceleration and stop in the same distance. The
normal force is equal to the doubled weight, and the
friction force is proportional to the doubled normal
force!

If the initial speed of the empty truck is halved,
what would be the skidding distance?

Solution This part of the problem is a comparison
problem and can be solved by a ratio technique such as
that used in Example 3.4. We write the result from part
A for the skidding distance d twice, once for the origi-
nal situation and once for the halved initial velocity:

Dividing the first equation by the second, we have

Notice that halving the initial velocity reduces the skid-
ding distance by 75%! This important safety considera-
tion is associated with the possibility of an accident
when driving at high speed.

1
4d1

d1

d2
� 4 : d2 �

 d2 �
v2

2xi

2�k g
�

�1
2v1xi�

2

2�k g
� 1

4
v2

1xi

2�k g

 d1 �
v2

1xi

2�k g

B

These equations are valid for any angle of inclination �.
At the critical angle �c at which the block is on the
verge of slipping, the friction force has its maximum
magnitude �sn, so we rewrite (1) and (2) for this condi-
tion as

(3)

(4)  mg cos �c � n

 mg sin �c � �sn

Experimental Determination of �s and �kEXAMPLE 5.2
The following is a simple method of measuring coeffi-
cients of friction. Suppose a block is placed on a rough
surface inclined relative to the horizontal, as shown in
Figure 5.5. The incline angle � is increased until the
block starts to move. 

How is the coefficient of static friction related to
the critical angle �c at which the block begins to move?

Solution The forces on the block, as shown in Figure
5.5, are the gravitational force , the normal force ,
and the force of static friction . As long as the block is
not moving, these forces are balanced and the block is
in equilibrium. We choose a coordinate system with the
positive x axis parallel to the incline and downhill and
the positive y axis upward perpendicular to the incline.
Applying Newton’s second law in component form to
the block gives

(1)

(2)  � Fy � n � mg cos � � 0

 � Fx � mg sin � � fs � 0

f
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n:mg:
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n
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θ

mg sin

mg cos θ

mg

θ
θ

FIGURE 5.5



(Example 5.3) (a) Two objects connected by a 
light string that passes over a frictionless pulley. 
(b) Free-body diagram for the sliding cube. 
(c) Free-body diagram for the hanging ball.
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Dividing (3) by (4), we have

Therefore, the coefficient of static friction is equal to
the tangent of the angle of the incline at which the
block begins to slide.

How could we find the coefficient of kinetic fric-
tion?

Solution Once the block begins to move, the magni-
tude of the friction force is the kinetic value �kn, which

B

tan �c � �s

Now we apply Newton’s second law to the ball moving
in the vertical direction. Because the ball moves down-
ward when the cube moves to the right, we choose the
positive direction downward for the ball:

(2)

Substituting the expression for T from (1) into (2)
gives us

a �
m 2 � �k m1

m1 � m 2
 g

m 2 g � (�k m1 g � m1 a) � m 2 a

� Fy � m 2 a  : m 2 g � T � m 2 a

Connected ObjectsEXAMPLE 5.3
A ball and a cube are connected by a light string that
passes over a frictionless light pulley, as in Figure 5.6a.
The coefficient of kinetic friction between the cube
and the surface is 0.30. Find the acceleration of the two
objects and the tension in the string.

Solution To conceptualize the problem, imagine the ball
moving downward and the cube sliding to the right,
both accelerating from rest. We recognize that there
are two objects that are accelerating, so we categorize
this problem as one involving particles under a net
force, where one of the forces to be included is the fric-
tion force. To begin to analyze the problem, we set up a
simplified pictorial representation by drawing the free-
body diagrams for the two objects as in Figures 5.6b
and 5.6c. For the ball, no forces are exerted in the hori-
zontal direction, and we apply Newton’s second law in
the vertical direction. For the cube, the acceleration is
horizontal, so we know the cube is in equilibrium in the
vertical direction. We use the fact that the magnitude of
the force of kinetic friction acting on the cube is pro-
portional to the normal force according to fk � �kn.
Because the pulley is light (massless) and frictionless,
the tension in the string is the same on both sides of
the pulley. Because the tension acts on both objects, it
is the common quantity that applies to both objects and
allows us to combine separate equations for the two ob-
jects into one equation.

Let us address the cube of mass m1 first. Newton’s
second law applied to the cube in component form,
with the positive x direction to the right, gives

where T is the tension in the string. Because fk � �kn
and n � m1g from the equilibrium equation for the y
direction, we have fk � �km1g. Therefore, from the
equation for the x direction,

(1) T � �km1g � m1a

 � Fy � 0 : n � m1g � 0

 � Fx � m1a  : T � fk � m1a

(c)

T

7.0 kg

m2g

4.0 kg

7.0 kg

(a)

T
4.0 kg

m1g

fk

n

(b)

FIGURE 5.6

is smaller than that of the force of static friction. As a re-
sult, if the angle is maintained at the critical angle, the
block accelerates down the incline. To restore the equi-
librium situation in Equation (1), with fs replaced by fk ,
the angle must be reduced to a value such that the
block slides down the incline at constant speed. In this situ-
ation, Equations (3) and (4), with �c replaced by and
�s by �k , give us

tan ��c � �k

��c

��c



(Example 5.4) (a) A crate of mass m slides down an
incline. (b) Free-body diagram for the sliding crate.

NEWTON’S  SECOND  LAW  APPLIED  TO  A  PARTICLE
IN  UNIFORM  CIRCULAR  MOTION

Solving problems involving friction is just one of many applications of Newton’s sec-
ond law. Let us now consider another common situation, associated with a particle
in uniform circular motion. In Chapter 3, we found that a particle moving in a cir-
cular path of radius r with uniform speed v experiences a centripetal acceleration
of magnitude

The acceleration vector with this magnitude is directed toward the center of the cir-
cle and is always perpendicular to .

According to Newton’s second law, if an acceleration occurs, a net force must be
causing it. Because the acceleration is toward the center of the circle, the net force
must be toward the center of the circle. Therefore, when a particle travels in a cir-
cular path, a force must be acting inward on the particle that causes the circular
motion. We investigate the forces causing this type of acceleration in this section.

Consider an object of mass m tied to a string of length r and being whirled in a
horizontal circular path on a frictionless table top as in the overhead view in 

v:

ac �
v2

r

5.2

132 ❚ CHAPTER 5 MORE APPLICATIONS OF NEWTON’S LAWS

To finalize the problem, note that the acceleration is
smaller than that due to gravity. That does not tell us
that the answer is correct, but if the acceleration were
larger than g, it would tell is that we have made an 
error. Note also that the tension in the string is smaller
than m2g � (7.0 kg)(9.80 m/s2) � 69 N, which is con-
sistent with m2 accelerating downward.

33 N� (4.0 kg)(5.2 m/s2) �

T � 0.30(4.0 kg)(9.80 m/s2)Now, substituting the known values,

which is the magnitude of the acceleration of each of the
two objects. For the ball, the acceleration vector is 
downward and the vector is toward the right for the
cube. When the magnitude of the acceleration is substi-
tuted into (1), we find the tension:

5.2 m/s2a �
7.0 kg � 0.30(4.0 kg)

7.0 kg � 4.0 kg
 (9.80 m/s2) �

Substituting the known values, we have

0.192�k �
 g  sin 30.0	 � 1

3  g 
 g  cos 30.0	

�
(0.500 � 0.333)

0.867 
�

The Sliding CrateEXAMPLE 5.4
A warehouse worker places a crate on a sloped surface
that is inclined at 30.0° with respect to the horizontal
(Fig. 5.7a). If the crate slides down the incline with an ac-
celeration of magnitude g/3, determine the coefficient
of kinetic friction between the crate and the surface.

Solution Figure 5.7b shows the forces acting on the
crate. The x axis is chosen parallel to the incline and
the y axis perpendicular. From Newton’s second law,

(1)

(2)

The kinetic friction force is fk � �kn and, from (2), we
find that n � mg cos �. Therefore, the friction force can
be expressed as fk � �kmg cos �. Substituting into (1)
gives us

mg sin � � �kmg cos � � ma : �k �
g sin � � a

g cos �

 � Fy � 0 : n � mg cos � � 0

 � Fx � ma : mg sin � � fk � ma

d

θ

(a)

a

(b)

y

x

fk

θmg cos θ

mg sin θ

n

mg

FIGURE 5.7

■ Centripetal acceleration



Overhead view of a ball mov-
ing in a circular path in a horizontal plane. A
force directed toward the center of the circle
keeps the ball moving in its circular path.

F
:

r

Figure 5.8. Let us assume that the object moves with constant speed. The natural
tendency of the object is to move in a straight-line path, according to Newton’s first
law; the string, however, prevents this motion along a straight line by exerting a ra-
dial force r on the object to make it follow a circular path. This force, whose mag-
nitude is the tension in the string, is directed along the length of the string toward
the center of the circle as shown in Figure 5.8.

In this discussion, the tension in the string causes the circular motion. Other
forces also cause objects to move in circular paths. For example, friction forces
cause automobiles to travel around curved roadways and the gravitational force
causes a planet to orbit the Sun.

Regardless of the nature of the force acting on the particle in circular motion,
we can apply Newton’s second law to the particle along the radial direction:

[5.3]

In general, an object can move in a circular path under the influence of various
types of forces, or a combination of forces, as we shall see in some of the examples
that follow.

If the force acting on an object vanishes, the object no longer moves in its circu-
lar path; instead, it moves along a straight-line path tangent to the circle. This idea
is illustrated in Active Figure 5.9 for the case of the ball whirling in a circle at the

� F � mac � m  
v2

r

F
:
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m

Fr

Fr

r

FIGURE 5.8

r

An overhead view of a ball moving
in a circular path in a horizontal
plane. When the string breaks, the
ball moves in the direction tan-
gent to the circular path.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 5.9 to “break”
the string yourself and observe the
effect on the ball’s motion.

ACTIVE FIGURE 5.9

CENTRIPETAL FORCE The force caus-
ing centripetal acceleration is called
centripetal force in some textbooks.
Giving the force causing circular
motion a name leads many students
to consider it as a new kind of force
rather than a new role for force. A
common mistake is to draw the
forces in a free-body diagram and
then add another vector for the
centripetal force. Yet it is not a sepa-
rate force; it is one of our familiar
forces acting in the role of causing a
circular motion. For the motion of
the Earth around the Sun, for ex-
ample, the “centripetal force” is
gravity. For a rock whirled on the
end of a string, the “centripetal
force” is the tension in the string. 
After this discussion, we shall no
longer use the phrase centripetal
force.

� PITFALL PREVENTION 5.3

DIRECTION OF TRAVEL WHEN THE

STRING IS CUT Study Active Figure
5.9 carefully. Many students have a
misconception that the ball moves
radially away from the center of the
circle when the string is cut. The ve-
locity of the ball is tangent to the cir-
cle. By Newton’s first law, the ball
simply continues to move in the di-
rection that it is moving just as the
force from the string disappears.

� PITFALL PREVENTION 5.4

www.pop4e.com


(Quick Quiz 5.4) A
Ferris wheel located on Navy Pier in
Chicago, Illinois. 
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You are riding on a Ferris wheel (Fig. 5.10) that is rotating with con-
stant speed. The car in which you are riding always maintains its correct upward orienta-
tion; it does not invert. (i) What is the direction of the normal force on you from the seat
when you are at the top of the wheel? (a) upward (b) downward (c) impossible to
determine. (ii) What is the direction of the net force on you when you are at the top of
the wheel? (a) upward (b) downward (c) impossible to determine

QUICK QUIZ 5.4

■ Thinking Physics 5.2
The Copernican theory of the solar system is a structural model in which the plan-
ets are assumed to travel around the Sun in circular orbits. Historically, this theory
was a break from the Ptolemaic theory, a structural model in which the Earth was at
the center. When the Copernican theory was proposed, a natural question arose:
What keeps the Earth and other planets moving in their paths around the Sun? An
interesting response to this question comes from Richard Feynman1: “In those days,
one of the theories proposed was that the planets went around because behind
them there were invisible angels, beating their wings and driving the planets for-
ward. . . . It turns out that in order to keep the planets going around, the invisible
angels must fly in a different direction.” What did Feynman mean by this state-
ment?

Reasoning The question asked by those at the time of Copernicus indicates that
they did not have a proper understanding of inertia as described by Newton’s first
law. At that time in history, before Galileo and Newton, the interpretation was that(©
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The cars of a corkscrew roller coaster must travel in
tight loops. The normal force from the track con-
tributes to the centripetal acceleration. The gravita-
tional force, because it remains constant in direction, 
is sometimes in the same direction as the normal 
force, but is sometimes in the opposite direction. ■

(R
ob

in
 S

m
ith

/G
et

ty
 Im

ag
es

)

1 R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1, (Reading, MA: 
Addison-Wesley, 1963), p. 7-2.

end of a string. If the string breaks at some instant, the ball moves along the
straight-line path tangent to the circle at the point on the circle at which the ball is
located at that instant.

FIGURE 5.10

CENTRIFUGAL FORCE The commonly
heard phrase “centrifugal force” is
described as a force pulling outward
on an object moving in a circular
path. If you are experiencing a
“centrifugal force” on a rotating
carnival ride, what is the other ob-
ject with which you are interacting?
You cannot identify another object
because it is a fictitious force that
occurs as a result of your being in 
a noninertial reference frame.

� PITFALL PREVENTION 5.5



motion was caused by force. This interpretation is different from our current under-
standing that changes in motion are caused by force. Therefore, it was natural for
Copernicus’s contemporaries to ask what force propelled a planet in its orbit. Ac-
cording to our current understanding, it is equally natural for us to realize that no
force tangent to the orbit is necessary, that the motion simply continues owing to
inertia.

Therefore, in Feynman’s imagery, the angels do not have to push the planet
from behind. The angels must push inward, to provide the centripetal acceleration as-
sociated with the orbital motion of the planet. Of course, the angels are not real
from a scientific point of view, but are a metaphor for the gravitational force. �
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FIGURE 5.11 (Example 5.6) The conical pendulum and its free-
body diagram.

Solving for the speed v, we have

The maximum speed that the object can have corre-
sponds to the maximum value of the tension. Hence,
we find

12.2 m/svmax � √ Tmaxr
m

� √ (50.0 N)(1.50 m)
0.500 kg

�

v � √ Tr
m

How Fast Can It Spin?EXAMPLE 5.5
An object of mass 0.500 kg is attached to the end of a
cord whose length is 1.50 m. The object is whirled in a
horizontal circle as in Figure 5.8. If the cord can with-
stand a maximum tension of 50.0 N, what is the maxi-
mum speed the object can have before the cord breaks?

Solution Because the magnitude of the force that pro-
vides the centripetal acceleration of the object in this
case is the tension T exerted by the cord on the object,
Newton’s second law gives us for the inward radial di-
rection

� Fr � mac : T � m  
v2

r

Solution The free-body diagram for the object of mass
m is shown in Figure 5.11b, where the force exerted
by the string has been resolved into a vertical compo-
nent T cos � and a horizontal component T sin � acting
toward the center of rotation. Because the object does
not accelerate in the vertical direction, we model it as a
particle in equilibrium in the vertical direction:

(1)

In the horizontal direction, we have a centripetal accel-
eration so we model the object as a particle under a net
force. Because the force that provides the centripetal
acceleration in this example is the component T sin �,
from Newton’s second law we have

(2)

By dividing (2) by (1), we eliminate T and find that

tan � �
v2

rg
 : v � √rg tan �

� Fr � mac : T sin � � m  
v2

r

T cos � � mg

� Fy � 0   :    T cos � � mg � 0

T
:

The Conical PendulumEXAMPLE 5.6
A small object of mass m is suspended from a string of
length L. The object revolves in a horizontal circle of
radius r with constant speed v, as in Figure 5.11a.
(Because the string sweeps out the surface of a cone,
the system is known as a conical pendulum.) 

Find the speed of the object.A

T

mg

T cos

mg

T sin
r

θ θ

θ

θ

L
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distance of 2
r (the circumference of the circular path)
in a time interval �t equal to the period of revolution,
we find

(3)

The intermediate algebraic steps used in obtaining
(3) are left to the reader. Note that the period is inde-
pendent of the mass m! 

2
 √ L cos �
g

�t �
2
r

v
�

2
r
√rg tan �

�

From a triangle we can construct in the pictorial repre-
sentation in Figure 5.11a, we note that r � L sin �;
therefore,

v �

Find the period of revolution, defined as the time
interval required to complete one revolution.

Solution The object is traveling at constant speed
around its circular path. Because the object travels a

B

√Lg sin � tan �

ing on it, one on each wheel, but we shall model it as a
particle with only one net friction force. Figure 5.12b
shows a free-body diagram for the car. From Newton’s
second law in the horizontal direction, we have

(1)

The maximum speed that the car can have around the
curve corresponds to the speed at which it is on the
verge of skidding toward the side of the road. At this
point, the friction force has its maximum value

In the vertical direction, no acceleration occurs, so 

Therefore, the magnitude of the normal force equals
the weight in this case, and we find

Substituting this expression into (1), we find the maxi-
mum speed:

Substituting the numerical values gives us

This result is equivalent to 30.0 mi/h, which is less than
a typical nonfreeway speed of 35 mi/h. Therefore, this
roadway could benefit greatly from some banking, as in
the next example!

Study the relationship between the car’s speed,
radius of the turn, and the coefficient of static friction between road
and tires by logging into PhysicsNow at www.pop4e.com and going to
Interactive Example 5.7.

13.4 m/svmax � √(0.523)(9.80 m/s2)(35.0 m) �

�smg � m 
vmax

2

r
  : vmax � √�sgr

fs,max � �smg

� Fy � 0 : n � mg � 0

fs,max � �sn

� Fx � ma : fs � m  
v2

r

A 1500-kg car moving on a flat, horizontal road negoti-
ates a curve whose radius is 35.0 m (Fig. 5.12a). If the
coefficient of static friction between the tires and the
dry pavement is 0.523, find the maximum speed the car
can have to make the turn successfully.

Solution In the rolling motion of each tire, the bit of
rubber meeting the road is instantaneously at rest rela-
tive to the road. It is prevented from skidding radially
outward by a static friction force that acts radially in-
ward, enabling the car to move in its circular path. The
car is an extended object with four friction forces act-

n

mg

(a)

(b)

fs

f s

What Is the Maximum Speed of the Car?EXAMPLE 5.7INTERACTIVE

FIGURE 5.12 (Interactive Example 5.7) (a) The force of static
friction directed toward the center of the curve
keeps the car moving in a circular path. (b) Free-
body diagram for the car.

www.pop4e.com


(Interactive Example 5.8) A car rounding a curve
on a road banked at an angle � to the horizontal.
In the absence of friction the force that causes the
centripetal acceleration and keeps the car moving
in its circular path is the horizontal component of
the normal force.

If a car rounds the curve at a speed less than 13.4 m/s,
friction is needed to keep it from sliding down the bank
(to the left in Fig. 5.13). A driver who attempts to nego-
tiate the curve at a speed greater than 13.4 m/s has to
depend on friction to keep from sliding up the bank
(to the right in Fig. 5.13). The banking angle is inde-
pendent of the mass of the vehicle negotiating the
curve.

Adjust the turn radius and the speed to see the
effect on the banking angle by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 5.8.

A civil engineer wishes to redesign the curved roadway
in Interactive Example 5.7 in such a way that a car will
not have to rely on friction to round the curve without
skidding. In other words, a car moving at the desig-
nated speed can negotiate the curve even when the
road is covered with ice. Such a curve is usually banked,
meaning that the roadway is tilted toward the inside of
the curve. Suppose the designated speed for the curve
is to be 13.4 m/s (30.0 mi/h) and the radius of the
curve is 35.0 m. At what angle should the curve be
banked?

Solution On a level (unbanked) road, the force that
causes the centripetal acceleration is the force of static
friction between car and road, as we saw in the previous
example. If the road is banked at an angle �, however,
as in Figure 5.13, the normal force has a horizontal
component nx � n sin � pointing toward the center of
the curve. Because the curve is to be designed so that
the force of static friction is zero, only the component 
n sin � causes the centripetal acceleration. Hence, New-
ton’s second law for the radial direction gives

(1)

The car is in equilibrium in the vertical direction. There-
fore, from we have

(2) n cos � � mg

Dividing (1) by (2) gives

(3)

27.6	 � � tan�1 � (13.4 m/s)2

(35.0 m)(9.80 m/s2) � �

 tan � �
v2

rg

� Fy � 0

� Fr � n sin� �
mv2

r

n:

n

nx

ny

Fg
θ

θ

The Banked RoadwayEXAMPLE 5.8INTERACTIVE

FIGURE 5.13

The free-body diagram for the pilot at the bottom of
the loop is shown in Figure 5.14b. The forces acting on
the pilot are the downward gravitational force 
and the upward normal force exerted by the seat
on the pilot. Because the net upward force at the bot-
tom that provides the centripetal acceleration has a
magnitude nbot � mg, Newton’s second law for the 
radial (upward) direction gives

 nbot � mg � m  
v 2

r
� mg  �1 �

v 2

rg �
 � Fy � ma : n bot � mg � m  

v 2

r

n:bot

mg:

Let’s Go Loop-the-LoopEXAMPLE 5.9
A pilot of mass m in a jet aircraft executes a “loop-the-
loop” maneuver as illustrated in Figure 5.14a. The air-
craft moves in a vertical circle of radius 2.70 km at a
constant speed of 225 m/s. 

Determine the force exerted by the seat on the pi-
lot at the bottom of the loop. Express the answer in
terms of the weight mg of the pilot.

Solution This example is the first numerical one we
have seen in which the force causing the centripetal ac-
celeration is a combination of forces rather than a single
force. We shall model the pilot as a particle under a net
force and analyze the situation at the bottom and top of
the circular path.

A
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NONUNIFORM  CIRCULAR  MOTION
In Chapter 3, we found that if a particle moves with varying speed in a circular
path, there is, in addition to the radial component of acceleration, a tangential
component of magnitude dv/dt. Therefore, the net force acting on the particle
must also have a radial and a tangential component as shown in Active Figure 5.15.

5.3

seat on the pilot act downward, so the net force down-
ward that provides the centripetal acceleration has a
magnitude n top � mg. Applying Newton’s second law
gives

�

In this case, the force exerted by the seat on the pilot is
less than the weight by a factor of 0.911. Therefore, the
pilot feels lighter at the top of the loop.

0.911mg

 n top � mg  � (225 m/s)2

(2.70 � 103 m)(9.80 m/s2)
� 1�

 n top � m  
v 2

r
� mg � mg  � v 2

rg
� 1�

 � Fy � ma : n top � mg � m  
v 2

r

Substituting the values given for the speed and radius
gives

�

Therefore, the force exerted by the seat on the pilot at
the bottom of the loop is greater than the pilot’s weight
by a factor of 2.91.

Determine the force exerted by the seat on the pi-
lot at the top of the loop. Express the answer in terms
of the weight mg of the pilot.

Solution The free-body diagram for the pilot at the top
of the loop is shown in Figure 5.14c. At this point, both
the gravitational force and the force exerted by then:top

B

2.91mg

n bot � mg  �1 �
(225 m/s)2

(2.70 � 103 m)(9.80 m/s2) �

nbot

mg

ntop

mg

(b) (c)

Top

Bottom

(a)

FIGURE 5.14 (Example 5.9) (a) An aircraft executes a loop-the-loop maneuver as it moves in a vertical
circle at constant speed. (b) Free-body diagram for the pilot at the bottom of the loop.
In this position, the pilot experiences a force from the seat that is larger than his weight.
(c) Free-body diagram for the pilot at the top of the loop. Here the force from the seat
could be smaller than his weight or larger, depending on the speed of the aircraft.
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That is, because the total acceleration is , the total force exerted on the
particle is The component vector is directed toward the
center of the circle and is responsible for the centripetal acceleration. The compo-
nent vector tangent to the circle is responsible for the tangential acceleration,
which causes the speed of the particle to change with time.

� F
:

t

� F
:

r� F
:

� � F
:

r � � F
:

t .
a: � a:r � a:t

 F

 Fr

 FtF

When the net force acting on a parti-
cle moving in a circular path has a
tangential component vector , its
speed changes. The total force on the
particle also has a component vector

directed toward the center of the
circular path. Therefore, the total
force is .

Log into Physics-
Now at www.pop4e.com and go to Ac-
tive Figure 5.15 to adjust the initial
position of the particle. Compare the
component forces acting on the parti-
cle to those for a child swinging on a
swing set.

� F
:

� � F
:

r � � F
:

t

� F
:

r

� F
:

t

ACTIVE FIGURE 5.15

Which of the following is impossible for a car moving in a circular
path? Assume that the car is never  at rest. (a) The car has tangential acceleration but no
centripetal acceleration. (b) The car has centripetal acceleration but no tangential accel-
eration. (c) The car has both centripetal acceleration and tangential acceleration.

QUICK QUIZ 5.5

A bead slides freely along a horizontal, curved wire at constant speed,
as shown in Figure 5.16. (a) Draw the vectors representing the force exerted by the wire
on the bead at points �, �, and �. (b) Suppose the bead in Figure 5.16 speeds up 
with constant tangential acceleration as it moves toward the right. Draw the vectors repre-
senting the force on the bead at points �, �, and �.

QUICK QUIZ 5.6

�

�

�

This component causes v to change in time because 
at � dv/dt.

Applying Newton’s second law to the forces in the
radial direction (for which the outward direction is 
positive), we find

At the bottom of the path, where cos � � cos 0 � 1,
we see that

which is the maximum value of T; as the sphere passes
through the bottom point, the string is under the most
tension. This property is of interest to trapeze artists be-
cause their support wires must withstand this largest
tension at the bottom of the swing as well as to Tarzan
when he chooses a nice, strong vine on which to swing
to withstand this force.

Tbot � m  � v2
bot 

R
� g�

T � m  � v2

R
� g cos ��

� Fr � mar : mg cos � � T � � m  
v 2

r

Follow the Rotating BallEXAMPLE 5.10

A small sphere of mass m is attached to the end of a
cord of length R, which rotates under the influence of
the gravitational force and the force exerted by the
cord in a vertical circle about a fixed point O, as in 
Figure 5.17a. Let us determine the tension in the cord
at any instant when the speed of the sphere is v and the
cord makes an angle � with the vertical.

Solution First, note that the speed is not uniform be-
cause a tangential component of acceleration arises
from the gravitational force on the sphere. Although
this example is similar to Example 5.9, it is not identi-
cal. From the free-body diagram in Figure 5.17a, we see
that the only forces acting on the sphere are the gravi-
tational force and the force exerted by the cord.

We resolve into a tangential component mg sin �
and a radial component mg cos �. Applying Newton’s
second law for the tangential direction gives

 at � g sin �

 � Ft � mat : mg sin � � mat

mg:
T
:

mg:

(Quick Quiz 5.6) A
bead slides along a curved wire.

FIGURE 5.16
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MOTION  IN  THE  PRESENCE  OF  VELOCITY-
DEPENDENT  RESISTIVE  FORCES

Earlier, we described the friction force between a moving object and the surface
along which it moves. So far, we have ignored any interaction between the object
and the medium through which it moves. Let us now consider the effect of a
medium such as a liquid or gas. The medium exerts a resistive force on the ob-
ject moving through it. You feel this force if you ride in a car at high speed with
your hand out the window; the force you feel pushing your hand backward is the
resistive force of the air rushing past the car. The magnitude of this force depends
on the relative speed between the object and the medium, and the direction of 
on the object is always opposite the direction of the object’s motion relative to the
medium. Some examples are the air resistance associated with moving vehicles
(sometimes called air drag), the force of the wind on the sails of a sailboat, and the
viscous forces that act on objects sinking through a liquid.

Generally, the magnitude of the resistive force increases with increasing speed.
The resistive force can have a complicated speed dependence. In the following
discussions, we consider two simplification models that allow us to analyze these
situations. The first model assumes that the resistive force is proportional to the ve-
locity, which is approximately the case for objects that fall through a liquid with low
speed and for very small objects, such as dust particles, that move through air. The
second model treats situations for which we assume that the magnitude of the resis-
tive force is proportional to the square of the speed of the object. Large objects,
such as a sky diver moving through air in free-fall, experience such a force.

Model 1: Resistive Force Proportional to Object Velocity
At low speeds, the resistive force acting on an object that is moving through a vis-
cous medium is effectively modeled as being proportional to the object’s velocity.

R
:

R
:

5.4

FIGURE 5.17 (Example 5.10) (a) Forces acting on a sphere of mass m connected 
to a cord of length R and rotating in a vertical circle centered at O.
(b) Forces acting on the sphere when it is at the top and bottom of 
the circle. The tension has its maximum value at the bottom and its 
minimum value at the top.

O

Tbot

Ttop

vbot

mg

mg

vtop

(b)(a)

R

O

T
θ

mg cos
mg sin

mg

θ θ θ
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The mathematical representation of the resistive force can be expressed as

[5.4]

where is the velocity of the object relative to the medium and b is a constant that
depends on the properties of the medium and on the shape and dimensions of the
object. The negative sign represents that the resistive force is opposite the velocity
of the object relative to the medium.

Consider a sphere of mass m released from rest in a liquid, as in Active Figure
5.18a. We assume that the only forces acting on the sphere are the resistive force 
and the weight , and we describe its motion using Newton’s second law.2 Consid-
ering the vertical motion and choosing the downward direction to be positive, we
have

Dividing this equation by the mass m gives

[5.5]

Equation 5.5 is called a differential equation; it includes both the speed v and the deriv-
ative of the speed. The methods of solving such an equation may not be familiar to
you as yet. Note, however, that if we define t � 0 when v � 0, the resistive force is zero
at this time and the acceleration dv/dt is simply g. As t increases, the speed increases,
the resistive force increases, and the acceleration decreases. Thus, this problem is one
in which neither the velocity nor the acceleration of the particle is constant.

The acceleration becomes zero when the increasing resistive force eventually
balances the weight. At this point, the object reaches its terminal speed vT and from
then on it continues to move with zero acceleration. After this point, the motion is
that of a particle under constant velocity. The terminal speed can be obtained from
Equation 5.5 by setting a � dv/dt � 0, which gives

The expression for v that satisfies Equation 5.5 with v � 0 at t � 0 is

[5.6]

where vT � mg/b, � � m/b, and e � 2.718 28 is the base of the natural logarithm.
This expression for v can be verified by substituting it back into Equation 5.5. (Try
it!) This function is plotted in Active Figure 5.18b.

The mathematical representation of the motion (Eq. 5.6) indicates that the ter-
minal speed is never reached because the exponential function is never exactly
equal to zero. For all practical purposes, however, when the exponential function is
very small at large values of t, the speed of the particle can be approximated as be-
ing constant and equal to the terminal speed.

We cannot compare different objects by means of the time interval required to
reach terminal speed because, as we have just discussed, this time interval is infinite
for all objects! We need some means to compare these exponential behaviors
for different objects. We do so with a parameter called the time constant. The
time constant � � m/b that appears in Equation 5.6 is the time interval required for
the factor in parentheses in Equation 5.6 to become equal to 1 � e�1 � 0.632.
Therefore, the time constant represents the time interval required for the object to
reach 63.2% of its terminal speed (Active Fig. 5.18b).

v �
mg
b

 (1 � e�bt/m) � vT(1 � e�t/�)

mg � bvT � 0 : vT �
mg
b

dv
dt

� g �
b
m

  v

� Fy � may : mg � bv � m  
dv
dt

mg:
R
:

v:
R
:

� �b v:

(b)

v

vT

0.632vT

t
�

R

mg

v

(a)

(a) A small sphere falling through
a viscous fluid. (b) The
speed–time graph for an object
falling through a viscous medium.
The object approaches a terminal
speed vT, and the time constant �
is the time interval required to
reach 0.632vT.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 5.18 to vary the
size and mass of the sphere and
the viscosity (resistance to flow) of
the surrounding medium. Ob-
serve the effects on the sphere’s
motion and its speed–time graph.

ACTIVE FIGURE 5.18

2 A buoyant force also acts on any object surrounded by a fluid. This force is constant and equal to the
weight of the displaced fluid, as will be discussed in Chapter 15. The effect of this force can be mod-
eled by changing the apparent weight of the sphere by a constant factor, so we can ignore it here.
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Model 2: Resistive Force Proportional 
to Object Speed Squared
For large objects moving at high speeds through air, such as airplanes, sky divers,
and baseballs, the magnitude of the resistive force is modeled as being proportional
to the square of the speed:

[5.7]

where � is the density of air, A is the cross-sectional area of the moving object mea-
sured in a plane perpendicular to its velocity, and D is a dimensionless empirical
quantity called the drag coefficient. The drag coefficient has a value of about 0.5 for
spherical objects moving through air but can be as high as 2 for irregularly shaped
objects.

Consider an airplane in flight that experiences such a resistive force. Equation
5.7 shows that the force is proportional to the density of air and hence decreases
with decreasing air density. Because air density decreases with increasing altitude,
the resistive force on a jet airplane flying at a given speed will decrease with increas-
ing altitude. Therefore, airplanes tend to fly at very high altitudes to take advantage
of this reduced resistive force, which allows them to fly faster for a given engine
thrust. Of course, this higher speed increases the resistive force, in proportion to the
square of the speed, so a balance is struck between fuel economy and higher speed.

Now let us analyze the motion of a falling object subject to an upward air resis-
tive force whose magnitude is given by Equation 5.7. Suppose an object of mass m is
released from rest, as in Figure 5.19, from the position y � 0. The object experi-
ences two external forces: the downward gravitational force and the upward re-
sistive force . Hence, using Newton’s second law,

[5.8]

Solving for a, we find that the object has a downward acceleration of magnitude

[5.9]

Because a � dv/dt, Equation 5.9 is another differential equation that provides us
with the speed as a function of time.

a � g � � D�A
2m � v2

� F � ma : mg � 1
2D�Av2 � ma

R
:

mg:

R � 1
2D�Av2

v

vT

R

mg

R

mg

An object falling
through air experiences a resistive
drag force and a gravitational force

. The object reaches terminal
speed (on the right) when the net
force acting on it is zero, that is, when

, or R � mg. Before that 
occurs, the acceleration varies with
speed according to Equation 5.9. 

R
:

� �F
:

g

F
:

g � mg:
R
:

FIGURE 5.19

Determine the time interval required for the
sphere to reach 90.0% of its terminal speed.

Solution The speed of the sphere as a function of time
is given by Equation 5.6. To find the time t at which the
sphere is traveling at a speed of 0.900vT, we set 
v � 0.900vT, substitute into Equation 5.6, and solve for t :

11.7 ms� 11.7 � 10�3 s �

 t � 2.30� � 2.30(5.10 � 10�3 s)

 �
t
�

� ln 0.100 � � 2.30

 e�t/� � 0.100

 1 � e�t/� � 0.900

 0.900vT � vT (1 � e�t/�)

B

A Sphere Falling in OilEXAMPLE 5.11
A small sphere of mass 2.00 g is released from rest in a
large vessel filled with oil. The sphere approaches a ter-
minal speed of 5.00 cm/s.

Determine the time constant �.

Solution Because the terminal speed is given by 
vT � mg/b, the coefficient b is

Therefore, the time constant � is

5.1 � 10�3 s� �
m
b

�
2.00 � 10�3 kg
0.392 N�s/m

�

� 0.392 N�s/m

b �
mg
vT

�
(2.00 � 10�3 kg)(9.80 m/s2)

5.00 � 10�2 m/s

A



Again, we can calculate the terminal speed vT because when the gravitational
force is balanced by the resistive force, the net force is zero and therefore the accel-
eration is zero. Setting a � 0 in Equation 5.9 gives

[5.10]

Table 5.2 lists the terminal speeds for several objects falling through air, all com-
puted on the assumption that the drag coefficient is 0.5.

 vT � √ 2mg
D�A

 g � � D�A
2m � vT 

2 � 0

Terminal Speeds for Various Objects Falling Through AirTABLE 5.2

Cross-sectional Area

Object Mass (kg) (m2) vT (m/s)a

Sky diver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 4.2 � 10�3 33
Golf ball (radius 2.1 cm) 0.046 1.4 � 10�3 32
Hailstone (radius 0.50 cm) 4.8 � 10�4 7.9 � 10�5 14
Raindrop (radius 0.20 cm) 3.4 � 10�5 1.3 � 10�5 9.0

aThe drag coefficient D is assumed to be 0.5 in each case.
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(Quick Quiz 5.7) 
A sky surfer takes advantage of the 
upward force of the air on her board.

THE  FUNDAMENTAL  FORCES  OF  NATURE
We have described a variety of forces experienced in our everyday activities, such as
the gravitational force acting on all objects at or near the Earth’s surface and the
force of friction as one surface slides over another. Newton’s second law tells us how
to relate the forces to the object’s or particle’s acceleration.

In addition to these familiar macroscopic forces in nature, forces also act in the
atomic and subatomic world. For example, atomic forces within the atom are re-
sponsible for holding its constituents together and nuclear forces act on different
parts of the nucleus to keep its parts from separating.

Until recently, physicists believed that there were four fundamental forces in na-
ture: the gravitational force, the electromagnetic force, the strong force, and the
weak force. We shall discuss these forces individually and then consider the current
view of fundamental forces.

The Gravitational Force
The gravitational force is the mutual force of attraction between any two objects in
the Universe. It is interesting and rather curious that although the gravitational
force can be very strong between macroscopic objects, it is inherently the weakest
of all the fundamental forces. For example, the gravitational force between the
electron and proton in the hydrogen atom has a magnitude on the order of 
10�47 N, whereas the electromagnetic force between these same two particles is on
the order of 10�7 N.

In addition to his contributions to the understanding of motion, Newton studied
gravity extensively. Newton’s law of universal gravitation states that every particle in

5.5

Consider a sky surfer falling through air, as in Figure 5.20, before
reaching her terminal speed. As the speed of the sky surfer increases, the magnitude of
her acceleration (a) remains constant, (b) decreases until it reaches a constant nonzero
value, or (c) decreases until it reaches zero.

QUICK QUIZ 5.7
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■ Newton’s law of universal 
gravitation

FIGURE 5.20
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Two point charges
separated by a distance r exert an
electrostatic force on each other given
by Coulomb’s law. (a) When the
charges are of the same sign, the
charges repel each other. (b) When
the charges are of opposite sign, the
charges attract each other.

3The electrostatic force is the electromagnetic force between two electric charges that are at rest. If the
charges are moving, magnetic forces are also present; these forces will be studied in Chapter 22.

–

+
r

(a)Fe

�Fe

q1

q2

(b)

Fe

�Fe

q1

q2

+

+

FIGURE 5.22

� Coulomb’s law

Two particles with
masses m1 and m2 attract each other
with a force of magnitude Gm1m2/r 2.

r

–Fg

Fg

m2

m1

FIGURE 5.21

the Universe attracts every other particle with a force that is directly proportional to
the product of the masses of the particles and inversely proportional to the square
of the distance between them. If the particles have masses m1 and m2 and are sepa-
rated by a distance r, as in Figure 5.21, the magnitude of the gravitational force is

[5.11]

where G � 6.67 � 10�11 N ·m2/kg2 is the universal gravitational constant. More de-
tail on the gravitational force will be provided in Chapter 11.

The Electromagnetic Force
The electromagnetic force is the force that binds atoms and molecules in com-
pounds to form ordinary matter. It is much stronger than the gravitational force.
The force that causes a rubbed comb to attract bits of paper and the force that a
magnet exerts on an iron nail are electromagnetic forces. Essentially all forces at
work in our macroscopic world, apart from the gravitational force, are manifesta-
tions of the electromagnetic force. For example, friction forces, contact forces, ten-
sion forces, and forces in elongated springs are consequences of electromagnetic
forces between charged particles in proximity.

The electromagnetic force involves two types of particles: those with positive
charge and those with negative charge. (More information on these two types of
charge is provided in Chapter 19.) Unlike the gravitational force, which is always an
attractive interaction, the electromagnetic force can be either attractive or repul-
sive, depending on the charges on the particles.

Coulomb’s law expresses the magnitude of the electrostatic force 3 Fe between two
charged particles separated by a distance r:

[5.12]

where q1 and q2 are the charges on the two particles, measured in units called
coulombs (C), and ke (� 8.99 � 109 N ·m2/C2) is the Coulomb constant. Note that
the electrostatic force has the same mathematical form as Newton’s law of universal
gravitation (see Eq. 5.11), with charge playing the mathematical role of mass and
the Coulomb constant being used in place of the universal gravitational constant.
The electrostatic force is attractive if the two charges have opposite signs and is re-
pulsive if the two charges have the same sign, as indicated in Figure 5.22.

The smallest amount of isolated charge found in nature (so far) is the charge
on an electron or proton. This fundamental unit of charge is given the symbol e
and has the magnitude e � 1.60 � 10�19 C. An electron has charge �e, whereas a
proton has charge �e. Theories developed in the latter half of the 20th century
propose that protons and neutrons are made up of smaller particles called quarks,
which have charges of either or (discussed further in Chapter 31). Although
experimental evidence has been found for such particles inside nuclear matter, free
quarks have never been detected.

The Strong Force
An atom, as we currently model it, consists of an extremely dense positively charged
nucleus surrounded by a cloud of negatively charged electrons, with the electrons
attracted to the nucleus by the electric force. All nuclei except those of hydrogen
are combinations of positively charged protons and neutral neutrons (collectively

�1
3e2

3e

Fe � ke 
q1q2

r2

Fg � G 
m1m2

r 
2
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called nucleons), yet why does the repulsive electrostatic force between the
protons not cause nuclei to break apart? Clearly, there must be an attractive force
that counteracts the strong electrostatic repulsive force and is responsible for the
stability of nuclei. This force that binds the nucleons to form a nucleus is called
the nuclear force. It is one manifestation of the strong force, which is the force 
between particles formed from quarks, which we will discuss in Chapter 31. Unlike
the gravitational and electromagnetic forces, which depend on distance in an 
inverse-square fashion, the nuclear force is extremely short range; its strength de-
creases very rapidly outside the nucleus and is negligible for separations greater
than approximately 10�14 m. 

The Weak Force
The weak force is a short-range force that tends to produce instability in certain nu-
clei. It was first observed in naturally occurring radioactive substances and was later
found to play a key role in most radioactive decay reactions. The weak force is
about 1036 times stronger than the gravitational force and about 103 times weaker
than the electromagnetic force.

The Current View of Fundamental Forces
For years, physicists have searched for a simplification scheme that would reduce
the number of fundamental forces needed to describe physical phenomena. In
1967, physicists predicted that the electromagnetic force and the weak force, origi-
nally thought to be independent of each other and both fundamental, are in fact
manifestations of one force, now called the electroweak force. This prediction was
confirmed experimentally in 1984. We shall discuss it more fully in Chapter 31.

We also now know that protons and neutrons are not fundamental particles;
current models of protons and neutrons theorize that they are composed of sim-
pler particles called quarks, as mentioned previously. The quark model has led to a
modification of our understanding of the nuclear force. Scientists now define the
strong force as the force that binds the quarks to one another in a nucleon (proton
or neutron). This force is also referred to as a color force, in reference to a
property of quarks called “color,” which we shall investigate in Chapter 31. The pre-
viously defined nuclear force, the force that acts between nucleons, is now inter-
preted as a secondary effect of the strong force between the quarks.

Scientists believe that the fundamental forces of nature are closely related to the
origin of the Universe. The Big Bang theory states that the Universe began with a
cataclysmic explosion about 14 billion years ago. According to this theory, the first
moments after the Big Bang saw such extremes of energy that all the fundamental
forces were unified into one force. Physicists are continuing their search for con-
nections among the known fundamental forces, connections that could eventually
prove that the forces are all merely different forms of a single superforce. This fasci-
nating search continues to be at the forefront of physics.

DRAG  COEFFICIENTS  OF  AUTOMOBILES
In the Context Connection of Chapter 4, we ignored air resistance and assumed
that the driving force on the tires was the only force on the vehicle in the horizon-
tal direction. Given our understanding of velocity-dependent forces from Section
5.4, we should understand now that air resistance could be a significant factor in
the design of an automobile.

Table 5.3 shows the drag coefficients for the vehicles that we have investigated in
previous chapters. Notice that the coefficients for the performance and traditional ve-
hicles vary from 0.30 to 0.43, with the average coefficient in the two portions of the
table almost the same. A look at the lower part of the table shows that this parameter

5.6
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(a) (b)

FIGURE 5.23 (a) The Chevrolet Corvette has a streamlined shape that contributes to its low drag coefficient of 0.29. (b) The
Hummer H2 is not streamlined like the Corvette and consequently has a much higher drag coefficient of 0.57.
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is where the alternative vehicles shine. All three vehicles have drag coefficients lower
than all others in the table, and the GM EV1 has a remarkable coefficient of just 0.19.

Designers of alternative-fuel vehicles try to squeeze every last mile of travel out
of the energy that is stored in the vehicle in the form of fuel or an electric battery. A
significant method of doing so is to reduce the force of air resistance so that the net
force driving the car forward is as large as possible.

A number of techniques can be used to reduce the drag coefficient. Two factors
that help are a small frontal area and smooth curves from the front of the vehicle to
the back. For example, the Chevrolet Corvette shown in Figure 5.23a exhibits a
streamlined shape that contributes to its low drag coefficient. As a comparison, con-
sider a large, boxy vehicle, such as the Hummer H2 in Figure 5.23b. The drag coeffi-
cient for this vehicle is 0.57. Another factor includes elimination or minimization of

Drag Coefficients of Various VehiclesTABLE 5.3

Model Drag
Automobile Year Coefficient

Performance vehicles
Aston Martin DB7 Vantage 2001 0.31
BMW Z8 2001 0.43
Chevrolet Corvette 2000 0.29
Dodge Viper GTS-R 1998 0.40
Ferrari F50 1997 0.37
Ferrari 360 Spider F1 2000 0.33
Lamborghini Diablo GT 2000 0.31
Porsche 911 GT2 2002 0.34

Traditional vehicles
Acura Integra GS 2000 0.34
BMW Mini Cooper S 2003 0.35
Cadillac Escalade (SUV) 2002 0.42
Dodge Stratus 2002 0.34
Lexus ES300 1997 0.32
Mitsubishi Eclipse GT 2000 0.30
Nissan Maxima 2000 0.31
Pontiac Grand Prix 2003 0.31
Toyota Sienna (SUV) 2004 0.31
Volkswagen Beetle 1999 0.36

Alternative vehicles
GM EV1 1998 0.19
Toyota Prius 2004 0.26
Honda Insight 2001 0.25
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as many irregularities in the surfaces as possible, including door handles that project
from the body, windshield wipers, wheel wells, and rough surfaces on headlamps and
grills. An important consideration is the underside of the carriage. As air rushes be-
neath the car, there are many irregular surfaces associated with brakes, drive trains,
suspension components, and so on. The drag coefficient can be made lower by assur-
ing that the overall surface of the car’s undercarriage is as smooth as possible. ■

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

Forces of friction are complicated, but we design a simplifica-
tion model for friction that allows us to analyze motion that
includes the effects of friction. The maximum force of static
friction fs,max between two surfaces is proportional to the nor-
mal force between the surfaces. This maximum force occurs
when the surfaces are on the verge of slipping. In general, 
fs � �sn, where �s is the coefficient of static friction and n is
the magnitude of the normal force. When an object slides
over a rough surface, the force of kinetic friction is oppo-
site the direction of the velocity of the object relative to the
surface and its magnitude is proportional to the magnitude of
the normal force on the object. The magnitude is given by
fk � �kn, where �k is the coefficient of kinetic friction. Usu-
ally, �k � �s.

fk
:

SUMMARY

Newton’s second law, applied to a particle moving in
uniform circular motion, states that the net force in the inward
radial direction must equal the product of the mass and the
centripetal acceleration:

[5.3]

An object moving through a liquid or gas experiences a re-
sistive force that is velocity dependent. This resistive force,
which is opposite the velocity of the object relative to the
medium, generally increases with speed. The force depends on
the object’s shape and on the properties of the medium
through which the object is moving. In the limiting case for a
falling object, when the resistive force balances the weight 
(a � 0), the object reaches its terminal speed.

The fundamental forces existing in nature can be expressed
as the following four: the gravitational force, the electromag-
netic force, the strong force, and the weak force.

� F � mac � m  
v2

r

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide.

1. Draw a free-body diagram for each of the following objects:
(a) a projectile in motion in the presence of air resistance,
(b) a rocket leaving the launch pad with its engines operat-
ing, (c) an athlete running along a horizontal track.

2. What force causes (a) an automobile, (b) a propeller-
driven airplane, and (c) a rowboat to move?

Identify the action-reaction pairs in the following situa-
tions: a man takes a step, a snowball hits a girl in the back,
a baseball player catches a ball, a gust of wind strikes a
window.

4. In a contest of National Football League behemoths, teams
from the Rams and the 49ers engage in a tug-of-war,
pulling in opposite directions on a strong rope. The Rams
exert a force of 9 200 N and they are winning, making the
center of the light rope move steadily toward themselves. Is
it possible to know the tension in the rope from the infor-
mation stated? Is it larger or smaller than 9 200 N? How
hard are the 49ers pulling on the rope? Would it change
your answer if the 49ers were winning or if the contest
were even? The stronger team wins by exerting a larger
force, on what? Explain your answers. 

Suppose you are driving a classic car. Why should you avoid
slamming on your brakes when you want to stop in the

5.

3.

shortest possible distance? (Many cars have antilock brakes
that avoid this problem.)

6. A book is given a brief push to make it slide up a rough in-
cline. It comes to a stop and slides back down to the start-
ing point. Does it take the same time interval to go up as to
come down? What if the incline is frictionless?

7. Describe a few examples in which the force of friction ex-
erted on an object is in the direction of motion of the object. 

8. An object executes circular motion with constant speed
whenever a net force of constant magnitude acts perpen-
dicular to the velocity. What happens to the speed if the
force is not perpendicular to the velocity?

9. What causes a rotary lawn sprinkler to turn?

It has been suggested that rotating cylinders about 
10 miles in length and 5 miles in diameter be placed in
space and used as colonies. The purpose of the rotation is
to simulate gravity for the inhabitants. Explain this concept
for producing an effective imitation of gravity.

11. A pail of water can be whirled in a vertical path such that
none is spilled. Why does the water stay in the pail, even
when the pail is upside down above your head?

Why does a pilot tend to black out when pulling out of
a steep dive?

13. If someone told you that astronauts are weightless in orbit
because they are beyond the pull of gravity, would you ac-
cept the statement? Explain.

12.

10.

www.pop4e.com
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5. To meet a U.S. Postal Service requirement, footwear must
have a coefficient of static friction of 0.5 or more on a speci-
fied tile surface. A typical athletic shoe has a coefficient
of 0.800. In an emergency, what is the minimum time inter-
val in which a person starting from rest can move 3.00 m on
a tile surface if she is wearing (a) footwear meeting the
Postal Service minimum and (b) a typical athletic shoe?

6. Consider a large truck carrying a heavy load, such as steel
beams. A significant hazard for the driver is that the load
may slide forward, crushing the cab, if the truck stops sud-
denly in an accident or even in braking. Assume, for exam-
ple, that a 10 000-kg load sits on the flatbed of a 20 000-kg
truck moving at 12.0 m/s. Assume that the load is not tied
down to the truck, but has a coefficient of friction of 0.500
with the flatbed of the truck. (a) Calculate the minimum
stopping distance for which the load will not slide forward
relative to the truck. (b) Is any piece of data unnecessary
for the solution?

7. To determine the coefficients of friction between rubber
and various surfaces, a student uses a rubber eraser and anFIGURE P5.3
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FIGURE P5.4
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1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 5.1 ■ Forces of Friction 
1. A 25.0-kg block is initially at rest on a horizontal surface. A

horizontal force of 75.0 N is required to set the block in
motion. After it is in motion, a horizontal force of 60.0 N is
required to keep the block moving with constant speed.
Find the coefficients of static and kinetic friction from this
information.

2. A car is traveling at 50.0 mi/h on a horizontal highway.
(a) If the coefficient of static friction between road and
tires on a rainy day is 0.100, what is the minimum distance
in which the car will stop? (b) What is the stopping
distance when the surface is dry and �s � 0.600?

3. Before 1960, it was believed that the maximum attainable
coefficient of static friction for an automobile tire was less
than 1. Then around 1962, three companies indepen-
dently developed racing tires with coefficients of 1.6. Since
then, tires have improved, as illustrated in this problem.
According to the 1990 Guinness Book of Records, the shortest
time interval in which a piston-engine car initially at rest
has covered a distance of one-quarter mile is 4.96 s. This
record was set by Shirley Muldowney in September 1989.
(a) Assume that, as shown in Figure P5.3, the rear wheels
lifted the front wheels off the pavement. What minimum

value of �s is necessary to achieve the record time? 
(b) Suppose Muldowney were able to double her engine
power, keeping other things equal. How would this change
affect the elapsed time?

4. The person in Figure P5.4 weighs 170 lb. As seen from
the front, each light crutch makes an angle of 22.0° with
the vertical. Half of the person’s weight is supported by the
crutches. The other half is supported by the vertical forces
of the ground on the person’s feet. Assuming that the per-
son is moving with constant velocity and the force exerted
by the ground on the crutches acts along the crutches, de-
termine (a) the smallest possible coefficient of friction be-
tween crutches and ground and (b) the magnitude of the
compression force in each crutch.

PROBLEMS

A falling sky diver reaches terminal speed with her para-
chute closed. After the parachute is opened, what parame-
ters change to decrease this terminal speed?

15. On long journeys, jet aircraft usually fly at high altitudes of
about 30 000 ft. What is the main advantage from an eco-
nomic viewpoint of flying at these altitudes?

16. Consider a small raindrop and a large raindrop falling
through the atmosphere. Compare their terminal speeds.

14. What are their accelerations when they reach terminal
speed?

17. “If the current position and velocity of every particle in the
Universe were known, together with the laws describing the
forces that particles exert on one another, then the whole
future of the Universe could be calculated. The future is
determinate and preordained. Free will is an illusion.” Do
you agree with this thesis? Argue for or against it.

www.pop4e.com
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12. Three objects are connected on the table as shown in
Figure P5.12. The table is rough and has a coefficient of ki-
netic friction of 0.350. The objects have masses 4.00 kg,
1.00 kg, and 2.00 kg, as shown, and the pulleys are friction-
less. Draw a free-body diagram for each object. (a) Deter-
mine the acceleration of each object and their directions.
(b) Determine the tensions in the two cords.

incline. In one experiment, the eraser begins to slip down
the incline when the angle of inclination is 36.0° and then
moves down the incline with constant speed when the an-
gle is reduced to 30.0°. From these data, determine the co-
efficients of static and kinetic friction for this experiment.

8. A woman at an airport is towing her 20.0-kg suitcase at con-
stant speed by pulling on a strap at an angle � above the
horizontal (Fig. P5.8). She pulls on the strap with a 35.0-N
force, and the friction force on the suitcase is 20.0 N. Draw
a free-body diagram of the suitcase. (a) What angle does
the strap make with the horizontal? (b) What normal force
does the ground exert on the suitcase?

θ

FIGURE P5.8
13. A block of mass 3.00 kg is pushed up against a wall by a

force that makes a 50.0° angle with the horizontal as
shown in Figure P5.13. The coefficient of static friction be-
tween the block and the wall is 0.250. Determine the possi-
ble values for the magnitude of that allow the block to
remain stationary.

P
:

P
:

14. Review problem. One side of the roof of a building slopes
up at 37.0°. A student throws a Frisbee onto the roof. It
strikes with a speed of 15.0 m/s and does not bounce, but
instead slides straight up the incline. The coefficient of ki-
netic friction between the plastic Frisbee and the roof is
0.400. The Frisbee slides 10.0 m up the roof to its peak,
where it goes into free-fall, following a parabolic trajectory
with negligible air resistance. Determine the maximum
height the Frisbee reaches above the point where it struck
the roof.

Section 5.2 � Newton’s Second Law Applied to a Particle
in Uniform Circular Motion

A light string can support a stationary hanging load of 
25.0 kg before breaking. A 3.00-kg object attached to the
string rotates on a horizontal, frictionless table in a circle
of radius 0.800 m, and the other end of the string is held
fixed. What range of speeds can the object have before the
string breaks?

16. In the Bohr model of the hydrogen atom, the speed of the
electron is approximately 2.20 � 106 m/s. Find (a) the
force acting on the electron as it revolves in a circular orbit
of radius 0.530 � 10�10 m and (b) the centripetal accelera-
tion of the electron.

15.

A 3.00-kg block starts from rest at the top
of a 30.0° incline and slides a distance of 2.00 m down the
incline in 1.50 s. Find (a) the magnitude of the acceleration
of the block, (b) the coefficient of kinetic friction between
block and plane, (c) the friction force acting on the block,
and (d) the speed of the block after it has slid 2.00 m.

10. A 9.00-kg hanging block is connected by a string over a
pulley to a 5.00-kg block that is sliding on a flat table
(Fig. P5.10). The string is light and does not stretch; the
pulley is light and turns without friction. The coefficient of
kinetic friction between the sliding block and the table is
0.200. Find the tension in the string.

9.

5.00 kg

9.00 kg

FIGURE P5.10

Fm2
T

m1

FIGURE P5.11

1.00 kg

2.00 kg4.00 kg

FIGURE P5.12

P

50.0°

FIGURE P5.13

Two blocks connected by a rope of negligible mass are
being dragged by a horizontal force (Fig. P5.11).
Suppose F � 68.0 N, m1 � 12.0 kg, m2 � 18.0 kg, and the
coefficient of kinetic friction between each block and the
surface is 0.100. (a) Draw a free-body diagram for each
block. (b) Determine the tension T and the magnitude of
the acceleration of the system.

F
:

11.
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A pail of water is rotated in a vertical cir-
cle of radius 1.00 m. What is the minimum speed of the 
pail, upside down at the top of the circle, if no water is to
spill out?

24. A roller coaster at Six Flags Great America amusement
park in Gurnee, Illinois, incorporates some clever design
technology and some basic physics. Each vertical loop,
instead of being circular, is shaped like a teardrop 
(Fig. P5.24). The cars ride on the inside of the loop at the
top, and the speeds are high enough to ensure that the
cars remain on the track. The biggest loop is 40.0 m high,
with a maximum speed of 31.0 m/s (nearly 70 mi/h) at
the bottom. Suppose the speed at the top is 13.0 m/s and
the corresponding centripetal acceleration is 2g. (a) What
is the radius of the arc of the teardrop at the top? (b) If the
total mass of a car plus the riders is M, what force does the
rail exert on the car at the top? (c) Suppose the roller
coaster had a circular loop of radius 20.0 m. If the cars
have the same speed, 13.0 m/s at the top, what is the cen-
tripetal acceleration at the top? Comment on the normal
force at the top in this situation.

23.

3.00 m

2.00 m

2.00 m

FIGURE P5.20

v

FIGURE P5.22

FIGURE P5.24

A crate of eggs is located in the middle of the flatbed of a
pickup truck as the truck negotiates an unbanked curve in
the road. The curve may be regarded as an arc of a circle
of radius 35.0 m. If the coefficient of static friction between
crate and truck is 0.600, how fast can the truck be moving
without the crate sliding?

18. Whenever two Apollo astronauts were on the surface of the
Moon, a third astronaut orbited the Moon. Assume the
orbit to be circular and 100 km above the surface of
the Moon. At this altitude, the free-fall acceleration is
1.52 m/s2. The radius of the Moon is 1.70 � 106 m. Deter-
mine (a) the astronaut’s orbital speed and (b) the period
of the orbit.

19. Consider a conical pendulum with an 80.0-kg bob on a
10.0-m wire making an angle � � 5.00° with the vertical 
(Fig. P5.19). Determine (a) the horizontal and vertical
components of the force exerted by the wire on the pen-
dulum and (b) the radial acceleration of the bob.

17. cars outside the physics building at Washington University
in St. Louis, he designed a speed bump and had it in-
stalled. Suppose a car of mass m passes over a bump in a
road that follows the arc of a circle of radius R as shown in
Figure P5.22. (a) What force does the road exert on the
car as the car passes the highest point of the bump if the
car travels at a speed v? (b) What is the maximum speed
the car can have as it passes this highest point without los-
ing contact with the road? 

θ

FIGURE P5.19
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20. A 4.00-kg object is attached to a vertical rod by two strings
as shown in Figure P5.20. The object rotates in a horizon-
tal circle at constant speed 6.00 m/s. Find the tension in
(a) the upper string and (b) the lower string.

Section 5.3 � Nonuniform Circular Motion

Tarzan (m � 85.0 kg) tries to cross a
river by swinging from a vine. The vine is 10.0 m long, and
his speed at the bottom of the swing (as he just clears the
water) will be 8.00 m/s. Tarzan doesn’t know that the vine
has a breaking strength of 1 000 N. Does he make it safely
across the river?

22. We will study the most important work of Nobel laureate
Arthur Compton in Chapter 28. Disturbed by speeding

21.
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Section 5.4 ■ Motion in the Presence of Velocity-
Dependent Resistive Forces

25. A small piece of Styrofoam packing material is dropped
from a height of 2.00 m above the ground. Until it reaches
terminal speed, the magnitude of its acceleration is given
by a � g � bv. After falling 0.500 m, the Styrofoam effec-
tively reaches terminal speed and then takes 5.00 s more to
reach the ground. (a) What is the value of the constant b?
(b) What is the acceleration at t � 0? (c) What is the accel-
eration when the speed is 0.150 m/s?

26. (a) Calculate the terminal speed of a wooden sphere (den-
sity 0.830 g/cm3) falling through air if its radius is 8.00 cm
and its drag coefficient is 0.500. (b) From what height
would a freely falling object reach this speed in the ab-
sence of air resistance?

A small, spherical bead of mass 3.00 g is released from rest
at t � 0 in a bottle of liquid shampoo. The terminal speed
is observed to be vT � 2.00 cm/s. Find (a) the value of the
constant b in Equation 5.4, (b) the time � at which it
reaches 0.632vT, and (c) the value of the resistive force
when the bead reaches terminal speed.

28. A 9.00-kg object starting from rest falls through a viscous
medium and experiences a resistive force , where

is the velocity of the object. The object reaches one-half
its terminal speed in 5.54 s. (a) Determine the terminal
speed. (b) At what time is the speed of the object three-
fourths the terminal speed? (c) How far has the object trav-
eled in the first 5.54 s of motion?

A motorboat cuts its engine when its
speed is 10.0 m/s and coasts to rest. The equation describ-
ing the motion of the motorboat during this period is 
v � vie�ct, where v is the speed at time t, vi is the initial
speed, and c is a constant. At t � 20.0 s, the speed is
5.00 m/s. (a) Find the constant c. (b) What is the speed at
t � 40.0 s? (c) Differentiate the expression for v(t) and
thus show that the acceleration of the boat is proportional
to the speed at any time.

30. Consider an object on which the net force is a resistive
force proportional to the square of its speed. For example,
assume that the resistive force acting on a speed skater is 
f � �kmv2, where k is a constant and m is the skater’s mass.
The skater crosses the finish line of a straight-line race with
speed v0 and then slows down by coasting on his skates.
Show that the skater’s speed at any time t after crossing the
finish line is v(t) � v0/(1 � ktv0).

Section 5.5 ■ The Fundamental Forces of Nature
31. Two identical isolated particles, each of mass 2.00 kg, are

separated by a distance of 30.0 cm. What is the magnitude
of the gravitational force exerted by one particle on the
other?

32. Find the order of magnitude of the gravitational force that
you exert on another person 2 m away. In your solution,
state the quantities you measure or estimate and their
values.

When a falling meteor is at a distance above the Earth’s sur-
face of 3.00 times the Earth’s radius, what is its free-fall ac-
celeration caused by the gravitational force exerted on it?

33.

29.

v:
R
:

� �bv:

27.

34. In a thundercloud, there may be electric charges of 
� 40.0 C near the top of the cloud and � 40.0 C near
the bottom of the cloud. These charges are separated by
2.00 km. What is the electric force on the top charge?

Section 5.6 ■ Context Connection — Drag Coefficients 
of Automobiles

35. The mass of a sports car is 1 200 kg. The shape of the body
is such that the aerodynamic drag coefficient is 0.250 and
the frontal area is 2.20 m2. Ignoring all other sources of
friction, calculate the initial acceleration of the car assum-
ing that it has been traveling at 100 km/h and is now
shifted into neutral and allowed to coast.

36. Consider a 1 300-kg car presenting front-end area 2.60 m2

and having drag coefficient 0.340. It can achieve instanta-
neous acceleration 3.00 m/s2 when its speed is 10.0 m/s. Ig-
nore any force of rolling resistance. Assume that the only
horizontal forces on the car are static friction forward ex-
erted by the road on the drive wheels and resistance ex-
erted by the surrounding air, with density 1.20 kg/m3. 
(a) Find the friction force exerted by the road. (b) Suppose
the car body could be redesigned to have a drag coefficient
of 0.200. If nothing else changes, what will be the car’s ac-
celeration? (c) Assume that the force exerted by the road
remains constant. Then what maximum speed could the
car attain with D � 0.340? (d) With D � 0.200?

Additional Problems
37. Consider the three connected objects shown in Figure

P5.37. Assume first that the inclined plane is frictionless
and that the system is in equilibrium. In terms of m, g, and
�, find (a) the mass M and (b) the tensions T1 and T2. Now
assume that the value of M is double the value found in
part (a). Find (c) the acceleration of each object and 
(d) the tensions T1 and T2. Next, assume that the coeffi-
cient of static friction between m and 2m and the inclined
plane is �s and that the system is in equilibrium. Find 
(e) the maximum value of M and (f) the minimum value
of M. (g) Compare the values of T2 when M has its mini-
mum and maximum values.

2m

m

M

T1

T2

θ

FIGURE P5.37

38. A 2.00-kg aluminum block and a 6.00-kg copper block are
connected by a light string over a frictionless pulley. They
sit on a steel surface, as shown in Figure P5.38, where 
� � 30.0°. When they are released from rest, will they start
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to move? If so, determine (a) their acceleration and
(b) the tension in the string. If not, determine the sum of
the magnitudes of the forces of friction acting on the blocks.

39. A crate of weight is pushed by a force on a horizontal
floor. (a) Assuming that the coefficient of static friction is
�s and that is directed at angle � below the horizontal,
show that the minimum value of P that will move the crate
is given by

(b) Find the minimum value of P that can produce motion
when �s � 0.400, Fg � 100 N, and � � 0°, 15.0°, 30.0°,
45.0°, and 60.0°.

40. A 1.30-kg toaster is not plugged in. The coefficient of static
friction between the toaster and a horizontal countertop is
0.350. To make the toaster start moving you carelessly pull
on its electric cord. (a) For the cord tension to be as small
as possible, you should pull at what angle above the hori-
zontal? (b) With this angle, how large must the tension be?

41. The system shown in Figure P4.54 (Chapter 4) has an
acceleration of magnitude 1.50 m/s2. Assume that the
coefficient of kinetic friction between block and incline is
the same for both inclines. Find (a) the coefficient of
kinetic friction and (b) the tension in the string.

42. Materials such as automobile tire rubber and shoe soles
are tested for coefficients of static friction with an appara-
tus called a James tester. The pair of surfaces for which �s
is to be measured are labeled B and C in Figure P5.42.
Sample C is attached to a foot D at the lower end of a piv-
oting arm E that makes angle � with the vertical. The up-
per end of the arm is hinged at F to a vertical rod G that
slides freely in a guide H fixed to the frame of the appara-
tus and supports a load I of mass 36.4 kg. The hinge pin at
F is also the axle of a wheel that can roll vertically on the
frame. All the moving parts have weights negligible in com-
parison to the 36.4-kg load. The pivots are nearly friction-
less. The test surface B is attached to a rolling platform A.
The operator slowly moves the platform to the left in the
picture until the sample C suddenly slips over surface B. At
the critical point where sliding motion is ready to begin,
the operator notes the angle �s of the pivoting arm. 
(a) Make a free-body diagram of the pin at F. It is in equi-
librium under three forces: the weight of the load I, a hori-
zontal normal force exerted by the frame, and a force of
compression directed upward along the arm E. (b) Draw a
free-body diagram of the foot D and sample C, considered
as one system. (c) Determine the normal force that the test
surface B exerts on the sample for any angle �. (d) Show
that �s � tan �s . (e) The protractor on the tester can

P �
�s Fg   sec �

1 � �s  tan �

P
:

P
:

Fg

Aluminum

θ

Copper

Steel

m1

m2

FIGURE P5.38

record angles as large as 50.2°. What is the greatest coeffi-
cient of friction it can measure?

43. A block of mass m � 2.00 kg rests on the left edge of a
block of mass M � 8.00 kg. The coefficient of kinetic
friction between the two blocks is 0.300, and the surface on
which the 8.00-kg block rests is frictionless. A constant
horizontal force of magnitude F � 10.0 N is applied to the
2.00-kg block, setting it in motion as shown in Figure
P5.43a. If the distance L that the leading edge of the
smaller block travels on the larger block is 3.00 m, (a) in
what time interval will the smaller block make it to the right
side of the 8.00-kg block as shown in Figure P5.43b?
(Note: Both blocks are set into motion when is applied.)
(b) How far does the 8.00-kg block move in the process?

F
:

44. A 5.00-kg block is placed on top of a 10.0-kg block (Fig.
P5.44). A horizontal force of 45.0 N is applied to the 10-kg
block, and the 5-kg block is tied to the wall. The coefficient
of kinetic friction between all moving surfaces is 0.200. 
(a) Draw a free-body diagram for each block and identify
the action-reaction forces between the blocks. (b) Deter-
mine the tension in the string and the magnitude of the
acceleration of the 10-kg block.

45. A car rounds a banked curve as in Figure 5.13. The radius
of curvature of the road is R, the banking angle is �, and
the coefficient of static friction is �s. (a) Determine the
range of speeds the car can have without slipping up or
down the road. (b) Find the minimum value for �s such
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that the minimum speed is zero. (c) What is the range of
speeds possible if R � 100 m, � � 10.0°, and �s � 0.100
(slippery conditions)?

46. The following equations describe the motion of a system of
two objects.

n � (6.50 kg)(9.80 m/s2) cos 13.0° � 0

fk � 0.360n

T � (6.50 kg)(9.80 m/s2) sin 13.0° � fk � (6.50 kg)a

�T � (3.80 kg)(9.80 m/s2) � (3.80 kg)a

(a) Solve the equations for a and T. (b) Describe a situa-
tion to which these equations apply. Draw free-body dia-
grams for both objects.

47. In a home laundry dryer, a cylindrical tub containing wet
clothes is rotated steadily about a horizontal axis as shown
in Figure P5.47. The clothes are made to tumble so that
they will dry uniformly. The rate of rotation of the smooth-
walled tub is chosen so that a small piece of cloth will lose
contact with the tub when the cloth is at an angle of 68.0°
above the horizontal. If the radius of the tub is 0.330 m,
what rate of revolution is needed?

48. A student builds and calibrates an accelerometer and uses
it to determine the speed of her car around a certain un-
banked highway curve. The accelerometer is a plumb bob
with a protractor that she attaches to the roof of her car. A
friend riding in the car with the student observes that the
plumb bob hangs at an angle of 15.0° from the vertical
when the car has a speed of 23.0 m/s. (a) What is the cen-
tripetal acceleration of the car rounding the curve? 
(b) What is the radius of the curve? (c) What is speed of
the car if the plumb bob deflection is 9.00° while rounding
the same curve?

Because the Earth rotates about its axis, a
point on the equator experiences a centripetal acceleration
of 0.033 7 m/s2, whereas a point at the poles experiences no
centripetal acceleration. (a) Show that at the equator the
gravitational force on an object must exceed the normal
force required to support the object. That is, show that the
object’s true weight exceeds its apparent weight. (b) What is
the apparent weight at the equator and at the poles of a per-
son having a mass of 75.0 kg? (Assume that the Earth is a
uniform sphere and take g � 9.800 m/s2.)

50. An air puck of mass m1 is tied to a string and allowed to re-
volve in a circle of radius R on a frictionless horizontal
table. The other end of the string passes through a hole in
the center of the table, and a counterweight of mass m2 is
tied to it (Fig. P5.50). The suspended object remains in
equilibrium while the puck on the tabletop revolves. What
are (a) the tension in the string, (b) the radial force acting
on the puck, and (c) the speed of the puck?

49.

5.00 kg

10.0 kg F = 45.0 N

FIGURE P5.44

68.0°

FIGURE P5.47

51. A Ferris wheel rotates four times each minute. It carries
each car around a circle of diameter of 18.0 m. (a) What is
the centripetal acceleration of a rider? (b) What force does
the seat exert on a 40.0-kg rider at the lowest point of the
ride? (c) At the highest point of the ride? (d) What force
(magnitude and direction) does the seat exert on a rider
when the rider is halfway between top and bottom?

52. An amusement park ride consists of a rotating circular
platform 8.00 m in diameter from which 10.0-kg seats are
suspended at the end of 2.50-m massless chains (Fig.
P5.52). When the system rotates, the chains make an

m1
R

m2

FIGURE P5.50

θ

8.00 m 

2.50 m 

FIGURE P5.52
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FIGURE P5.55

θ

FIGURE P5.56

angle � � 28.0° with the vertical. (a) What is the speed of
each seat? (b) Draw a free-body diagram of a 40.0-kg child
riding in a seat and find the tension in the chain.

53. A space station, in the form of a wheel 120 m in diameter,
rotates to provide an “artificial gravity” of 3.00 m/s2 for
persons who walk around on the inner wall of the outer
rim. Find the rate of rotation of the wheel (in revolutions
per minute) that will produce this effect.

54. Sedimentation and centrifugation. According to Stokes’s
law, water exerts on a slowly moving immersed spherical
object a resistive force described by

where r is the radius of the sphere and is its velocity.
(a) Consider a spherical grain of gold dust with density 
19.3 � 103 kg/m3 and radius 0.500 �m. Ignore the buoyant
force on the grain. Find the terminal speed at which the
grain falls in water. (b) Over what time interval will all such
suspended grains settle out of a tube 8.00 cm high? (c) The
sedimentation rate can be greatly increased by the use of a
centrifuge. Assume that it spins the tube at 3 000 rev/min in
a horizontal plane, with the middle of the tube at 9.00 cm
from the axis of rotation. Find the acceleration of the mid-
dle of the tube. (d) This acceleration has the effect of an en-
hanced free-fall acceleration. Model it as uniform over the
length of the tube. Over what time interval will all the sus-
pended grains of gold settle out of the water in this situa-
tion? In biological applications, such as separating blood
cells from plasma, the suspended particles also feel a signifi-
cant buoyant force, as we will study in Chapter 15.

An amusement park ride consists of a large vertical cylin-
der that spins about its axis sufficiently fast that any person
inside is held up against the wall when the floor drops
away (Fig. P5.55). The coefficient of static friction between
person and wall is �s, and the radius of the cylinder is R .
(a) Show that the maximum period of revolution necessary
to keep the person from falling is T � (4
2R�s/g)1/2. 
(b) Obtain a numerical value for T assuming that R �
4.00 m and �s � 0.400. How many revolutions per minute
does the cylinder make?

55.

v:

R
:

� �(0.018  8 N�s/m2)r v:

period of 0.450 s. The position of the bead is described 
by the angle � that the radial line, from the center of the
loop to the bead, makes with the vertical. At what angle up
from the bottom of the circle can the bead stay motionless
relative to the turning circle? (b) Repeat the problem tak-
ing the period of the circle’s rotation as 0.850 s.

57. The expression F � arv � br2v2 gives the magnitude of the
resistive force (in newtons) exerted on a sphere of radius r
(in meters) by a stream of air moving at speed v (in meters
per second), where a and b are constants with appropriate
SI units. Their numerical values are a � 3.10 � 10�4 and 
b � 0.870. Using this expression, find the terminal speed
for water droplets falling under their own weight in air, tak-
ing the following values for the drop radii: (a) 10.0 �m, 
(b) 100 �m, (c) 1.00 mm. Note that for (a) and (c) you can
obtain accurate answers without solving a quadratic equa-
tion by considering which of the two contributions to the air
resistance is dominant and ignoring the lesser contribution.

58. Members of a skydiving club were given the following
data to use in planning their jumps. In the table, d is the
distance fallen from rest by a sky diver in a “free-fall stable
spread position” versus the time of fall t. (a) Convert the
distances in feet into meters. (b) Graph d (in meters) ver-
sus t. (c) Determine the value of the terminal speed vT by
finding the slope of the straight portion of the curve. Use a
least-squares fit to determine this slope.

t (s) d ( ft) t (s) d ( ft)

0 0 11 1 309
1 16 12 1 483
2 62 13 1 657
3 138 14 1 831
4 242 15 2 005
5 366 16 2 179
6 504 17 2 353
7 652 18 2 527
8 808 19 2 701
9 971 20 2 875

10 1 138

A model airplane of mass 0.750 kg flies in a horizontal circle
at the end of a 60.0-m control wire with a speed of 35.0 m/s.
Compute the tension in the wire assuming that it makes a
constant angle of 20.0° with the horizontal. The forces ex-
erted on the airplane are the pull of the control wire, the
gravitational force, and aerodynamic lift, which acts at 20.0°
inward from the vertical as shown in Figure P5.59.

59.

56. A single bead can slide with negligible friction on a wire
that is bent into a circular loop of radius 15.0 cm as shown
in Figure P5.56. (a) The circle is always in a vertical plane
and rotates steadily about its vertical diameter with a
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60. If a single constant force acts on an object that moves on a
straight line, the object’s velocity is a linear function of
time. The equation v � vi �at gives its velocity v as a func-
tion of time, where a is its constant acceleration. What if
velocity is instead a linear function of position? Assume
that as a particular object moves through a resistive
medium, its speed decreases as described by the equation
v � vi � kx, where k is a constant coefficient and x is the
position of the object. Find the law describing the total
force acting on this object.

20.0°

20.0°

 T

mg

Flift

FIGURE P5.59

ANSWERS TO QUICK QUIZZES

5.1 (b). The friction force acts opposite to the weight of the
book to keep the book in equilibrium. Because the
weight is downward, the friction force must be upward.

5.2 (b). The crate accelerates to the east. Because the only
horizontal force acting on it is the force of static friction
between its bottom surface and the truck bed, that force
must also be directed to the east.

5.3 (b). When pulling with the rope, there is a component of
your applied force that is upward, which reduces the nor-
mal force between the sled and the snow. In turn, the
friction force between the sled and the snow is reduced,
making the sled easier to move. If you push from behind,
with a force with a downward component, the normal
force is larger, the friction force is larger, and the sled is
harder to move.

5.4 (i), (a). The normal force is always perpendicular to the
surface that applies the force. Because your car main-
tains its orientation at all points on the ride, the normal
force is always upward. (ii), (b). Your centripetal acceler-
ation is downward toward the center of the circle, so the
net force on you must be downward.

5.5 (a). If the car is moving in a circular path, it must have
centripetal acceleration given by Equation 3.17.

5.6 (a) Because the speed is constant, the only direction the
force can have is that of the centripetal acceleration. The
force is larger at � than at � because the radius at � is
smaller. There is no force at � because the wire is

straight. (b) In addition to the forces in the centripetal
direction in (a), there are now tangential forces to pro-
vide the tangential acceleration. The tangential force is
the same at all three points because the tangential accel-
eration is constant.
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FIGURE QQA.5.6

5.7 (c). When the downward gravitational force and the
upward force of air resistance have the same magnitude,
she reaches terminal speed and her acceleration is zero.

R
:

mg:



In the preceding chapters, we analyzed the motion of an
object using quantities such as position, velocity, acceleration,
and force, with which you are familiar from everyday life. We

developed a number of models using these notions that allow us
to solve a variety of problems. Some problems that, in theory,
could be solved with these models are very difficult to solve in
practice, but they can be made much simpler with a different ap-
proach. In this and the following two chapters, we shall investi-
gate this new approach, which will introduce us to new analysis
models for problem solving. This approach includes definitions
of quantities that may not be familiar to you. You may be familiar
with some quantities, but they may have more specific meanings
in physics than in everyday life. We begin this discussion by
exploring energy.

Energy is present in the Universe in various forms. Every phys-
ical process in the Universe involves energy and energy transfers

Energy and Energy Transfer

C H A P T E R 6

On a wind farm, a technician 
inspects one of the windmills. Moving air does
work on the blades of the windmills, causing
the blades and the rotor of an electrical gener-
ator to rotate. Energy is transferred out of the
system of the windmill by means of
electricity.

C H A P T E R  O U T L I N E
6.1 Systems and Environments
6.2 Work Done by a Constant Force
6.3 The Scalar Product of Two Vectors
6.4 Work Done by a Varying Force
6.5 Kinetic Energy and the Work – Kinetic

Energy Theorem
6.6 The Nonisolated System
6.7 Situations Involving Kinetic Friction
6.8 Power
6.9 Context Connection — Horsepower Ratings

of Automobiles
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or transformations. Therefore, energy is an extremely important concept to under-
stand. Unfortunately, despite its importance, it cannot be easily defined. The vari-
ables in previous chapters were relatively concrete; we have everyday experience
with velocities and forces, for example. Although the notion of energy is more ab-
stract, we do have experiences with energy, such as running out of gasoline or losing
our electrical service if we forget to pay the bill.

The concept of energy can be applied to the dynamics of a mechanical system
without resorting to Newton’s laws. This “energy approach” to describing motion is
especially useful when the force acting on a particle is not constant; in such a case,
the acceleration is not constant and we cannot apply the particle under constant ac-
celeration model we developed in Chapter 2. Particles in nature are often subject to
forces that vary with the particles’ positions. These forces include gravitational
forces and the force exerted on an object attached to a spring. We will develop a
global approach to problems involving energy and energy transfer. This approach
extends well beyond physics and can be applied to biological organisms, technolog-
ical systems, and engineering situations.

SYSTEMS  AND  ENVIRONMENTS
All our analysis models in the earlier chapters were based on the motion of a parti-
cle or an object modeled as a particle. We begin our study of our new approach by
identifying a system. A system is a simplification model in that we focus our atten-
tion on a small region of the Universe—the system—and ignore details of the rest
of the Universe outside the system. A critical skill in applying the energy approach
to problems in the next three chapters is correctly identifying the system. A system may

• be a single object or particle
• be a collection of objects or particles
• be a region of space (e.g., the interior of an automobile engine combustion 

cylinder)
• vary in size and shape (e.g., a rubber ball that deforms upon striking a wall)

A system boundary, which is an imaginary surface (often but not necessarily
coinciding with a physical surface), divides the Universe between the system and
the environment of the system.

As an example, imagine a force applied to an object in empty space. We can
define the object as the system as in the first item in the bulleted list above. The
force applied to it is an influence on the system from the environment and acts
across the system boundary. We will see how to analyze this situation using a system
approach in a subsequent section of this chapter.

Another example occurs in Example 5.3. Here the system can be defined as the
combination of the ball, the cube, and the string, consistent with the second item
of the bulleted list. The influences from the environment include the gravitational
forces on the ball and the cube, the normal and friction forces on the cube, and
the force of the pulley on the string. The forces exerted by the string on the ball
and the cube are internal to the system and therefore are not included as influ-
ences from the environment.

WORK  DONE  BY  A  CONSTANT  FORCE
Let us begin our analysis of systems by introducing a term whose meaning in physics
is distinctly different from its everyday meaning. This new term is work. Imagine that
you are trying to push a heavy sofa across your living room floor. If you push on the
sofa and it moves through a displacement, you have done work on the sofa.

Consider a particle, which we identify as the system, that undergoes a dis-
placement along a straight line while acted on by a constant force that makesF

:
� r:

6.2

6.1

■ A system

IDENTIFY THE SYSTEM One of the
most important steps to take in solv-
ing a problem using the energy ap-
proach is to identify the system of
interest correctly. Be sure this step
is the first step you take in solving a
problem. 

� PITFALL PREVENTION 6.1



an angle � with , as in Figure 6.1. The force has accomplished something—it
has moved the particle—so we say that work was done by the force on the particle.

Notice that we know only the force and the displacement given in the descrip-
tion of the situation. We have no information about how long it took for this dis-
placement to occur, nor any information about velocities or accelerations. The
absence of this information provides a hint of the power of the energy approach as
well as a hint of how different it will be from our approach in previous chapters. We
do not need this information to find the work done. Let us now formally define the
work done on a system if the force is constant:

The work W done on a system by an external agent exerting a constant force
on the system is the product of the magnitude F of the force, the magnitude
�r of the displacement of the point of application of the force, and cos �,
where � is the angle between the force and displacement vectors:

[6.1]

Work is a scalar quantity; no direction is associated with it. Its units are those of
force multiplied by length; therefore, the SI unit of work is the newton · meter
(N·m). The newton · meter, when it refers to work or energy, is called the joule ( J).

From the definition in Equation 6.1, we see that a force does no work on a sys-
tem if the point of application of the force does not move. In the mathematical rep-
resentation, if �r � 0, Equation 6.1 gives W � 0. In the mental representation,
imagine pushing on the sofa mentioned earlier. If it doesn’t move, no work has
been done on the sofa. Of course, the work is also zero if the applied force is zero.
If you don’t push on the sofa, no work is done on it!

Also note from Equation 6.1 that the work done by a force is zero when the
force is perpendicular to the displacement. That is, if � � 90°, then cos 90° � 0
and W � 0. For example, consider the free-body diagram for a block moving across
a frictionless surface in Figure 6.2. The work done by the normal force and the
gravitational force on the block during its horizontal displacement are both zero
for the same reason: they are both perpendicular to the displacement.

For now, we restrict our attention to systems consisting of a single particle or a
small number of particles. In the case of a force applied to a particle, the displace-
ment of the point of application of the force is necessarily the same as the displace-
ment of the particle. In Chapter 17, we will consider work done in compressing a
gas, which is modeled as a system consisting of a large number of particles. In this
process, the displacement of the point of application of the force is very different
from the displacement of the system.

In general, a particle may be moving under the influence of several forces. In
that case, because work is a scalar quantity, the total work done as the particle under-
goes some displacement is the algebraic sum of the work done by each of the forces.

The sign of the work depends on the direction of relative to . The work
done by the applied force is positive when the vector component of magnitude
F cos � is in the same direction as the displacement. For example, when an object is
lifted, the work done by the lifting force on the object is positive because the lifting
force is upward, that is, in the same direction as the displacement. When the vector
component of magnitude F cos � is in the direction opposite the displacement, W is
negative. In the case of the object being lifted, for instance, the work done by the
gravitational force on the object is negative.

If a constant applied force acts parallel to the direction of the displacement,
� � 0 and cos 0 � 1. In this case, Equation 6.1 gives

W � F �r [6.2]

F
:

� r:F
:

W � F �r cos � 

� r:
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θ

∆r

F

F cos θ

If an object under-
goes a displacement , the work
done by the constant force on the
object is (F cos �)�r.

F
:

� r:
FIGURE 6.1

When an object is
displaced horizontally on a flat table,
the normal force and the gravita-
tional force do no work.mg:

n:

FIGURE 6.2

F

θ

n

∆ r

mg

� Work done by a constant force
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(Quick Quiz 6.1) A force is applied to an object, which undergoes a 
displacement to the right. In each of the four cases, the magnitudes of the
force and displacement are the same.

F
:

Both Equations 6.1 and 6.2 are special cases of a more generalized definition of
work. Both equations assume a constant force, and Equation 6.2 assumes that the
force is parallel to the displacement. In the next two sections, we shall consider the
situation in which a force is not parallel to the displacement and the more general
case of a varying force.

Figure 6.3 shows four situations in which a force is applied to an
object. In all four cases, the force has the same magnitude and the displacement of the
object is to the right and of the same magnitude. Rank the situations in order of the 
work done by the force on the object, from most positive to most negative.

QUICK QUIZ 6.1

F

(c) (d)(b)

F

(a)

FF

FIGURE 6.3

■ Thinking Physics 6.1
A person slowly lifts a heavy box of mass m a vertical height h and then walks hori-
zontally at constant velocity a distance d while holding the box as in Figure 6.4.
Determine the work done (a) by the person and (b) by the gravitational force on
the box in this process.

Reasoning (a) Assume that the person lifts the box with a force of magnitude equal
to the weight of the box mg. In this case, the work done by the person on the box
during the vertical displacement is W � F �r � (mg)(h) � mgh, which is positive
because the lifting force is in the same direction as the displacement. For the hori-
zontal displacement, we assume that the acceleration of the box is approximately
zero. As a result, the work done by the person on the box during the horizontal dis-
placement of the box is zero because the horizontal force is approximately zero,
and the force supporting the box’s weight in this process is perpendicular to the
displacement. Therefore, the net work done by the person on the box during the
complete process is mgh.

(b) The work done by the gravitational force on the box during the vertical dis-
placement of the box is �mgh, which is negative because this force is opposite the
displacement. The work done by the gravitational force is zero during the horizon-
tal displacement because this force is perpendicular to the displacement. Hence,
the net work done by the gravitational force for the complete process is �mgh. The
net work done by all forces on the box is zero, because �mgh � (�mgh) � 0. ■

■ Thinking Physics 6.2
Roads going up mountains are formed into switchbacks, with the road weaving back
and forth along the face of the slope so that any portion of the roadway has only a
gentle rise. Do switchbacks require that an automobile climbing the mountain do

CAUSE OF THE DISPLACEMENT We can
calculate the work done by a force
on an object, but that force is not
necessarily the cause of the object’s
displacement. For example, if you
lift an object, work is done by the
gravitational force, although gravity
is not the cause of the object mov-
ing upward!

� PITFALL PREVENTION 6.3

WORK IS DONE BY . . . ON . . .
Not only must you identify the 
system, you must also identify the
interaction of the system with the
environment. When discussing
work, always use the phrase, “the
work done by . . . on . . .” After
“by” insert the part of the environ-
ment that is interacting directly
with the system. After “on” insert
the system. For example, “the work
done by the hammer on the nail”
identifies the nail as the system and
the force from the hammer repre-
sents the interaction with the envi-
ronment. This wording is similar to
our use in Chapter 4 of “the force
exerted by . . . on . . . .”

� PITFALL PREVENTION 6.2

F

mg h

d

(Thinking Physics
6.1) A person lifts a heavy box of mass
m a vertical distance h and then walks
horizontally at constant velocity a dis-
tance d.

FIGURE 6.4



any less work than if it were driving on a roadway that runs straight up the slope?
Why are the switchbacks used?

Reasoning If we ignore the effects of rolling friction on the tires of the car, the
same amount of work would be done in driving up the switchbacks and driving
straight up the mountain because the weight of the car is moved upward against
the gravitational force by the same vertical distance in each case. So why do we use
the switchbacks? The answer lies in the force required, not the work. The force
needed from the engine to follow a gentle rise is much less than that required to
drive straight up the hill. Roadways running straight uphill would require redesign-
ing engines so as to enable them to apply much larger forces. This situation is simi-
lar to the ease with which a heavy object can be rolled up a ramp into a moving van
truck, compared with lifting the object straight up from the ground. ■
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(Example 6.1) A vacuum cleaner being pulled at
an angle of 30.0° with the horizontal.

Mr. CleanEXAMPLE 6.1
A man cleaning his apartment pulls a vacuum cleaner
with a force of magnitude F � 50.0 N. The force makes
an angle of 30.0° with the horizontal as shown in Figure
6.5. The vacuum cleaner is displaced 3.00 m to the
right. Calculate the work done by the 50.0-N force on
the vacuum cleaner.

Solution Using the definition of work (Equation 6.1),
we have

Note that the normal force , the gravitational force
, and the upward component of the applied force

do no work because they are perpendicular to the
displacement.

mg:
n:

130 J� 130 N�m �

W � (F  cos �) �r � (50.0 N)(cos 30.0�)(3.00 m)
mg

30.0°

50.0 N

n

FIGURE 6.5

THE  SCALAR  PRODUCT  OF  TWO  VECTORS
Based on Equation 6.1, it is convenient to express the definition of work in terms of
a scalar product of the two vectors and . The scalar product was introduced
briefly in Section 1.8. We formally provide its definition here:

The scalar product of any two vectors and is a scalar quantity equal to
the product of the magnitudes of the two vectors and the cosine of the angle
� between them:

[6.3]

where � is the angle between and as in Figure 6.6.

Note that and need not have the same units. The units of the scalar product
are simply the product of the units of the two vectors. Because of the dot symbol,
the scalar product is often called the dot product.

B
:

A
:

B
:

A
:

A
: 

�  B
: 

� AB cos �

B
:

A
:

� r:F
:

6.3

A ⋅ B  =  AB cos θ

B

A

θ
θ

The scalar product
equals the magnitude of multi-

plied by the magnitude of and the
cosine of the angle between and .B

:
A
:

B
:

A
:

A
:

�B
:

FIGURE 6.6
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Notice that the right-hand side of Equation 6.3 has the same mathematical struc-
ture as the right-hand side of Equation 6.1. Consequently, we can write the defini-
tion of work as the scalar product . Therefore, we can express Equation 6.1
as

[6.4]

Before continuing with our discussion of work, let us investigate some proper-
ties of the scalar product because we will need to use it later in the book as well.
From Equation 6.3 we see that the scalar product is commutative. That is,

[6.5]

In addition, the scalar product obeys the distributive law of multiplication, so that

[6.6]

The scalar product is simple to evaluate from Equation 6.3 when is either per-
pendicular or parallel to . If is perpendicular to (� � 90°), then · � 0.
(The equality · � 0 also holds in the more trivial case when either or is
zero.) If and point in the same direction (� � 0), then · � AB. If and 
point in opposite directions (� � 180°), then · � �AB. The scalar product is
negative when 90° � � � 180°.

The unit vectors , , and , which were defined in Chapter 1, lie in the positive
x, y, and z directions, respectively, of a right-handed coordinate system. Therefore,
it follows from the definition of · that the scalar products of these unit vectors
are given by

[6.7]

[6.8]

Two vectors and can be expressed in component form as

Therefore, using these expressions, Equations 6.7 and 6.8 reduce the scalar prod-
uct of and to

[6.9]

where we have used the distributive law (Eq. 6.6) to simplify the result. This equa-
tion and Equation 6.3 are alternative but equivalent expressions for the scalar prod-
uct. Equation 6.3 is useful if you know the magnitudes and directions of the vectors,
and Equation 6.9 is useful if you know the components of the vectors. In the special
case where � , we see that

A
: 

� A
:

� Ax
2 � Ay

2 � Az
2 � A2

B
:

A
:

A
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:

� AxBx � AyBy � AzBz

B
:

A
:

B
:

� Bx î � By ĵ � Bzk̂A
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� Ax î � Ay ĵ � Azk̂

B
:

A
:

î � ĵ � î � k̂ � ĵ � k̂ � 0

î � î � ĵ � ĵ � k̂ � k̂ � 1
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:
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) � A
: 
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� A 
:

� C
:

A
: 

� B
:

� B
: 

� A
:

W � F
: 

� � r: � F �r cos �

F
: 

� � r:

WORK IS A SCALAR Although Equa-
tion 6.4 defines the work in terms
of two vectors, work is a scalar; there
is no direction associated with it.
All types of energy and energy
transfer are scalars. This property is
a major advantage of the energy ap-
proach because we don’t need vec-
tor calculations!

� PITFALL PREVENTION 6.4

■ Work expressed as a scalar 
product

■ Scalar products of unit vectors

Which of the following statements is true about the relationship be-
tween the scalar product of two vectors and the product of the magnitudes of the vectors?
(a) is larger than AB. (b) is smaller than AB. (c) could be larger or smaller
than AB, depending on the angle between the vectors. (d) could be equal to AB.A

:
�B

:
A
:

�B
:

A
:

�B
:

A
:

�B
:

QUICK QUIZ 6.2
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and By � 2. Note that the result has no units because
no units were specified on the original vectors and .

Find the angle � between and .

Solution The magnitudes of and are given by

Using Equation 6.3 and the result from part A gives

60.3�� � cos�1(0.496) �

cos � �
A
:

�B
:

AB
�

4
√13 √5

�
4

√65
� 0.496

B � √Bx 

2 � By 

2 � √(� 1)2 � (2)2 � √5

A � √Ax 

2 � Ay 

2 � √(2)2 � (3)2 � √13

B
:

A
:

B
:

A
:B

B
:

A
:

The vectors and are given by and
.

Determine the scalar product .

Solution We can evaluate the scalar product directly 
using the unit vector notation:

where we have used that and 
. The same result is obtained using

Equation 6.9 directly, where Ax � 2, Ay � 3, Bx � � 1,
î � ĵ � ĵ � î � 0

î � î � ĵ � ĵ � 1

4� � 2 � 6 �

 � � 2 î � î � 2 î �2 ĵ � 3 ĵ � î � 3 ĵ �2 ĵ

A
: 

�  B
:

� (2 î � 3 ĵ) �(� î � 2 ĵ)

A
:

�B
:A

B
:

� � î � 2 ĵ
A
:

� 2 î � 3 ĵB
:

A
:

WORK  DONE  BY  A  VARYING  FORCE
Consider a particle being displaced along the x axis under the action of a force with
an x component Fx that varies with position, as in the graphical representation in
Figure 6.7. The particle is displaced in the direction of increasing x from x � xi to 
x � xf . In such a situation, we cannot use Equation 6.1 to calculate the work done
by the force because this relationship applies only when is constant in magnitude
and direction. As seen in Figure 6.7, we do not have a single value of the force to
substitute into Equation 6.1. If, however, we imagine that the point of application of
the force undergoes a small displacement in the x direction so that �r � �x, as
shown in Figure 6.7a, the x component Fx of the force is approximately constant
over this interval. We can then approximate the work done by the force on the par-
ticle for this small displacement as

[6.10]

This quantity is just the area of the shaded geometric model rectangle in Figure
6.7a. If we imagine that the curve described by Fx versus x is divided into a large
number of such intervals, the total work done for the displacement from xi to xf is
approximately equal to the sum of a large number of such terms:

If the displacements �x are allowed to approach zero, the number of terms in the
sum increases without limit, but the value of the sum approaches a definite value
equal to the area under the curve bounded by Fx and the x axis in Figure 6.7b. As
you probably have learned in calculus, this limit of the sum is called an integral and
is represented by

The limits on the integral x � xi to x � xf define what is called a definite inte-
gral. (An indefinite integral is the limit of a sum over an unspecified interval. Appen-
dix B.7 gives a brief description of integration.) This definite integral is numerically

lim
�x : 0

 �
xf

xi

 Fx �x � �xf

xi

 Fx dx

W � �
xf

xi

 Fx �x 

W1 � Fx �x

F
:

6.4

(a)

Fx

Area  =  ∆A = Fx ∆x

Fx

xxfxi

∆x

(b)

Fx

xxfxi

Work

(a) The work done
by a force of magnitude Fx for the
small displacement �x is Fx �x, which
equals the area of the shaded rectan-
gle. The total work done for the 
displacement from xi to xf is approxi-
mately equal to the sum of the areas
of all the rectangles. (b) The work
done by the variable force Fx as the
particle moves from xi to xf is exactly
equal to the area under this curve.

FIGURE 6.7

The Scalar ProductEXAMPLE 6.2
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equal to the area under the curve of Fx versus x between xi and xf . Therefore, we
can express the work done by Fx for the displacement from xi to xf as

[6.11]

This equation reduces to Equation 6.1 when Fx � F cos � is constant and xf � xi � �x.
If more than one force acts on a system and the system can be modeled as a particle,

the total work done on the system is just the work done by the net force. If we ex-
press the x component of the net force as Fx , the total work, or net work, done on
the particle as it moves from xi to xf is

For the general case of a particle moving along an arbitrary path while acted on by
a net force , we use the scalar product:

[6.12]

where the integral is calculated over the path that the particle takes through space.
If the system cannot be modeled as a particle (for example, if the system consists

of multiple particles that can move with respect to each other), we cannot use
Equation 6.12 because different forces on the system may move through different
displacements. In that case, we must evaluate the work done by each force sepa-
rately and then add the works algebraically.

Work Done by a Spring
A common physical system for which the force varies with position is shown in
Active Figure 6.8. A block on a horizontal, frictionless surface is connected to a
spring. If the block is located at a position x relative to its equilibrium position
x � 0, the stretched or compressed spring exerts a force on the block given by

[6.13]

where k is a positive constant called the force constant (or spring constant or stiffness
constant) of the spring. This force law for springs is known as Hooke’s law. For many
springs, Hooke’s law can describe the behavior very accurately provided that the
displacement from equilibrium is not too large. The value of k is a measure of the
stiffness of the spring. Stiff springs have larger k values, and weak springs have
smaller k values. We shall employ a simplification model in which all springs obey
Hooke’s law unless specified otherwise.

The negative sign in Equation 6.13 signifies that the force exerted by the spring
on the block is always directed opposite the displacement from the equilibrium posi-
tion x � 0. For example, when x 	 0, such that the block is pulled to the right and
the spring is stretched as in Active Figure 6.8a, the spring force is to the left, or neg-
ative. When x � 0, and the spring is compressed as in Active Figure 6.8c, the spring
force is to the right, or positive. Of course, when x � 0, as in Active Figure 6.8b, the
spring is unstretched and Fs � 0. Because the spring force always acts toward the
equilibrium position, it is sometimes called a restoring force.

If the block is displaced to a position � x max and then released, it moves from
� xmax through zero to � x max (assuming a frictionless surface) and then turns
around and returns to � x max . The details of this oscillating motion will be

Fs � � kx

�W � Wnet � ��� F
:��d r:

� F
:

�W � Wnet � �xf

xi

 �� Fx�dx

�

W � �xf

xi

 Fx dx

■ Work done by a variable net
force

■ Hooke’s law



discussed in Chapter 12. For our purposes here, let us calculate the work done by
the spring force on the block as the block moves from xi � � x max to xf � 0. Apply-
ing the particle model to the block and using Equation 6.11, we have

[6.14] 

The work done by the spring force on the block is positive because the spring force
is in the same direction as the displacement (both are to the right).

If we consider the work done by the spring force on the block as the block con-
tinues to move from xi � 0 to xf � x max, we find that . This work is
negative because for this part of the motion the displacement is to the right and the
spring force is to the left. Therefore, the net work done by the spring force on the
block as it moves from xi � � x max to xf � x max is zero.

Ws � � 
1
2kx 2

max 

Ws � �xf

xi

Fs dx � �0

�x max

(�kx) dx � 1
2kx2

max 
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The force exerted by a spring on a
block varies with the block’s dis-
placement from the equilibrium
position x � 0. (a) When x is posi-
tive (stretched spring), the spring
force is to the left. (b) When x is
zero (natural length of the spring),
the spring force is zero. (c) When
x is negative (compressed spring),
the spring force is to the right. 
(d) Graph of Fs versus x for the
block– spring system. The work
done by the spring force as the
block moves from � x max to 0 is
the area of the shaded triangle,

.

Observe the
block’s motion for various maxi-
mum displacements and spring 
constants by logging into 
PhysicsNow at www.pop4e.com
and going to Active Figure 6.8.

1
2kx 2

max

ACTIVE FIGURE 6.8

(c)

(b)

(a)

x

x = 0

Fs is negative.
  x is positive.

x

x = 0

Fs = 0
 x = 0

x

x = 0
x

x

Fs

x
0

kxmax

xmax Fs = –kx

(d)

Fs is positive.
  x is negative.

Area = – kx2
max

1
2

www.pop4e.com
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(Example 6.3) A graph of the applied force re-
quired to stretch a spring that obeys Hooke’s law
versus the elongation of the spring.

If we plot Fs versus x, as in Active Figure 6.8d, we arrive at the same results. The
work calculated in Equation 6.14 is equal to the area of the shaded triangle in 
Active Figure 6.8d, with base xmax and height kxmax. This area is .

If the block undergoes an arbitrary displacement from x � xi to x � xf , the work
done by the spring force is

[6.15]

From this equation we see that the work done by the spring force on the block is zero
for any motion that ends where it began (xi � xf). We shall make use of this impor-
tant result in Chapter 7, where we describe the motion of this system in more detail.
Equation 6.15 also shows that the work done by the spring force is zero when the
block moves between any two symmetric locations, xi � � xf . Consider the curve rep-
resenting the spring force in Active Figure 6.8d; if the block moves from 
x � � xmax to x � � xmax, the total work is zero because we are adding a positive area
(for � xmax � x � 0) to a negative area (for 0 � x � � xmax) of equal magnitude.

Equations 6.14 and 6.15 describe the work done by the spring force on the block.
Now consider the work done by an external agent on the block as the agent applies a
force to the spring and stretches it very slowly from xi � � xmax to xf � 0 as in 
Figure 6.9. This work can be easily calculated by noting that the applied force is
of equal magnitude and opposite direction to the spring force at any value of the
position (because the block is not accelerating), so that Fapp � �(� kx) � � kx. The
work done by this applied force (the external agent) on the block is therefore

Note that this work is equal to the negative of the work done by the spring force on
the block for this displacement (Eq. 6.14). The work is negative because the exter-
nal agent must push to the left on the spring in Figure 6.9 to prevent it from
expanding, and this direction is opposite the direction of the displacement as the
block moves from � xmax to 0.

WFapp
� �0

�x max

 Fapp dx � �0

�x max

 kx dx � � 1
2kx 2max 

F
:

s

F
:

app

Ws � �xf

xi

 (�kx) dx � 
1
2kxi 

2 � 
1
2kxf 

2 

1
2kx2

max 

� Work done by a spring

A dart is loaded into a spring-loaded toy dart gun by pushing the
spring in by a distance d. For the next loading, the spring is compressed a distance 2d.
How much work is required to load the second dart compared to that required to load
the first? (a) four times as much (b) two times as much (c) the same (d) half as
much (e) one-fourth as much

QUICK QUIZ 6.3

Work Required to Stretch a SpringEXAMPLE 6.3
One end of a horizontal spring (k � 80 N/m) is held
fixed while an external force is applied to the free end,
stretching it slowly from xA � 0 to xB � 4.0 cm.

Find the work done by the external force on the
spring.

Solution Because we have not been told otherwise,
we assume that the spring obeys Hooke’s law. We place
the zero reference of the coordinate axis at the free
end of the unstretched spring. The applied force is 
Fapp � kx � (80 N/m)(x). The work done by Fapp is the
area of the triangle from 0 to 4.0 cm in Figure 6.10:

0.064 JW � 
1
2kxB

2 � 
1
2(80 N/m)(0.040 m)2 �

A

xi =  = 0xf–x max

Fapp Fs

A block moves from
xi � –xmax to xf � 0 on a frictionless
surface as a force is applied to
the block. If the process is carried out
very slowly, the applied force is equal
in magnitude and opposite in direc-
tion to the spring force at all times.

F
:

app

FIGURE 6.9

Fapp

Fapp = (80 N/m)(x)

x (cm)
0 2 4 6

�
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KINETIC  ENERGY  AND  THE  WORK – KINETIC  
ENERGY THEOREM

Now that we have explored various means of evaluating the work done by a force
on a system, let us explore the significance and benefits of the energy approach. As
we shall see in this section, if the work done by the net force on a particle can be
calculated for a given displacement, the change in the particle’s speed is easy to
evaluate. Let’s see how it is done.

Figure 6.11 shows an object modeled as a particle of mass m moving to the right
along the x axis under the action of a net force , also to the right. If the point of
application of the force moves through a displacement �x � xf � xi, the work done
by the force on the particle is

[6.16]

Using Newton’s second law, we can substitute for the magnitude of the net force
F � ma and then perform the following chain-rule manipulations on the

integrand:

[6.17]

This equation was generated for the specific situation of one-dimensional mo-
tion, but it can also be used for two- or three-dimensional motion. It tells us that the
work done by the net force on a particle of mass m is equal to the difference be-
tween the initial and final values of a quantity .

Note that in deriving Equation 6.17, the dx we used to calculate the work was the
displacement of the particle. In other words, we assumed that the displacement of
the particle is the same as the displacement of the point of application of the force.
This assumption is necessarily true for particles, but it may not be true for extended
objects. It will only be true if the object is perfectly rigid, so that all parts of the ob-
ject undergo the same displacement. Most of the situations that we will consider in
this chapter and the next will satisfy this requirement. One important exception,
however—objects subject to kinetic friction—will be explored in Section 6.7.

The quantity in Equation 6.17 is so important that we give it a special
name. The kinetic energy K of an object of mass m moving with a speed v is de-
fined as

[6.18]K � 12mv2

1
2mv2

1
2mv2

Wnet � 1
2mvf

2 � 1
2mvi

2

Wnet � �xf

xi

 ma dx � �xf

xi

 m 
dv
dt

 dx � �xf

xi

 m 
dv
dx

 
dx
dt

 dx � �vf

vi

 mv dv

�

Wnet � �xf

xi

 � F dx

� F
:

� F
:

6.5
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vf

Σ F
m

vi

∆ x

An object modeled
as a particle undergoes a displace-
ment of magnitude �x and a change
in speed under the action of a con-
stant net force .� F

:

FIGURE 6.11

Using calculus, we find the same result:

0.13 JW � 1
2(80 N/m) [(0.070 m)2 � (0.040 m)2] �

 � 1
2(80 N/m)(x2)�0.070 m

0.040 m

W � �xC

x B

 Fapp dx � �0.070 m

0.040 m
(80 N/m)x dx

0.13 J� 1
2(80 N/m) [(0.070 m)2 � (0.040 m)2] �

W � 1
2kxC

2 � 1
2kx B

2Note that the work is positive because the applied force
and the displacement are in the same direction.

Find the additional work done in stretching the
spring from xB � 4.0 cm to xC � 7.0 cm.

Solution The work done in stretching the spring the
additional amount is the darker shaded area between
these limits in Figure 6.10. Geometrically, it is the
difference in area between the large and small 
triangles:

B

■ Kinetic energy  of an object
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Kinetic energy is a scalar quantity and has the same units as work. For example, an
object of mass 2.0 kg moving with a speed of 4.0 m/s has a kinetic energy of 16 J.

It is often convenient to write Equation 6.17 in the form

[6.19]

Equation 6.19 is an important result known as the work–kinetic energy theorem:

When work is done on a system and the only change in the system is in its
speed, the work done by the net force equals the change in kinetic energy of
the system. 

The work–kinetic energy theorem indicates that the speed of a particle in-
creases if the net work done on it is positive because the final kinetic energy will be
greater than the initial kinetic energy. The speed decreases if the net work is nega-
tive because the final kinetic energy will be less than the initial kinetic energy.

The work–kinetic energy theorem will clarify some results we saw earlier in this
chapter that may have seemed odd. In Thinking Physics 6.1, a person lifts a block
and moves it horizontally. At the end of the Reasoning, we mentioned that the net
work done by all forces on the block is zero. That may seem strange, but it is cor-
rect. If we choose the block as the system, the net force on the system is zero
because the upward lifting force is modeled as being equal in magnitude to the
gravitational force. Therefore, the net force is zero and zero net work is done,
which is consistent because the kinetic energy of the block does not change. It may
seem incorrect that no work was done because something changed—the block was
lifted—but that is correct because we chose the block as the system. If we had chosen the
block and the Earth as the system, we would have a different result because the
work done on this system is not zero. We will explore this idea in the next chapter.

In Section 6.4, we also saw a result of zero work done, when a block on a spring
moved from xi � � xmax to xf � xmax. The work is zero here for a different reason
from that for lifting the block. It is the result of the combination of positive work
and an equal amount of negative work done by the same force. It is also different
from the lifting example in that the speed of the block on the spring is continually
changing. The work–kinetic energy theorem refers only to the initial and final
points for the speeds; it does not depend on details of the path followed between
these points. We shall use this concept often in the remainder of this chapter and
in the next chapter.

Wnet � Kf � Ki � �K � The work – kinetic energy 
theorem

A dart is loaded into a spring-loaded toy dart gun by pushing the
spring in by a distance d. For the next loading, the spring is compressed a distance 2d.
How much faster does the second dart leave the gun compared with the first? (a) four
times as fast (b) two times as fast (c) the same (d) half as fast (e) one-fourth as fast

QUICK QUIZ 6.4

CONDITIONS FOR THE WORK – KINETIC

ENERGY THEOREM Always remember
the special conditions for the
work–kinetic energy theorem. We
will see many situations in which
other changes occur in the system
besides its speed, and there are
other interactions with the environ-
ment besides work. The work–
kinetic energy theorem is impor-
tant, but it is limited in its applica-
tion and is not a general 
principle. We shall present a gen-
eral principle involving energy in
Section 6.6.

� PITFALL PREVENTION 6.5

A Block Pulled on a Frictionless Surface
A 6.00-kg block initially at rest is pulled to the right
along a horizontal frictionless surface by a constant,
horizontal force of magnitude 12.0 N as in 
Figure 6.12. Find the speed of the block after it has
moved 3.00 m.

Solution The block is the system, and three external
forces interact with it. Neither the gravitational force
nor the normal force does work on the block because
these forces are vertical and the displacement of the
block is horizontal. There is no friction, so the only

F
:

n

F

mg
∆x

vf

(Example 6.4) A block on a frictionless surface is
pulled to the right by a constant horizontal force.

FIGURE 6.12

EXAMPLE 6.4



(Example 6.5) A block is dropped onto a vertical
spring, causing the spring to compress.
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Notice that an energy calculation such as this one gives
only the speed of the particle, not the velocity. In many
cases, that is all you need. If you want to find the direc-
tion of the velocity vector, you may need to analyze the
pictorial representation or perform other calculations.
In this example, it is clear that is directed to the
right.

v:f

external force that we must consider in the calculation
is the 12.0-N force.

The work done by the 12.0-N force is

W � F �x � (12.0 N)(3.00 m) � 36.0 N · m � 36.0 J

Using the work–kinetic energy theorem and noting
that the initial kinetic energy is zero, we find

3.46 m/svf � √ 
2W
m

� √ 2(36.0 J)
6.00 kg

�

W � Kf � Ki � 1
2mvf

2  � 0

Dropping a Block onto a SpringEXAMPLE 6.5

The change in kinetic energy of the block is zero be-
cause it is at rest at both the initial and final conditions.
Therefore, from the work–kinetic energy theorem, the
work done by the net force must be equal to zero:

This quadratic equation can be solved, and the solu-
tions are d � 0.19 m and d � � 0.16 m. Because we
have chosen the value of d as a positive number by
claiming that y � � d is below the initial position of the
end of the spring, we must choose the positive root, 

To finalize the problem, let us be sure that we 
can interpret the negative root. The negative root 
gives the position for the final condition as 
y � �d � �(� 0.16 m) � � 0.16 m, which is the
position above the initial position y � 0 at which the
block again comes to rest in its oscillation, assuming
that the block remains attached to the spring. These
two positions are symmetric around y � � 0.016 m,
which is where the block would rest in equilibrium on
the spring, according to Hooke’s law.

d � 0.19 m.

� 500d2 � 15.7d � 15.7 � 0

A massless spring that has a force constant of 
1.00 � 103 N/m is placed on a table in a vertical posi-
tion as in Figure 6.13. A block of mass 1.60 kg is held
1.00 m above the free end of the spring. The block is
dropped from rest so that it falls vertically onto the
spring. By what maximum distance does the spring
compress?

Solution Conceptualize the problem by imagining the
block dropping on the spring and compressing the
spring by some distance. The block is at rest momentar-
ily before the compressed spring begins to move the
block upward again. We want to focus on that instant of
time at which the block is at rest. We identify the block
as the system. We identify the initial condition as the re-
lease of the block from the height yi � h � 1.00 m
above the free end of the spring. The final condition
occurs when the block is momentarily at rest with the
spring compressed its maximum distance. For this con-
dition, the block is located at yf � �d, where d is the
maximum distance by which the spring is compressed.
Because both the gravitational force and the spring
force are doing work on the block, we categorize the
problem as one that can be addressed with the
work–kinetic energy theorem. To analyze the problem,
we determine that the net work done on the block dur-
ing its displacement between the initial and final posi-
tions by gravity (positive work) and the spring force
(negative work) is 

 � � 500d2 � 15.7d � 15.7

� 
1
2(1.00 � 103 N/m)d 2

 � (1.60 kg)(9.80 m/s2)(1.00 m � d)

 � mg(h � d) � 1
2kd2

Wnet � F
:

g �� r: � 1
2kd2 � (�mg) ĵ �(�d � h) ĵ � 1

2kd 2

1.00 m

FIGURE 6.13
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THE  NONISOLATED  SYSTEM
We have seen a number of examples in which an object, modeled as a particle, is
acted on by various forces, with the result that there is a change in its kinetic en-
ergy. This very simple situation is the first example of the nonisolated system, which
is an important new analysis model for us. Physical problems for which this model is
appropriate involve systems that interact with or are influenced by their environ-
ment, causing some kind of change in the system.

The work–kinetic energy theorem is our first introduction to the nonisolated
system. The interaction is the work done by the external force and the quantity
related to the system that changes is its kinetic energy. Because the energy of the
system changes, we conceptualize work as a means of energy transfer; work has the
effect of transferring energy between the system and the environment. If positive
work is done on the system, energy is transferred to the system, whereas negative
work indicates that energy is transferred from the system to the environment.

So far, we have discussed kinetic energy as the only type of energy in a system.
We now argue the existence of a second type of energy. Consider a situation in
which an object slides along a surface with friction. Clearly, work is done by the fric-
tion force because there is a force and a displacement of the object on which the
force acts. Keep in mind, however, that our equations for work involve the displace-
ment of the point of application of the force. If an object is perfectly rigid, the displace-
ment of the point of application of the force is the same as the displacement of the
object. For a nonrigid object, however, these displacements are not the same. Imag-
ine, for example, a block of gelatin sitting on a plate. Suppose the block is pushed
with a horizontal force applied to a vertical side so that the block deforms but does
not slide on the plate. There has been a displacement of the object because most of
the particles in the object, except for those along the stationary bottom edge, have
moved horizontally through various displacements. The displacement of the point
of application of the friction force between the block and the plate is zero, however,
because the bottom of the block has not moved.

On a microscopic scale, real objects are deformable; it is the deformation and
interaction of the surfaces in contact that cause the friction force. In general, the
displacement of the point of application of the friction force (assuming that we
could calculate it!) is not the same as the displacement of the object.1

Let us imagine the book in Figure 6.14 sliding to the right on the surface of a
heavy table and slowing down as a result of the friction force. Suppose the surface is
the system. The sliding book exerts a friction force to the right on the surface. As a
result, many atoms on the surface move slightly to the right under the influence of
this force. Consequently, the points of application of the friction force move to the
right and the friction force does positive work on the surface. The surface, however,
is not moving after the book has stopped. Positive work has been done on the sur-
face, yet the kinetic energy of the surface does not increase. Is this situation a viola-
tion of the work–kinetic energy theorem?

It is not so much a violation as a misapplication because this situation does not
fit the description of the conditions given for the work–kinetic energy theorem.
The theorem requires that the only change in the system is in its speed, which is
not the case here. Work is done on the system of the surface by the book, but the
result of that work is not an increase in kinetic energy. From your everyday experi-
ence with sliding over surfaces with friction, you can probably guess that the surface
will be warmer after the book slides over it (rub your hands together briskly to expe-
rience that!). Therefore, the work done has gone into warming the surface rather
than causing it to increase in speed. We use the phrase internal energy E int for the

6.6

∆x

vi
fk

vf

A book sliding to
the right on a horizontal surface slows
down in the presence of a force of ki-
netic friction acting to the left. The
initial velocity of the book is , and
its final velocity is . The normal
force and gravitational force are not
included in the diagram because they
are perpendicular to the direction of
motion and therefore do not influ-
ence the speed of the book.

v:f

v:i

FIGURE 6.14

1For more details on energy transfer situations involving forces of kinetic friction, see B. A. Sherwood
and W. H. Bernard, American Journal of Physics 52:1001, 1984; and R. P. Bauman, The Physics Teacher
30:264, 1992.



energy associated with an object’s temperature. (We will see a more general defini-
tion for internal energy in Chapter 17.) In this case, the work done by the book on
the surface does indeed represent energy transferred into the system, but it appears
in the system as internal energy rather than kinetic energy.

We have now seen two methods of storing energy in a system: kinetic energy, re-
lated to motion of the system, and internal energy, related to its temperature. We
have seen only one way to transfer energy into the system so far: work. Next, we in-
troduce a few other ways to transfer energy into or out of a system, which will be
studied in detail in other sections of the book. We will focus on the following six
methods (Fig. 6.15) for transferring energy between the environment and the
system.

Work (this chapter) is a method of transferring energy to a system by the
application of a force to the system and a displacement of the point of application
of the force, as we have seen in the previous sections (Fig. 6.15a).

Mechanical waves (Chapter 13) are a means of transferring energy by allowing a
disturbance to propagate through air or another medium. This method is the one
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Energy transfer
mechanisms. (a) Energy is transferred
to the block by work, (b) energy leaves
the radio by mechanical waves, (c) en-
ergy transfers up the handle of the
spoon by heat, (d) energy enters the
automobile gas tank by matter transfer,
(e) energy enters the hair dryer by
electrical transmission, and (f) energy
leaves the light bulb by electromagnetic
radiation.

FIGURE 6.15
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by which energy leaves a radio (Fig. 6.15b) through the loudspeaker—sound—
and by which energy enters your ears to stimulate the hearing process. Mechanical
waves also include seismic waves and ocean waves.

Heat (Chapter 17) is a method of transferring energy by means of microscopic
collisions; for example, the end of a metal spoon in a cup of coffee becomes hot be-
cause fast-moving electrons and atoms in the bowl of the spoon bump into slower
ones in the nearby part of the handle (Fig. 6.15c). These particles move faster be-
cause of the collisions and bump into the next group of slow particles. Therefore,
the internal energy of the handle end of the spoon rises from energy transfer as a
result of this bumping process. This process, also called thermal conduction, is caused
by a temperature difference between two regions in space.2

In matter transfer (Chapter 17), matter physically crosses the boundary of the
system, carrying energy with it. Examples include filling the system of your automo-
bile tank with gasoline (Fig. 6.15d) and carrying energy to the rooms of your
home by means of circulating warm air from the furnace. Matter transfer occurs
in several situations and is introduced in Chapter 17 by means of one example,
convection.

Electrical transmission (Chapter 21) involves energy transfer by means of elec-
tric currents. That is how energy transfers into your stereo system or any other elec-
trical device such as a hair dryer (Fig. 6.15e).

Electromagnetic radiation (Chapter 24) refers to electromagnetic waves such as
light, microwaves, and radio waves (Fig. 6.15f). Examples of this method of transfer
include energy going into your baked potato in your microwave oven and light en-
ergy traveling from the Sun to the Earth through space.3

The central feature of the energy approach is the notion that we can neither cre-
ate nor destroy energy ; energy is conserved. Therefore, if the amount of energy in a
system changes, it can only be because energy has crossed the boundary by a trans-
fer mechanism such as those listed above. This general statement of the principle
of conservation of energy can be described mathematically as follows:

[6.20]

where E system is the total energy of the system, including all methods of energy stor-
age (kinetic, internal, and another to be discussed in Chapter 7) and T (for
transfer) is the amount of energy transferred across the system boundary by a trans-
fer mechanism. Two of our transfer mechanisms have well-established symbolic
notations. For work, Twork � W, as we have seen in this chapter, and for heat, 
Theat � Q , which we will see in detail in Chapter 17. The other four members of
our list do not have established symbols, so we will call them TMW (mechanical
waves), TMT (matter transfer), TET (electrical transmission), and TER (electromag-
netic radiation).

In this chapter, we have seen how to calculate work. The other types of transfers
will be discussed in subsequent chapters. Equation 6.20 is called the continuity

�E system � �T ■ Conservation of energy: the con-
tinuity equation for energy

2Many textbooks use the term heat to include conduction, convection, and radiation. Conduction is the
only one of these three processes driven by a temperature difference alone, so we will restrict heat to
this process in this book. Convection and radiation are included in other types of energy transfer in
our list of six.
3 Electromagnetic radiation and work done by field forces are the only energy transfer mechanisms that
do not require molecules of the environment to be available at the system boundary. Therefore, sys-
tems surrounded by a vacuum (such as planets) can only exchange energy with the environment by
means of these two possibilities.

HEAT IS NOT A FORM OF ENERGY The
word heat is one of the most mis-
used words in our popular lan-
guage. In this text, heat is a method
of transferring energy across a system
boundary, not a form of stored en-
ergy. Therefore, phrases such as
“heat content,” “the heat of the
summer,” and “the heat escaped”
all represent uses of this word that
are inconsistent with our physics de-
finition. See Chapter 17.

� PITFALL PREVENTION 6.6



equation for energy. A continuity equation arises in any situation in which the
change in a quantity in a system occurs solely because of transfers across the bound-
ary (because the quantity is conserved), several examples of which occur in various
areas of physics, as we shall see.

The full expansion of Equation 6.20, with kinetic and internal energy as the
storage mechanisms, is

�K � �E int � W � TMW � Q � TMT � TET � TER

This equation is the primary mathematical representation of the energy analysis of
the nonisolated system. In most cases, it reduces to a much simpler equation be-
cause some of the terms are zero. If, for a given system, all terms on the right side
of the continuity equation for energy are zero, the system is an isolated system, which
we study in the next chapter.

The concept described by Equation 6.20 is no more complicated in theory than
is that of balancing your checking account statement. If your account is the system,
the change in the account balance for a given month is the sum of all the transfers:
deposits, withdrawals, fees, interest, and checks written. It may be useful for you to
think of energy as the currency of nature!

Suppose a force is applied to a nonisolated system and the point of application
of the force moves through a displacement. Further, suppose the only effect on the
system is to increase its speed. Then the only transfer mechanism is work (so that 

T in Equation 6.20 reduces to just W) and the only kind of energy in the system
that changes is the kinetic energy (so that �E system reduces to just �K). Equation
6.20 then becomes

�K � W

which is the work–kinetic energy theorem, Equation 6.19. This theorem is a special
case of the more general continuity equation for energy. In future chapters, we
shall see several more examples of other special cases of the continuity equation for
energy.

Equation 6.20 is not restricted to phenomena commonly described as belonging
to the area of physics. For example, Figure 6.16 shows a glow worm whose last
three segments of the abdomen glow with bioluminescence. In this process, chemical
energy in the worm is transformed such that energy leaves the worm by 
electromagnetic radiation in the form of visible light. For this process, Equation

�
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The glow worm Lampyris noc-
tiluca is found in Great Britain and parts of conti-
nental Europe. It exhibits the phenomenon of
bioluminescence. The light leaving the last three
segments of its abdomen represents a transfer of
energy out of the system of the worm.

FIGURE 6.16
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6.20 can be written

�Echem � TER

Chemical energy is a form of potential energy, which we will study in Chapter 7.
Chemical energy is stored in any organism by means of food ingested by the organ-
ism. Therefore, the source of the light leaving the worm in Figure 6.16 is food in-
gested earlier by the worm.

By what transfer mechanisms does energy enter and leave (a) your
television set, (b) Your gasoline-powered lawn mower, and (c) your hand-cranked pencil 
sharpener?

QUICK QUIZ 6.5

Consider a block sliding over a horizontal surface with friction.
Ignore any sound the sliding might make. If we consider the system to be the block, this
system is (a) isolated or (b) nonisolated. If we consider the system to be the surface, this
system is (c) isolated or (d) nonisolated. If we consider the system to be the block and 
the surface, this system is (e) isolated or (f) nonisolated.

QUICK QUIZ 6.6

■ Thinking Physics 6.3
A toaster is turned on. Discuss the forms of energy and energy transfer occurring in
the coils of the toaster.

Reasoning We identify the coils as the system. The energy that changes in the sys-
tem is internal energy because the temperature of the coils rises. The energy transfer
mechanism for energy coming into the coils is electrical transmission through the
wire plugged into the wall. Energy is transferring out of the coils by electromagnetic
radiation because the coils are hot and glowing. Some transfer of energy also occurs
by heat from the hot surfaces of the coils into the air. We could express this process
in terms of the continuity equation for energy as

After a short warm-up period, the temperature of the coils reaches a constant
value and the internal energy will no longer change. In this situation, the energy in-
put and output are balanced:

Note that Q and TER are both negative because they represent energy leaving the
system; TET is positive because energy continues to enter the system by electrical
transmission. ■

SITUATIONS  INVOLVING  KINETIC  FRICTION
In the preceding section, we discussed the nature of the friction force and the situa-
tion with deformable objects. Let us see how to handle problems with friction
forces such as that on our block in Figure 6.11 sliding on the surface.

Consider a situation in which forces, including friction, are applied to the block
as it follows an arbitrary path in space and let us follow a similar procedure to that
in generating Equation 6.17. We start by writing Equation 6.12 for all forces other
than friction:

[6.21]� Wother forces � ��� F
:

other forces��d r: 

6.7

0 � Q � TET � TER : � TET � Q � TER

�E int � Q � TET � TER



The in this equation is the displacement of the object because for forces other
than friction, under the assumption that these forces do not deform the object, this
displacement is the same as that of the point of application of the forces. To each
side of Equation 6.21 let us add the integral of the scalar product of the force of
kinetic friction and :

The integrand on the right side of this equation is the net force , so, 

Incorporating Newton’s second law , gives us

[6.22]

where we have used Equation 3.5 to rewrite as dt. The scalar product obeys the
product rule for differentiation (See Eq. B.30 in Appendix B.6), so the derivative of
the scalar product of with itself can be written

where we have used the commutative property of the scalar product to justify the fi-
nal expression in this equation. Consequently,

Substituting this result into Equation 6.22, we find that

Looking at the left side of this equation, we realize that in the inertial frame of the
surface, and will be in opposite directions for every increment of the
path followed by the object. Therefore, � � fk dr. The previous expression
now becomes

If the kinetic friction force is constant, fk can be brought out of the integral. The re-
maining integral is simply the sum of increments of length along the path,
which is the total path length d. Therefore,

[6.23]

This equation can be considered to be a modification of the work–kinetic energy
theorem to be used when a constant friction force acts on an object. The change in
kinetic energy is equal to the work done by all forces other than friction minus a
term fkd associated with the friction force.

� Wother forces � fkd � �K

�dr

� Wother forces � �fk dr � �K
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k �d r: � � ma: � d r: � � m 
d v:

dt
�d r: � �tf

ti
 m 

d v:

dt
� v:dt

� F
:

� ma:

� Wother forces � � f
:

k�d r: � � � F
:

 �d r: 

� F
:

� ���F
:

other forces � f
:

k��d r:

�Wother forces � � f
:

k �d r: � ���F
:

other forces��d r: � � f
:

k �d r:

d r:

d r:
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■ The change in kinetic energy 
of an object due to friction 
and other forces
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Now consider the larger system consisting of the block and the surface as the
block slows down under the influence of a friction force alone. No work is done
across the boundary of this system; the system does not interact with the environ-
ment, so there is no work done by other forces beside friction. In this case, Equa-
tion 6.23 becomes . For this situation, Equation 6.20 becomes

�K � �E int � 0

The change in kinetic energy of this system is the same as the change in kinetic en-
ergy of the system of the block because the block is the only part of the block–
surface system that is moving. Therefore,

[6.24]

Therefore, the increase in internal energy of the system is equal to the product of
the friction force and the path length through which the block moves. In summary,
a friction force transforms kinetic energy in a system to internal energy, and for a
system in which the friction force alone acts, the increase in internal energy of the
system is equal to its decrease in kinetic energy.

�E int � fkd

� fkd � �E int � 0

� fkd � �K

You are traveling along a freeway at 65 mi/h. You suddenly skid to a
stop because of congestion in traffic. Where is the energy that your car once had as 
kinetic energy before you stopped? (a) It is all in internal energy in the road. (b) It is all
in internal energy in the tires. (c) Some of it has transformed to internal energy and
some of it transferred away by mechanical waves. (d) It all transferred away from your car
by various mechanisms.

QUICK QUIZ 6.7

■ The increase in internal energy 
of a system due to friction

A Block Pulled on a Rough SurfaceEXAMPLE 6.6INTERACTIVE

Now, we find vf

Substituting the numerical values, we find

�

Notice that this value is less than that calculated in 
Example 6.4 because of the effect of the friction force.

Suppose the force is applied at an angle � as
shown in Figure 6.17b. At what angle should the force
be applied to achieve the largest possible speed after
the block has moved 3.00 m to the right?

Solution At first, we might guess that � � 0 is the opti-
mal angle to transfer the maximum energy to the

F
:B

1.78 m/svf � √� 2
6.00 kg � (9.54 J � 0)

vf � √� 2
m � ��K � 1

2mvi 

2�

�K � 1
2mvf 

2 � 1
2mvi 

2

� (12.0 N)(3.00 m) � 9.54 J

K � �(0.150)(6.00 kg)(9.80 m/s2)(3.00 m)A block of mass 6.00 kg initially at rest is pulled to the
right by a constant horizontal force with magnitude 
F � 12.0 N (Fig. 6.17a). The coefficient of kinetic fric-
tion between the block and the surface is 0.150.

Find the speed of the block after it has moved 
3.00 m. (This question is Example 6.4 modified so that
the surface is no longer frictionless.)

Solution We define the system as the block. Because
the block moves in a straight line without reversing di-
rection, the displacement �x of the block and the dis-
tance d through which it moves are equal. We apply
Equation 6.23:

The block is modeled as a particle in equilibrium in the
vertical direction so that n � mg. Therefore,

Evaluating �K , we have

�K � � �kmgd � Fd

�K � � fkd � � Wother forces � ��knd � Fd

A



(Interactive Example 6.6) (a) A block is pulled to
the right by a constant horizontal force on a sur-
face with friction. (b) The applied force is at an
angle � to the horizontal.
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n

F

mg
∆x

vf

fk

n

∆x

(b)

F

mg

vf

fk θ

(a)

FIGURE 6.17

block. That would indeed be the case when pulling the
block on a frictionless surface. With friction, however,
pulling the block at some angle � � 0 reduces the nor-
mal force on the block, which in turn reduces the fric-
tion force. As a result, more energy can be transferred
by work by pulling at some nonzero angle. For a
nonzero angle �, the work done by the applied force is

W � F �x cos � � Fd cos �

The block is in equilibrium in the vertical direction, so

Fy � n � F sin � � mg � 0

and

n � mg � F sin �

Because Ki � 0, Equation 6.23 can be written as

Maximizing the speed is equivalent to maximizing the
final kinetic energy. Consequently, we differentiate Kf
with respect to � and set the result equal to zero:

For �k � 0.150, we have

If we test this result by examining the second derivative
of Kf , we find indeed that this angle gives a maximum
value.

Try out the effects of pulling the block at
various angles by logging into PhysicsNow at www.pop4e.com

and going to Interactive Example 6.6.

8.53�� � tan �1(�k) � tan�1(0.150) �

 tan � � �k

�k cos � � sin � � 0

 
d(Kf)

d�
� ��k(0 � F cos �)d � Fd sin � � 0

� ��k(mg � F sin �)d � Fd cos �

� ��knd � Fd cos �

Kf � �fkd � �Wother forces

�

�

Calculate the speed of the block as it passes
through the equilibrium position if a constant friction
force of 4.0 N retards the block’s motion from the 
moment it is released.

Solution Certainly, the answer has to be less than what
we found in part A because the friction force retards
the motion. We use Equation 6.23: 

B

0.50 m/s

 � √0 �
2

1.6 kg
 (0.20 J)

vf � √v 2
i �

2
m

 Ws

Ws � 1
2mv 2

f � 1
2mv 2

iA block of mass 1.6 kg is attached to a horizontal spring
that has a force constant of 1.0 
 103 N/m as shown in
Active Figure 6.8. The spring is compressed 2.0 cm and
is then released from rest.

Calculate the speed of the block as it passes
through the equilibrium position x � 0 if the surface is
frictionless.

Solution In this situation, the block starts with vi � 0 at
xi � �2.0 cm and we want to find vf at xf � 0. We use
Equation 6.14 to find the work done by the spring with
xmax � xi � � 2.0 cm � � 2.0 
 10�2 m:<P> m:

Using the work–kinetic energy theorem with vi � 0, we
obtain the change in kinetic energy of the block as a re-
sult of the work done on it by the spring:

� 0.20 J

Ws � 1
2kx2

max � 1
2(1.0 
 103 N/m)(� 2.0 
 10�2 m)2

A

A Block – Spring SystemEXAMPLE 6.7INTERACTIVE

www.pop4e.com
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As expected, this value is somewhat less than the 
0.50 m/s we found in part A.

Investigate the role of the spring constant,
amount of spring compression, and surface friction by log-
ging into PhysicsNow at www.pop4e.com and going to Interac-
tive Example 6.7.Substituting the numerical values, we find

� 0.39 m/s

vf � √0 �
2

1.6 kg
 [0.20 J � (4.0 N)(2.0 
 10�2 m)]

vf � √v 2
i �

2
m

 (Ws � fkd)

Ws � fkd � 1
2mv 2

f � 1
2mv 2

i

�Wother forces � fkd � �K

POWER
We discussed transfers of energy across the boundary of a system by a number of
methods. From a practical viewpoint, it is interesting to know not only the amount
of energy transferred to a system but also the rate at which the energy is transferred.
The time rate of energy transfer is called power.

We shall focus on work as our particular energy transfer method in this discus-
sion, but keep in mind that the notion of power is valid for any means of energy
transfer. If an external force is applied to an object (for which we will adopt the par-
ticle model) and if the work done by this force is W in the time interval �t, the aver-
age power during this interval is defined as

[6.25]

The instantaneous power � at a particular point in time is the limiting value of
the average power as �t approaches zero:

[6.26]

where we represent the infinitesimal value of the work done by dW. We know from
Equation 6.4 that we can write the infinitesimal amount of work done over a dis-
placement as . Therefore, the instantaneous power can be written

[6.27]

where we have used .
In general, power is defined for any type of energy transfer. The most general

expression for power is therefore

[6.28]

where dE/dt is the rate at which energy is crossing the boundary of the system by
transfer mechanisms.

The SI unit of power is joules per second ( J/s), also called a watt (W) (after
James Watt):

The unit of power in the U.S. customary system is the horsepower (hp):

1 hp � 550 ft · lb/s � 746 W

1 W � 1 J/s � 1 kg�m2/s3

� �
dE
dt

v: � d r:�dt

� �
dW
dt

� F
:

�
d r:

dt
� F

:
� v:

dW � F
:

�d r:d r:

� �  lim
�t : 0

 
W
�t

�
dW
dt

�avg � 
W
�t

6.8

■ General expression for power

www.pop4e.com


A new unit of energy can now be defined in terms of the unit of power. One
kilowatt-hour (kWh) is the energy transferred in a time interval of 1 h at the con-
stant rate of 1 kW. The numerical value of 1 kWh of energy is

1 kWh � (103 W)(3 600 s) � 3.60 
 106 J

It is important to realize that a kilowatt-hour is a unit of energy, not power.
When you pay your electric bill, you are buying energy, and the amount of energy
transferred by electrical transmission into a home during the period represented by
the electric bill is usually expressed in kilowatt-hours. For example, your bill may
state that you used 900 kWh of energy during a month and that you are being
charged a rate of 10¢ per kWh. Your obligation is then $90 for this amount of en-
ergy. As another example, suppose an electric bulb is rated at 100 W. In 1.00 h of
operation, it will have energy transferred to it by electrical transmission in the
amount of (0.100 kW)(1.00 h) � 0.100 kWh � 3.60 
 105 J.
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Power Delivered by an Elevator MotorEXAMPLE 6.8
A 1 000-kg elevator carries a maximum load of 800 kg.
A constant friction force of 4 000 N retards its motion
upward as in Figure 6.18.

What is the minimum power delivered by the mo-
tor to lift the elevator at a constant speed of 3.00 m/s?

Solution We use two analysis models for the elevator.
First, we model it as a particle in equilibrium because it
moves at constant speed. The motor must supply the
force that results in the tension in the cable that pulls
the elevator upward. From Newton’s second law and
from a � 0 because v is constant, we have

T � f � Mg � 0

where M is the total mass (elevator plus load), equal to
1 800 kg. Therefore,

We now model the elevator as a nonisolated system.
Work is being done on it by the tension force (as well as
other forces). We can use Equation 6.27 to evaluate the
power delivered by the motor, which is the rate at
which work is done on the elevator by the tension
force. Because is in the same direction as , we have

�

Because is the force the motor applies to the cable,
the preceding result represents the rate at which en-
ergy is being transferred out of the motor by doing
work on the cable.

T
:

64.8 kW

 � (2.16 
 104 N)(3.00 m/s) � 6.48 
 104 W

� � T
:

� v: � Tv

v:T
:

 � 2.16 
 104 N

 � 4.00 
 103 N � (1.80 
 103 kg)(9.80 m/s2)

 T � f � Mg

T
:

A

(Example 6.8) (a) A motor lifts an elevator car. 
(b) Free-body diagram for the elevator. The motor
exerts an upward force on the supporting ca-
bles. The magnitude of this force is T, the tension
in the cables, which is applied in the upward direc-
tion on the elevator. The downward forces on the
elevator are the friction force and the gravita-
tional force .F

:
g � M g:

f
:

T
:

Motor

(a)

T

g

f

M

+

(b)

FIGURE 6.18

BE CAREFUL WITH POWER Do not
confuse the symbol W for the watt
with the italic symbol W for work.
Also, remember that the watt 
already represents a rate of energy
transfer, so we do not want to say
something like “watts per second”
for power. The watt is the same as a
joule per second.

� PITFALL PREVENTION 6.7

What power must the motor deliver at any instant
if it is designed to provide an upward acceleration of
1.00 m/s2?

Solution In this case, we expect the tension to be
larger than in part A because the cable must now cause
an upward acceleration of the elevator. Modeling the
elevator as a particle under a net force, we apply 
Newton’s second law, which gives

B
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� 2.34 
 104 N

� 4.00 
 103 N

� (1.80 
 103 kg)(1.00 m/s2 � 9.80 m/s2)

T � M(a � g ) � f

T � f � Mg � Ma Therefore, using Equation 6.27, we have for the required
power

� � Tv �

where v is the instantaneous speed of the elevator in 
meters per second. Hence, the power required increases
with increasing speed.

(2.34 
 104 v)

HORSEPOWER  RATINGS  OF  AUTOMOBILES
As discussed in Section 4.8, an automobile moves because of Newton’s third law.
The engine attempts to rotate the wheels in such a direction as to push the Earth
toward the back of the car because of the friction force between the wheels and the
roadway. By Newton’s third law, the Earth pushes in the opposite direction on the
wheels, which is toward the front of the car. Because the Earth is much more mas-
sive than the car, the Earth remains stationary while the car moves forward.

This principle is the same one humans use for walking. By pushing your leg
backward while your foot is on the ground, you apply a friction force backward on
the surface of the Earth. By Newton’s third law, the surface applies a forward fric-
tion force on you, which causes your body to move forward.

The strength of the friction force exerted on a car by the roadway is related to
the rate at which energy is transferred to the wheels to set them into rotation,
which is the power of the engine:

where the symbol 4 implies a relationship between the variables that is not neces-
sarily an exact proportionality. In turn, the magnitude of the driving force is related
to the acceleration of the car owing to Newton’s second law:

Consequently, there should be a close relationship between the power rating of a
vehicle and the possible acceleration of the vehicle:

Let us see if this relationship exists for actual data. For automobiles, a common
unit for power is the horsepower (hp), defined in Section 6.8. Table 6.1 shows the
gasoline-powered automobiles we have studied in the preceding chapters. The
fourth column provides the published horsepower rating of each vehicle. The final
column shows the ratio of the horsepower rating to the acceleration. Consider first
the Performance vehicles section of the table. The ratio of power to acceleration is
similar for all these vehicles, demonstrating the relationship between power and
acceleration that we proposed.

In the second part of the table, under Traditional vehicles, there is a wider range
of ratios of power to acceleration. This range is correlated to the range of vehicle
masses in this listing. Notice that the BMW Mini Cooper S, Acura Integra GS, and
Volkswagen Beetle have relatively low ratios and are cars with relatively small
masses. It takes less power to accelerate this much mass to 60 mi/h than for a heav-
ier car. Conversely, the two SUVs in this listing, the Cadillac Escalade and the
Toyota Sienna, have the highest ratios of power to acceleration in this part of the
table, 49 hp/mi/h· s and 32 hp/mi/h· s, respectively.

� 4 a

f � ma  :   f � a

�avg �
�E
�t

�
f �x
�t

� fv  :   � 4 f

f
:

6.9
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Horsepower Ratings and Accelerations of Various VehiclesTABLE 6.1

Ratio of
Time Horsepower  

Interval, Horsepower Rating to 
0 to 60 mi/h Acceleration Rating Acceleration 

Automobile (s) (mi/h · s) (hp) (hp/mi/h · s)

Performance vehicles
Aston Martin DB7 5.0 12.0 414 35
Vantage
BMW Z8 4.6 13.0 394 30
Chevrolet Corvette 4.6 13.0 385 30
Dodge Viper GTS-R 4.2 14.3 460 32
Ferrari F50 3.6 16.7 513 31
Ferrari 360 Spider F1 4.6 13.0 395 30
Lamborghini Diablo GT 3.6 16.7 567 34
Porsche 911 GT2 4.0 15.0 456 30

Traditional vehicles
Acura Integra GS 7.9 7.6 140 18
BMW Mini Cooper S 6.9 8.7 163 19
Cadillac Escalade (SUV) 8.6 7.0 345 49
Dodge Stratus 7.5 8.0 200 25
Lexus ES300 8.6 7.0 200 29
Mitsubishi Eclipse GT 7.0 8.6 205 24
Nissan Maxima 6.7 9.0 222 25
Pontiac Grand Prix 8.5 7.1 200 28
Toyota Sienna (SUV) 8.3 7.2 230 32
Volkswagen Beetle 7.6 7.9 150 19

Take a practice test by logging intoPhysics-
Now at www.pop4e.com and clicking on the Pre-
Test link for this chapter.

A system can be a single particle, a collection of particles, or a
region of space. A system boundary separates the system from
the environment. Many physics problems can be solved by con-
sidering the interaction of a system with its environment.

The work done by a constant force on a particle is defined
as the product of the magnitude F of the force, the magnitude
�r of the displacement of the point of application of the force,
and cos �, where � is the angle between the force vector and
the displacement vector :

[6.1]

The scalar or dot product of any two vectors and is de-
fined by the relationship

[6.3]

where the result is a scalar quantity and � is the angle between
the directions of the two vectors. The scalar product obeys the
commutative and distributive laws.

The scalar product allows us to write the work done by 
a constant force on a particle asF

:

A 
:

�
 
B
: 

� AB cos �

B
:

A
:

W  � F  �r  cos �

� r:

F
:

SUMMARY

[6.4]

The work done by a varying force acting on a particle mov-
ing along the x axis from xi to xf is

[6.11]

where Fx is the component of force in the x direction. If several
forces act on the particle, the net work done by all forces is the
sum of the individual amounts of work done by each force.

The kinetic energy of a particle of mass m moving with a
speed v is

[6.18]

The work–kinetic energy theorem states that when work is
done on a system and the only change in the system is in its
speed, the net work done on the system by external forces
equals the change in kinetic energy of the system:

[6.19]

For a nonisolated system, we can equate the change in the
total energy stored in the system to the sum of all the transfers
of energy across the system boundary:

[6.20]�Esystem � �T 

Wnet � Kf � Ki �  �K

K � 12 mv2

W � �xf

xi
 Fx dx

W � F
:

�� r:

www.pop4e.com
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which is the continuity equation for energy. Methods of energy
transfer (T ) include work (T � W ), mechanical waves (TMW),
heat (T � Q ), matter transfer (TMT), electrical transmission
(TET), and electromagnetic radiation (TER). Storage mecha-
nisms (E system) seen in this chapter include kinetic energy K
and internal energy E int. The continuity equation arises be-
cause energy is conserved; we can neither create nor destroy
energy. The work–kinetic energy theorem is a special case of
the continuity equation for energy in situations in which work
is the only transfer mechanism and kinetic energy is the only
type of energy storage in the system.

In the case of an object sliding through a distance d over a
surface with friction, the change in kinetic energy of the system
is found from

[6.23]

where fk is the force of kinetic friction and Wother forces is the
work done by all forces other than friction.

�

� Wother forces � fkd � �K

Average power is the time rate of energy transfer. If we use
work as the energy transfer mechanism,

[6.25]

If an agent applies a force to an object moving with a ve-
locity , the instantaneous power delivered by that agent is

[6.27]

Because power is defined for any type of energy transfer, the
general expression for power is

[6.28]� �
dE
dt

� � 
dW
dt

� F
:

�v: 

v:
F
:

�avg � 
W
�t

QUESTIONS
� answer available in the Student Solutions Manual and

Study Guide

1. When a particle rotates in a circle, a force acts on it di-
rected toward the center of rotation. Why is it that this
force does no work on the particle?

2. When a punter kicks a football, is he doing any work on
the ball while his toe is in contact with it? Is he doing any
work on the ball after it loses contact with his toe? Are any
forces doing work on the ball while it is in flight?

3. Cite two examples in which a force is exerted on an object
without doing any work on the object.

4. Discuss the work done by a pitcher throwing a baseball.
What is the approximate distance through which the force
acts as the ball is thrown?

As a simple pendulum swings back and forth, the forces
acting on the suspended object are the gravitational force,
the tension in the supporting cord, and air resistance. 
(a) Which of these forces, if any, does no work on the pen-
dulum? (b) Which of these forces does negative work at all
times during the pendulum’s motion? (c) Describe the
work done by the gravitational force while the pendulum is
swinging.

6. If the scalar product of two vectors is positive, does that im-
ply that the vectors must have positive rectangular compo-
nents?

7. For what values of � is the scalar product (a) positive and
(b) negative?

8. A certain uniform spring has spring constant k. Now the
spring is cut in half. What is the relationship between k and
the spring constant k of each resulting smaller spring? Ex-
plain your reasoning.

Can kinetic energy be negative? Explain.

10. Two sharpshooters fire 0.30-caliber rifles using identical
shells. A force exerted by expanding gases in the barrels

9.

5.

accelerates the bullets. The barrel of rifle A is 2.00 cm
longer than the barrel of rifle B. Which rifle will have the
higher muzzle speed?

One bullet has twice the mass of a second bullet. If both
are fired so that they have the same speed, which has more
kinetic energy? What is the ratio of the kinetic energies of
the two bullets?

12. You are reshelving books in a library. You lift a book from
the floor to the top shelf. The kinetic energy of the book
on the floor was zero and the kinetic energy of the book
sitting on the top shelf is zero, so no change occurs in the
kinetic energy. Yet you did some work in lifting the book. Is
the work–kinetic energy theorem violated?

(a) If the speed of a particle is doubled, what happens to its
kinetic energy? (b) What can be said about the speed of a
particle if the net work done on it is zero?

14. A car salesperson claims that a souped-up 300-hp engine is
a necessary option in a compact car in place of the conven-
tional 130-hp engine. Suppose you intend to drive the car
within speed limits (� 65 mi/h) on flat terrain. How
would you counter this sales pitch?

15. Can the average power over a time interval ever be equal
to the instantaneous power at an instant within the inter-
val? Explain.

16. Words given quantitative definitions in physics are some-
times used in popular literature in interesting ways. For
example, a rock falling from the top of a cliff is said to be
“gathering force as it falls to the beach below.” What does
the phrase “gathering force” mean, and can you repair
this phrase?

17. In most circumstances, the normal force acting on an ob-
ject and the force of static friction do zero work on the ob-
ject. The reason that the work is zero is different for the
two cases, however. Explain why each does zero work.

18. “A level air track can do no work.” Argue for or against this
statement.

13.

11.
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PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem
� paired numerical and symbolic problems
� biomedical application

Section 6.2 ■ Work Done by a Constant Force
A block of mass 2.50 kg is pushed 2.20 m along a fric-
tionless horizontal table by a constant 16.0-N force
directed 25.0° below the horizontal. Determine the work
done on the block by (a) the applied force, (b) the 
normal force exerted by the table, and (c) the gravita-
tional force. (d) Determine the total work done on the
block.

2. A shopper in a supermarket pushes a cart with a force of
35.0 N directed at an angle of 25.0° downward from the
horizontal. Find the work done by the shopper on the cart
as he moves down an aisle 50.0 m long.

Batman, whose mass is 80.0 kg, is dan-
gling on the free end of a 12.0-m rope, the other end of
which is fixed to a tree limb above. He is able to get the
rope in motion as only Batman knows how, eventually get-
ting it to swing enough that he can reach a ledge when the
rope makes a 60.0° angle with the vertical. How much
work was done by the gravitational force on Batman in this
maneuver?

4. A raindrop of mass 3.35 
 10�5 kg falls vertically at con-
stant speed under the influence of gravity and air resis-
tance. Model the drop as a particle. As it falls 100 m, what
is the work done on the raindrop (a) by the gravitational
force and (b) by air resistance?

Section 6.3 ■ The Scalar Product of Two Vectors

3.

1.

5. Find the scalar product of the vectors in Figure P6.5.

6. For any two vectors and , show that � AxBx �
Ay By + AzBz. (Suggestion: Write and in unit vector form
and use Equations 6.7 and 6.8.)

A force acts on a parti-
cle that undergoes a displacement . Find
(a) the work done by the force on the particle and (b) the
angle between and .

8. For , , and 
, find · ( � ).B

:
A
:

C
:

2 ĵ � 3k̂
C
:

�B
:

� � î � 2 ĵ � 5k̂A
:

� 3 î � ĵ � k̂

� r:F
:

� r: � (3 î � ĵ) m
F
:

� (6 î � 2 ĵ) N7.

B
:

A
:

A
:

�B
:

B
:

A
:

118°

132°

y

x

32.8 N

17.3 cm/s

FIGURE P6.5

In Problems 6.5 through 6.9, calculate numerical answers to
three significant figures as usual.

9. Using the definition of the scalar product, find the angles
between (a) and (b) 

and , and (c) 
and . 

Section 6.4 ■ Work Done by a Varying Force
10. The force acting on a particle is Fx � (8x � 16) N, where x

is in meters. (a) Make a plot of this force versus x from 
x � 0 to x � 3.00 m. (b) From your graph, find the net
work done by this force on the particle as it moves from 
x � 0 to x � 3.00 m.

A particle is subject to a force Fx that
varies with position as shown in Figure P6.11. Find the work
done by the force on the particle as it moves (a) from x � 0
to x � 5.00 m, (b) from x � 5.00 m to x � 10.0 m, and 
(c) from x � 10.0 m to x � 15.0 m. (d) What is the total
work done by the force over the distance x � 0 to 
x � 15.0 m?

11.
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FIGURE P6.11 Problems 11 and 24.

12. A 6 000-kg freight car rolls along rails with negligible fric-
tion. The car is brought to rest by a combination of two
coiled springs as illustrated in Figure P6.12. Both springs
obey Hooke’s law with k1 � 1 600 N/m and k2 �
3 400 N/m. After the first spring compresses a distance of
30.0 cm, the second spring acts with the first to increase
the force as additional compression occurs as shown in the
graph. The car comes to rest 50.0 cm after first contacting
the two-spring system. Find the car’s initial speed.
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each spring should have for the dispenser to function in
this convenient way. Is any piece of data unnecessary for
this determination?

19. A small particle of mass m moves at constant speed as it is
pulled to the top of a frictionless half-cylinder (of radius R)
by a cord that passes over the top of the cylinder as illus-
trated in Figure P6.19. (a) Show that F � mg cos �. (Note: If
the particle moves at constant speed, the component of its
acceleration tangent to the cylinder must be zero at all
times.) (b) By directly integrating W � , find the
work done by the force in moving the particle at constant
speed from the bottom to the top of the half-cylinder.

�F
:

�d r:

20. A light spring with spring constant k1 is hung from an ele-
vated support. From its lower end a second light spring
that has spring constant k2 is hung. An object of mass m is
hung at rest from the lower end of the second spring. 
(a) Find the total extension distance of the pair of springs.
(b) Find the effective spring constant of the pair of springs
as a system. We describe these springs as in series.

Section 6.5 ■ Kinetic Energy and the Work – Kinetic 
Energy Theorem

Section 6.6 ■ The Nonisolated System
21. A 0.600-kg particle has a speed of 2.00 m/s at point � and

kinetic energy of 7.50 J at point �. (a) What is its kinetic
energy at �? (b) What is its speed at �? (c) What is the
total work done on the particle as it moves from � to �?

22. A 0.300-kg ball has a speed of 15.0 m/s. (a) What is its ki-
netic energy? (b) If its speed were doubled, what would be
its kinetic energy?

23. A 3.00-kg object has an initial velocity .
(a) What is its kinetic energy at this time? (b) Find the to-
tal work done on the object as its velocity changes to

. (Note: From the definition of the
scalar product, v2 � .)

24. A 4.00-kg particle is subject to a total force that varies with
position as shown in Figure P6.11. The particle starts 
from rest at x � 0. What is its speed at (a) x � 5.00 m, 
(b) x � 10.0 m, and (c) x � 15.0 m?

A 2 100-kg pile driver is used to drive a steel I-beam into
the ground. The pile driver falls 5.00 m before coming
into contact with the top of the beam, and it drives the
beam 12.0 cm farther into the ground before coming to
rest. Using energy considerations, calculate the average

25.
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FIGURE P6.12

13. When a 4.00-kg object is hung vertically on a certain light
spring that obeys Hooke’s law, the spring stretches 2.50 cm.
If the 4.00-kg object is removed, (a) how far will the spring
stretch if a 1.50-kg block is hung on it and (b) how much
work must an external agent do to stretch the same spring
4.00 cm from its unstretched position?

14. A force acts on an object as the object
moves in the x direction from the origin to x � 5.00 m.
Find the work W � done on the object by the force.

15. An archer pulls her bowstring back 0.400 m by exerting a
force that increases uniformly from zero to 230 N. (a) What
is the equivalent spring constant of the bow? (b) How
much work does the archer do in drawing the bow?

16. A 100-g bullet is fired from a rifle having a barrel 0.600 m
long. Choose the origin to be at the location where the
bullet begins to move. Then the force (in newtons) ex-
erted by the expanding gas on the bullet is 15 000 �
10 000x � 25 000x2, where x is in meters. (a) Determine
the work done by the gas on the bullet as the bullet travels
the length of the barrel. (b) If the barrel is 1.00 m long,
how much work is done and how does this value compare
to the work calculated in (a)?

It takes 4.00 J of work to stretch a Hooke’s-law spring 
10.0 cm from its unstressed length. Determine the extra
work required to stretch it an additional 10.0 cm.

18. A cafeteria tray dispenser supports a stack of trays on a
shelf that hangs from four identical spiral springs under
tension, one near each corner of the shelf. Each tray is rec-
tangular, 45.3 cm by 35.6 cm, is 0.450 cm thick, and has
mass 580 g. Demonstrate that the top tray in the stack can
always be at the same height above the floor, however
many trays are in the dispenser. Find the spring constant

17.
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force the beam exerts on the pile driver while the pile
driver is brought to rest.

26. You can think of the work–kinetic energy theorem as a
second theory of motion, parallel to Newton’s laws in de-
scribing how outside influences affect the motion of an
object. In this problem, do parts (a) and (b) separately
from parts (c) and (d) to compare the predictions of the
two theories. In a rifle barrel, a 15.0-g bullet is accelerated
from rest to a speed of 780 m/s. (a) Find the work that is
done on the bullet. (b) Assuming that the rifle barrel is
72.0 cm long, find the magnitude of the average total force
that acted on it as F � W/(�r cos �). (c) Find the constant
acceleration of a bullet that starts from rest and gains a
speed of 780 m/s over a distance of 72.0 cm. (d) Assuming
that the bullet has mass 15.0 g, find the total force that
acted on it as F � ma.

27. A block of mass 12.0 kg slides from rest down a frictionless
35.0° incline and is stopped by a strong spring with a force
constant of 3.00 
 104 N/m. The block slides 3.00 m from
the point of release to the point where it comes to rest
against the spring. When the block comes to rest, how far
has the spring been compressed?

28. In the neck of the picture tube of a certain black-and-white
television set, an electron gun contains two charged metal-
lic plates 2.80 cm apart. An electric force accelerates each
electron in the beam from rest to 9.60% of the speed of
light over this distance. (a) Determine the kinetic energy
of the electron as it leaves the electron gun. Electrons
carry this energy to a phosphorescent material on the in-
ner surface of the television screen, making it glow. For an
electron passing between the plates in the electron gun,
determine (b) the magnitude of the constant electric force
acting on the electron, (c) the acceleration, and (d) the
time of flight. 

Section 6.7 ■ Situations Involving Kinetic Friction
A 40.0-kg box initially at rest is pushed 5.00 m along a
rough, horizontal floor with a constant applied horizontal
force of 130 N. The coefficient of friction between box and
floor is 0.300. Find (a) the work done by the applied force,
(b) the increase in internal energy in the box–floor system
as a result of friction, (c) the work done by the normal
force, (d) the work done by the gravitational force, (e) the
change in kinetic energy of the box, and (f) the final
speed of the box.

30. A 2.00-kg block is attached to a spring of force constant
500 N/m as shown in Active Figure 6.8. The block is
pulled 5.00 cm to the right of equilibrium and released
from rest. Find the speed the block has as it passes
through equilibrium if (a) the horizontal surface is fric-
tionless and (b) the coefficient of friction between block
and surface is 0.350.

A crate of mass 10.0 kg is pulled up a rough incline with an
initial speed of 1.50 m/s. The pulling force is 100 N paral-
lel to the incline, which makes an angle of 20.0° with the
horizontal. The coefficient of kinetic friction is 0.400, and
the crate is pulled 5.00 m. (a) How much work is done by
the gravitational force on the crate? (b) Determine the in-
crease in internal energy of the crate– incline system owing
to friction. (c) How much work is done by the 100-N force

31.

29.

�

on the crate? (d) What is the change in kinetic energy of
the crate? (e) What is the speed of the crate after being
pulled 5.00 m?

32. A 15.0-kg block is dragged over a rough, horizontal surface
by a 70.0-N force acting at 20.0° above the horizontal. The
block is displaced 5.00 m, and the coefficient of kinetic
friction is 0.300. Find the work done on the block by 
(a) the 70-N force, (b) the normal force, and (c) the gravi-
tational force. (d) What is the increase in internal energy
of the block–surface system owing to friction? (e) Find the
total change in the block’s kinetic energy.

A sled of mass m is given a kick on a
frozen pond. The kick imparts to it an initial speed of 
2.00 m/s. The coefficient of kinetic friction between sled
and ice is 0.100. Use energy considerations to find the dis-
tance the sled moves before it stops.

Section 6.8 ■ Power
34. A 650-kg elevator starts from rest. It moves upward for 

3.00 s with constant acceleration until it reaches its cruis-
ing speed of 1.75 m/s. (a) What is the average power of
the elevator motor during this time interval? (b) How does
this power compare with the motor power when the eleva-
tor moves at its cruising speed?

A 700-N Marine in basic training climbs
a 10.0-m vertical rope at a constant speed in 8.00 s. What is
his power output?

36. A skier of mass 70.0 kg is pulled up a slope by a motor-
driven cable. (a) How much work is required to pull the
skier a distance of 60.0 m up a 30.0° slope (assumed fric-
tionless) at a constant speed of 2.00 m/s? (b) A motor of
what power is required to perform this task?

37. An energy-efficient lightbulb, taking in 28.0 W of power,
can produce the same level of brightness as a conventional
lightbulb operating at power 100 W. The lifetime of the
energy-efficient bulb is 10 000 h and its purchase price is
$17.0, whereas the conventional bulb has lifetime 750 h
and costs $0.420 per bulb. Determine the total savings ob-
tained by using one energy-efficient bulb over its lifetime as
opposed to using conventional bulbs over the same time in-
terval. Assume an energy cost of $0.080 0 per kilowatt-hour. 

38. Energy is conventionally measured in Calories as well
as in joules. One Calorie in nutrition is one kilocalorie, de-
fined as 1 kcal � 4 186 J. Metabolizing 1 g of fat can release
9.00 kcal. A student decides to try to lose weight by exercis-
ing. She plans to run up and down the stairs in a football
stadium as fast as she can and as many times as necessary.
Is this plan in itself a practical way to lose weight? To evalu-
ate the program, suppose she runs up a flight of 80 steps,
each 0.150 m high, in 65.0 s. For simplicity, ignore the en-
ergy she uses in coming down (which is small). Assume
that a typical efficiency for human muscles is 20.0%.
Therefore when your body converts 100 J from metaboliz-
ing fat, 20 J goes into doing mechanical work (here, climb-
ing stairs) and the remainder goes into extra internal en-
ergy. Assume that the student’s mass is 50.0 kg. (a) How
many times must she run the flight of stairs to lose 1 lb of
fat? (b) What is her average power output, in watts and in
horsepower, as she is running up the stairs?

35.

33.
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39. For saving energy, bicycling and walking are far more
efficient means of transportation than is travel by automo-
bile. For example, when riding at 10.0 mi/h, a cyclist uses
food energy at a rate of about 400 kcal/h above what he
would use if merely sitting still. (In exercise physiology,
power is often measured in kcal/h rather than in watts.
Here 1 kcal � 1 nutritionist’s Calorie � 4 186 J.) Walking
at 3.00 mi/h requires about 220 kcal/h. It is interesting to
compare these values with the energy consumption required
for travel by car. Gasoline yields about 1.30 
 108 J/gal. Find
the fuel economy in equivalent miles per gallon for a per-
son (a) walking and (b) bicycling.

Section 6.9 ■ Context Connection — Horsepower
Ratings of Automobiles

40. Make an order-of-magnitude estimate of the output power
a car engine contributes to speeding the car up to highway
speed. For concreteness, consider your own car, if you use
one, and make the calculation as precise as you wish. In
your solution, state the physical quantities you take as data
and the values you measure or estimate for them. The
mass of the vehicle is given in the owner’s manual. If you
do not wish to estimate for a car, consider a bus or truck
that you specify.

41. A certain automobile engine delivers 2.24 
 104 W 
(30.0 hp) to its wheels when moving at a constant speed of
27.0 m/s (� 60 mi/h). What is the resistive force acting on
the automobile at that speed?

Additional Problems
42. A baseball outfielder throws a 0.150-kg baseball at a speed

of 40.0 m/s and an initial angle of 30.0°. What is the 
kinetic energy of the baseball at the highest point of its tra-
jectory?

43. While running, a person transforms about 0.600 J of
chemical energy to mechanical energy per step per kilo-
gram of body mass. If a 60.0-kg runner transforms energy
at a rate of 70.0 W during a race, how fast is the person
running? Assume that a running step is 1.50 m long.

44. In bicycling for aerobic exercise, a woman wants her
heart rate to be between 136 and 166 beats per minute.
Assume that her heart rate is directly proportional to her
mechanical power output within the range relevant here.
Ignore all forces on the woman-plus-bicycle system except
for static friction forward on the drive wheel of the bicycle
and an air resistance force proportional to the square of
her speed. When her speed is 22.0 km/h, her heart rate is
90.0 beats per minute. In what range should her speed be
so that her heart rate will be in the range she wants?

A 4.00-kg particle moves along the x axis. Its position varies
with time according to x � t � 2.0t3, where x is in meters
and t is in seconds. Find (a) the kinetic energy at any time
t, (b) the acceleration of the particle and the force acting
on it at time t, (c) the power being delivered to the particle
at time t, and (d) the work done on the particle in the in-
terval t � 0 to t � 2.00 s.

46. A bead at the bottom of a bowl is one example of an object
in a stable equilibrium position. When a physical system is
displaced by an amount x from stable equilibrium, a restor-

45.

ing force acts on it, tending to return the system to its equi-
librium configuration. The magnitude of the restoring
force can be a complicated function of x. For example,
when an ion in a crystal is displaced from its lattice site, the
restoring force may not be a simple function of x. In such
cases, we can generally imagine the function F(x) to be ex-
pressed as a power series in x as F(x) � �(k1x � k2x2 �
k3x3 � . . .). The first term here is just Hooke’s law, which
describes the force exerted by a simple spring for small dis-
placements. For small excursions from equilibrium we gen-
erally ignore the higher-order terms, but in some cases it
may be desirable to keep the second term as well. If we
model the restoring force as F � �(k1x � k2x2), how
much work is done in displacing the system from x � 0 to 
x � xmax by an applied force equal in magnitude to the
restoring force?

47. A traveler at an airport takes an escalator up one floor as
shown in Figure P6.47. The moving staircase would itself
carry him upward with vertical velocity component v be-
tween entry and exit points separated by height h. While
the escalator is moving, however, the hurried traveler
climbs the steps of the escalator at a rate of n steps/s. As-
sume that the height of each step is hs . (a) Determine the
amount of chemical energy converted into mechanical en-
ergy by the traveler’s leg muscles during his escalator ride
given that his mass is m. (b) Determine the work the escala-
tor motor does on this person.

FIGURE P6.47
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48. A 5.00-kg steel ball is dropped onto a copper plate from a
height of 10.0 m. If the ball leaves a dent 3.20 mm deep,
what is the average force exerted by the plate on the ball
during the impact?



49. In a control system, an accelerometer consists of a 4.70-g
object sliding on a horizontal rail. A low-mass spring at-
taches the object to a flange at one end of the rail. Grease
on the rail makes static friction negligible, but rapidly
damps out vibrations of the sliding object. When subject to
a steady acceleration of 0.800g, the object is to assume a lo-
cation 0.500 cm away from its equilibrium position. Find
the force constant required for the spring.

50. A light spring with force constant 3.85 N/m is compressed
by 8.00 cm as it is held between a 0.250-kg block on the left
and a 0.500-kg block on the right, both resting on a hori-
zontal surface. The spring exerts a force on each block,
tending to push the blocks apart. The blocks are simulta-
neously released from rest. Find the acceleration with
which each block starts to move if the coefficient of kinetic
friction between each block and the surface is (a) 0, 
(b) 0.100, and (c) 0.462.

51. A single constant force acts on a particle of mass m. The
particle starts at rest at t � 0. (a) Show that the instanta-
neous power delivered by the force at any time t is (F 2/m)t.
(b) If F � 20.0 N and m � 5.00 kg, what is the power deliv-
ered at t � 3.00 s?

52. A particle is attached between two identical springs on a
horizontal frictionless table. Both springs have spring con-
stant k and are initially unstressed. (a) The particle is pulled
a distance x along a direction perpendicular to the initial
configuration of the springs as shown in Figure P6.52. Show
that the force exerted by the springs on the particle is

(b) Determine the amount of work done by this force in
moving the particle from x � A to x � 0.

F
:

� �2kx �1 �
L

√x2 � L2 � î

F
:

186 ❚ CHAPTER 6 ENERGY AND ENERGY TRANSFER

Top view

A

k

k

x

L

L

FIGURE P6.52

vector notation. Use unit-vector notation for your other 
answers. (b) Find the total force on the object. (c) Find
the object’s acceleration. Now, considering the instant 
t � 3.00 s, (d) find the object’s velocity, (e) its location, 
(f) its kinetic energy from , and (g) its kinetic energy
from .1

2mvi 
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35.0°

y

x

FIGURE P6.54

10.0°

FIGURE P6.55

53. A 200-g block is pressed against a spring of force constant
1.40 kN/m until the block compresses the spring 10.0 cm.
The spring rests at the bottom of a ramp inclined at 60.0°
to the horizontal. Using energy considerations, determine
how far up the incline the block moves before it stops 
(a) if there is no friction between the block and the ramp
and (b) if the coefficient of kinetic friction is 0.400.

54. Review problem. Two constant forces act on a 5.00-kg ob-
ject moving in the xy plane as shown in Figure P6.54. Force

is 25.0 N at 35.0°, whereas is 42.0 N at 150°. At time 
t � 0, the object is at the origin and has velocity

. (a) Express the two forces in unit-(4.00 î � 2.50 ĵ) m/s

F
:

2F
:

1

The ball launcher in a classic pinball machine has a spring
that has a force constant of 1.20 N/cm (Fig. P6.55). The
surface on which the ball moves is inclined 10.0° with re-
spect to the horizontal. The spring is initially compressed
5.00 cm. Find the launching speed of a 100-g ball when the
plunger is released. Friction and the mass of the plunger
are negligible.

55.

56. When objects with different weights are hung on a
spring, the spring stretches to different lengths as shown in
the following table. (a) Make a graph of the applied force
versus the extension of the spring. By least-squares fitting,
determine the straight line that best fits the data. (You may
not want to use all the data points.) (b) From the slope of
the best-fit line, find the spring constant k. (c) If the spring
is extended to 105 mm, what force does it exert on the ob-
ject it suspends? 

F (N) L (mm) F (N) L (mm)

2.0 15 14 112
4.0 32 16 126
6.0 49 18 149
8.0 64 20 175

10 79 22 190
12 98

57. In diatomic molecules, the constituent atoms exert attrac-
tive forces on each other at large distances and repulsive
forces at short distances. For many molecules, the
Lennard–Jones law is a good approximation to the magni-
tude of these forces:

F � F0 	2 � �

r �
13

� � �

r �
7
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where r is the center-to-center distance between the 
atoms in the molecule, � is a length parameter, and 
F0 is the force when r � �. For an oxygen molecule,
F0 � 9.60 
 10 �11 N and � � 3.50 
 10 �10 m. Deter-
mine the work done by this force as the atoms are pulled
apart from r � 4.00 
 10 �10 m to r � 9.00 
 10 �10 m.

58. A 0.400-kg particle slides around a horizontal track. The
track has a smooth vertical outer wall forming a circle
with a radius of 1.50 m. The particle is given an initial
speed of 8.00 m/s. After one revolution, its speed has
dropped to 6.00 m/s because of friction with the rough
floor of the track. (a) Find the energy transformed from
mechanical to internal in the system owing to friction in
one revolution. (b) Calculate the coefficient of kinetic
friction. (c) What is the total number of revolutions the
particle makes before stopping?

59. A particle moves along the x axis from x � 12.8 m to 
x � 23.7 m under the influence of a force

where F is in newtons and x is in meters. Using numerical
integration, determine the total work done by this force
on the particle during this displacement. Your result
should be accurate to within 2%.

60. As it plows a parking lot, a snowplow pushes an ever-
growing pile of snow in front of it. Suppose a car moving
through the air is similarly modeled as a cylinder pushing
a growing plug of air in front of it. The originally station-
ary air is set into motion at the constant speed v of the
cylinder as shown in Figure P6.60. In a time interval �t, a
new disk of air of mass �m must be moved a distance v �t

F �
375

x3 � 3.75x

and hence must be given a kinetic energy . Using
this model, show that the automobile’s power loss owing to
air resistance is and that the resistive force acting on
the car is , where � is the density of air. Compare this
result with the empirical expression for the resis-
tive force.

61. A windmill, such as that in the opening photograph of 
this chapter, turns in response to a force of high-speed 
air resistance, . The power available is 

, where v is the wind speed and we
have assumed a circular face for the windmill of radius r.
Take the drag coefficient as D � 1.00 and the density of 
air from the front endpaper. For a home windmill 
with r � 1.50 m, calculate the power available if 
(a) v � 8.00 m/s and (b) v � 24.0 m/s. The power deliv-
ered to the generator is limited by the efficiency of the sys-
tem, about 25%. For comparison, a typical home needs
about 3 kW of electric power.

62. Consider the block–spring–surface system in part (b) of
Interactive Example 6.7. (a) At what position x of the block
is its speed a maximum? (b) Explore the effect of an in-
creased friction force of 10.0 N. At what position of the
block does its maximum speed occur in this situation?

� 1
2D��r2v3� � Rv

R � 1
2D�Av2

1
2D�Av2

1
2�Av2

1
2�Av3

1
2(�m)v2
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FIGURE P6.60

6.1 c, a, d, b. The work in (c) is positive and of the largest
possible value because the angle between the force and
the displacement is zero. The work done in (a) is zero
because the force is perpendicular to the displacement.
In (d) and (b), negative work is done by the applied
force because in neither case is there a component of
the force in the direction of the displacement. Situa-
tion (b) is the most negative value because the angle
between the force and the displacement is 180°.

6.2 (d). Because of the range of values of the cosine func-
tion, has values that range from AB to �AB.

6.3 (a). Because the work done in compressing a spring is
proportional to the square of the compression distance
x, doubling the value of x causes the work to increase
fourfold.

6.4 (b). Because the work is proportional to the square of
the compression distance x and the kinetic energy is
proportional to the square of the speed v, doubling the
compression distance doubles the speed.

6.5 (a) For the television set, energy enters by electrical
transmission (through the power cord) and electro-
magnetic radiation (the television signal). Energy

A
:

�B
:
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leaves by heat (from hot surfaces into the air), mechani-
cal waves (sound from the speaker), and electromagnetic
radiation (from the screen). (b) For the gasoline-
powered lawn mower, energy enters by matter transfer
(gasoline). Energy leaves by work (on the blades of
grass), mechanical waves (sound), and heat (from hot
surfaces into the air). (c) For the hand-cranked pencil
sharpener, energy enters by work (from your hand turn-
ing the crank). Energy leaves by work (done on the pen-
cil), mechanical waves (sound), and heat resulting from
the temperature increase from friction.

6.6 (b), (d), (e). For the block, the friction force from the
surface represents an interaction with the environment.
For the surface, the friction force from the block repre-
sents an interaction with the environment. For the block
and the surface, the friction force is internal to the sys-
tem, so there are no interactions with the environment.

6.7 (c). The brakes and the roadway are warmer, so their in-
ternal energy has increased. In addition, the sound of
the skid represents transfer of energy away by mechani-
cal waves.



Potential Energy
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A strobe photograph of a pole vaulter. In the
system of the pole vaulter and the Earth,
several types of energy transformations occur
during this process.
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In Chapter 6, we introduced the concepts of kinetic energy,
which is associated with the motion of an object or a parti-
cle, and internal energy, which is associated with the tem-

perature of a system. In this chapter, we introduce another form
of energy for a system, called potential energy, which is associated
with the configuration of a system of two or more interacting
objects or particles. This new type of energy will provide us with
a powerful and universal fundamental principle for an isolated
system.

POTENTIAL  ENERGY  OF  A  SYSTEM
In Chapter 6, we defined a system in general but focused our at-
tention on single particles under the influence of an external
force. In this chapter, we consider systems of two or more objects
or particles interacting via a force that is internal to the system.
The kinetic energy of such a system is the algebraic sum of the

7.1

C H A P T E R  O U T L I N E
7.1 Potential Energy of a System
7.2 The Isolated System
7.3 Conservative and Nonconservative Forces
7.4 Conservative Forces and Potential Energy
7.5 The Nonisolated System in Steady State
7.6 Potential Energy for Gravitational 

and Electric Forces
7.7 Energy Diagrams and Stability 

of Equilibrium
7.8 Context Connection — Potential Energy 

in Fuels
SUMMARY
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kinetic energies of all members of the system. In some systems, however, one object
may be so massive that it can be modeled as stationary and its kinetic energy can be
ignored. For example, if we consider a ball–Earth system as the ball falls to the
ground, the kinetic energy of the system can be considered as only the kinetic en-
ergy of the ball. The Earth moves toward the ball so slowly in this process that we
can ignore its kinetic energy. (We will justify this claim in Chapter 8.) On the other
hand, the kinetic energy of a system of two electrons must include the kinetic ener-
gies of both particles.

Let us imagine a system consisting of a book and the Earth, interacting via the
gravitational force. We do positive work on the system by lifting the book slowly
through a height �y � yb � ya as in Figure 7.1. According to the continuity equa-
tion for energy (Eq. 6.20) introduced in Chapter 6, this work on the system must
appear as an increase in energy of the system. The book is at rest before we per-
form the work and is at rest after we perform the work; therefore, the kinetic
energy of the system does not change. There is no reason to suspect that the tem-
perature of the book or of the Earth should change, so the internal energy of the
system experiences no change.

Because the energy change of the system is not in the form of kinetic energy or
internal energy, it must appear as some other form of energy storage. After lifting
the book, suppose we release it and let it fall to the ground. Notice that the book
(and therefore the system) now has kinetic energy, and its origin is in the work that
was done in lifting the book. While the book is at the highest point, the energy of
the system has the potential to become kinetic energy, but does not do so until the
book is allowed to fall. Therefore, we call the energy storage mechanism before we
release the book potential energy. We will find that a potential energy can be associ-
ated with a number of types of forces. In this particular case, we are discussing
gravitational potential energy.

Let us now derive an expression for the gravitational potential energy associated
with an object at a given location above the Earth’s surface. To do so, consider an
external agent lifting an object of mass m from an initial height ya above the ground
to a final height yb as in Figure 7.1. We assume that the lifting is done slowly, with
no acceleration, so that the lifting force can be modeled as equal to the weight of
the object; the object is in equilibrium and moving at constant velocity. The work
done by the external agent on the system (the object and the Earth) as the object
undergoes this upward displacement is given by the product of the upward force

and the displacement :

[7.1]

We have discussed in Chapter 6 that work is a means of transferring energy into a
system. Consequently, the expression on the right in Equation 7.1 must represent
a change in the energy of the system, equal to the amount of work done on the sys-
tem. Notice how similar Equation 7.1 is to Equation 6.17 in the preceding chapter.
In each equation, the work done on a system equals a difference between the final
and initial values of a quantity. Of course, both equations are nothing more than
special cases of the continuity equation for energy, Equation 6.20. In Equation
6.17, the work represents a transfer of energy into the system and the increase in
energy of the system is kinetic in form. In Equation 7.1, the work represents a
transfer of energy into the system and the system energy appears in a different
form, which we call gravitational potential energy.

Therefore, we can represent the quantity mgy to be the gravitational potential
energy Ug of the object–Earth system:

[7.2]Ug  � mgy

W � (� mg:) �� r: � [� m(�g  ĵ)] �[(yb � ya) ĵ] � mgyb � mgya

� r: � �y ĵF
:

� �  mg:

mg

yb

ya

∆r
F

The work done by
an external agent on the system of the
book and the Earth as the book is
lifted from ya to yb is equal to 
mgyb � mgya.

FIGURE 7.1

POTENTIAL ENERGY BELONGS TO A

SYSTEM Keep in mind that potential
energy is always associated with a
system of two or more interacting
objects. In the gravitational case, in
which a small object moves near the
surface of the Earth, we may some-
times refer to the potential energy
“associated with the object” rather
than the more proper “associated
with the system” because the Earth
does not move significantly. We will
not, however, refer to the potential
energy “of the object” because this
wording clearly ignores the role of
the Earth in the potential energy.

� PITFALL PREVENTION 7.1

■ Gravitational potential energy



The units of gravitational potential energy are joules, the same as those of work and
kinetic energy. Potential energy, like work and kinetic energy, is a scalar quantity.
Note that Equation 7.2 is valid only for objects near the surface of the Earth, where
g is approximately constant.

Using our definition of gravitational potential energy, we can now rewrite Equa-
tion 7.1 as

which mathematically describes that the work done on the system by the external
agent in this situation appears as a change in the gravitational potential energy of
the system.

The gravitational potential energy depends only on the vertical height of the ob-
ject above the Earth’s surface. Therefore, the same amount of work is done on an
object–Earth system whether the object is lifted vertically from the Earth or
whether it starts at the same point and is pushed up a frictionless incline, ending up
at the same height. This concept can be shown in a mathematical representation by
reperforming the work calculation in Equation 7.1 with a displacement having both
vertical and horizontal components:

Note that no term involving x appears in the final result because .
In solving problems, it is necessary to choose a reference configuration for

which to set the gravitational potential energy equal to some reference value, which
is normally zero. The choice of this configuration is completely arbitrary because
the important quantity is the difference in potential energy, and this difference is
independent of the choice of reference configuration.

It is often convenient to choose an object located at the surface of the Earth as
the reference configuration for zero gravitational potential energy, but this choice
is not essential. Often, the statement of the problem suggests a convenient configu-
ration to use.

ĵ � î  � 0

W � (� mg:) �� r: � [� m(�g  ĵ)]�[(xb � xa) î � (yb � ya) ĵ] � mgyb � mgya

W � �Ug
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Choose the correct answer. The gravitational potential energy 
of a system (a) is always positive, (b) is always negative, or (c) can be negative or 
positive.

QUICK QUIZ 7.1

THE  ISOLATED  SYSTEM
The introduction of potential energy allows us to generate a powerful and univer-
sally applicable principle for solving problems that are difficult to solve with New-
ton’s laws. Let us develop this new principle by thinking about the book–Earth
system in Figure 7.1 again. After we have lifted the book, there is gravitational po-
tential energy stored in the system, which we can calculate from the work done by
the external agent on the system using W � �Ug.

7.2

An object falls off a table to the floor. We wish to analyze the situation
in terms of kinetic and potential energy. In discussing the potential energy of the system,
we identify the system as (a) both the object and the Earth, (b) only the object, or 
(c) only the Earth.

QUICK QUIZ 7.2
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Let us now shift our focus to the book alone as the system and let the book fall
(Fig. 7.2). As the book falls from yb to ya , the work done by the gravitational force
on the book is

[7.3]

From the work–kinetic energy theorem of Chapter 6, the work done on the book is
also

Therefore, equating these two expressions for the work done on the book gives

[7.4]

Now, let us relate each side of this equation to the system of the book and the Earth.
For the right-hand side,

where Ug is the gravitational potential energy of the system. Because the book is the
only part of the system that is moving, the left-hand side of Equation 7.4 becomes

where K is the kinetic energy of the system. Therefore, by replacing each side of
Equation 7.4 with its system equivalent, the equation becomes

[7.5]

This equation can be manipulated to provide a very important result for a new
analysis model. First, we bring the change in potential energy to the left side of the
equation:

[7.6]

Notice that this equation is in the form of the continuity equation for energy, Equa-
tion 6.20. On the left, we have a sum of changes of the energy stored in the system.
The right-hand side in the continuity equation is the sum of the transfers across the
boundary of the system. This sum is equal to zero in this case because our
book–Earth system is isolated from the environment.

Let us now write the changes in energy in Equation 7.6 explicitly:

[7.7]

In general, we define the sum of kinetic and potential energies of a system as the
total mechanical energy of the system. Therefore, Equation 7.7 is a statement of
conservation of mechanical energy for an isolated system. An isolated system is one
for which no energy transfers occur across the boundary. Therefore, the energy in
the system is conserved and the sum of the kinetic and potential energies remains
constant. Equation 7.7 is only true when no friction acts between members of the
system. In Section 7.3, we shall see how this equation must be modified to include
the effects of friction.

For the falling book situation that we are describing in this discussion, Equation
7.7 can be written as

As the book falls to the Earth, the book–Earth system loses potential energy and
gains kinetic energy such that the total of the two types of energy always remains
constant. The transformation of one type of energy to another is the result of
the process of work done by the gravitational force on the book. Note that this

1
2mvf 

2 � mgyf � 
1
2mvi 

2 � mgyi

Kf � Ug f � Ki � Ug i(Kf � Ki) � (Ug f  � Ug i) � 0 :

�K � �Ug � 0

�K � ��Ug

�Kbook � �K

mgyb � mgya � Ug i  � Ug f  � ��Ug

�Kbook � mgyb � mgya

Won book � �Kbook

Won book � (mg:) �� r: � (�mg  ĵ) �(ya � yb) ĵ � mgyb � mgya

yb

ya

∆r

The work done by
the gravitational force on the book as
the book falls from yb to ya is equal to
mgyb � mgya.

FIGURE 7.2

ISOLATED SYSTEMS The isolated sys-
tem model goes far beyond Equa-
tion 7.7. This equation is only the
mechanical energy version of this
model. We will see shortly how to
include internal energy. In later
chapters, we will see other isolated
systems and generate new versions
(and associated equations) related
to such quantities as momentum,
angular momentum, and electric
charge.

� PITFALL PREVENTION 7.2

■ Conservation of mechanical 
energy for an isolated system



work is internal to the system; it is not work done on the system from the environ-
ment.

We will see other types of potential energy besides gravitational, so we can write
the general form of the definition for mechanical energy as

[7.8]

where U without a subscript refers to the total potential energy of the system, in-
cluding all types. In addition, K in general refers to the sum of the kinetic energies
of all particles in the system.

Emech � K � U
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Three identical balls are thrown from the top of a building, all with
the same initial speed. The first is thrown horizontally, the second at some angle above
the horizontal, and the third at some angle below the horizontal, as shown in Active Fig-
ure 7.3. Neglecting air resistance, rank the speeds of the balls at the instant each hits the
ground.

QUICK QUIZ 7.3

(Quick Quiz 7.3) Three identical
balls are thrown with the same 
initial speed from the top of a
building.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 7.3 to
change the angle of projection
and observe the trajectory of the
ball and the changes in energy of
the ball–Earth system.

ACTIVE FIGURE 7.3
1

3

2

■ Thinking Physics 7.1
You have graduated from college and are designing roller coasters for a living. You
design a roller coaster in which a car is pulled to the top of a hill of height h and
then, starting from a momentary rest, rolls freely down the hill and upward toward
the peak of the next hill, which is at height 1.1h. Will you have a long career in this
business?

Reasoning Your career will probably not be long because this roller coaster will not
work! At the top of the first hill, the roller coaster car has no kinetic energy and the
gravitational potential energy of the car–Earth system is that associated with a
height for the car of h. If the car were to reach the top of the next hill, the system
would have higher potential energy, that associated with height 1.1h. This situation
would violate the principle of conservation of mechanical energy. If this coaster
were actually built, the car would move upward on the second hill to a height h (ig-
noring the effects of friction), stop short of the peak, and then start rolling back-
ward, becoming trapped between the two hills. ■

www.pop4e.com
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Ball in Free-FallEXAMPLE 7.1INTERACTIVE

the kinetic energy of the system (which is due only to
the ball) increases.

Before the ball is released from rest at a height h
above the ground, the kinetic energy of the system is 
Ki � 0 and the potential energy is Ui � mgh, where the y
coordinate is measured from ground level. When the ball
is at an arbitrary position y above the ground, its kinetic
energy is and the potential energy of the
system is Uf � mgy. Applying Equation 7.7, we have

Determine the speed of the ball at y if it is given an
initial speed vi at the initial altitude h.

Solution In this case, the initial energy includes kinetic
energy of the ball equal to and Equation 7.7 gives

Note that this result is consistent with Equation 2.13
(Chapter 2), vyf

2 � vyi
2 � 2g(yf � yi), for a particle un-

der constant acceleration, where yi � h. Furthermore,
this result is valid even if the initial velocity is at an an-
gle to the horizontal (the projectile situation), as dis-
cussed in Quick Quiz 7.3.

Compare the effect of upward, downward,
and zero initial velocities by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 7.1.

√vi 

2 � 2g(h � y)vf �

vf 

2 � vi 

2 � 2g(h � y)

1
2mvf 

2 � mgy � 1
2mvi 

2 � mgh

1
2mvi 

2

B

√2g(h � y)vf �  

vf 

2 � 2g(h � y)

1
2mvf 

2 � mgy � 0 � mgh

Kf � Ug f � Ki � Ug i

Kf � 1
2mvf 

2

A ball of mass m is dropped from rest at a height h
above the ground as in Figure 7.4. Ignore air resistance.

Determine the speed of the ball when it is at a
height y above the ground.

Solution The ball and the Earth do not experience any
forces from the environment because we ignore air re-
sistance. The ball–Earth system is isolated and we use
the principle of conservation of mechanical energy.
Note that the system has potential energy and no ki-
netic energy at the beginning of our time interval of in-
terest. As the ball falls, the total mechanical energy of
the system (the sum of kinetic and potential energies)
remains constant and equal to its initial potential en-
ergy. The potential energy of the system decreases, and

A

h

y
vf

yi = h
Ugi = mgh
Ki = 0

y = 0
Ug = 0

yf = y
Ugf  = mgy
Kf =   mvf

21
2

(Interactive Example 7.1) A ball is dropped from
rest at a height h above the ground. Initially, the to-
tal energy of the ball–Earth system is gravitational
potential energy, equal to mgh when h � 0 is at the
ground. When the ball is at elevation y, the total
system energy is the sum of kinetic and potential
energies.

FIGURE 7.4

A Grand EntranceEXAMPLE 7.2INTERACTIVE
Let us identify the angle � as the angle that the actor’s
cable makes with the vertical when he begins his mo-
tion from rest. What is the maximum value � can have
such that the sandbag does not lift off the floor during
the actor’s swing?

Solution We must draw on several concepts to solve
this problem. To conceptualize the problem, imagine
what happens as the actor approaches the bottom of
the swing. At the bottom, the rope is vertical and must

You are designing apparatus to support an actor of
mass 65 kg who is to “fly” down to the stage during the
performance of a play. You attach the actor’s harness to
a 130-kg sandbag by means of a lightweight steel cable
running smoothly over two frictionless pulleys as in
Figure 7.5a. You need 3.0 m of cable between the har-
ness and the nearest pulley so that the pulley can be
hidden behind a curtain. For the apparatus to work
successfully, the sandbag must never lift above the floor
as the actor swings from above the stage to the floor.

www.pop4e.com


lands. (Note that Ki � 0 because he starts from rest and
that Uf � 0 because we define the configuration of the
actor at the floor as having a gravitational potential en-
ergy of zero.) From the geometry in Figure 7.5a, we see
that yi � R � R cos � � R(1 � cos �). Using this rela-
tionship in Equation (1), we obtain

(2)

Next, we focus on the instant the actor is at the low-
est point. Because the tension in the cable is trans-
ferred to the sandbag by means of force, we categorize
the actor at this instant as a particle under a net force
and a particle in uniform circular motion. To analyze,
we apply Newton’s second law to the actor at the bot-
tom of his path, using the free-body diagram in Figure
7.5b as a guide:

(3)

Finally, we note that the sandbag lifts off the floor
when the upward force exerted on it by the cable ex-
ceeds the gravitational force acting on it; the normal
force is zero when that happens. Because we do not
want the sandbag to lift off the floor, we categorize the
sandbag as a particle in equilibrium. A force T of the
magnitude given by (3) is transmitted by the cord to
the sandbag. If the sandbag is to be on the verge of be-
ing lifted off the floor, the normal force on it becomes
zero and we require that T � mbagg as in Figure 7.5c.
Using this condition together with Equations (2) and
(3), we find that

Solving for cos � and substituting in the given parame-
ters, we obtain

To finalize the problem, note that we had to combine
techniques from different areas of our study: energy
and Newton’s second law. Furthermore, the length R of
the cable from the actor’s harness to the leftmost pulley
did not appear in the final algebraic equation. There-
fore, the final answer is independent of R.

Let the actor fly or crash without injury by
logging into PhysicsNow at www.pop4e.com and going to In-
teractive Example 7.2.

60�� �

cos � �
3mactor � mbag

2mactor
�

3(65 kg)  �  130 kg
2(65 kg)

� 1
2

mbagg � mactorg � mactor 
2gR(1 � cos �)

R

T � mactorg � m actor

v 2
f

R

� Fy � T � m actorg � m actor

vf
2

R

vf
2 � 2gR(1 � cos �)

(a)

θ
R

Actor Sandbag

(b)

mactor

mactorg

T

m bag

m bagg

(c)

T

yi

(Interactive Example 7.2) (a) An actor uses some
clever staging to make his entrance. (b) Free-body
diagram for the actor at the bottom of the circular
path. (c) Free-body diagram for the sandbag when
it is just lifted from the floor.

FIGURE 7.5

support his weight as well as provide centripetal accel-
eration of his body in the upward direction. At this
point, the tension in the rope is the highest and the
sandbag is most likely to lift off the floor. Looking first
at the swinging of the actor from the initial point to the
lowest point, we categorize this problem as an energy
problem involving an isolated system, the actor and the
Earth. To analyze this part of the problem we use the
principle of conservation of mechanical energy for the
system to find the actor’s speed as he arrives at the floor
as a function of the initial angle � and the radius R of
the circular path through which he swings. 

Applying Equation 7.7 to the actor–Earth system gives

Kf � Ug f � Ki � Ug i

(1)

where yi is the initial height of the actor above the floor
and vf is the speed of the actor at the instant before he

1
2mactorv 2

f � 0  �   0 � mactorgyi   

194 ❚ CHAPTER 7 POTENTIAL ENERGY

y p g p pp

www.pop4e.com


y p g p pp

CONSERVATIVE AND NONCONSERVATIVE FORCES ❚ 195

CONSERVATIVE  AND  NONCONSERVATIVE  FORCES
In the preceding section, we showed that the mechanical energy of a system is
conserved in a process in which the force between members of the system is the
gravitational force. The gravitational force is one example of a category of forces
for which the mechanical energy of a system is conserved. These forces are called
conservative forces. The other possibility for energy storage in a system besides
kinetic and potential is internal energy. Therefore, a conservative force, for our
purposes in mechanics, is a force between members of a system that causes no
transformation of mechanical energy to internal energy within the system. If no
energy is transformed to internal energy, the mechanical energy of the system is
conserved, as described by Equation 7.7.

If a force is conservative, the work done by such a force has a special property as
the members of the system move in response either to the force itself or to an exter-
nal force: The work done by a conservative force is independent of the path
followed by the members of the system and depends only on the initial and final
configurations of the system.

From this property, it follows that the work done by a conservative force when a
member of the system is moved through a closed path is equal to zero.

These statements can be mathematically demonstrated and serve as general
mathematical definitions of conservative forces. Both statements can be seen for
the gravitational force from Equation 7.3. The work done is expressed only in terms
of the initial and final heights, with no indication of what path is followed. If the
path is closed, the initial and final heights are the same in Equation 7.3 and the
work is equal to zero.

Another example of a conservative force is the force of a spring on an object
attached to the spring, where the spring force is given by Hooke’s law, Fs � � kx. As
we learned in Chapter 6 (Eq. 6.15), the work done by the spring force is

where the initial and final positions of the object are measured from its equilibrium
position x � 0, at which the spring is unstretched. Again we see that Ws depends
only on the initial and final coordinates of the object and is zero for any closed
path. Hence, the spring force is conservative.

In Section 7.1, we discussed the notion of an external agent lifting a book and
storing energy as potential energy in the book–Earth system. In Section 6.4, we dis-
cussed an external agent pulling a block attached to a spring from x � 0 to 
x � xmax and calculated the work done on the system as . This situation is an-
other one, like that of the book in Section 7.1, in which work is done on a system
but there is no change in kinetic energy of the system. Therefore, the energy must
be stored in the block–spring system as potential energy. The elastic potential en-
ergy associated with the spring force is defined by

[7.9]

The elastic potential energy can be considered as the energy stored in the de-
formed spring (one that is either compressed or stretched from its equilibrium po-
sition). The elastic potential energy stored in the spring is zero whenever the spring
is undeformed (x � 0). Because elastic potential energy is proportional to x2, we
see that Us is always positive in a deformed spring.

Consider Active Figure 7.6a, which shows an undeformed spring on a friction-
less, horizontal surface. When the block is pushed against the spring (Active
Fig. 7.6b), compressing the spring a distance x, the elastic potential energy stored in
the spring is . When the block is released, the spring returns to its original1

2kx2

Us � 12kx2

1
2kx2

max

Ws � 1
2kxi 

2 � 1
2kxf 

2

7.3

■ A conservative force

■ Elastic potential energy
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length, applying a force to the block. This force does work on the block, resulting
in kinetic energy of the block (Active Fig. 7.6c).

In comparison to a conservative force, a nonconservative force in mechanics is a
force between members of a system that is not conservative; that is, it causes trans-
formation of mechanical energy to internal energy within the system. A common
nonconservative force in mechanics is the friction force. If we consider a system
consisting of a block and a surface and imagine an initially sliding block coming to
rest because of friction, we see the result of a nonconservative force. Initially, the
system has kinetic energy (of the block). Afterward, nothing is moving so the final
kinetic energy is zero. The friction force between the block and the surface trans-
forms the mechanical energy into internal energy; the block and surface are both
slightly warmer than before.

Let us return to the notion of the work done over a path. The two statements
claimed for conservative forces are not true for nonconservative forces. For non-
conservative forces, the work done depends on the path taken between the initial
and final configurations, and the work done over a closed path is not zero. As an
example, consider Figure 7.7. Suppose you displace a book between two points on a
table. If the book is displaced in a straight line along the blue path between points
� and � in Figure 7.7, you do a certain amount of work against the kinetic friction
force to keep the book moving at a constant speed. Now, imagine that you push the
book along the brown semicircular path in Figure 7.7. You perform more work
against friction along this longer path than along the straight path. The work done
depends on the path, so the friction force cannot be conservative.

In Chapter 6, we discussed that we cannot calculate the work done by friction on
an object because the displacement of the point of application of the friction force is
not the same as the displacement of the object. In the case of an object subject to a
force of kinetic friction, the particle model is not valid. Another example of a situa-
tion in which we cannot use the particle model is seen for deformable objects. For
example, suppose a rubber ball is flattened against a brick wall. The ball deforms dur-
ing the pushing process. If the ball is suddenly released, it jumps away from the wall.

(a) An undeformed spring on a
frictionless horizontal surface. 
(b) A block of mass m is pushed
against the spring, compressing it
through a distance x. (c) When
the block is released from rest, the
elastic potential energy stored in
the system is transformed to
kinetic energy of the block. 

Compress
the spring by varying amounts and
observe the effect on the block’s
speed by logging into PhysicsNow
at www.pop4e.com and going to
Active Figure 7.6.

ACTIVE FIGURE 7.6 x = 0

x

m

x = 0

v

(c)

(b)

(a)

Us =    kx21
2

Ki = 0

Kf =    mv21
2

Us = 0

m

m

■ A nonconservative force

�

�

The work done
against the force of friction depends
on the path taken as the book is
moved from � to �; hence, friction
is a nonconservative force. The work
required is greater along the brown
path than the blue path.

FIGURE 7.7
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The force causing the ball to accelerate is the normal force of the wall on the ball.
The point of application of this force, however, does not move through space; it stays
fixed at the point of contact between the ball and the wall. Therefore, no work is
done on the ball. Yet the ball has kinetic energy afterward. The work–kinetic energy
theorem does not describe this situation correctly. It is more valuable to apply the iso-
lated system model to this situation. With the ball as the system, there is no transfer of
energy across the boundary as the ball springs off the wall. Rather, there is a transfor-
mation of energy, from elastic potential energy (stored in the ball when it was flat-
tened) to kinetic energy. In the same way, if a skateboarder pushes off a wall to start
rolling, no work is done by the force from the wall; the kinetic energy is transformed
within the system from potential energy stored in the body from previous meals.

We also discussed in Chapter 6 the difficulties associated with the nonconserva-
tive force of friction in energy calculations. Recall that the result of a friction force
is to transform kinetic energy in a system to internal energy and that the increase in
internal energy is equal to the decrease in kinetic energy. If a potential energy is as-
sociated with the system, the decrease in mechanical energy, equals the increase in
internal energy in the isolated system. Therefore, for a constant friction force,

[7.10]

We can recast this expression by putting the changes in all forms of energy storage
on one side of the equation:

[7.11]

This gives us the most general expression of the continuity equation for energy for
an isolated system. Note that �K may represent more than one term if two or more
parts of the system are moving. Also, �U may represent more than one term if dif-
ferent types of potential energy (e.g., gravitational and elastic) are associated with
the system. Equation 7.11 is equivalent to

[7.12]

which tells us that the total energy (kinetic, potential, and internal) of an isolated sys-
tem is conserved, regardless of whether the forces acting within the system are con-
servative or nonconservative. No violation of this critical conservation principle has
ever been observed. If we consider the Universe as an isolated system, this statement
claims that there is a fixed amount of energy in our Universe and that all processes
within the Universe represent transformations of energy from one type to another.

K � U � E int � constant

�K � �U � �E int � �E system � 0

� fkd � �K � �U � �E mech � � �E int COMPLICATED SYSTEMS For simplic-
ity, our discussion leading to Equa-
tion 7.10 assumes that only one
object in the system is sliding on a
surface. If there are two or more
objects sliding on surfaces in the
system, a term � fkd must be in-
cluded for each object, with d rep-
resenting the distance the object
slides relative to the surface with
which it is in contact.

� PITFALL PREVENTION 7.3

■ Conservation of energy for an
isolated system

A ball is connected to a light spring suspended vertically. When dis-
placed downward from its equilibrium position and released, the ball oscillates up and
down. (i) In the system of the ball, the spring, and the Earth, what forms of energy are there
during the motion? (ii) In the system of the ball and the spring, what forms of energy are
there during the motion? (a) kinetic and elastic potential (b) kinetic and gravitational
potential (c) kinetic, elastic potential, and gravitational potential (d) elastic potential
and gravitational potential

QUICK QUIZ 7.4

Many problems in physics can be solved using the principle of
conservation of energy for an isolated system. The following
procedure should be used when you apply this principle:

1. Conceptualize Define your system, which may consist of
more than one object and may or may not include springs
or other possibilities for storage of potential energy. Choose

configurations to represent the initial and final conditions
of the system.

2. Categorize Determine if any energy transfers occur across
the boundary of your system. If so, use the nonisolated sys-
tem model, �E system � �T. If not, use the isolated system
model, �E system � 0.

Isolated SystemsPROBLEM-SOLVING STRATEGY
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Determine whether any nonconservative forces are pre-
sent. Remember that if friction or air resistance is present,
mechanical energy is not conserved but the total energy of an
isolated system is.

3. Analyze For each object that changes elevation, select a
reference position for the object that will define the zero
configuration of gravitational potential energy for the sys-
tem. For a spring, the zero configuration for elastic poten-
tial energy is when the spring is neither compressed nor ex-
tended from its equilibrium position. If there is more than
one conservative force, write an expression for the potential
energy associated with each force.

If mechanical energy is conserved, write the total initial
mechanical energy Ei of the system for some configuration
as the sum of the kinetic and potential energy associated

with the configuration. Then write a similar expression for
the total mechanical energy Ef of the system for the final
configuration that is of interest. Because mechanical energy
is conserved, equate the two total energies and solve for the
quantity that is unknown.

If nonconservative forces are present (and therefore me-
chanical energy is not conserved), first write expressions for the
total initial and total final mechanical energies. In this case, the
difference between the total final mechanical energy and the
total initial mechanical energy equals the energy transformed
to or from internal energy by the nonconservative forces.

4. Finalize Make sure your results are consistent with your
mental representation. Also make sure that the values of
your results are reasonable and consistent with connections
to everyday experience.

and the ramp. This problem would be difficult to solve.
In general, if a friction force acts, it is easiest to define
the system so that the friction force is an internal force.

Because vi � 0 for the crate, the initial kinetic energy
of the system is zero. If the y coordinate is measured
from the bottom of the ramp, yi � (1.00 m) sin 30° �
0.500 m for the crate. The total mechanical energy of
the crate–Earth–ramp system when the crate is at the
top is therefore the gravitational potential energy:

When the crate reaches the bottom, the gravita-
tional potential energy of the system is zero because the
elevation of the crate is yf � 0. The total mechanical en-
ergy when the crate is at the bottom is therefore kinetic
energy:

We cannot say that Ef � Ei in this case, however, be-
cause a nonconservative force—the force of friction—
reduces the mechanical energy of the system. In this
case, the change in mechanical energy for the system
is �Emech � � fkd, where d � 1.00 m. Because

in this situation,
Equation 7.10 gives

� 2.54 m/s

 � √2(9.80 m/s2)(0.500 m) � 2  
(5.00 N)(1.00 m)

(3.00 kg) 

 vf � √2gyi � 2  
fkd
m

 �fkd � 1
2mvf 

2 � mgyi

�Emech � �K � �U � 1
2mvf 

2 � mgyi

Ef � Kf � 1
2mvf 

2

Ei � Ui � mgyi

Crate Sliding Down a RampEXAMPLE 7.3
A 3.00-kg crate slides down a ramp at a loading dock.
The ramp is 1.00 m in length and is inclined at an an-
gle of 30.0° as shown in Figure 7.8. The crate starts
from rest at the top and experiences a constant friction
force of magnitude 5.00 N. Use energy methods to de-
termine the speed of the crate when it reaches the bot-
tom of the ramp.

30.0°

vf

d = 1.00 m

vi = 0

0.500 m

Solution We define the system as the crate, the Earth,
and the ramp. This system is isolated. If we had chosen
the crate and the Earth as the system, we would need to
use the nonisolated system model because the friction
force between the crate and the ramp is an external in-
fluence. There would be work done across the bound-
ary as well as flow of energy by heat between the crate

(Example 7.3) A crate slides down a ramp un-
der the influence of gravity. The potential en-
ergy of the crate–Earth system decreases,
whereas the kinetic energy of the crate in-
creases.

FIGURE 7.8
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If we measure the y coordinate for the child from
the bottom of the slide, yi � h, yf � 0, and we have for
the system

The result for the speed is the same as if the child sim-
ply fell vertically through a distance h! In this example,
h � 2.00 m, giving

If a friction force acts on the 20.0-kg child and
he arrives at the bottom of the slide with a speed 
vf � 3.00 m/s, by how much does the mechanical
energy of the system decrease as a result of this 
force?

Solution We define the system as the child, the Earth,
and the slide. In this case, a nonconservative force acts
within the system and mechanical energy is not con-
served. We can find the change in mechanical energy as
a result of friction, given that the final speed at the bot-
tom is known:

�

The change in mechanical energy �Emech is negative
because friction reduces the mechanical energy of the
system. The change in internal energy in the system is
� 302 J.

� 302 J

 �(20.0 kg)(9.80 m/s2)(2.00 m)
�Emech � 1

2(20.0 kg)(3.00 m/s)2

�Emech � Kf � Uf � Ki � Ui � 1
2mvf 

2 � 0 � 0 � mgh

B

6.26 m/svf � √2gh � √2(9.80 m/s2)(2.00 m) �

vf � √2gh

1
2mvf 

2 � 0 � 0 � mgh

Kf � Uf � Ki � Ui

Motion on a Curved TrackEXAMPLE 7.4
A child of mass m takes a ride on an irregularly curved
slide of height h � 2.00 m as in Figure 7.9. The child
starts from rest at the top.

Determine the speed of the child at the bottom, as-
suming that no friction is present.

Solution We will define the system as the child and the
Earth and will model the child as a particle. The nor-
mal force does no work on the system because this
force is always perpendicular to each element of the
displacement. Furthermore, because no friction is pre-
sent, no work is done by friction across the boundary of
the system. Therefore, we use the isolated system model
with no friction forces, for which mechanical energy is
conserved; that is, K � U � constant.

n:

A

energy of the system before the collision is . After
the collision, and when the spring is fully compressed at
point �, the block is momentarily at rest and has zero
kinetic energy, whereas the potential energy stored in
the spring has its maximum value . The total me-
chanical energy of the system is conserved because no
nonconservative forces act within the system. 

Because the mechanical energy of the system is con-
served,

0.152 mxmax � √ m
k

 vA �√ 0.800 kg
50.0 N/m

 (1.20 m/s) �

1
2mvA 

2 � 0 � 0 �  
1
2kx2

max

1
2kx2

max

1
2mvA 

2

Block – Spring CollisionEXAMPLE 7.5
A block of mass 0.800 kg is given an initial velocity 
vA � 1.20 m/s to the right and collides with a light
spring of force constant k � 50.0 N/m as in Figure 7.10.

If the surface is frictionless, calculate the maxi-
mum compression of the spring after the collision.

Solution We define the system as the block and the
spring. No transfers of energy occur across the bound-
ary of this system, so we use the isolated system model.
Before the collision, when the block is at �, for exam-
ple, the system has kinetic energy due to the moving
block and the spring is uncompressed, so the potential
energy stored in the system is zero. Therefore, the total

A

2.00 m

n

Fg = m g

(Example 7.4) If the slide is frictionless, the speed
of the child at the bottom depends only on the
height of the slide.

FIGURE 7.9
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vA � 1.20 m/s, what is the maximum compression in
the spring?

Solution We define the system as the block, the spring,
and the surface. In this case, mechanical energy of the
system is not conserved because a friction force acts be-
tween members of the system. The magnitude of the
friction force is

where we have used n � mg from Newton’s second law
in the vertical direction. Therefore, the decrease in me-
chanical energy due to friction as the block is displaced
through a straight line from xi � 0 to the point 
xf � xmax at which the block stops is

The change in mechanical energy can be expressed as

Substituting the numerical values and dropping the
units, we have

Solving the quadratic equation for xmax gives xmax �
0.092 4 m and xmax � � 0.249 m. We choose the posi-
tive root xmax � because the block must be
to the right of the origin when it comes to rest. Note
that 0.092 4 m is less than the distance obtained in the
frictionless case (part A). This result is what we expect
because friction retards the motion of the system.

0.092 4 m

 25.0x2
max � 3.92xmax � 0.576 � 0

� 3.92xmax �
50.0

2
x2

max � 1
2(0.800)(1.20)2

�Emech � Ef � Ei � (0 � 1
2kx 2

max) � (1
2mvA 

2 � 0)

�E mech � � fkx max � � 3.92x max

� 3.92 N

fk � �kn � �kmg � 0.500(0.800 kg)(9.80 m/s2)

If a constant force of kinetic friction acts between
the block and the surface with �k � 0.500 and if the
speed of the block just as it collides with the spring is

B

E = – mvA
21

2

x = 0

(a)

(b)

(c)

vC = 0

(d)

xmax

�

�

�

�

E = – mvB
2 + – kxB

21
2

1
2

E = – mvD
2 = – mvA

21
2

1
2

E = – kxmax
1
2

vA

vB

xB

vD = –vA

2

(Example 7.5) A block sliding on a smooth, hori-
zontal surface collides with a light spring. (a) Ini-
tially, the mechanical energy of the system is all ki-
netic energy. (b) The mechanical energy is the sum
of the kinetic energy of the block and the elastic po-
tential energy in the spring. (c) The mechanical en-
ergy is entirely potential energy. (d) The mechani-
cal energy is transformed back to the kinetic energy
of the block. The total energy of the block–spring
system remains constant throughout the motion.

FIGURE 7.10

CONSERVATIVE  FORCES  AND  POTENTIAL  ENERGY
Let us return to the falling book discussed in Section 7.2. We found that the work
done within the book–Earth system by the gravitational force on the book can be
expressed as the negative of the difference between two quantities that we called
the initial and final potential energies of the system:

[7.13]

This expression is the hallmark of a conservative force: we can identify a potential en-
ergy function such that the work done by the force on a member of the system in
which the force acts depends only on the difference in the function’s initial and final
values. Such a function does not exist for a nonconservative force because the work
done depends on the particular path followed between the initial and final points.

For a conservative force, this notion allows us to generate a mathematical rela-
tionship between a force and its potential energy function. From the definition of
work, we can write Equation 7.13 for a general force in the x direction as

[7.14]W � �xf

xi

 Fx dx � ��U � �(Uf � Ui) � �Uf � Ui

Won book � mgyb � mgya � ��U

7.4
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Therefore, the potential energy function can be written as

[7.15]

This expression allows us to calculate the potential energy function associated with
a conservative force if we know the force function. The value of Ui is often taken to
be zero at some arbitrary reference point. It really doesn’t matter what value we
assign to Ui because any value simply shifts Uf by a constant, and it is the change in
potential energy that is physically meaningful.

As an example, let us calculate the potential energy function for the spring
force. We model the spring as obeying Hooke’s law, so the force the spring exerts is
Fs � �kx. The potential energy stored in a block-spring system is

As mentioned earlier, we can choose the configuration representing the zero of
potential energy arbitrarily. Let us choose Ui � 0 when the block is at the position
xi � 0. Then,

which is the potential energy function we have already recognized (see Eq. 7.9) for
a spring that obeys Hooke’s law.

In the preceding discussion, we have seen how to find a potential energy func-
tion if we know the force function. Let us now turn this process around. Suppose
we know the potential energy function. Can we find the force function? We start
from the basic definition of work done by a conservative force for an infinitesimal
displacement in the x direction:

This equation can be rewritten as

[7.16]

In general, the conservative force acting between parts of a system equals the nega-
tive derivative of the potential energy associated with that system.1

In the case of an object located a distance y above some reference point, the
gravitational potential energy function is given by Ug � mgy, and it follows from
Equation 7.16 that (considering the y direction rather than x)

which is the correct expression for the vertical component of the gravitational force.

Fy � �  
dUg

dy
� �  

d
dy

 (mgy) � �mg

Fx � �  
dU
dx

dW � F
:

�d r: � F
:

�dx î � Fx dx � � dU

d r: � dx î

Uf � 1
2kx f 

2 � 1
2kx i 

2 � Ui � 1
2kx f 

2 � 0 � 0 : Uf � Us � 1
2kx2

Uf � ��xf

xi

 (�kx)dx � Ui � 1
2kxf 

2 � 1
2kxi 

2 � Ui

Uf � ��xf

xi

 Fx dx � Ui ■ Finding the potential energy of 
a system associated with a force
between members of the 
system

■ Finding the force between mem-
bers of the system from the po-
tential energy of the system

1In three dimensions, the appropriate expression is

where and so on are partial derivatives. In the language of vector calculus, equals the negative
of the gradient of the scalar potential energy function U(x, y, z).

F
:

	U�	x

F
:

� � î  

	U
	x

� ĵ  

	U
	y

� k̂  

	U
	z
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THE  NONISOLATED  SYSTEM  IN  STEADY  STATE
We have seen two approaches related to systems so far. In a nonisolated system, the en-
ergy stored in the system changes due to transfers across the boundaries of the system.
Therefore, nonzero terms occur on both sides of the continuity equation for energy,
�Esystem � �T. For an isolated system, no energy transfer takes place across the bound-
ary, so the right-hand side of the continuity equation is zero; that is, �Esystem � 0.

Another possibility exists that we have not yet addressed. It is possible for no
change to occur in the energy of the system even though nonzero terms are pre-
sent on the right-hand side of the continuity equation, 0 � � T. This situation can
only occur if the rate at which energy is entering the system is equal to the rate at
which it is leaving. In this case, the system is in steady state under the effects of two
or more competing transfers, which we describe as a nonisolated system in steady
state. The system is nonisolated because it is interacting with the environment, but
it is in steady state because the system energy remains constant.

We could identify a number of examples of this type of situation. First, consider
your home as a nonisolated system. Ideally, you would like to keep the temperature
of your home constant for the comfort of the occupants. Therefore, your goal is to
keep the internal energy in the home fixed.

The energy transfer mechanisms for the home are numerous, as we can see in
Figure 7.11. Solar electromagnetic radiation is absorbed by the roof and walls of the
home and enters the home through the windows. Energy enters by electrical trans-
mission to operate electrical devices. Leaks in the walls, windows, and doors allow
warm or cold air to enter and leave, carrying energy across the boundary of the sys-
tem by matter transfer. Matter transfer also occurs if any devices in the home oper-
ate from natural gas because energy is carried in with the gas. Energy transfer by
heat occurs through the walls, windows, floor, and roof as a result of temperature
differences between the inside and outside of the home. Therefore, we have a vari-
ety of transfers, but the energy in the home remains constant in the idealized case.
In reality, the home is a system in quasi-steady state because some small temperature
variations actually occur over a 24-h period, but we can imagine an idealized situa-
tion that conforms to the nonisolated system in steady-state model.

As a second example, consider the Earth and its atmosphere as a system.
Because this system is located in the vacuum of space, the only possible types of

7.5

Solar radiation
through windows

Solar radiation on
roof and walls

Electrical
transmission

Energy enters or
leaves home by
heat through
walls, roof, floor,
and windows

Leaks in walls, windows,
and doors allow matter
transfer

Underground
gas lines–
matter transfer

Energy enters and
leaves a home by several mechanisms.
The home can be modeled as a non-
isolated system in steady state.

FIGURE 7.11
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energy transfers are those that involve no contact between the system and external
molecules in the environment. As mentioned in the footnote on page 172, only two
types of transfer do not depend on contact with molecules: work done by field
forces and electromagnetic radiation. The Earth–atmosphere system exchanges
energy with the rest of the Universe only by means of electromagnetic radiation
(ignoring work done by field forces and ignoring some small matter transfer as a re-
sult of cosmic ray particles and meteoroids entering the system and spacecraft leav-
ing the system!). The primary input radiation is that from the Sun, and the output
radiation is primarily infrared radiation emitted from the atmosphere and the
ground. Ideally, these transfers are balanced so that the Earth maintains a constant
temperature. In reality, however, the transfers are not exactly balanced, so the Earth
is in quasi-steady state; measurements of the temperature show that it does appear
to be changing. The change in temperature is very gradual and currently appears
to be in the positive direction. This change is the essence of the social issue of
global warming. (See Context 5, beginning on page 497.)

If we consider a time interval of several days, the human body can be modeled as
another nonisolated system in steady state. If the body is at rest at the beginning and
end of the time interval, there is no change in kinetic energy. Assuming that no ma-
jor weight gain or loss occurs during this time interval, the amount of potential
energy stored in the body as food in the stomach and fat remains constant on the av-
erage. If no fevers are experienced during this time interval, the internal energy of
the body remains constant. Therefore, the change in the energy of the system is zero.
Energy transfer methods during this time interval include work (you apply forces on
objects which move), heat (your body is warmer than the surrounding air), matter
transfer (breathing, eating), mechanical waves (you speak and hear), and electro-
magnetic radiation (you see, as well as absorb and emit radiation from your skin).

POTENTIAL  ENERGY  FOR  GRAVITATIONAL  
AND  ELECTRIC  FORCES

Earlier in this chapter we introduced the concept of gravitational potential energy,
that is, the energy associated with a system of objects interacting via the gravitational
force. We emphasized that the gravitational potential energy function, Equation 7.2,
is valid only when the object of mass m is near the Earth’s surface. We would like to
find a more general expression for the gravitational potential energy that is valid for
all separation distances. Because the free-fall acceleration g varies as 1/r 2, it follows
that the general dependence of the potential energy function of the system on sepa-
ration distance is more complicated than our simple expression, Equation 7.2.

Consider a particle of mass m moving between two points � and � above the
Earth’s surface as in Figure 7.12. The gravitational force on the particle due to the
Earth, first introduced in Section 5.6, can be written in vector form as

[7.17]

where is a unit vector directed from the Earth toward the particle and the nega-
tive sign indicates that the force is downward toward the Earth. This expression
shows that the gravitational force depends on the radial coordinate r. Furthermore,
the gravitational force is conservative. Equation 7.15 gives

or

[7.18]Uf � �GMEm � 1
rf

�
1
ri
� � Ui

Uf � ��rf

ri

 F(r) dr � Ui � GMEm �rf

ri

 
dr
r 2 � Ui � GMEm �� 

1
r ��

rf

ri

� Ui

r̂

F
:

g � � 
GMEm

r 2  r̂

7.6

�

Fg

Fg

m

rf

ri

ME

RE �

As a particle of
mass m moves from � to � above the
Earth’s surface, the potential energy
of the particle–Earth system, given by
Equation 7.19, changes because of the
change in the particle–Earth separa-
tion distance r from ri to rf .

FIGURE 7.12

The human body as a noniso-
lated system

WHAT IS r ? In Section 5.5, we dis-
cussed the gravitational force be-
tween two particles. In Equation
7.17, we present the gravitational
force between a particle and an ex-
tended object, the Earth. We could
also express the gravitational force
between two extended objects, such
as the Earth and the Sun. In these
kinds of situations, remember that r
is measured between the centers of the
objects. Be sure not to measure r
from the surface of the Earth.

� PITFALL PREVENTION 7.4
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As always, the choice of a reference point for the potential energy is completely ar-
bitrary. It is customary to locate the reference point where the force is zero. Letting
Ui : 0 as ri : 
, we obtain the important result

[7.19]

for separation distances r � R E , the radius of the Earth. Because of our choice of
the reference point for zero potential energy, the function Ug is always negative
(Fig. 7.13).

Although Equation 7.19 was derived for the particle–Earth system, it can be ap-
plied to any two particles. For any pair of particles of masses m1 and m2 separated by
a distance r, the gravitational force of attraction is given by Equation 5.11 and the
gravitational potential energy of the system of two particles is

[7.20]

This expression also applies to larger objects if their mass distributions are spherically
symmetric, as first shown by Newton. In this case, r is measured between the centers
of the spherical objects.

Equation 7.20 shows that the gravitational potential energy for any pair of parti-
cles varies as 1/r (whereas the force between them varies as 1/r 2). Furthermore,
the potential energy is negative because the force is attractive and we have chosen
the potential energy to be zero when the particle separation is infinity. Because the
force between the particles is attractive, we know that an external agent must do
positive work to increase the separation between the two particles. The work done
by the external agent produces an increase in the potential energy as the two parti-
cles are separated. That is, Ug becomes less negative as r increases.

We can extend this concept to three or more particles. In this case, the total
potential energy of the system is the sum over all pairs of particles. Each pair con-
tributes a term of the form given by Equation 7.20. For example, if the system
contains three particles, as in Figure 7.14, we find that

[7.21]

The absolute value of Utotal represents the work needed to separate all three
particles by an infinite distance.

■ Thinking Physics 7.2
Why is the Sun hot?

Reasoning The Sun was formed when a cloud of gas and dust coalesced, because of
gravitational attraction, into a massive astronomical object. Let us define this cloud
as our system and model the gas and dust as particles. Initially, the particles of the
system were widely scattered, representing a large amount of gravitational potential
energy. As the particles moved together to form the Sun, the gravitational potential
energy of the system decreased. According to the isolated system model, this poten-
tial energy was transformed to kinetic energy as the particles fell toward the center.
As the speeds of the particles increased, many collisions occurred between particles,
randomizing their motion and transforming the kinetic energy to internal energy,
which represented an increase in temperature. As the particles came together, the
temperature rose to a point at which nuclear reactions occurred. These reactions
release huge amounts of energy that maintain the high temperature of the Sun.
This process has occurred for every star in the Universe. ■

Utotal � U12 � U13 � U23 � � G � m1m2

r12
�

m1m3

r13
�

m2m3

r23
�

Ug � � 
Gm1m2

r

Ug � � 
GMEm

r

Earth

R E

O

–GME m

Ug

r

R E

ME

Graph of the gravi-
tational potential energy Ug versus r
for a particle above the Earth’s sur-
face. The potential energy of the
system goes to zero as r approaches
infinity.

FIGURE 7.13

GRAVITATIONAL POTENTIAL ENERGY

Be careful! Equation 7.20 looks sim-
ilar to Equation 5.14 for the gravita-
tional force, but there are two major
differences. The gravitational force
is a vector, whereas the gravitational
potential energy is a scalar. The
gravitational force varies as the in-
verse square of the separation dis-
tance, whereas the gravitational
potential energy varies as the simple
inverse of the separation distance.

� PITFALL PREVENTION 7.5

1

2

3

r12
r23

r13

Three interacting
particles.

FIGURE 7.14
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In Chapter 5, we discussed the electrostatic force between two point particles,
which is given by Coulomb’s law,

[7.22]

Because this expression looks so similar to Newton’s law of universal gravitation, we
would expect that the generation of a potential energy function for this force
would proceed in a similar way. That is indeed the case, and this procedure results
in the electric potential energy function,

[7.23]

As with the gravitational potential energy, the electric potential energy is defined
as zero when the charges are infinitely far apart. Comparing this expression with
that for the gravitational potential energy, we see the obvious differences in the
constants and the use of charges instead of masses, but there is one more differ-
ence. The gravitational expression has a negative sign, but the electrical expres-
sion doesn’t. For systems of objects that experience an attractive force, the poten-
tial energy decreases as the objects are brought closer together. Because we have
defined zero potential energy at infinite separation, all real separations are finite
and the energy must decrease from a value of zero. Therefore, all potential ener-
gies for systems of objects that attract must be negative. In the gravitational case,
attraction is the only possibility. The constant, the masses, and the separation dis-
tance are all positive, so the negative sign must be included explicitly, as it is in
Equation 7.20.

The electric force can be either attractive or repulsive. Attraction occurs be-
tween charges of opposite sign. Therefore, for the two charges in Equation 7.23,
one is positive and one is negative if the force is attractive. The product of the
charges provides the negative sign for the potential energy mathematically, and we
do not need an explicit negative sign in the potential energy expression. In the case
of charges with the same sign, either a product of two negative charges or two
positive charges will be positive, leading to a positive potential energy. This conclu-
sion is reasonable because to cause repelling particles to move together from
infinite separation requires work to be done on the system, so the potential energy
increases.

Ue � ke  
q1q2

r

Fe � ke  
q1q2

r 2

(Recall that r is measured from the center of the
Earth.) The change in potential energy therefore
becomes

where we have used Equation 7.17 to express
GME m/RE

2 as the magnitude of the gravitational force
Fg on an object of mass m at the Earth’s surface and
then Equation 4.5 to express Fg as mg.

�Ug �
GMEm

RE 

2  �y � Fg �y � mg �y

The Change in Potential EnergyEXAMPLE 7.6
A particle of mass m is displaced through a small vertical
distance �y near the Earth’s surface. Show that the gen-
eral expression for the change in gravitational potential
energy reduces to the familiar relationship �Ug � mg �y.

Solution We can express Equation 7.18 in the form

If both the initial and final positions of the particle are
close to the Earth’s surface, rf � ri � �y and ri rf � RE

2.

�Ug � �GMEm � 1
rf

�
1
ri
� � GMEm � rf � ri

ri rf
�
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ENERGY  DIAGRAMS  AND  STABILITY  
OF  EQUILIBRIUM

The motion of a system can often be understood qualitatively by analyzing a graphi-
cal representation of the system’s potential energy curve. An energy diagram shows
the potential energy of the system as a function of the position of one of the mem-
bers of the system (or as a function of the separation distance between two mem-
bers of the system). Consider the potential energy function for the block–spring
system, given by . This function is plotted versus x in Active Figure 7.15a.

The spring force is related to Us through Equation 7.16:

That is, the force is equal to the negative of the slope of the Us versus x curve. When
the block is placed at rest at the equilibrium position (x � 0), where Fs � 0, it
will remain there unless some external force acts on it. If the spring in Active
Figure 7.15b is stretched to the right from equilibrium, x is positive and the slope
dUs/dx is positive; therefore, Fs is negative and the block accelerates back toward
x � 0. If the spring is compressed, x is negative and the slope is negative; therefore,
Fs is positive and again the block accelerates toward x � 0.

From this analysis, we conclude that the x � 0 position is one of stable equilib-
rium. That is, any movement away from this position results in a force directed back
toward x � 0. (We described this type of force in Chapter 6 as a restoring force.) In
general, positions of stable equilibrium correspond to those values of x for which
U(x) has a relative minimum value on an energy diagram.

From Active Figure 7.15 we see that if the block is given an initial displacement
xmax and is released from rest, the total initial energy of the system is the potential en-
ergy stored in the spring, given by . As motion commences, the system acquires
kinetic energy and loses an equal amount of potential energy. From an energy view-
point, the energy of the system cannot exceed ; therefore, the block must stop
at the points x � � xmax and, because of the spring force, accelerate toward x � 0.
The block oscillates between the two points x � � xmax, called the turning points.
The block cannot be farther from equilibrium than � xmax because the potential
energy of the system beyond these points would be larger than the total energy, an

1
2kx2

max

1
2kx2

max 

Fs � � 
dUs

dx
� �kx

Us � 1
2kx2

7.7

(a) Potential energy as a function
of x for the block–spring system
shown in part (b). The block oscil-
lates between the turning points,
which have the coordinates 
x � � xmax. The restoring force
exerted by the spring always acts
toward x � 0, the position of
stable equilibrium.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 7.15 to
observe the block oscillate be-
tween its turning points and trace
the corresponding points on the
potential energy curve for varying
values of k.

ACTIVE FIGURE 7.15
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0
x

U

Negative slope
x > 0

Positive slope
x < 0

A plot of U versus x
for a particle that has a position of un-
stable equilibrium, located at x � 0.
For any finite displacement of the par-
ticle, the force on the particle is di-
rected away from x � 0.

FIGURE 7.16

2 You can mathematically test whether an extreme of U represents stable or unstable equilibrium by 
examining the sign of d2U/dx2.

CONTEXT 
connection

impossible situation in classical physics. Because there is no transformation of
mechanical energy to internal energy (no friction), the block oscillates between
� xmax and � xmax forever. (We shall discuss these oscillations further in Chapter 12.)

Now consider an example in which the curve of U versus x is as shown in
Figure 7.16. In this case, Fx � 0 at x � 0, and so the particle is in equilibrium at this
point. This point, however, is a position of unstable equilibrium for the following
reason. Suppose the particle is displaced to the right of the origin. Because the
slope is negative for x � 0, Fx � � dU/dx is positive and the particle accelerates
away from x � 0. Now suppose the particle is displaced to the left of the origin. In
this case, the force is negative because the slope is positive for x  0, and the parti-
cle again accelerates away from the equilibrium position. The x � 0 position in this
situation is called a position of unstable equilibrium because, for any displacement
from this point, the force pushes the particle farther away from equilibrium. In fact,
the force pushes the particle toward a position representing lower potential energy of
the system. A ball placed on the top of an inverted spherical bowl is in a position of
unstable equilibrium. If the ball is displaced slightly from the top and released, it will
roll off the bowl. In general, positions of unstable equilibrium correspond to those
values of x for which U(x) has a relative maximum value on an energy diagram.2

Finally, a situation may arise in which U is constant over some region, and hence
F � 0. A point in this region is called a position of neutral equilibrium. Small
displacements from this position produce neither restoring nor disrupting forces.
A ball lying on a flat horizontal surface is an example of an object in neutral 
equilibrium.

POTENTIAL  ENERGY  IN  FUELS
Fuel represents a storage mechanism for potential energy to be used to make a ve-
hicle move. The standard fuel for automobiles for several decades has been gasoline.
Gasoline is refined from crude oil that is present in the Earth. This oil represents
the decay products of plant life that existed on the Earth, primarily from 100 to
600 million years ago. The source of energy in crude oil is hydrocarbons produced
from molecules in the ancient plants.

The primary chemical reactions occurring in an internal combustion engine
involve the oxidation of carbon and hydrogen:

C � O2 : CO2

4H � O2 : 2H2O

Both reactions release energy that is used to operate the automobile.
Notice the final products in these reactions. One is water, which is not harmful

to the environment. Carbon dioxide, however, contributes to the greenhouse ef-
fect, which leads to global warming, which we will study in Context 5. The incom-
plete combustion of carbon and oxygen can form CO, carbon monoxide, which is a
poisonous gas. Because air contains other elements besides oxygen, other harmful
emission products, such as oxides of nitrogen, exist.

The amount of potential energy stored in a fuel and available from the fuel is typ-
ically called the heat of combustion, even though this term is a misuse of the word heat.
For automotive gasoline, this value is about 44 MJ/kg. Because the efficiency of the
engine is not 100%, only part of this energy eventually finds its way into kinetic en-
ergy of the car. We will study efficiencies of engines in Context 5.

Another common fuel is diesel fuel. The heat of combustion for diesel fuel is
42.5 MJ/kg, slightly lower than that for gasoline. Diesel engines, however, operate
at a higher efficiency than gasoline engines, so they can extract a larger percentage
of the available energy.

7.8
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A number of additional fuels have been developed to operate internal combus-
tion engines with minimal modifications. They are described briefly below.

Ethanol
Ethanol is the most widely used alternative fuel and is used primarily on commer-
cial fleet vehicles. It is an alcohol made from such crops as corn, wheat, and barley.
Because these crops can be grown, ethanol is renewable. The use of ethanol
reduces carbon monoxide and carbon dioxide emissions compared with the use of
normal gasoline.

Ethanol is mixed with gasoline to form the following mixtures:

E10: 10% ethanol, 90% gasoline

E85: 85% ethanol, 15% gasoline

The energy content of E85 is about 70% of that for gasoline, so the miles per gallon
ratio will be lower than that for a vehicle powered by straight gasoline. On the other
hand, the renewable nature of ethanol counteracts this disadvantage significantly.

Biodiesel
Biodiesel fuel is formed by a chemical reaction between alcohol and oils from field
crops as well as vegetable oil, fat, and grease from commercial sources. Pacific
Biodiesel in Hawaii makes biodiesel from used restaurant cooking oil, providing a
usable fuel as well as diverting this used oil from landfills.

Biodiesel is available in the following forms:

B20:  20% biodiesel, 80% gasoline

B100: 100% biodiesel

B100 is nontoxic and biodegradable. The use of biodiesel reduces environmentally
harmful tailpipe emissions significantly. Furthermore, tests have shown that the
emission of cancer-causing particulate matter is reduced by 94% with the use of
pure biodiesel.

The energy content of B100 is about 90% of that for conventional diesel. As with
ethanol, the renewable nature of biodiesel counteracts this disadvantage significantly.

Natural Gas
Natural gas is a fossil fuel, originating from gas wells or as a by-product of the refin-
ing process for crude oil. It is primarily methane (CH4), with smaller amounts of
nitrogen, ethane, propane, and other gases. It burns cleanly and generates much
lower amounts of harmful tailpipe emissions than gasoline. Natural gas vehicles are
used in many fleets of buses, delivery trucks, and refuse haulers.

Although ethanol and biodiesel mixtures can be used in conventional engines
with minimal modifications, a natural gas engine is much more heavily modified. In
addition, the gas must be carried on board the vehicle in one of two ways that
require higher-level technology than a simple fuel tank. One possibility is to liquefy
the gas, requiring a well-insulated storage container to keep the gas at � 190°C.
The other possibility is to compress the gas to about 200 times atmospheric pres-
sure and carry it in the vehicle in a high-pressure storage tank.

The energy content of natural gas is 48 MJ/kg, a bit higher than that for gaso-
line. Note that natural gas, like gasoline, is not a renewable source.

Propane
Propane is available commercially as liquefied petroleum gas, which is actually a
mixture of propane, propylene, butane, and butylenes. It is a by-product of natural
gas processing and refining of crude oil. Propane is the most widely accessible alter-
native fuel, with fueling facilities in all states of the United States.
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Tailpipe emissions for propane-fueled vehicles are significantly lower than those
for gasoline-powered vehicles. Tests show that carbon monoxide is reduced by 30%
to 90%.

As with natural gas, high-pressure tanks are necessary to carry the fuel. In
addition propane is a nonrenewable resource. The energy content of propane is
46 MJ/kg, slightly higher than that of gasoline.

Electric Vehicles
In the Context introduction before Chapter 2, we discussed the electric cars that
were on the roadways in the early part of the twentieth century. As mentioned,
these electric cars virtually disappeared around the 1920s due to several factors.
One was that oil was plentiful during the twentieth century and there was little in-
centive to operate vehicles on anything other than gasoline or diesel.

In the early 1970s, difficulties arose with regard to the availability of oil from the
Middle East, leading to shortages at gas stations. At this time, interest arose anew in
electric-powered vehicles. An early attempt to market a new electric vehicle was the
Electrovette, an electric version of the Chevrolet Chevette.

Although the oil crisis eased somewhat, political instabilities in the Middle East
created uncertainty in the availability of oil and interest in electric cars continued,
albeit on a small scale. In the late 1980s, General Motors developed a prototype
called the Impact, an electric car that could accelerate from 0 to 60 in 8 s and had a
drag coefficient of 0.19, much lower than that of traditional cars. The Impact was
the hit of the 1990 Los Angeles Auto Show. In the 1990s, the Impact became com-
mercially available as the EV1.

Although the EV1 was a very successful electric car in terms of quality and per-
formance, it was difficult to convince consumers that oil was in short supply and not
many consumers chose to drive the car. A few other manufacturers also developed
electric cars, and consumer response was similar. Two major disadvantages of elec-
tric cars were the limited range, 70 to 100 mi, on a single charging of the batteries
and the several hours of time required to recharge the batteries. These difficulties,
as well as a federal court ruling that relaxed emissions standards, led General
Motors to cancel the EV1 program in 2001. An additional contribution to the
demise of contemporary electric cars is the development of hybrid electric vehicles,
which will be discussed in the Context Conclusion.

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

If a particle of mass m is elevated a distance y from a reference
point y � 0 near the Earth’s surface, the gravitational potential
energy of the particle–Earth system can be defined as

[7.2]

The total mechanical energy of a system is defined as the sum
of the kinetic energy and potential energy:

[7.8]

If no energy transfers occur across the boundary of the sys-
tem, the system is modeled as an isolated system. In this model,
the principle of conservation of mechanical energy states that
the total mechanical energy of the system is constant if all of
the forces in the system are conservative. For example, if a sys-
tem involves gravitational forces,

Emech � K � U

Ug  � mgy

SUMMARY
[7.7]

A force is conservative if the work it does on a particle is in-
dependent of the path the particle takes between two given
points. A conservative force in mechanics does not cause a
transformation of mechanical energy to internal energy. A force
that does not meet these criteria is said to be nonconservative.

The elastic potential energy stored in a spring of force con-
stant k is

[7.9]

If some of the forces acting within a system are not conserva-
tive, the mechanical energy of the system does not remain
constant. In the case of a common nonconservative force, a
constant force of friction, the change in mechanical energy of
the system when an object in the system moves is equal to the
product of the kinetic friction force and the distance through
which the object moves:

[7.10]�fkd � �K � �U

Us � 12kx2

Kf � Ug f � Ki � Ug i
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This decrease in mechanical energy in the system is equal to
the increase in internal energy:

[7.10]

A potential energy function U can be associated only with a
conservative force. If a conservative force acts within a system
on a particle that moves along the x axis from xi to xf , the po-
tential energy function can be written

[7.15]

If we know the potential energy function, the component of a
conservative force is given by the negative of the derivative of
the potential energy function:

[7.16]

In some situations, a system may have energy crossing the
boundary with no change in the energy stored in the system. In
such a case, the energy input in any time interval equals the

Fx � � 
dU
dx

Uf � ��xf

xi

 Fx dx � Ui

F
:

�E int � fkd

energy output, and we describe this system as a nonisolated
system in steady state.

The gravitational potential energy associated with a system
of two particles or uniform spherical distributions of mass sepa-
rated by a distance r is

[7.20]

where Ug is taken to approach zero as r : 
.
The electric potential energy associated with two charged

particles separated by a distance r is

[7.23]

where Ue is taken to approach zero as r : 
.
In an energy diagram, a point of stable equilibrium is one at

which the potential energy is a minimum. A point of unstable
equilibrium is one at which the potential energy is a maximum.
Neutral equilibrium exists if the potential energy function is
constant.

Ue � ke 
q1q2

r

Ug � � 
Gm1m2

r

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide.

1. If the height of a playground slide is kept constant, will the
length of the slide or the presence of bumps make any dif-
ference in the final speed of children playing on it?
Assume that the slide is slick enough to be considered fric-
tionless. Repeat this question assuming that friction is pre-
sent.

2. Explain why the total energy of a system can be either
positive or negative, whereas the kinetic energy is always
positive.

One person drops a ball from the top of a building, while
another person at the bottom observes its motion. Will
these two people agree on the value of the gravitational po-
tential energy of the ball–Earth system? On the change in
potential energy? On the kinetic energy?

4. Discuss the changes in mechanical energy of an
object–Earth system in (a) lifting the object, (b) holding
the object at a fixed position, and (c) lowering the object
slowly. Include the muscles in your discussion.

5. In Chapter 6, the work–kinetic energy theorem, W � �K,
was introduced. This equation states that work done on a
system appears as a change in kinetic energy. It is a special-
case equation, valid if there are no changes in any other
type of energy, such as potential or internal. Give some ex-
amples in which work is done on a system but the change
in energy of the system is not that of kinetic energy.

6. If three conservative forces and one nonconservative force
act within a system, how many potential energy terms
appear in the equation that describes the system?

7. If only one external force acts on a particle, (a) does it nec-
essarily change the particle’s kinetic energy? (b) Does it
change the particle’s velocity?

3.

8. A driver brings an automobile to a stop. If the brakes lock
so that the car skids, where is the original kinetic energy of
the car and in what form is it after the car stops? Answer
the same question for the case in which the brakes do not
lock but the wheels continue to turn.

You ride a bicycle. In what sense is your bicycle solar-
powered?

10. In an earthquake, a large amount of energy is “released”
and spreads outward, potentially causing severe damage.
In what form does this energy exist before the earthquake,
and by what energy transfer mechanism does it travel?

A bowling ball is suspended from the ceiling of a lecture
hall by a strong cord. The ball is drawn away from its equi-
librium position and released from rest at the tip of the
demonstrator’s nose as shown in Figure Q7.11. Assuming

11.

9.

FIGURE Q7.11
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that the demonstrator remains stationary, explain why the
ball does not strike her on its return swing. Would this
demonstrator be safe if the ball were given a push from its
starting position at her nose?

12. A ball is thrown straight up into the air. At what position is
its kinetic energy a maximum? At what position is the gravi-
tational potential energy of the ball–Earth system a maxi-
mum?

13. A pile driver is a device used to drive objects into the Earth
by repeatedly dropping a heavy weight on them. By how
much does the energy of the pile driver–Earth system in-
crease when the weight it drops is doubled? Assume that
the weight is dropped from the same height each time. 

14. Our body muscles exert forces when we lift, push,
run, jump, and so forth. Are these forces conservative?

15. A block is connected to a spring that is suspended from
the ceiling. Assuming that the block is set in motion and
that air resistance can be ignored, describe the energy
transformations that occur within the system consisting of
the block, Earth, and spring.

16. Discuss the energy transformations that occur during the
operation of an automobile.

17. What would the curve of U versus x look like if a particle
were in a region of neutral equilibrium?

18. A ball rolls on a horizontal surface. Is the ball in stable, un-
stable, or neutral equilibrium?

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 7.1 ■ Potential Energy of a System
1. A 1 000-kg roller coaster train is initially at the top of a rise,

at point �. It then moves 135 ft, at an angle of 40.0° below
the horizontal, to a lower point �. (a) Choose the train at
point � to be the zero configuration for gravitational poten-
tial energy. Find the potential energy of the roller
coaster–Earth system at points � and �, and the change in
potential energy as the coaster moves. (b) Repeat part (a),
setting the zero configuration when the train is at point �.

2. A 400-N child is in a swing that is attached to ropes 2.00 m
long. Find the gravitational potential energy of the
child–Earth system relative to the child’s lowest position
when (a) the ropes are horizontal, (b) the ropes make a
30.0° angle with the vertical, and (c) the child is at the bot-
tom of the circular arc.

3. A person with a remote mountain cabin plans to install her
own hydroelectric plant. A nearby stream is 3.00 m wide
and 0.500 m deep. Water flows at 1.20 m/s over the brink
of a waterfall 5.00 m high. The manufacturer promises
only 25.0% efficiency in converting the potential energy of
the water–Earth system into electric energy. Find the
power she can generate. (Large-scale hydroelectric plants,
with a much larger drop, can be more efficient.)

Section 7.2 ■ The Isolated System
4. At 11:00 A.M. on September 7, 2001, more than one mil-

lion British school children jumped up and down for one
minute. The curriculum focus of the “Giant Jump” was on
earthquakes, but it was integrated with many other topics,

such as exercise, geography, cooperation, testing hypothe-
ses, and setting world records. Children built their own
seismographs that registered local effects. (a) Find the me-
chanical energy released in the experiment. Assume that
1 050 000 children of average mass 36.0 kg jump 12 times
each, raising their centers of mass by 25.0 cm each time
and briefly resting between one jump and the next. The
free-fall acceleration in Britain is 9.81 m/s2. (b) Most of
the energy is converted very rapidly into internal energy
within the bodies of the children and the floors of the
school buildings. Of the energy that propagates into the
ground, most produces high frequency “microtremor” vi-
brations that are rapidly damped and cannot travel far. As-
sume that 0.01% of the energy is carried away by a long-
range seismic wave. The magnitude of an earthquake on
the Richter scale is given by

where E is the seismic wave energy in joules. According to
this model, what is the magnitude of the demonstration
quake? It did not register above background noise overseas
or on the seismograph of the Wolverton Seismic Vault,
Hampshire.

A bead slides without friction around a loop-the-loop 
(Fig. P7.5). The bead is released from a height h � 3.50R.
(a) What is its speed at point �? (b) How large is the nor-
mal force on it if its mass is 5.00 g? 

5.

M �
log E � 4.8

1.5

h
R

�

FIGURE P7.5
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6. Review problem. A particle of mass 0.500 kg is shot from P
as shown in Figure P7.6. The particle has an initial velocity

with a horizontal component of 30.0 m/s. The particle
rises to a maximum height of 20.0 m above P. Using the
law of conservation of energy, determine (a) the vertical
component of , (b) the work done by the gravitational
force on the particle during its motion from P to B, and
(c) the horizontal and the vertical components of the ve-
locity vector when the particle reaches B.

7. Dave Johnson, the bronze medallist at the 1992 Olympic
decathlon in Barcelona, leaves the ground at the high
jump with vertical velocity component 6.00 m/s. How far
does his center of mass move up as he makes the jump?

8. A simple pendulum, which you will consider in detail in
Chapter 12, consists of an object suspended by a string.
The object is assumed to be a particle. The string, with its
top end fixed, has negligible mass and does not stretch. In
the absence of air friction, the system oscillates by swinging
back and forth in a vertical plane. The string is 2.00 m long
and makes an initial angle of 30.0° with the vertical. Calcu-
late the speed of the particle (a) at the lowest point in its
trajectory and (b) when the angle is 15.0°.

Two objects are connected by a light string passing over
a light frictionless pulley as shown in Figure P7.9. The 
5.00-kg object is released from rest. Using the principle of
conservation of energy, (a) determine the speed of the
3.00-kg object just as the 5.00-kg object hits the ground,
and (b) find the maximum height to which the 3.00-kg 
object rises.

10. A particle of mass m � 5.00 kg is released from point �
and slides on the frictionless track shown in Figure P7.10.
Determine (a) the particle’s speed at points � and � and

9.

v:i

v:i

(b) the net work done by the gravitational force as the par-
ticle moves from � to �.

11. A circus trapeze consists of a bar suspended by two parallel
ropes, each of length �, allowing performers to swing in a
vertical circular arc (Fig. P7.11). Suppose a performer with
mass m holds the bar and steps off an elevated platform,
starting from rest with the ropes at an angle �i with respect
to the vertical. Suppose the size of the performer’s body is
small compared to the length �, she does not pump the
trapeze to swing higher, and air resistance is negligible.
(a) Show that when the ropes make an angle � with the
vertical, the performer must exert a force

mg(3 cos � � 2 cos �i)

so as to hang on. (b) Determine the angle �i for which the
force needed to hang on at the bottom of the swing is
twice the performer’s weight.

12. A light rigid rod is 77.0 cm long. Its top end is pivoted on a
low-friction horizontal axle. The rod hangs straight down
at rest, with a small massive ball attached to its bottom end.
You strike the ball, suddenly giving it a horizontal velocity
so that it swings around in a full circle. What minimum
speed at the bottom is required to make the ball go over
the top of the circle?

13. Columnist Dave Barry poked fun at the name “The Grand
Cities” adopted by Grand Forks, North Dakota, and East
Grand Forks, Minnesota. Residents of the prairie towns
then named a sewage pumping station for him. At the
Dave Barry Lift Station No. 16, untreated sewage is raised
vertically by 5.49 m, in the amount 1 890 000 L each day.
The waste has density 1 050 kg/m3. It enters and leaves the
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g
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pump at atmospheric pressure, through pipes of equal
diameter. (a) Find the output power of the lift station.
(b) Assume that an electric motor continuously operating
with average power 5.90 kW runs the pump. Find its effi-
ciency. Barry attended the outdoor January dedication of
the lift station and a festive potluck supper to which the
residents of the different Grand Forks sewer districts
brought casseroles, Jell-O salads, and “bars” (desserts).

Section 7.3 ■ Conservative and Nonconservative Forces
14. (a) Suppose a constant force acts on an object. The force

does not vary with time nor with the position or the veloc-
ity of the object. Start with the general definition for work
done by a force

and show that the force is conservative. (b) As a special
case, suppose the force acts on a particle
that moves from O to C in Figure P7.14. Calculate the work
the force does on the particle as it moves along each one
of the three paths OAC, OBC, and OC. (Your three answers
should be identical.)

A force acting on a particle moving in the xy plane is given by
, where x and y are in meters. The parti-

cle moves from the origin to a final position having coordi-
nates x � 5.00 m and y � 5.00 m as shown in Figure P7.14.
Calculate the work done by on the particle as it moves
along (a) OAC, (b) OBC, and (c) OC. (d) Is conservative
or nonconservative? Explain.

16. An object of mass m starts from rest and slides a distance d
down a frictionless incline of angle �. While sliding, it con-
tacts an unstressed spring of negligible mass as shown in
Figure P7.16. The object slides an additional distance x as
it is brought momentarily to rest by compression of the
spring (of force constant k). Find the initial separation d
between the object and the spring.

F
:

F
:

F
:

� (2y î  � x2 ĵ)N
15.

F
:

F
:

� (3 î  � 4 ĵ)N

W � �f

i
  F

:
�d r:

A block of mass 0.250 kg is placed on top of a light vertical
spring of force constant 5 000 N/m and pushed downward
so that the spring is compressed by 0.100 m. After the
block is released from rest it travels upward and then
leaves the spring. To what maximum height above the
point of release does it rise?

18. A daredevil plans to bungee jump from a balloon 65.0 m
above a carnival midway (Fig. P7.18). He will use a uniform
elastic cord, tied to a harness around his body, to stop his
fall at a point 10.0 m above the ground. Model his body as
a particle. Assume that the cord has negligible mass and is
described by Hooke’s force law. In a preliminary test, hang-
ing at rest from a 5.00-m length of the cord, he finds that
his body weight stretches it by 1.50 m. He will drop from
rest at the point where the top end of a longer section of
the cord is attached to the stationary balloon. (a) What
length of cord should he use? (b) What maximum acceler-
ation will he experience?

17.
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19. At time ti , the kinetic energy of a particle is 30.0 J and the
potential energy of the system to which it belongs is 10.0 J.
At some later time tf , the kinetic energy of the particle is
18.0 J. (a) If only conservative forces act on the particle,
what are the potential energy and the total energy of the
system at time tf ? (b) If the potential energy of the system
at time tf is 5.00 J, are there any nonconservative forces act-
ing on the particle? Explain.

20. Heedless of danger, a child leaps onto a pile of old mat-
tresses to use them as a trampoline. His motion between
two particular points is described by the energy conserva-
tion equation 

(a) Solve the equation for x. (b) Compose the statement of
a problem, including data, for which this equation gives the
solution. Identify the physical meaning of the value of x.

21. In her hand, a softball pitcher swings a ball of mass 0.250 kg
around a vertical circular path of radius 60.0 cm before re-
leasing it from her hand. The pitcher maintains a compo-
nent of force on the ball of constant magnitude 30.0 N in
the direction of motion around the complete path. The
ball’s speed at the top of the circle is 15.0 m/s. If she
releases the ball at the bottom of the circle, what is its speed
upon release?

22. In a needle biopsy, a narrow strip of tissue is extracted
from a patient using a hollow needle. Rather than being

� 1
2(1.94 � 104 N/m)x2

1
2(46.0 kg)(2.40 m/s)2 �(46.0 kg)(9.80 m/s2)(2.80 m � x)

(G
am

m
a)
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pushed by hand, to ensure a clean cut the needle can be
fired into the patient’s body by a spring. Assume that the
needle has mass 5.60 g, the light spring has force constant
375 N/m, and the spring is originally compressed 8.10 cm
to project the needle horizontally without friction. After the
needle leaves the spring, the tip of the needle moves
through 2.40 cm of skin and soft tissue, which exerts on it a
resistive force of 7.60 N. Next, the needle cuts 3.50 cm into
an organ, which exerts on it a backward force of 9.20 N.
Find (a) the maximum speed of the needle and (b) the
speed at which a flange on the back end of the needle runs
into a stop that is set to limit the penetration to 5.90 cm.

The coefficient of friction between the
3.00-kg block and the surface in Figure P7.23 is 0.400. The
system starts from rest. What is the speed of the 5.00-kg
ball when it has fallen 1.50 m?

24. A boy in a wheelchair (total mass 47.0 kg) wins a race with
a skateboarder. He has speed 1.40 m/s at the crest of a
slope 2.60 m high and 12.4 m long. At the bottom of the
slope his speed is 6.20 m/s. Assuming that air resistance
and rolling resistance can be modeled as a constant fric-
tion force of 41.0 N, find the work he did in pushing for-
ward on his wheels during the downhill ride.

A 5.00-kg block is set into motion up an inclined plane
with an initial speed of 8.00 m/s (Fig. P7.25). The block
comes to rest after traveling 3.00 m along the plane, which
is inclined at an angle of 30.0° to the horizontal. For this
motion, determine (a) the change in the block’s kinetic
energy, (b) the change in the potential energy of the
block–Earth system, and (c) the friction force exerted on
the block (assumed to be constant). (d) What is the coeffi-
cient of kinetic friction?

26. An 80.0-kg sky diver jumps out of a balloon at an altitude
of 1 000 m and opens the parachute at an altitude of
200 m. (a) Assuming that the total retarding force on the

25.

23.

diver is constant at 50.0 N with the parachute closed and
constant at 3 600 N with the parachute open, find the
speed of the sky diver when he lands on the ground. 
(b) Do you think the sky diver will be injured? Explain. 
(c) At what height should the parachute be opened so that
the final speed of the sky diver when he hits the ground is
5.00 m/s? (d) How realistic is the assumption that the total
retarding force is constant? Explain.

27. A toy cannon uses a spring to project a 5.30-g soft rubber
ball. The spring is originally compressed by 5.00 cm and has
a force constant of 8.00 N/m. When it is fired, the ball moves
15.0 cm through the horizontal barrel of the cannon and the
barrel exerts a constant friction force of 0.032 0 N on the
ball. (a) With what speed does the projectile leave the barrel
of the cannon? (b) At what point does the ball have maxi-
mum speed? (c) What is this maximum speed?

28. A 50.0-kg block and 100-kg block are connected by a string
as shown in Figure P7.28. The pulley is frictionless and of
negligible mass. The coefficient of kinetic friction between
the 50-kg block and incline is 0.250. Determine the change
in the kinetic energy of the 50-kg block as it moves from �
to �, a distance of 20.0 m.

3.00 kg

5.00 kg

FIGURE P7.23
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29. A 1.50-kg object is held 1.20 m above a relaxed massless
vertical spring with a force constant of 320 N/m. The ob-
ject is dropped onto the spring. (a) How far does it com-
press the spring? (b) How far does it compress the spring if
the same experiment is performed on the Moon, where
g � 1.63 m/s2? (c) Repeat part (a), but now assume that a
constant air-resistance force of 0.700 N acts on the object
during its motion.

30. A 75.0-kg sky surfer is falling straight down with terminal
speed 60.0 m/s. Determine the rate at which the sky
surfer–Earth system is losing mechanical energy.

Section 7.4 � Conservative Forces and Potential Energy
A single conservative force acts on a

5.00-kg particle. The equation Fx � (2x � 4) N describes
the force, where x is in meters. As the particle moves
along the x axis from x � 1.00 m to x � 5.00 m, calculate
(a) the work done by this force on the particle, (b) the
change in the potential energy of the system, and (c) the
kinetic energy the particle has at x � 5.00 m if its speed is
3.00 m/s at x � 1.00 m.

32. A single conservative force acting on a particle varies as
, where A and B are constants and x

is in meters. (a) Calculate the potential energy function
F
:

� (�Ax � Bx2) î   N

31.
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U(x) associated with this force, taking U � 0 at x � 0. 
(b) Find the change in potential energy of the system and
the change in kinetic energy of the particle as it moves
from x � 2.00 m to x � 3.00 m.

The potential energy of a system of two
particles separated by a distance r is given by U(r) � A/r,
where A is a constant. Find the radial force that each
particle exerts on the other.

34. A potential energy function for a two-dimensional force is
of the form U � 3x3y � 7x. Find the force that acts at the
point (x, y).

Section 7.6 ■ Potential Energy for Gravitational 
and Electric Forces

35. A satellite of the Earth has a mass of 100 kg and is at an al-
titude of 2.00 � 106 m. (a) What is the potential energy of
the satellite–Earth system? (b) What is the magnitude of
the gravitational force exerted by the Earth on the satel-
lite? (c) What force does the satellite exert on the Earth?

36. How much energy is required to move a 1 000-kg object
from the Earth’s surface to an altitude twice the Earth’s ra-
dius?

37. At the Earth’s surface, a projectile is launched straight up
at a speed of 10.0 km/s. To what height will it rise? Ignore
air resistance.

38. A system consists of three particles, each of mass 5.00 g,
located at the corners of an equilateral triangle with sides of
30.0 cm. (a) Calculate the potential energy describing the
gravitational interactions internal to the system. (b) If the
particles are released simultaneously, where will they collide?

Section 7.7 ■ Energy Diagrams and Stability 
of Equilibrium

39. For the potential energy curve shown in Figure P7.39, 
(a) determine whether the force Fx is positive, negative, or
zero at the five points indicated. (b) Indicate points of sta-
ble, unstable, and neutral equilibrium. (c) Sketch the
curve for Fx versus x from x � 0 to x � 9.5 m.

40. A particle moves along a line where the potential energy of
its system depends on its position r as graphed in
Figure P7.40. In the limit as r increases without bound, U(r)
approaches �1 J. (a) Identify each equilibrium position for
this particle. Indicate whether each is a point of stable,
unstable, or neutral equilibrium. (b) The particle will be

F
:

33.

bound if the total energy of the system is in what range?
Now suppose the system has energy � 3 J. Determine
(c) the range of positions where the particle can be found,
(d) its maximum kinetic energy, (e) the location where it
has maximum kinetic energy, and (f) the binding energy of
the system, that is, the additional energy that it would have
to be given for the particle to move out to r : 
.

41. A particle of mass 1.18 kg is attached between two identical
springs on a horizontal, frictionless tabletop. The springs
have force constant k and each is initially unstressed. 
(a) The particle is pulled a distance x along a direction
perpendicular to the initial configuration of the springs as
shown in Figure P7.41. Show that the potential energy of
the system is 

(Suggestion: See Problem 6.52 in Chapter 6.) (b) Make a
plot of U(x) versus x and identify all equilibrium points. As-
sume that L � 1.20 m and k � 40.0 N/m. (c) If the parti-
cle is pulled 0.500 m to the right and then released, what is
its speed when it reaches the equilibrium point x � 0?

Section 7.8 ■ Context Connection — Potential Energy 
in Fuels

42. Review problem. The mass of a car is 1 500 kg. The shape of
the body is such that its aerodynamic drag coefficient is D �
0.330 and the frontal area is 2.50 m2. Assuming that the
drag force is proportional to v 2 and ignoring other sources
of friction, calculate the power required to maintain a speed
of 100 km/h as the car climbs a long hill sloping at 3.20°.

43. In considering the energy supply for an automobile, the en-
ergy per unit mass of the energy source is an important pa-
rameter. As the chapter text points out, the “heat of combus-
tion” or stored energy per mass is quite similar for gasoline,

U(x) � kx 2 � 2kL(L � √x 2 � L2 )
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ethanol, diesel fuel, cooking oil, methane, and propane. For
a broader perspective, compare the energy per mass in
joules per kilogram for gasoline, lead-acid batteries, hydro-
gen, and hay. Rank the four in order of increasing energy
density and state the factor of increase between each one
and the next. Hydrogen has “heat of combustion” 
142 MJ/kg. For wood, hay, and dry vegetable matter in gen-
eral, this parameter is 17 MJ/kg. A fully charged 16.0-kg
lead-acid battery can deliver power 1 200 W for 1.0 hr.

44. The power of sunlight reaching each square meter of the
Earth’s surface on a clear day in the tropics is close to
1 000 W. On a winter day in Manitoba the power concen-
tration of sunlight can be 100 W/m2. Many human activi-
ties are described by a power-per-footprint-area on the
order of 102 W/m2 or less. (a) Consider, for example, a
family of four paying $80 to the electric company every
30 days for 600 kWh of energy carried by electrical transmis-
sion to their house, which has floor area 13.0 m by 9.50 m.
Compute the power-per-area measure of this energy use.
(b) Consider a car 2.10 m wide and 4.90 m long traveling
at 55.0 mi/h using gasoline having “heat of combustion”
44.0 MJ/kg with fuel economy 25.0 mi/gal. One gallon of
gasoline has a mass of 2.54 kg. Find the power-per-area
measure of the car’s energy use. It can be similar to that of
a steel mill where rocks are melted in blast furnaces.
(c) Explain why direct use of solar energy is not practical
for a conventional automobile.

Additional Problems
45. Make an order-of-magnitude estimate of your power

output as you climb stairs. In your solution, state the physi-
cal quantities you take as data and the values you measure
or estimate for them. Do you consider your peak power or
your sustainable power?

46. Assume that you attend a state university that was founded
as an agricultural college. Close to the center of the cam-
pus is a tall silo topped with a hemispherical cap. The cap
is frictionless when wet. Someone has somehow balanced a
pumpkin at the highest point. The line from the center of
curvature of the cap to the pumpkin makes an angle 
�i � 0° with the vertical. While you happen to be standing
nearby in the middle of a rainy night, a breath of wind
makes the pumpkin start sliding downward from rest. It
loses contact with the cap when the line from the center of
the hemisphere to the pumpkin makes a certain angle with
the vertical. What is this angle?

47. Review problem. The system shown in Figure P7.47 con-
sists of a light inextensible cord, light frictionless pulleys,
and blocks of equal mass. It is initially held at rest so that

the blocks are at the same height above the ground. The
blocks are then released. Find the speed of block A at the
moment when the vertical separation of the blocks is h.

48. A 200-g particle is released from rest at point � along the
horizontal diameter on the inside of a frictionless, hemi-
spherical bowl of radius R � 30.0 cm (Fig. P7.48). Calculate
(a) the gravitational potential energy of the particle–Earth
system when the particle is at point � relative to point �,
(b) the kinetic energy of the particle at point �, (c) its
speed at point �, and (d) its kinetic energy and the poten-
tial energy when the particle is at point �.

The particle described in Problem 7.48
(Fig. P7.48) is released from rest at �, and the surface of
the bowl is rough. The speed of the particle at � is 
1.50 m/s. (a) What is its kinetic energy at �? (b) How
much mechanical energy is transformed into internal
energy as the particle moves from � to �? (c) Is it possible
to determine the coefficient of friction from these results in
any simple manner? Explain.

50. A child’s pogo stick (Fig. P7.50) stores energy in a spring
with a force constant of 2.50 � 104 N/m. At position �
(xA � � 0.100 m), the spring compression is a maximum
and the child is momentarily at rest. At position �
(xB � 0), the spring is relaxed and the child is moving 
upward. At position �, the child is again momentarily at
rest at the top of the jump. The combined mass of child
and pogo stick is 25.0 kg. (a) Calculate the total energy of
the child–stick–Earth system, taking both gravitational
and elastic potential energies as zero for x � 0. (b) Deter-
mine xC. (c) Calculate the speed of the child at x � 0. 
(d) Determine the value of x for which the kinetic energy
of the system is a maximum. (e) Calculate the child’s maxi-
mum upward speed.

49.
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A 10.0-kg block is released from point � in Figure P7.51.
The track is frictionless except for the portion between
points � and �, which has a length of 6.00 m. The
block travels down the track, hits a spring of force constant
2 250 N/m, and compresses the spring 0.300 m from its
equilibrium position before coming to rest momentarily.
Determine the coefficient of kinetic friction between the
block and the rough surface between � and �.

51.

54. A 1.00-kg object slides to the right on a surface having a co-
efficient of kinetic friction 0.250 (Fig. P7.54). The object
has a speed of vi � 3.00 m/s when it makes contact with a
light spring that has a force constant of 50.0 N/m. The
object comes to rest after the spring has been compressed a
distance d. The object is then forced toward the left by the
spring and continues to move in that direction beyond the
spring’s unstretched position. The object finally comes to
rest a distance D to the left of the unstretched spring. Find
(a) the distance of compression d, (b) the speed v at the
unstretched position when the object is moving to the left,
and (c) the distance D where the object comes to rest.

A block of mass 0.500 kg is pushed
against a horizontal spring of negligible mass until the spring
is compressed a distance x (Fig. P7.55). The force constant of

55.

the spring is 450 N/m. When it is released, the block travels
along a frictionless, horizontal surface to point B, the bottom
of a vertical circular track of radius R � 1.00 m, and contin-
ues to move up the track. The speed of the block at the bot-
tom of the track is vB � 12.0 m/s, and the block experiences
an average friction force of 7.00 N while sliding up the track.
(a) What is x ? (b) What speed do you predict for the block at
the top of the track? (c) Does the block actually reach the
top of the track, or does it fall off before reaching the top?
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52. The potential energy function for a system is given by
U(x) � �x3 � 2x2 � 3x. (a) Determine the force Fx as a
function of x. (b) For what values of x is the force equal to
zero? (c) Plot U(x) versus x and Fx versus x, and indicate
points of stable and unstable equilibrium.

A 20.0-kg block is connected to a 30.0-kg block by a string
that passes over a light frictionless pulley. The 30.0-kg block
is connected to a spring that has negligible mass and a
force constant of 250 N/m as shown in Figure P7.53. The
spring is unstretched when the system is as shown in the fig-
ure, and the incline is frictionless. The 20.0-kg block is
pulled 20.0 cm down the incline (so that the 30.0-kg block
is 40.0 cm above the floor) and released from rest. Find the
speed of each block when the 30.0-kg block is 20.0 cm
above the floor (that is, when the spring is unstretched).

53.

56. A uniform chain of length 8.00 m initially lies stretched out
on a horizontal table. (a) Assuming that the coefficient of
static friction between chain and table is 0.600, show that the
chain will begin to slide off the table if at least 3.00 m of it
hangs over the edge of the table. (b) Determine the speed of
the chain as it all leaves the table, given that the coefficient
of kinetic friction between the chain and the table is 0.400.

57. Jane, whose mass is 50.0 kg, needs to swing across a river
(having width D) filled with person-eating crocodiles to
save Tarzan from danger. She must swing into a wind exert-
ing constant horizontal force , on a vine having length L
and initially making an angle � with the vertical 
(Fig. P7.57). Taking D � 50.0 m, F � 110 N, L � 40.0 m,

F
:
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and � � 50.0°, (a) with what minimum speed must Jane
begin her swing to just make it to the other side? (b) Once
the rescue is complete, Tarzan and Jane must swing back
across the river. With what minimum speed must they 
begin their swing? Assume that Tarzan has a mass of 
80.0 kg.

mass moves vertically. (f) How high above point � does he
rise? (g) Over what time interval is he airborne before he
touches down, 2.34 m below the level of point �? (Caution:
Do not try this yourself without the required skill and pro-
tective equipment or in a drainage channel to which you do
not have legal access.)

Wind
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58. A 5.00-kg block free to move on a horizontal, frictionless
surface is attached to one end of a light horizontal spring.
The other end of the spring is held fixed. The spring is
compressed 0.100 m from equilibrium and released. The
speed of the block is 1.20 m/s when it passes the equilib-
rium position of the spring. The same experiment is now
repeated with the frictionless surface replaced by a surface
for which the coefficient of kinetic friction is 0.300. Deter-
mine the speed of the block at the equilibrium position of
the spring.

59. A skateboarder with his board can be modeled as a particle
of mass 76.0 kg, located at his center of mass (which we will
study in Chapter 8). As shown in Figure P7.59, the skate-
boarder starts from rest in a crouching position at one lip
of a half-pipe (point �). The half-pipe is a dry water chan-
nel, forming one half of a cylinder of radius 6.80 m with its
axis horizontal. On his descent, the skateboarder moves
without friction so that his center of mass moves through
one quarter of a circle of radius 6.30 m. (a) Find his speed
at the bottom of the half-pipe (point �). (b) Find his cen-
tripetal acceleration. (c) Find the normal force nB acting
on the skateboarder at point �. Immediately after passing
point �, he stands up and raises his arms, lifting his center
of mass from 0.500 m to 0.950 m above the concrete (point
�). To account for the conversion of chemical into
mechanical energy, model his legs as doing work by push-
ing him vertically up with a constant force equal to the nor-
mal force n B over a distance of 0.450 m. (You will be able to
solve this problem with a more accurate model in Chapter
10.) (d) What is the work done on the skateboarder’s body
in this process? Next, the skateboarder glides upward with
his center of mass moving in a quarter circle of radius 
5.85 m. His body is horizontal when he passes point �, the
far lip of the half-pipe. (e) Find his speed at this location.
At last he goes ballistic, twisting around while his center of

60. A block of mass M rests on a table. It is fastened to the
lower end of a light vertical spring. The upper end of the
spring is fastened to a block of mass m. The upper block is
pushed down by an additional force 3mg so that the spring
compression is 4mg/k. In this configuration, the upper
block is released from rest. The spring lifts the lower block
off the table. In terms of m, what is the greatest possible
value for M ?

61. A pendulum, comprising a light string of length L and a
small sphere, swings in a vertical plane. The string hits a
peg located a distance d below the point of suspension
(Fig. P7.61). (a) Show that if the sphere is released from a
height below that of the peg, it will return to this height
after the string strikes the peg. (b) Show that if the pendu-
lum is released from the horizontal position (� � 90°) and
is to swing in a complete circle centered on the peg, the
minimum value of d must be 3L/5.

dL

Peg

θ

FIGURE P7.61

62. A roller coaster car is released from rest at the top of the
first rise and then moves freely with negligible friction.
The roller coaster shown in Figure P7.62 has a circular
loop of radius R in a vertical plane. (a) First, suppose the
car barely makes it around the loop; at the top of the loop
the riders are upside down and feel weightless. Find the re-
quired height of the release point above the bottom of the
loop, in terms of R. (b) Now assume that the release point
is at or above the minimum required height. Show that the
normal force on the car at the bottom of the loop exceeds
the normal force at the top of the loop by six times the
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weight of the car. The normal force on each rider follows
the same rule. Such a large normal force is dangerous and
very uncomfortable for the riders. Roller coasters are
therefore not built with circular loops in vertical planes.
Figure P5.24 and the photograph on page 134 show two
actual designs.

64. Starting from rest, a 64.0-kg person bungee jumps from a
tethered balloon 65.0 m above the ground (Fig. P7.18).
The bungee cord has negligible mass and unstretched
length 25.8 m. One end is tied to the basket of the balloon
and the other end to a harness around the person’s body.
The cord is described by Hooke’s law with a spring con-
stant of 81.0 N/m. The balloon does not move. (a) Model
the person’s body as a particle. Express the gravitational
potential energy of the person–Earth system as a function
of the person’s variable height y above the ground. (b) Ex-
press the elastic potential energy of the cord as a function
of y. (c) Express the total potential energy of the
person–cord–Earth system as a function of y. (d) Plot a
graph of the gravitational, elastic, and total potential ener-
gies as functions of y. (e) Assume that air resistance is neg-
ligible. Determine the minimum height of the person
above the ground during his plunge. (f ) Does the poten-
tial energy graph show any equilibrium position or posi-
tions? If so, at what elevations? Are they stable or unstable?
(g) Determine the jumper’s maximum speed.

FIGURE P7.62 �
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63. Review problem. In 1887 in Bridgeport, Connecticut, C. J.
Belknap built the water slide shown in Figure P7.63. A
rider on a small sled, of total mass 80.0 kg, pushed off to
start at the top of the slide (point �) with a speed of
2.50 m/s. The chute was 9.76 m high at the top, 54.3 m
long, and 0.51 m wide. Along its length, 725 wheels made
friction negligible. Upon leaving the chute horizontally at
its bottom end (point �), the rider skimmed across
the water of Long Island Sound for as much as 50 m,
“skipping along like a flat pebble,” before at last coming
to rest and swimming ashore, pulling his sled after him.
According to Scientific American, “The facial expression of
novices taking their first adventurous slide is quite remark-
able, and the sensations felt are correspondingly novel
and peculiar.” (a) Find the speed of the sled and rider at
point �. (b) Model the force of water friction as a con-
stant retarding force acting on a particle. Find the work
done by water friction in stopping the sled and rider. 
(c) Find the magnitude of the force the water exerts on
the sled. (d) Find the magnitude of the force the chute
exerts on the sled at point �. (e) At point � the chute is
horizontal but curving in the vertical plane. Assume that
its radius of curvature is 20.0 m. Find the force the chute
exerts on the sled at point �.

ANSWERS TO QUICK QUIZZES

7.1 (c). The sign of the gravitational potential energy de-
pends on your choice of zero configuration. If the two
objects in the system are closer together than in the zero
configuration, the potential energy is negative. If they
are farther apart, the potential energy is positive.

7.2 (a). We must include the Earth if we are going to work
with gravitational potential energy.

7.3 v1 � v2 � v3. The first and third balls speed up after
they are thrown, whereas the second ball initially slows
down but then speeds up after reaching its peak. The
paths of all three balls are parabolas, and the balls take

different time intervals to reach the ground because they
have different initial velocities. All three balls, however,
have the same speed at the moment they hit the ground
because all start with the same kinetic energy and be-
cause the ball–Earth system undergoes the same change
in gravitational potential energy in all three cases.

7.4 (i), (c). This system exhibits changes in kinetic energy
as well as in both types of potential energy. (ii), (a). Be-
cause the Earth is not included in the system, there is
no gravitational potential energy associated with the
system.
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C O N T E X T CONCLUSION1

Present and Future Possibilities
Now that we have explored some fundamental principles of classical mechanics, let
us return to our central question for the Alternative-Fuel Vehicles Context:

What source besides gasoline can be used to provide energy for an automobile while re-
ducing environmentally damaging emissions?

Available Now — The Hybrid Electric Vehicle
As discussed in Section 7.8, electric vehicles such as the GM EV1 have not been suc-
cessfully marketed and are falling by the wayside. Currently taking their place are a
growing number of hybrid electric vehicles. In these automobiles, a gasoline engine
and an electric motor are combined to increase the fuel economy of the vehicle and
reduce its emissions. Currently available models include the Toyota Prius and Honda
Insight, which are originally designed hybrid vehicles, as well as other existing mod-
els that have been modified with a hybrid drive system, such as the Honda Civic.

Two major categories of hybrid vehicles are the parallel hybrid and the series hy-
brid. In a parallel hybrid, both the engine and the motor are connected to the

transmission, so either one can provide propulsion energy for the
car. In a series hybrid, the gasoline engine does not provide
propulsion energy to the transmission directly. The engine turns
a generator, which in turn either charges the batteries or powers
the electric motor. Only the electric motor is connected directly
to the transmission to propel the car.

The Honda Insight (Fig. 1) is a parallel hybrid. Both the engine
and the motor provide power to the transmission, and the engine
is running at all times while the car is moving. The goal of the de-
velopment of this hybrid is maximum mileage, which is achieved
through a number of design features. Because the engine is small,
the Insight has lower emissions than a traditional gasoline-powered
vehicle. Because the engine is running at all vehicle speeds, how-
ever, its emissions are not as low as those of the Toyota Prius.

Figure 2 shows the engine compartment of the Toyota Prius.
In this parallel hybrid, power to the wheels can come from either

the gasoline engine or the electric motor. The vehicle has some aspects of a series
hybrid, however, in that the electric motor alone accelerates the vehicle from rest
until it is moving at a speed of about 15 mph (24 kph). During this acceleration pe-
riod, the engine is not running, so gasoline is not used and there is no emission. As
a result, the average tailpipe emissions are lower than those of the Insight, although
the gasoline mileage is not quite as high.

When a hybrid vehicle brakes, the motor acts as a generator and returns some of
the kinetic energy of the vehicle back to the battery as electric potential energy. In a
normal vehicle, this kinetic energy is not recoverable because it is transformed to
internal energy in the brakes and roadway.

Gas mileage for hybrid vehicles is in the range of 45 to 60 mi/gal and emissions
are far below those of a standard gasoline engine. A hybrid vehicle does not need to
be charged like a purely electric vehicle. The battery that drives the electric motor
is charged while the gasoline engine is running. Consequently, even though the hy-
brid vehicle has an electric motor like a pure electric vehicle, it can simply be filled
at a gas station like a normal vehicle.

The Honda Insight.FIGURE 1
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Hybrid electric vehicles are not strictly alternative-
fuel vehicles because they use the same fuel as normal
vehicles, gasoline. They do, however, represent an im-
portant step toward more efficient cars with lower
emissions, and the increased mileage helps conserve
crude oil.

In the Future — The Fuel Cell Vehicle
In an internal combustion engine, the chemical po-
tential energy in the fuel is transformed to internal
energy during an explosion initiated by a spark plug.
The resulting expanding gases do work on pistons,
directing energy to the wheels of the vehicle. In cur-
rent development is the fuel cell, in which the conver-
sion of the energy in the fuel to internal energy is not
required. The fuel (hydrogen) is oxidized, and en-
ergy leaves the fuel cell by electrical transmission. The
energy is used by an electric motor to drive the
vehicle.

The advantages of this type of vehicle are many. There is no internal combus-
tion engine to generate harmful emissions, so the vehicle is emission-free. Other
than the energy used to power the vehicle, the only by-products are internal energy
and water. The fuel is hydrogen, which is the most abundant element in the uni-
verse. The efficiency of a fuel cell is much higher than that of an
internal combustion engine, so more of the potential energy in
the fuel can be extracted.

That is all good news. The bad news is that fuel cell vehicles
are still only in the early prototype stage (Fig. 3). It will be many
years before fuel cell vehicles are available to consumers. During
these years, fuel cells must be perfected to operate in weather
extremes, manufacturing infrastructure must be set up to supply
the hydrogen, and a fueling infrastructure must be established
to allow transfer of hydrogen into individual vehicles.

Problems
1. When a conventional car brakes to a stop, all (100%) its

kinetic energy is converted into internal energy. None of this
energy is available to get the car moving again. Consider a
hybrid electric car of mass 1 300 kg moving at 22.0 m/s.
(a) Calculate its kinetic energy. (b) The car uses its regenera-
tive braking system to come to a stop at a red light. Assume
that the motor-generator converts 70.0% of the car’s kinetic
energy into energy delivered to the battery by electrical trans-
mission. The other 30.0% becomes internal energy. Compute
the amount of energy charging up the battery. (c) Assume
that the battery can give back 85.0% of the energy chemically
stored in it. Compute the amount of this energy. The other
15.0% becomes internal energy. (d) When the light turns
green, the car’s motor-generator runs as a motor to convert
68.0% of the energy from the battery into kinetic energy of
the car. Compute the amount of this energy and (e) the
speed at which the car will be set moving with no other en-
ergy input. (f) Compute the overall efficiency of the braking-
and-starting process. (g) Compute the net amount of inter-
nal energy produced.

The engine compartment of the Toyota Prius.FIGURE 2
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A hydrogen fuel cell in Europe’s first hydrogen-
powered taxi. Fuel cells convert the energy from
a chemical reaction into electricity.

FIGURE 3
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2. In both a conventional car and a hybrid electric car, the gasoline engine is the
original source of all the energy the car uses to push through the air and against
rolling resistance of the road. In city traffic, a conventional gasoline engine must
run at a wide variety of rotation rates and fuel inputs. That is, it must run at a
wide variety of tachometer and throttle settings. It is almost never running at its
maximum-efficiency point. In a hybrid electric car, on the other hand, the gaso-
line engine can run at maximum efficiency whenever it is on.  A simple model
can reveal the distinction numerically. Assume that the two cars both do 66.0 MJ
of “useful” work in making the same trip to the drugstore. Let the conventional
car run at 7.00% efficiency as it puts out useful energy 33.0 MJ and let it run at
30.0% efficiency as it puts out 33.0 MJ. Let the hybrid car run at 30.0% effi-
ciency all the time. Compute (a) the required energy input for each car and
(b) the overall efficiency of each. 
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C O N T E X T

Mission to Mars

2

In this Context, we shall investigate the
physics necessary to send a spacecraft
from Earth to Mars. If the two planets
were sitting still in space, millions of
kilometers apart, it would be a difficult
enough proposition, but keep in mind
that we are launching the spacecraft
from a moving object, the Earth, and
are aiming at a moving target, Mars.
Furthermore, the spacecraft’s motion is
influenced by gravitational forces from
the Earth, the Sun, and Mars as well as
from any other massive objects in the
vicinity. Despite these apparent difficul-
ties, we can use the principles of
physics to plan a successful mission.

Travel in space began in the early
1960s, with the launch of human-
occupied spacecraft in both the United
States and the Soviet Union. The first

human to ride into space was Yury
Gagarin, who made a one-orbit trip in
1961 in the Soviet spacecraft Vostok.
Competition between the two countries
resulted in a “space race,” which led to
the successful landing of American as-
tronauts on the Moon in 1969.

In the 1970s, the Viking Project
landed spacecraft on Mars to analyze
the soil for signs of life. These tests
were inconclusive.

U.S. efforts in the 1980s focused on
the development and implementation
of the space shuttle system, a reusable
space transportation system. The shut-
tle has been used extensively in moving
supplies and personnel to the Interna-
tional Space Station, which was be-
gun in 1998 and continues to develop.
It has also been an important means
of performing scientific experiments
in space and delivering satellites into
orbit.

The United States returned to Mars
in the 1990s with the Mars Global Sur-
veyor, designed to perform careful
mapping of the Martian surface, and
Mars Pathfinder, which landed on Mars
and deployed a roving robot to analyze
rocks and soil. Not all trips have been
successful. In 1999, Mars Polar Lander
was launched to land near the polar ice
cap and search for water. As it entered
the Martian atmosphere, it sent its last
data and was never heard from again.
Mars Climate Orbiter was also lost in
1999 due to communication errors be-
tween the builder of the spacecraft and
the mission control team.

In late 2003 and early 2004, arrivals
of spacecraft at Mars were expected
by three space agencies, the National
Aerodynamics and Space Administra-
tion (NASA) in the United States, the
European Space Agency (ESA) in Eu-
rope, and the Japanese Aerospace Ex-
ploration Agency ( JAXA) in Japan.
The extreme difficulties associated with

The Nozomi is the first Mars orbiter to be
launched by Japan. This photo shows its
launch on July 4, 1998 from Kagoshima Space
Center. Unfortunately, the Nozomi mission was
unsuccessful because of technical difficulties,
and the spacecraft did not achieve orbit
around Mars.
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such an endeavor can be appreciated
by examining the results of these
simultaneous missions. The Japanese
mission ended in failure when a stuck

valve and electrical circuit problems
affected a critical midcourse correc-
tion, resulting in the inability of the
spacecraft, named Nozomi, to achieve
an orbit around Mars. It passed about
1 000 km above the Martian surface on
December 14, 2003, and then left the
planet to continue its orbit around the
Sun.

The European effort resulted in a
successful injection of their Mars
Express spacecraft into an orbit around
Mars. A lander, named Beagle 2, de-
scended to the surface. Unfortunately,
no signals from the lander have been
detected and it is presumed lost. The
Mars Express orbiter continues to send
data and is equipped to perform scien-
tific analyses from orbit. 

The NASA effort was the most
successful of the three missions, with
the Spirit rover landing successfully on
the surface of Mars on January 4, 2004.
Its twin, Opportunity, also landed suc-
cessfully, on January 24, 2004, on the
opposite side of the planet from Spirit.
Amazingly, Opportunity landed inside
a crater, providing scientists with a

The Mars rover Spirit is tested in a clean room at the Jet Propulsion Laboratory in Pasadena,
California.

FIGURE 2
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An image from a camera on the Mars rover Opportunity shows a
rock called the “Berry Bowl.” The “berries” are sphere-like grains
containing hematite, which scientists used to confirm the earlier
presence of water on the surface. The circular area on the rock is
the result of using the rover’s rock abrasion tool to remove a layer
of dust. In this way, a clean surface of the rock was available for
spectral analysis by the rover’s spectrometers.

FIGURE 3
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wonderful opportunity to study the ge-
ology of an impact crater. Aside from a
computer glitch that was successfully
repaired, both rovers performed excel-
lently and sent back very high-quality
photographs of the Martian surface as
well as large amounts of data including
verification of water that once existed
on the surface.

Many individuals dream of one day
establishing colonies on Mars. This
dream is far in the future; we are still
learning much about Mars today and
have yet taken only a handful of trips to
the planet. Travel to Mars is still not an
everyday occurrence, although we learn
more from each mission. In this Con-
text, we address the central question,
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In this Context, we shall investigate the details of the challenging task of
sending a spacecraft from the Earth to Mars.

FIGURE 4

How can we undertake a successful transfer of a spacecraft from
Earth to Mars?

CONTEXT 2 MISSION TO MARS ❚ 225



Consider what happens when a golf ball is struck by a club
as in the opening photograph for this chapter. The ball
changes its motion from being at rest to having a very

large velocity as a result of the collision; consequently, it is able
to travel a large distance through the air. Because the ball expe-
riences this change in velocity over a very short time interval,
the average force on it during the collision is very large. By
Newton’s third law, the club experiences a reaction force equal in
magnitude and opposite to the force on the ball. This reaction
force produces a change in the velocity of the club. Because
the club is much more massive than the ball, however, the
change in the club’s velocity is much less than the change in the
ball’s velocity.

One main objective of this chapter is to enable you to under-
stand and analyze such events. As a first step, we shall introduce
the concept of momentum, a term used to describe objects in

Momentum and Collisions

C H A P T E R 8

A golf ball is struck by a club and begins to
leave the tee. Note the deformation of the ball
as a result of the large force exerted on it by
the club.

C H A P T E R O U T L I N E
8.1 Linear Momentum and Its Conservation
8.2 Impulse and Momentum
8.3 Collisions
8.4 Two-Dimensional Collisions
8.5 The Center of Mass
8.6 Motion of a System of Particles
8.7 Context Connection — Rocket Propulsion
SUMMARY

(©
 H

ar
ol

d 
an

d 
Es

th
er

 E
dg

er
to

n 
Fo

un
da

tio
n 

20
02

, c
ou

rte
sy

 o
f P

al
m

 P
re

ss
, I

nc
.)

y p g p pp



LINEAR MOMENTUM AND ITS CONSERVATION ❚ 227

y p g p pp

motion. The concept of momentum leads us to a new conservation law and mo-
mentum approaches for treating isolated and nonisolated systems. This conserva-
tion law is especially useful for treating problems that involve collisions between ob-
jects.

LINEAR  MOMENTUM  AND  ITS  CONSERVATION
In the preceding two chapters, we studied situations that are difficult to analyze
with Newton’s laws. We were able to solve problems involving these situations by ap-
plying a conservation principle, conservation of energy. Consider another situation.
A 60-kg archer stands on frictionless ice and fires a 0.50-kg arrow horizontally at
50 m/s. From Newton’s third law, we know that the force that the bow exerts on the
arrow will be matched by a force in the opposite direction on the bow (and the
archer). This force will cause the archer to begin to slide backward on the ice. But
with what speed? We cannot answer this question using either Newton’s second law
or an energy approach because there is not enough information.

Despite our inability to solve the archer problem using our techniques learned
so far, this problem is very simple to solve if we introduce a new quantity that de-
scribes motion. To motivate this new quantity, let us apply the General Problem-
Solving Strategy from Chapter 1 and conceptualize an isolated system of two particles 
(Fig. 8.1) with masses m1 and m2 and moving with velocities and at an instant
of time. Because the system is isolated, the only force on one particle is that from
the other particle, and we can categorize this situation as one in which Newton’s laws
can be applied. If a force from particle 1 (for example, a gravitational force)
acts on particle 2, there must be a second force—equal in magnitude but opposite
in direction—that particle 2 exerts on particle 1. That is, the forces form a
Newton’s third law action–reaction pair so that . We can express this
condition as a statement about the system of two particles as follows:

Let us further analyze this situation by incorporating Newton’s second law. Over
some time interval, the interacting particles in the system will accelerate. There-
fore, replacing each force with gives

Now we replace the acceleration with its definition from Equation 3.5:

If the masses m1 and m2 are constant, we can bring them into the derivatives, which
gives

[8.1]

To finalize this discussion, note that the derivative of the sum with re-
spect to time is zero. Consequently, this sum must be constant. We learn from this
discussion that the quantity for a particle is important in that the sum of the val-
ues of this quantity for the particles in an isolated system is conserved. We call this
quantity linear momentum:

mv:

m1 v:1 � m2 v:2

 
d
dt

 (m1 v:1 � m 2 v:2) � 0
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dt
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m a:

F
:

21 � F
:

12 � 0

F
:

12 � � F
:

21

v:2v:1

8.1

v2

m2

m1

F21

F12

v1

Two particles
interact with each other. According
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The linear momentum of a particle or an object that can be modeled as a
particle of mass m moving with a velocity is defined to be the product of
the mass and velocity:1

[8.2]

Because momentum equals the product of a scalar m and a vector , it is a vec-
tor quantity. Its direction is the same as that for , and it has dimensions ML/T. In
the SI system, momentum has the units kg � m/s.

If an object is moving in an arbitrary direction in three-dimensional space, has
three components and Equation 8.2 is equivalent to the component equations 

[8.3]

As you can see from its definition, the concept of momentum provides a quanti-
tative distinction between objects of different masses moving at the same velocity.
For example, the momentum of a truck moving at 2 m/s is much greater in magni-
tude than that of a Ping-Pong ball moving at the same speed. Newton called the
product the quantity of motion, perhaps a more graphic description than momen-
tum, which comes from the Latin word for movement.

mv:

px � mvx  py � mvy  pz � mvz

p:

v:
v:

p: � mv:

v:
p:

Two objects have equal kinetic energies. How do the magnitudes of
their momenta compare? (a) p1 � p2 (b) p1 � p2 (c) p1 � p2 (d) not enough
information to determine the answer

QUICK QUIZ 8.1

Your physical education teacher throws a baseball to you at a certain
speed and you catch it. The teacher is next going to throw you a medicine ball whose
mass is ten times the mass of the baseball. You are given the following choices. You can
have the medicine ball thrown with (a) the same speed as the baseball, (b) the same
momentum, or (c) the same kinetic energy. Rank these choices from easiest to hardest to
catch.

QUICK QUIZ 8.2

■ Newton’s second law for 
a particle

1This expression is nonrelativistic and is valid only when v �� c, where c is the speed of light. In the
next chapter, we discuss momentum for high-speed particles.

■ Definition of linear momentum
of a particle

Let us use the particle model for an object in motion. By using Newton’s second
law of motion, we can relate the linear momentum of a particle to the net force act-
ing on the particle. In Chapter 4, we learned that Newton’s second law can be writ-
ten as . This form applies only when the mass of the particle remains con-
stant, however. In situations where the mass is changing with time, one must use an
alternative statement of Newton’s second law: The time rate of change of momen-
tum of a particle is equal to the net force acting on the particle, or

[8.4]

If the mass of the particle is constant, the preceding equation reduces to our
previous expression for Newton’s second law:

It is difficult to imagine a particle whose mass is changing, but if we consider objects,
a number of examples emerge. These examples include a rocket that is ejecting its

�  F
:

�
d p:

dt
�

d(m v:)
dt

� m 
d v:

dt
� m a:

� F
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dt
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fuel as it operates, a snowball rolling down a hill and picking up additional snow,
and a watertight pickup truck whose bed is collecting water as it moves in the rain.

From Equation 8.4 we see that if the net force on an object is zero, the time de-
rivative of the momentum is zero and therefore the momentum of the object must
be constant. This conclusion should sound familiar because it is the case of a parti-
cle in equilibrium, expressed in terms of momentum. Of course, if the particle is
isolated (that is, if it does not interact with its environment), no forces act on it and

remains unchanged, which is Newton’s first law.

Momentum and Isolated Systems
Using the definition of momentum, Equation 8.1 can be written as

Because the time derivative of the total system momentum is
zero, we conclude that the total momentum must remain constant:

[8.5]

or, equivalently,

[8.6]

where and are initial values and and are final values of the momen-
tum during a period over which the particles interact. Equation 8.6 in component
form states that the momentum components of the isolated system in the x, y, and z
directions are all independently constant; that is,

[8.7]

This result, known as the law of conservation of linear momentum, is the mathe-
matical representation of the momentum version of the isolated system model. It is
considered one of the most important laws of mechanics. We have generated this
law for a system of two interacting particles, but it can be shown to be true for a sys-
tem of any number of particles. We can state it as follows: The total momentum of
an isolated system remains constant.

Notice that we have made no statement concerning the nature of the forces act-
ing between members of the system. The only requirement is that the forces must
be internal to the system. Therefore, momentum is conserved for an isolated system
regardless of the nature of the internal forces, even if the forces are nonconservative.

�
system

  pix � �
system

 pfx  �
system

 piy � �
system

 pfy  �
system

 piz � �
system

 pfz

p:2fp:1fp:2ip:1i

p:1i � p:2i � p:1f � p:2f

p:tot � constant

p:tot

p:tot � p:1 � p:2

d
dt

 (p:1 � p:2) � 0

p:

■ Conservation of momentum
for an isolated system

MOMENTUM OF A SYSTEM IS

CONSERVED Remember that the
momentum of an isolated system is
conserved. The momentum of one
particle within an isolated system is
not necessarily conserved because
other particles in the system may be
interacting with it. Always apply
conservation of momentum to an
isolated system.

� PITFALL PREVENTION 8.1

speeds by considering conservation of momentum in
the vertical direction for the system of the ball and the
Earth. The initial momentum of the system is zero, so
the final momentum must also be zero:

Substituting for vE/vb in (1), we have

KE

Kb
� � mE

mb
��� 

mb

mE
�

2
�

mb

mE

 : vE

vb
� �

mb

mE

pi � pf  : 0 � mbvb � mEvE

Can We Really Ignore the Kinetic Energy of the Earth?EXAMPLE 8.1
In Section 7.1, we claimed that we can ignore the ki-
netic energy of the Earth when considering the energy
of a system consisting of the Earth and a dropped ball.
Verify this claim.

Solution We will verify this claim by setting up a ratio
of the kinetic energy of the Earth to that of the ball:

(1)

where vE and vb are the speeds of the Earth and the
ball, respectively, after the ball has fallen through some
distance. Now we find a relationship between these two

KE
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�

1
2mE v E

2
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2mbvb 
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�� vE
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The ArcherEXAMPLE 8.2INTERACTIVE

Let us take the system to consist of the archer
(including the bow) and the arrow. The system is not
isolated because the gravitational force and the normal
force act on the system. These forces, however, are ver-
tical and perpendicular to the motion of the system.
Therefore, there are no external forces in the horizon-
tal direction, and we can consider the system to be
isolated in terms of momentum components in this
direction.

The total horizontal momentum of the system
before the arrow is fired is zero ( ),
where the archer is particle 1 and the arrow is particle 2.
Therefore, the total horizontal momentum of the
system after the arrow is fired must be zero; that is,

We choose the direction of firing of the arrow as the
positive x direction. With m1 � 60 kg, m2 � 0.50 kg,
and , solving for we find the recoil
velocity of the archer to be

�

The negative sign for indicates that the archer is
moving to the left after the arrow is fired, in the direc-
tion opposite the direction of the arrow’s motion, in
accordance with Newton’s third law. Because the archer
is much more massive than the arrow, his acceleration
and consequent velocity are much smaller than the
arrow’s acceleration and velocity.

Log into PhysicsNow at www.pop4e.com and go
to Interactive Example 8.2 to change the arrow’s speed and the
masses of the archer and the arrow.

v:1f

�0.42 î m/s  

v:1f � � 
m 2

m1
  v:2f � �� 0.50 kg

60 kg �(50 î m/s)

v:1fv:2f � 50 î
 
m/s

m1 v:1f � m2 v:2f � 0

m1 v:1i � m2 v:2i � 0

Let us consider the situation proposed at the beginning
of this section. A 60-kg archer stands at rest on friction-
less ice and fires a 0.50-kg arrow horizontally at 50 m/s
(Fig. 8.2). With what velocity does the archer move
across the ice after firing the arrow?

Solution We cannot solve this problem using Newton’s
second law, , because we have no informa-
tion about the force on the arrow or its acceleration.
We cannot solve this problem using an energy approach
because we do not know how much work is done in
pulling the bow back or how much potential energy is
stored in the bow. We can, however, solve this problem
very easily with conservation of momentum because
momentum does not depend on any of these quantities
that we do not know.

� F
:

� ma:

Decay of the Kaon at RestEXAMPLE 8.3
One type of nuclear particle, called the neutral kaon
(K0), decays into a pair of other particles called pions
(�� and ��), which are oppositely charged but equal
in mass, as in Figure 8.3. Assuming that the kaon is
initially at rest, prove that the two pions must have
momenta that are equal in magnitude and opposite in
direction.

(Interactive Example 8.2) An archer fires an arrow
horizontally. Because he is standing on frictionless
ice, he will begin to slide across the ice.

FIGURE 8.2

The kinetic energy of the Earth is a very small fraction
of the kinetic energy of the ball, so we are justified in
ignoring it in the kinetic energy of the system.

Substituting order-of-magnitude numbers for the
masses, this ratio becomes

KE

Kb
�

mb

mE
 � 

1 kg
1025 kg

 � 10�25

Solution The isolated system is the kaon before the de-
cay and the two pions afterward. The decay of the kaon,
represented in Figure 8.3, can be written

If we let be the momentum of the positive pion
and be the momentum of the negative pion afterp: �

p:�

K0 : �� � ��

www.pop4e.com
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Κ
Before
decay

(at rest)

p+p –

π– π+

After decay

π π

0

(Example 8.3) A kaon at rest decays into a pair 
of oppositely charged pions. The pions move apart
with momenta of equal magnitudes but opposite
directions.

FIGURE 8.3

the decay, the final momentum of the isolated sys-
tem of two pions can be written

Because the kaon is at rest before the decay, we know
that the initial system momentum . Furthermore,
because the momentum of the isolated system is con-
served, , so that or

Therefore, we see that the two momentum vectors
of the pions are equal in magnitude and opposite in
direction.

p:� � �p: �

p:� � p: � � 0p:i � p:f � 0

p:i � 0

p:f � p: � � p: �

p:f

IMPULSE AND MOMENTUM
As described by Equation 8.4, the momentum of a particle changes if a net
force acts on the particle. Let us assume that a net force acts on a particle and
that this force may vary with time. According to Equation 8.4,

[8.8]

We can integrate this expression to find the change in the momentum of a par-
ticle during the time interval �t � tf � ti . Integrating Equation 8.8 gives

[8.9]

The integral of a force over the time interval during which it acts is called the
impulse of the force. The impulse of the net force is a vector defined by

[8.10]

The direction of the impulse vector is the same as the direction of the change in
momentum. Impulse has the dimensions of momentum, ML/T.

Based on this definition, Equation 8.9 tells us that the total impulse of the net
force on a particle equals the change in the momentum of the particle:

. This statement, known as the impulse–momentum theorem, is equivalent
to Newton’s second law. It also applies to a system of particles for which the net ex-
ternal force on the system causes a change in the total momentum of the system:

[8.11]

Impulse is an interaction between the system and its environment. As a result of
this interaction, the momentum of the system changes. This idea is an analog to the
continuity equation for energy, which relates an interaction with the environment
to the change in the energy of the system. Therefore, when we say that an impulse
is given to a system, we imply that momentum is transferred from an external agent
to that system. In many situations, the system can be modeled as a particle, so Equa-
tion 8.10 can be used rather than the more general Equation 8.11.

From the definition, we see that impulse is a vector quantity having a magnitude
equal to the area under the curve of the magnitude of the net force versus time, as

I
: 

� �tf

ti
  � F

:
ext dt � � p:tot

I
:

� �p:
� F

:

I
: 

� �tf

ti
 � F

:
 dt

� F
:

�p: � p:f � p:i � �tf

ti
  � F

:
 dt 

d p: � � F
:

 dt

� F
:

8.2

■ Impulse of a net force

■ Impulse – momentum theorem
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illustrated in Figure 8.4. In this figure, it is assumed that the net force varies in time
in the general manner shown and is nonzero in the time interval �t � tf � ti.

Because the force can generally vary in time as in Figure 8.4a, it is convenient to
define a time-averaged net force given by

[8.12]

where �t � tf � ti. Therefore, we can express Equation 8.10 as

[8.13]

The magnitude of this average net force, described in Figure 8.4b, can be
thought of as the magnitude of the constant net force that would give the same im-
pulse to the particle in the time interval �t as the actual time-varying net force gives
over this same interval.

In principle, if is known as a function of time, the impulse can be calculated
from Equation 8.10. The calculation becomes especially simple if the net force act-
ing on the particle is constant. In this case, over a time interval is the same as
the constant at any instant within the interval, and Equation 8.13 becomes

[8.14]

In many physical situations, we shall use what is called the impulse approximation:
We assume that one of the forces exerted on a particle acts for a short time but is
much greater than any other force present. This simplification model allows us to
ignore the effects of other forces because these effects are small for the short time
interval during which the large force acts. This approximation is especially useful in
treating collisions in which the duration of the collision is very short. When this
approximation is made, we refer to the force that is greater as an impulsive force. For
example, when a baseball is struck with a bat, the duration of the collision is about
0.01 s and the average force the bat exerts on the ball during this time interval is typi-
cally several thousand newtons. This average force is much greater than the gravita-
tional force, so we ignore any change in velocity related to the gravitational force
during the collision. It is important to remember that and represent the mo-
menta immediately before and after the collision, respectively. Therefore in the impulse
approximation, very little motion of the particle takes place during the collision.

The concept of impulse helps us understand the value of air bags in stopping a
passenger in an automobile accident (Fig. 8.5). The passenger experiences the
same change in momentum and therefore the same impulse in a collision whether
the car has air bags or not. The air bag allows the passenger to experience that
change in momentum over a longer time interval, however, reducing the peak
force on the passenger and increasing the chances of escaping without injury. With-
out the air bag, the passenger’s head could move forward and be brought to rest in
a short time interval by the steering wheel or the dashboard. In this case, the pas-
senger undergoes the same change in momentum, but the short time interval
results in a very large force that could cause severe head injury. Such injuries often
result in spinal cord nerve damage where the nerves enter the base of the brain.

p:fp:i

I
:

� �p: � � F
:

 �t

� F
:

� F
:

avg

� F
:

I
:

� � F
:

avg �t

� F
: 

avg � 
1
�t

 �tf

ti
   � F

: 
dt

� F
:

avg 

(a) A net force
acting on a particle may vary in time.
The impulse is the area under the
curve of the magnitude of the net
force versus time. (b) The average
force (horizontal dashed line) gives the
same impulse to the particle in the
time interval �t as the time-varying
force described in part (a). The area
of the rectangle is the same as the
area under the curve.

t i t f

t i

F

(a)

t f
t

F

(b)

t

Favg

Area = Favg ∆t

FIGURE 8.4

A test dummy is
brought to rest by an air bag in an
automobile.

(C
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b)

FIGURE 8.5

Two objects are at rest on a frictionless surface. Object 1 has a greater
mass than object 2. (i) When a constant force is applied to object 1, it accelerates through
a distance d. The force is removed from object 1 and is applied to object 2. At the mo-
ment when object 2 has accelerated through the same distance d, which statements are
true? (a) p1 � p2 (b) p1 � p2 (c) p1 � p2 (d) K1 � K2 (e) K1 � K2 (f) K1 � K2

(ii) When a constant force is applied to object 1, it accelerates for a time interval �t. The
force is removed from object 1 and is applied to object 2. After object 2 has accelerated
for the same time interval �t, which statements are true? (a) p1 � p2 (b) p1 � p2

(c) p1 � p2 (d) K1 � K2 (e) K1 � K2 (f) K1 � K2

QUICK QUIZ 8.3

Advantages of air bags 
in reducing injury
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COLLISIONS
In this section, we use the law of conservation of momentum to describe what hap-
pens when two objects collide. The forces due to the collision are assumed to be
much larger than any external forces present, so we use the simplification model
we call the impulse approximation. The general goal in collision problems is to re-
late the final conditions of the system to the initial conditions.

A collision may be the result of physical contact between two objects, as de-
scribed in Figure 8.7a. This observation is common when two macroscopic objects
collide, such as two billiard balls or a baseball and a bat.

The notion of what we mean by collision must be generalized because “contact”
on a microscopic scale is ill defined. To understand the distinction between macro-
scopic and microscopic collisions, consider the collision of a proton with an alpha
particle (the nucleus of the helium atom), illustrated in Figure 8.7b. Because the
two particles are positively charged, they repel each other. A collision has occurred,
but the colliding particles were never in “contact.”

When two particles of masses m1 and m2 collide, the collision forces may vary
in time in a complicated way, as seen in Figure 8.4. As a result, an analysis of the

8.3

. If the collision lasts for 0.150 s, find the
impulse due to the collision and the average force ex-
erted on the automobile.

v:f � 2.60 î
 
m/s

How Good Are the Bumpers?EXAMPLE 8.4
In a crash test, an automobile of mass 1 500 kg collides
with a wall as in Figure 8.6. The initial and final veloci-
ties of the automobile are andv:i � � 15.0 î

 
m/s

Before

After

+2.60 m/s

–15.0 m/s

(a)

FIGURE 8.6 (Example 8.4) (a) The car’s momentum changes as a result of its collision with the wall. (b) In a crash test, the large force
exerted by the wall on the car produces extensive damage to the car’s front end.

(T
im

 W
rig

ht
/C

OR
BI

S)

Solution We identify the automobile as the system. The
initial and final momenta of the automobile are

 � 0.390 	 104 î kg�m/s

 p:f � m v:f � (1 500 kg)(2.60 î m/s)

 � � 2.25 	 104 î kg�m/s

 p:i � m v:i � (1 500 kg)(�15.0 î m/s)

Hence, the impulse is

The average force exerted on the automobile is

1.76 	 105 î NFavg
:

�
�p:

�t
�

2.64 	 104 î kg�m/s
0.150 s

�

2.64 	 104 î kg�m/s�I
:

 � 0.390 	 104
 î kg�m/s � (� 2.25 	 104

 î kg�m/s)

 I
:

� �p: � p:f � p:i

p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

(a) A collision
between two objects as the result of
direct contact. (b) A “collision”
between two charged particles that do
not make contact.

FIGURE 8.7

(b)
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situation with Newton’s second law could be very complicated. We find, however,
that the momentum concept is similar to the energy concept in Chapters 6 and 7 in
that it provides us with a much easier method to solve problems involving isolated
systems.

According to Equation 8.5, the momentum of an isolated system is conserved
during some interaction event, such as a collision. The kinetic energy of the system,
however, is generally not conserved in a collision. We define an inelastic collision as
one in which the kinetic energy of the system is not conserved (even though mo-
mentum is conserved). The collision of a rubber ball with a hard surface is inelastic
because some of the kinetic energy of the ball is transformed to internal energy
when the ball is deformed while in contact with the surface.

A practical example of an inelastic collision is used to detect glaucoma, a disease
in which the pressure inside the eye builds up and leads to blindness by damaging
the cells of the retina. In this application, medical professionals use a device called a
tonometer to measure the pressure inside the eye. This device releases a puff of air
against the outer surface of the eye and measures the speed of the air after reflection
from the eye. At normal pressure, the eye is slightly spongy and the pulse is reflected
at low speed. As the pressure inside the eye increases, the outer surface becomes
more rigid and the speed of the reflected pulse increases. Therefore, the speed of the
reflected puff of air is used to measure the internal pressure of the eye.

When two objects collide and stick together after a collision, the maximum pos-
sible fraction of the initial kinetic energy is transformed; this collision is called a
perfectly inelastic collision. For example, if two vehicles collide and become entan-
gled, they move with some common velocity after the perfectly inelastic collision. If
a meteorite collides with the Earth, it becomes buried in the ground and the colli-
sion is perfectly inelastic.

An elastic collision is defined as one in which the kinetic energy of the system is
conserved (as well as momentum). Real collisions in the macroscopic world, such
as those between billiard balls, are only approximately elastic because some trans-
formation of kinetic energy takes place and some energy leaves the system by
mechanical waves, sound. Imagine a billiard game with truly elastic collisions. The
opening break would be completely silent! Truly elastic collisions do occur between
atomic and subatomic particles. Elastic and perfectly inelastic collisions are limiting
cases; a large number of collisions fall in the range between them.

In the remainder of this section, we treat collisions in one dimension and con-
sider the two extreme cases: perfectly inelastic collisions and elastic collisions. The
important distinction between these two types of collisions is that the momentum of
the system is conserved in all cases, but the kinetic energy is conserved only in elas-
tic collisions. When analyzing one-dimensional collisions, we can drop the vector
notation and use positive and negative signs for velocities to denote directions, as
we did in Chapter 2.

One-Dimensional Perfectly Inelastic Collisions
Consider two objects of masses m1 and m2 moving with initial velocities v1i and v2i
along a straight line as in Active Figure 8.8. If the two objects collide head-on, stick
together, and move with some common velocity vf after the collision, the collision is
perfectly inelastic. Because the total momentum of the two-object isolated system
before the collision equals the total momentum of the combined-object system af-
ter the collision, we have

[8.15]

[8.16]

Therefore, if we know the initial velocities of the two objects, we can use this sin-
gle equation to determine the final common velocity.

 vf �
m1v1i � m2v2i

m1 � m2

 m1v1i � m2v2i � (m1 � m2)vf

Glaucoma testing

Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

A perfectly inelastic head-on collision
between two particles: (a) before the
collision and (b) after the collision.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 8.8 to adjust the masses
and velocities of the colliding objects
and see the effect on the final velocity.

ACTIVE FIGURE 8.8

PERFECTLY INELASTIC COLLISIONS

Keep in mind the distinction be-
tween inelastic and perfectly inelas-
tic collisions. If the colliding parti-
cles stick together, the collision is
perfectly inelastic. If they bounce
off each other (and kinetic energy
is not conserved), the collision is in-
elastic. Generally, inelastic collisions
are hard to analyze unless addi-
tional information is provided. This
difficulty appears in the mathemati-
cal representation as having more
unknowns than equations.

� PITFALL PREVENTION 8.2

www.pop4e.com
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One-Dimensional Elastic Collisions
Now consider two objects that undergo an elastic head-on collision (Active Fig. 8.9)
in one dimension. In this collision, both momentum and kinetic energy are con-
served; therefore, we can write2

[8.17]

[8.18]

In a typical problem involving elastic collisions, two unknown quantities occur
(such as v1f and v2f), and Equations 8.17 and 8.18 can be solved simultaneously to
find them. An alternative approach, employing a little mathematical manipulation
of Equation 8.18, often simplifies this process. Let us cancel the factor of in Equa-
tion 8.18 and rewrite the equation as

Here we have moved the terms containing m1 to one side of the equation and those
containing m2 to the other. Next, let us factor both sides:

[8.19]

We now separate the terms containing m1 and m2 in the equation for conservation
of momentum (Eq. 8.17) to obtain

[8.20]

To obtain our final result, we divide Equation 8.19 by Equation 8.20 and obtain

or, gathering initial and final values on opposite sides of the equation,

[8.21]

This equation, in combination with the condition for conservation of momentum,
Equation 8.17, can be used to solve problems dealing with one-dimensional elastic
collisions between two objects. According to Equation 8.21, the relative speed3

v1i � v2i of the two objects before the collision equals the negative of their relative
speed after the collision, � (v1f � v2f).

Suppose the masses and the initial velocities of both objects are known. Equa-
tions 8.17 and 8.21 can be solved for the final velocities in terms of the initial values
because we have two equations and two unknowns:

[8.22]

[8.23]

It is important to remember that the appropriate signs for the velocities v1i and
v2i must be included in Equations 8.22 and 8.23. For example, if m2 is moving to
the left initially, as in Active Figure 8.9a, v2i is negative.

Let us consider some special cases. If m1 � m2, Equations 8.22 and 8.23 show us
that v1f � v2i and v2f � v1i . That is, the objects exchange speeds if they have equal

 v 2f � � 2m1

m1 � m 2
� v1i � � m2 � m1

m1 � m 2
� v2i

 v1f � � m1 � m2

m1 � m2
� v1i � � 2m2

m1 � m2
� v2i

v1i � v 2i � �(v1f � v 2f)

v1i � v1f � v 2f � v 2i

m1(v1i � v1f) � m 2(v 2f � v 2i)

m1(v1i � v1f)(v1i � v1f) � m 2(v 2f � v 2i)(v 2f � v 2i)

m1(v1i 

2 � v1f 

2) � m 2(v 2f 

2 � v 2i 

2)

1
2

 12 
m1v 1i

2 � 1
2m2v 2i

2 � 1
2m1v 1f

2 � 1
2m 2v 2f

2

 m1v1i � m2v2i � m1v1f � m2v2f

MOMENTUM AND KINETIC ENERGY IN

COLLISIONS Linear momentum of
an isolated system is conserved in
all collisions. Kinetic energy of an
isolated system is conserved only in
elastic collisions. These statements
are true because kinetic energy can
be transformed into several types of
energy or can be transferred out of
the system (so that the system may
not be isolated in terms of energy
during the collision), but there is
only one type of linear momentum.

� PITFALL PREVENTION 8.3

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)

An elastic head-on collision between
two particles: (a) before the collision
and (b) after the collision.

Log into 
PhysicsNow at www.pop4e.com and
go to Active Figure 8.9 to adjust the
masses and velocities of the colliding
objects and see the effect on the final
velocities.

ACTIVE FIGURE 8.9

2Notice that the kinetic energy of the system is the sum of the kinetic energies of the two particles. In
our energy conservation examples in Chapter 7 involving a falling object and the Earth, we ignored the
kinetic energy of the Earth because it is so small. Therefore, the kinetic energy of the system is just the
kinetic energy of the falling object. That is a special case in which the mass of one of the objects (the
Earth) is so immense that ignoring its kinetic energy introduces no measurable error. For problems
such as those described here, however, and for the particle decay problems we will see in Chapters 30
and 31, we need to include the kinetic energies of all particles in the system.
3See Section 3.6 for a review of relative speed.

NOT A GENERAL EQUATION We have
spent some effort on deriving Equa-
tion 8.21, but remember that it can
be used only in a very specific situa-
tion: a one-dimensional, elastic
collision between two objects. The
general concept is conservation of
momentum (and conservation of
kinetic energy if the collision is
elastic) for an isolated system.

� PITFALL PREVENTION 8.4

www.pop4e.com
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masses. That is what one observes in head-on billiard ball collisions, assuming there
is no spin on the ball: The initially moving ball stops and the initially stationary ball
moves away with approximately the same speed.

If m2 is initially at rest, v2i � 0 and Equations 8.22 and 8.23 become

[8.24]

[8.25]

If m1 is very large compared with m2, we see from Equations 8.24 and 8.25 that 
v1f � v1i and v2f � 2v1i . That is, when a very heavy object collides head-on with a
very light one initially at rest, the heavy object continues its motion unaltered after
the collision but the light object rebounds with a speed equal to about twice the ini-
tial speed of the heavy object. An example of such a collision is that of a moving
heavy atom, such as uranium, with a light atom, such as hydrogen.

If m2 is much larger than m1 and if m2 is initially at rest, we find from Equations
8.24 and 8.25 that v1f � � v1i and v2f � 0. That is, when a very light object collides
head-on with a very heavy object initially at rest, the velocity of the light object is re-
versed and the heavy object remains approximately at rest. For example, imagine
what happens when a marble hits a stationary bowling ball.

 v 2f � � 2m1

m1 � m 2
� v1i

 v 1f � � m1 � m2

m1 � m2
� v1i

A Ping-Pong ball is thrown at a stationary bowling ball hanging from
a wire. The Ping-Pong ball makes a one-dimensional elastic collision and bounces back
along the same line. After the collision, the Ping-Pong ball has, compared with the bowl-
ing ball, (a) a larger magnitude of momentum and more kinetic energy, (b) a smaller
magnitude of momentum and more kinetic energy, (c) a larger magnitude of momentum
and less kinetic energy, (d) a smaller magnitude of momentum and less kinetic energy, or
(e) the same magnitude of momentum and the same kinetic energy

QUICK QUIZ 8.4

We suggest that you use the following approach when solving
collision problems in one dimension:

1. Conceptualize Establish the mental representation by imag-
ining the collision occurring in your mind. Draw simple dia-
grams of the particles before and after the collision with ap-
propriate velocity vectors. You may have to guess for now at
the directions of final velocity vectors.

2. Categorize Is the system of particles truly isolated? If so, cate-
gorize the collision as elastic, inelastic, or perfectly inelastic.

3. Analyze Set up the appropriate mathematical representa-
tion for the problem. If the collision is perfectly inelastic,
use Equation 8.15. If the collision is elastic, use Equations
8.17 and 8.21. If the collision is inelastic, use Equation 8.17.
To find the final velocities in this case, you will need some
additional piece of information.

4. Finalize Once you have determined your result, check to
see that your answers are consistent with the mental and
pictorial representations and that your results are realistic.

One-Dimensional CollisionsPROBLEM-SOLVING STRATEGY

final kinetic energy after the collision to the initial
kinetic energy:

The maximum amount of energy transformed to other
forms corresponds to the minimum value of f. For fixed

f �
Kf

Ki
�

1
2m1v1f 

2 � 1
2m 2v 2f 

2

1
2m1v1i 

2 � 1
2m 2v 2i 

2 �
m1v1f 

2 � m 2v 2f 

2

m1v1i 

2 � m 2v 2i 

2

Kinetic Energy in a Perfectly Inelastic CollisionEXAMPLE 8.5
We claimed that the maximum amount of kinetic
energy was transformed to other forms in a perfectly
inelastic collision. Prove this statement mathematically
for a one-dimensional two-particle collision.

Solution We will assume that the maximum kinetic
energy is transformed and prove that the collision must
be perfectly inelastic. We set up the fraction f of the

■ Elastic collision in one dimen-
sion: particle 2 initially at rest
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Equation 8.17 with respect to v1f :

Substituting this expression for the derivative into (1),
we find

If the particles come out of the collision with the same
velocities, they are joined together and it is a perfectly
inelastic collision, which is what we set out to prove.

m1v1f � m2v2f   
m1

m2
� 0 : v1f � v2f

 : 0 � m1 � m2 
dv2f

dv1f
 :  

dv2f

dv1f
� � 

m1

m2

d
dv1f

 (m1v1i � m 2v2i) �
d

dv1f
 (m1v1f � m 2v2f )

initial conditions, we imagine that the final velocities
v1f and v2f are variables. We minimize the fraction f by
taking the derivative of f with respect to v1f and setting
the result equal to zero:

(1)

From the conservation of momentum condition, we
can evaluate the derivative in (1). We differentiate

: m1v1f � m 2v 2f  
dv 2f

dv1f
� 0

 �
2m1v1f � 2m 2v2f  

dv 2f

dv 1f

m1v 1i
2 � m 2v 2i

2 � 0

 
df

dv1f
�

d
dv1f

 � m1v 1f 

2 � m 2v 2f 

2

m1v1i 

2 � m 2v 2i 

2 �

The magnitude of the total momentum of the sys-
tem before the collision is equal to that of only the
smaller car because the larger car is initially at rest:

After the collision, the mass that moves is the sum of
the masses of the cars. The magnitude of the
momentum of the combination is

Equating the initial momentum to the final momentum
and solving for vf , the speed of the entangled cars, we
have

� 6.67 m/s

vf �
pf

m1 � m 2
�

pi

m1 � m 2
�

1.80 	 104 kg�m/s

2 700 kg

pf � (m1 � m2)vf � (2 700 kg)vf

pi � m1vi � (900 kg)(20.0 m/s) � 1.80 	 104 kg�m/s

Carry Collision InsuranceEXAMPLE 8.6
An 1 800-kg car stopped at a traffic light is struck from
the rear by a 900-kg car and the two become entangled.
If the smaller car was moving at 20.0 m/s before the
collision, what is the speed of the entangled cars after
the collision?

Solution The total momentum of the system (the two
cars) before the collision equals the total momentum
of the system after the collision because the system is
isolated (in the impulse approximation). Notice that
we ignore friction with the road in the impulse approxi-
mation. Therefore, the result we obtain for the final
speed will only be approximately true just after the
collision. For longer time intervals after the collision,
we would use Newton’s second law to describe the
slowing down of the system as a result of friction.
Because the cars “become entangled,” it is a perfectly
inelastic collision.

Solution We identify the system as the neutron and a
moderator nucleus. Because the momentum and ki-
netic energy of this system are conserved in an elastic
collision, Equations 8.24 and 8.25 can be applied to a
one-dimensional collision of these two particles.

Let us assume that the moderator nucleus of mass
mm is at rest initially and that the neutron of mass mn
and initial speed vni collides head-on with it. The initial
kinetic energy of the neutron is

Kni � 1
2 
mnvni 

2

Slowing Down Neutrons by CollisionsEXAMPLE 8.7

In a nuclear reactor, neutrons are produced when 
atoms split in a process called fission. These neutrons
are moving at about 107 m/s and must be slowed down
to about 103 m/s before they take part in another
fission event. They are slowed down by being passed
through a solid or liquid material called a moderator.
The slowing-down process involves elastic collisions. 
Let us show that a neutron can lose most of its kinetic
energy if it collides elastically with a moderator
containing light nuclei, such as deuterium (in “heavy
water,” D2O).

235
92U
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Two Blocks and a SpringEXAMPLE 8.8INTERACTIVE

the total momentum of the isolated system is con-
served, we analyze the problem by recognizing that

Note that the initial velocity of m2 is � 2.50 m/s be-
cause its direction is to the left. The negative value for
v2f means that m2 is still moving to the left at the instant
we are considering.

Determine the distance the spring is compressed
at that instant.

Solution Because the system is isolated, we can also
analyze this problem from the energy version of the

B

�1.74 m/sv2f �

� (1.60 kg)(3.00 m/s) � (2.10 kg)v2f

(1.60 kg)(4.00 m/s) � (2.10 kg)(� 2.50 m/s)

m1v1i � m2v2i � m1v1f � m2v2f

A block of mass m1 � 1.60 kg, initially moving to the
right with a speed of 4.00 m/s on a frictionless horizon-
tal track, collides with a massless spring attached to a
second block of mass m2 � 2.10 kg, moving to the left
with a speed of 2.50 m/s as in Figure. 8.10a. The spring
has a spring constant of 600 N/m.

At the instant when m1 is moving to the right with
a speed of 3.00 m/s as in Figure 8.10b, determine the
speed of m2.

Solution Figure 8.10 helps conceptualize the problem.
Because the blocks move along a frictionless straight
track, we categorize this problem as one involving a
one-dimensional collision between objects forming an
isolated system. We identify the system as the two blocks
and the spring and identify the collision as elastic be-
cause the force from the spring is conservative. Because

A

Hence, the fraction of the total kinetic energy trans-
ferred to the moderator nucleus is

(2)

If mm � mn, we see that ftrans � 1 � 100%. Because the
system’s kinetic energy is conserved, (2) can also be
obtained from (1) with the condition that fn � fm � 1,
so that fm � 1 � fn.

For collisions of the neutrons with deuterium nuclei
in D2O (mm � 2mn), fn � 1/9 and ftrans � 8/9. That is,
89% of the neutron’s kinetic energy is transferred to
the deuterium nucleus. In practice, the moderator
efficiency is reduced because head-on collisions are
very unlikely to occur.

ftrans �
Kmf

Kni
�

2mn 

2mm

(mn � mm)2  vni 

2

1
2 mnvni 

2 �
4mnmm

(mn � mm)2

After the collision, the neutron has kinetic energy
where vnf is given by Equation 8.24: 

Therefore, the fraction of the total kinetic energy pos-
sessed by the neutron after the collision is

(1)

From this result, we see that the final kinetic energy of
the neutron is small when mm is close to mn and is zero
when mm � mn.

We can calculate the kinetic energy of the modera-
tor nucleus after the collision using Equation 8.25:

Kmf � 1
2mmvmf

2 �
2mn 

2mm

(mn � mm)2  vni
2

fn �
Knf

Kni
�

1
2mn � mn � mm

mn � mm
�

2
vni 

2

1
2mnvni 

2
� � mn � mm

mn � mm
�

2

Knf � 1
2 
mnvnf 

2 � 1
2mn � mn � mm

mn � mm
�

2
 vni 

2

1
2 
mnvnf 

2,

x

k

v1f = (3.00î) m/s v2f

m1
m2m1

m2

k

v1i = (4.00î) m/s v2i = (–2.50î) m/s

(a)

(b)

(Interactive Example 8.8) A moving block collides with another moving
block with a spring attached: (a) before the collision and (b) at one instant
during the collision.

FIGURE 8.10
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As in part B, mechanical energy is conserved, so we set
up a conservation of mechanical energy expression:

Substituting the values into this expression gives

To finalize the problem, note that the value for x in
part C is larger than that in part B. We can argue that
this result is consistent with our mental representation.
In part C, the blocks are moving at the same speed so
that their relative speed is zero. In parts A and B, note
that the blocks are moving with speeds v1f � 3.00 m/s
and v2f � �1.74 m/s at the instant of interest. There-
fore, the blocks are moving toward each other with a
relative speed of 4.74 m/s. As a result, the spring will
continue to compress, and the ultimate maximum
value of x will be larger than that value found in part B.

Investigate this situation with a variety of
masses and initial speeds of the blocks by logging into
PhysicsNow at www.pop4e.com and going to Interactive
Example 8.8.

0.253 mx �

 12 
m1v1i 

2 � 1
2 
m2v2i 

2 � 1
2 
(m1 � m2)vf 

2 � 1
2 
kx2

 Ei � Ef 

isolated system model to determine the compression
x in the spring shown in Figure 8.10b. No nonconserva-
tive forces are acting within the system, so the mechani-
cal energy of the system is conserved:

Substituting the given values and the result to part A
into this expression gives

Determine the maximum distance by which the
spring is compressed during the collision.

Solution The maximum compression of the spring
occurs when the two blocks are not moving relative to
each other. For their relative velocity to be zero they
must be moving with the same velocity in our reference
frame as we watch the collision. Therefore, we can
model the collision up to this point as a perfectly inelas-
tic collision:

vf � 0.311 m/s

� (1.60 kg � 2.10 kg)vf

 (1.60 kg)(4.00 m/s) � (2.10 kg)(�2.50 m/s)

m1v1i � m2v2i � (m1 � m2)vf

C

0.173 mx �

 12 
m1v1i 

2 � 1
2 
m 2v 2i 

2 � 1
2 
m1v1f 

2 � 1
2 
m 2v 2f 

2 � 1
2 
kx2

 Ei � Ef 

TWO-DIMENSIONAL  COLLISIONS
In Section 8.1, we showed that the total momentum of a system is conserved when
the system is isolated (i.e., when no external forces act on the system). For a
general collision of two objects in three-dimensional space, the principle of conser-
vation of momentum implies that the total momentum in each direction is con-
served. An important subset of collisions takes place in a plane. The game of
billiards is a familiar example involving multiple collisions of objects moving on a
two-dimensional surface. Let us restrict our attention to a single two-dimensional
collision between two objects that takes place in a plane. For such collisions, we
obtain two component equations for the conservation of momentum:

where we use three subscripts in this general equation to represent, respectively, 
(1) the identification of the object, (2) initial and final values, and (3) the velocity
component in the x or y direction.

Consider a two-dimensional problem in which an object of mass m1 collides with
an object of mass m2 that is initially at rest as in Active Figure 8.11. After the colli-
sion, m1 moves at an angle 
 with respect to the horizontal and m2 moves at an
angle � with respect to the horizontal. This collision is called a glancing collision.
Applying the law of conservation of momentum in component form and noting
that the initial y component of momentum is zero, we have

x component: [8.26]

y component: [8.27]0 � 0 � m1v1f   sin 
 � m2v2f   sin�

m1v1i � 0 � m1v1f  cos 
 � m2v2f  cos �

 m1v1iy � m2v2iy � m1v1fy � m2v2fy

 m1v1ix � m2v2ix � m1v1fx � m2v2fx

8.4
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If the collision is elastic, we can write a third equation for conservation of kinetic
energy in the form

[8.28]

If we know the initial velocity v1i and the masses, we are left with four unknowns
(v1f, v2 f, 
, and �). Because we have only three equations, one of the four remain-
ing quantities must be given to determine the motion after the collision from con-
servation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 8.28
does not apply.

1
2 
m1v1i 

2 � 1
2 
m1v1f 

2 � 1
2 
m2v 2f 

2

The following procedure is recommended when dealing with
problems involving collisions between two objects.

1. Conceptualize Imagine the collisions occurring in your
mind and predict the approximate directions in which the
particles will move after the collision. Set up a coordinate
system and define your velocities with respect to that sys-
tem. It is convenient to have the x axis coincide with one of
the initial velocities. Sketch the coordinate system, draw
and label all velocity vectors, and include all the given infor-
mation.

2. Categorize Is the system of particles truly isolated? If so, cate-
gorize the collision as elastic, inelastic, or perfectly inelastic.

3. Analyze Write expressions for the x and y components of
the momentum of each object before and after the colli-
sion. Remember to include the appropriate signs for the
components of the velocity vectors. It is essential that you
pay careful attention to signs.

Write expressions for the total momentum in the x direc-
tion before and after the collision and equate the two. Repeat
this procedure for the total momentum in the y direction.

Proceed to solve the momentum equations for the un-
known quantities. If the collision is inelastic, kinetic energy
is not conserved and additional information is probably re-
quired. If the collision is perfectly inelastic, the final veloci-
ties of the two objects are equal.

If the collision is elastic, kinetic energy is conserved and
you can equate the total kinetic energy before the collision
to the total kinetic energy after the collision. This step
provides an additional relationship between the velocity
magnitudes.

4. Finalize Once you have determined your result, check to
see that your answers are consistent with the mental and
pictorial representations and that your results are realistic.

Two-Dimensional CollisionsPROBLEM-SOLVING STRATEGY

(a) Before the collision

v1i

(b) After the collision

θ

φ
v2f cos

v1f cos

v1f sin

v1f

v2f
–v2f sin

φ

φ

θ

θ

m2

m1

A glancing collision between two
particles.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 8.11 to
adjust the speed and position of
the blue particle and the masses of
both particles to see the effects.

ACTIVE FIGURE 8.11

direction of motion and the second deflects at an angle
of � to the same axis. Find the final speeds of the two
protons and the angle �.

Solution The isolated system is the pair of protons.
Both momentum and kinetic energy of the system are
conserved in this glancing elastic collision. Because

Proton – Proton CollisionEXAMPLE 8.9
A proton collides elastically with another proton that is
initially at rest. The incoming proton has an initial
speed of 3.5 	 105 m/s and makes a glancing collision
with the second proton as in Active Figure 8.11.
(At close separations, the protons exert a repulsive
electrostatic force on each other.) After the collision,
one proton moves off at an angle of 37° to the original

www.pop4e.com
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One possibility for the solution of this equation is
v1f � 0, which corresponds to a head-on collision; the
first proton stops and the second continues with the
same speed in the same direction. This result is not
what we want. The other possibility is

From (3),

� 

and from (2),

2.1 	 105 m/s

v2f � √1.2 	 1011 � v1f
2 � √1.2 	 1011 � (2.8 	 105)2

2.8 	 105 m/s2v1f � 5.6 	 105 � 0 : v1f �

m1 � m2, 
 � 37°, and we are given that 
v1i � 3.5 	 105 m/s, Equations 8.26, 8.27, and 
8.28 become

(1)

(2)

(3) 

We rewrite (1) and (2) as follows:

Now we square these two equations and add them:

Substituting this expression into (3) gives

 : v2f 

2 � 1.2 	 1011 � (5.6 	 105)v1f � v1f 

2

 � v1f
2  cos2 37� � v1f 

2 sin2 37�

 � (7.0 	 105 m/s)v1f  cos 37�

 v2f 

2 cos2 � � v2f 

2 sin2 � � 1.2 	 1011 m2/s2

 v2f  sin � � v1f  sin 37�

 v2f  cos � � 3.5 	 105 m/s � v1f  cos 37�

 v1f 

2 � v2f 

2 � (3.5 	 105 m/s)2 � 1.2 	 1011 m2/s2

 v1f  sin 37� � v2f  sin � � 0

 v1f  cos 37� � v2f  cos � � 3.5 	 105 m/s

: 2v1f 

2 � (5.6 	 105)v1f � (2v1f � 5.6 	 105)v1f � 0

 v1f 

2 � [1.2 	 1011 � (5.6 	 105)v1f � v1f 

2] � 1.2 	 1011

� 53�

� � sin�1 � v1f  sin 37�

v2f
� � sin�1 � (2.8 	 105) sin 37�

2.1 	 105 �

It is interesting that 
 � � � 90°. This result is not
accidental. Whenever two objects of equal mass collide
elastically in a glancing collision and one of them is
initially at rest, their final velocities are at right angles
to each other.

Solution Let us choose east to be along the positive x
direction and north to be along the positive y direction
as in Figure 8.12. Before the collision, the only object
having momentum in the x direction is the car.
Therefore, the magnitude of the total initial momen-
tum of the system (car plus van) in the x direction is

The wreckage moves at an angle 
 and speed vf
after the collision. The magnitude of the total momen-
tum in the x direction after the collision is

Because the total momentum in the x direction is
conserved, we can equate these two equations to obtain

(1)

Similarly, the total initial momentum of the system
in the y direction is that of the van, whose magnitude is
equal to (2 500 kg)(20.0 m/s). Applying conservation
of momentum to the y direction, we have

(2)  5.00 	 104 kg�m/s � (4 000 kg)vf  sin 


 (2 500 kg)(20.0 m/s) � (4 000 kg)vf  sin 


 � pyi � �pyf 

3.75 	 104 kg�m/s � (4 000 kg) vf  cos 


� pxf � (4 000 kg)vf  cos 


� pxi � (1 500 kg)(25.0 m/s) � 3.75 	 104 kg�m/s

Collision at an IntersectionEXAMPLE 8.10
A 1 500-kg car traveling east with a speed of 25.0 m/s
collides at an intersection with a 2 500-kg van traveling
north at a speed of 20.0 m/s as shown in Figure 8.12.
Find the direction and magnitude of the velocity of the
wreckage after the collision, assuming that the vehicles
undergo a perfectly inelastic collision (i.e., they stick
together).

θ
(25.0î) m/s

y

x

vf

(20.0ĵ) m/s

(Example 8.10) An eastbound car colliding with a
northbound van.

FIGURE 8.12
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THE  CENTER  OF  MASS
In this section, we describe the overall motion of a system of particles in terms of a
very special point called the center of mass of the system. This notion gives us con-
fidence in the particle model because we will see that the center of mass accelerates
as if all the system’s mass were concentrated at that point and all external forces act
there.

Consider a system consisting of a pair of particles connected by a light, rigid rod
(Active Fig. 8.13). The center of mass as indicated in the figure is located on the
rod and is closer to the larger mass in the figure; we will see why soon. If a single
force is applied at some point on the rod that is above the center of mass, the sys-
tem rotates clockwise (Active Fig. 8.13a) as it translates through space. If the force
is applied at a point on the rod below the center of mass, the system rotates coun-
terclockwise (Active Fig. 8.13b). If the force is applied exactly at the center of mass,
the system moves in the direction of without rotating (Active Fig. 8.13c) as if the
system is behaving as a particle. Therefore, in theory, the center of mass can be lo-
cated with this experiment.

If we were to analyze the motion in Active Figure 8.13c, we would find that
the system moves as if all its mass were concentrated at the center of mass.
Furthermore, if the external net force on the system is and the total mass of the
system is M, the center of mass moves with an acceleration given by .
That is, the system moves as if the resultant external force were applied to a single
particle of mass M located at the center of mass, which justifies our particle model
for extended objects. We have ignored all rotational effects for extended objects so
far, implicitly assuming that forces were provided at just the right position so as to
cause no rotation. We will study rotational motion in Chapter 10, where we will ap-
ply forces that do not pass through the center of mass.

The position of the center of mass of a system can be described as being the av-
erage position of the system’s mass. For example, the center of mass of the pair of
particles described in Active Figure 8.14 is located on the x axis, somewhere be-
tween the particles. The x coordinate of the center of mass in this case is

[8.29]

For example, if x1 � 0, x2 � d, and m2 � 2m1, we find that That is, the
center of mass lies closer to the more massive particle. If the two masses are equal,
the center of mass lies midway between the particles.

We can extend the concept of center of mass to a system of many particles in three
dimensions. The x coordinate of the center of mass of n particles is defined to be

[8.30]

where xi is the x coordinate of the ith particle and M is the total mass of the
system. The y and z coordinates of the center of mass are similarly defined by the
equations

xCM � 
m1x1 � m2x2 � m3x3 � ��� � mnxn

m1 � m2 � m3 � ��� � mn
�

�
i

mixi

�
i

mi

�
�
i

mixi

M

x CM � 2
3 
d.

xCM �
m1x1 � m2x2

m1 � m2

a: � � F
:

/M
�F

:

F
:

8.5

When this angle is substituted into (2), the value of vf is

15.6 m/svf �
5.00 	 104 kg�m/s
(4 000 kg) sin 53.1�

�

If we divide (2) by (1), we find that

53.1�
 �

tan 
 �
5.00 	 104

3.75 	 104 � 1.33

CM

(a)

(b)

(c)

CM

CM

Two particles of unequal mass are
connected by a light, rigid rod. 
(a) The system rotates clockwise when
a force is applied between the less
massive particle and the center of
mass. (b) The system rotates counter-
clockwise when a force is applied be-
tween the more massive particle and
the center of mass. (c) The system
moves in the direction of the force
without rotating when a force is
applied at the center of mass.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 8.13 to choose the point
at which to apply the force.

ACTIVE FIGURE 8.13
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[8.31]

The center of mass can also be located by its position vector, . The rectangu-
lar coordinates of this vector are xCM, yCM, and zCM, defined in Equations 8.30 and
8.31. Therefore,

[8.32]

where is the position vector of the ith particle, defined by

Although locating the center of mass for an extended object is somewhat more
cumbersome than locating the center of mass of a system of particles, this location
is based on the same fundamental ideas. We can model the extended object as a sys-
tem containing a large number of elements (Fig. 8.15). Each element is modeled as
a particle of mass �mi, with coordinates xi, yi, zi. The particle separation is very
small, so this model is a good representation of the continuous mass distribution of
the object. The x coordinate of the center of mass of the particles representing the
object, and therefore of the approximate center of mass of the object, is

with similar expressions for yCM and z CM. If we let the number of elements ap-
proach infinity (and, as a consequence, the size and mass of each element
approach zero), the model becomes indistinguishable from the continuous mass
distribution and xCM is given precisely. In this limit, we replace the sum by an inte-
gral and �mi by the differential element dm :

[8.33]

where the integration is over the length of the object in the x direction. Likewise,
for yCM and zCM we obtain

[8.34]

We can express the vector position of the center of mass of an extended object as

[8.35]

which is equivalent to the three expressions in Equations 8.33 and 8.34.
The center of mass of a homogeneous, symmetric object must lie on an axis of

symmetry. For example, the center of mass of a homogeneous rod must lie midway
between the ends of the rod. The center of mass of a homogeneous sphere or a ho-
mogeneous cube must lie at the geometric center of the object.

The center of mass of a system is often confused with the center of gravity of a
system. Each portion of a system is acted on by the gravitational force. The net
effect of all these forces is equivalent to the effect of a single force acting at aM g:

r:CM �
1
M

 � r: dm 

yCM �
1
M

 �y dm  and z CM �
1
M

 �z dm 

xCM � lim
�mi : 0

�
i

 xi  �mi 

M
�

1
M

 �x dm 

xCM �
�
i

 xi  �mi

M

r:i  � xi î � yi ĵ � zi k̂

r:i

 r:CM �
�
i

mi r:i

M

 r:CM � xCM î � yCM ĵ � zCMk̂ �
�
i

mixi î � �
i

miyi ĵ � �
i

mizi k̂

M

r:CM

yCM � 
�
i

 miyi

M
  and  z CM � 

�
i

 mizi

M

y

m1

x1

x 2

CM

m 2

x

x CM

The center of mass of two particles
having unequal mass is located on the
x axis at xCM, a point between the par-
ticles, closer to the one having the
larger mass.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 8.14 to adjust the masses
of the particles and see the effect on
the location of the center of mass.

ACTIVE FIGURE 8.14

y

x

z

ri

∆mi

rCM

CM

An extended
object can be modeled as a distribu-
tion of small elements of mass �mi.
The center of mass of the object is
located at the vector position ,
which has coordinates xCM, yCM,
and z CM.

r:CM

FIGURE 8.15

■ Center of mass of a continuous
mass distribution
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special point called the center of gravity. The center of gravity is the average posi-
tion of the gravitational forces on all parts of the object. If is uniform over the sys-
tem, the center of gravity coincides with the center of mass. If the gravitational field
over the system is not uniform, the center of gravity and the center of mass are dif-
ferent. In most cases, for objects or systems of reasonable size, the two points can be
considered to be coincident.

One can experimentally determine the center of gravity of an irregularly shaped
object, such as a wrench, by suspending the wrench from two different points 
(Fig. 8.16). An object of this size has virtually no variation in the gravitational field
over its dimensions, so this method also locates the center of mass. The wrench is
first hung from point A, and a vertical line AB is drawn (which can be established
with a plumb bob) when the wrench is in equilibrium. The wrench is then hung
from point C, and a second vertical line CD is drawn. The center of mass coincides
with the intersection of these two lines. In fact, if the wrench is hung freely
from any point, the vertical line through that point will pass through the center of
mass.

g:

A

B

A
B

C

D

Center of
mass

An experimental
technique for determining the center
of mass of a wrench. The wrench is
hung freely from two different pivots,
A and C. The intersection of the two
vertical lines AB and CD locates the
center of mass.

FIGURE 8.16

A baseball bat is made of wood of uniform density. The bat is cut at
the location of its center of mass as shown in Figure 8.17. Which piece has the smaller
mass? (a) the piece on the right (b) the piece on the left (c) both pieces have the
same mass (d) impossible to determine

QUICK QUIZ 8.5

(Quick Quiz 8.5) A baseball bat cut at the location
of its center of mass.

FIGURE 8.17

(Example 8.11) Locating the center of mass for a
system of three particles.

Solution Using the basic defining equations for the
coordinates of the center of mass and noting that
z CM � 0, we have

Therefore, we can express the position vector to the
center of mass measured from the origin as

(d � 5
7b)î � 4

7h ĵr: 
CM � xCM î � yCM  ĵ � z CM k̂ �

 yCM �
�
i

mi yi

M
�

2m(0) � m(0) � 4mh
7m

� 4
7h

 � d � 5
7b

 xCM �
�
i

mixi

M
�

2md � m(d � b) � 4m(d � b)
7m

The Center of Mass of Three ParticlesEXAMPLE 8.11
A system consists of three particles located at the
corners of a right triangle as in Figure 8.18. Find the
center of mass of the system.

4m

x

y

2m

mO

CM

d b

h

FIGURE 8.18
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(Example 8.12) (a) A triangular sign to be hung
from a single wire. (b) Geometric construction for
locating the center of mass.

Solution We will need to attach the wire at a point di-
rectly above the center of gravity of the sign, which is
the same as its center of mass because it is in a uniform
gravitational field. We model the sign as a perfect trian-
gle. We assume that the sign has a uniform density and
total mass M. Because the sign is a continuous distribu-
tion of mass, we will need to use the integral expression
in Equation 8.33 to find the x coordinate of the center
of mass.

We divide the triangle into narrow strips of width dx
and height y as shown in Figure 8.19b, where y is the

MOTION  OF  A  SYSTEM  OF  PARTICLES
We can begin to understand the physical significance and utility of the center of
mass concept by taking the time derivative of the position vector of the center
of mass, given by Equation 8.32. Assuming that M remains constant—that is, no
particles enter or leave the system—we find the following expression for the veloc-
ity of the center of mass:

[8.36]

where is the velocity of the ith particle. Rearranging Equation 8.36 gives

[8.37]

This result tells us that the total momentum of the system equals its total mass
multiplied by the velocity of its center of mass. In other words, the total momen-
tum of the system is equal to the momentum of a single particle of mass M moving
with a velocity ; this is the particle model.v:CM

M v:CM � �
i

 mi v:i � � 

i
 p:i � p:tot

v:i

v:CM �
d r:CM

dt
�

1
M

  �
i

 mi 
d r:i

dt
�

1
M

  �
i

 mi v:i

r:CM

8.6

height to the hypotenuse of the triangle above the x
axis for a given value of x. The mass of each strip is the
product of the volume of the strip and the density  of
the material from which the sign is made: dm � yt dx,
where t is the thickness of the metal sign. The density of
the material is the total mass of the sign divided by its
total volume (area of the triangle times thickness), so

Using Equation 8.33 to find the x coordinate of the
center of mass gives

To proceed further and evaluate the integral, we must
express y in terms of x. The line representing the hy-
potenuse of the triangle in Figure 8.19b has a slope of
b/a and passes through the origin, so the equation of
this line is y � (b/a)x. With this substitution for y in the
integral, we have

� 

Therefore, the wire must be attached to the sign at a
distance two thirds of the length of the bottom edge
from the left end. We could also find the y coordinate
of the center of mass of the sign, but that is not needed
to determine where the wire should be attached.

2
3 
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2
ab

 �a

0
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a
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2
a2  �a

0
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2 dx �
2
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2  � x3
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 �x dm �
1
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 �a

0
 x 

2My
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 dx �
2
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 �a

0
 xy dx

dm � yt dx � � M
1
2abt � yt dx �

2My
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The Center of Mass of a Right TriangleEXAMPLE 8.12
You have been asked to hang a metal sign from a single
vertical wire. The sign is of the triangular shape shown
in Figure 8.19a. The bottom of the sign is to be parallel
to the ground. At what distance from the left end of the
sign should you attach the wire?

FIGURE 8.19

a

x
xO

y

c b
y

dx

dm

(b)(a)

■ Velocity of the center of mass
for a system of particles
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Strobe photograph
showing an overhead view of a wrench
moving on a horizontal surface. The
center of mass of the wrench (marked
with a white dot) moves in a straight
line as the wrench rotates about this
point. The wrench moves from left to
right in the photograph and is slow-
ing down due to friction between the
wrench and the supporting surface.
(Note The decreasing distance
between the white dots.)

If we now differentiate Equation 8.36 with respect to time, we find the accelera-
tion of the center of mass:

[8.38]

Rearranging this expression and using Newton’s second law, we have

[8.39]

where is the force on particle i.
The forces on any particle in the system may include both external and internal

forces. By Newton’s third law, however, the force exerted by particle 1 on particle 2,
for example, is equal in magnitude and opposite the force exerted by particle 2 on
particle 1. When we sum over all internal forces in Equation 8.39, they cancel in
pairs. Therefore, the net force on the system is due only to external forces and we
can write Equation 8.39 in the form

[8.40]

That is, the external net force on the system of particles equals the total mass of the
system multiplied by the acceleration of the center of mass, or the time rate of
change of the momentum of the system. If we compare this statement to Newton’s
second law for a single particle, we see that the center of mass moves like an imagi-
nary particle of mass M under the influence of the external net force on the system.
In the absence of external forces, the center of mass moves with uniform velocity as
in the case of the translating and rotating wrench in Figure 8.20. If the net force
acts along a line through the center of mass of an extended object such as the
wrench, the object is accelerated without rotation. If the net force does not act
through the center of mass, the object will undergo rotation in addition to transla-
tion. The linear acceleration of the center of mass is the same in either case, as
given by Equation 8.40.

Finally, we see that if the external net force is zero, from Equation 8.40 it follows
that

so that

[8.41]

That is, the total linear momentum of a system of particles is constant if no external
forces act on the system. It follows that, for an isolated system of particles, the total
momentum is conserved. The law of conservation of momentum that was derived
in Section 8.1 for a two-particle system is thus generalized to a many-particle system.

p:tot � M  v:CM � constant  (when � F
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dt
� M  a:CM � 0
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FIGURE 8.20
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■ Acceleration of the center of
mass for a system of particles

■ Newton’s second law for 
a system of particles
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(Example 8.13) When a projectile explodes into
several fragments, where does the center of mass
of the fragments land?

(Thinking 
Physics 8.1) A boy takes a step in a 
canoe. What happens to the canoe?

■ Thinking Physics 8.1
A boy stands at one end of a canoe that is stationary relative to the shore 
(Fig. 8.21). He then walks to the opposite end of the canoe, away from the shore.
Does the canoe move?

Reasoning Yes, the canoe moves toward the shore. Ignoring friction between the
canoe and water, no horizontal force acts on the system consisting of the boy and
canoe. The center of mass of the system therefore remains fixed relative to the
shore (or any stationary point). As the boy moves away from the shore, the canoe
must move toward the shore such that the center of mass of the system remains
fixed in position. ■

The vacationers on a cruise ship are eager to arrive at their next
destination. They decide to try to speed up the cruise ship by gathering at the bow
(the front) and running all at once toward the stern (the back) of the ship. (i) While they
are running toward the stern, what is the speed of the ship? (a) higher than it was
before (b) unchanged (c) lower than it was before (d) impossible to determine
(ii) The vacationers stop running when they reach the stern of the ship. After they have
all stopped running, what is the speed of the ship? (a) higher than it was before they
started running (b) unchanged from what it was before they started running
(c) lower than it was before they started running (d) impossible to determine

QUICK QUIZ 8.6

FIGURE 8.21

An Exploding ProjectileEXAMPLE 8.13
A projectile is fired into the air and suddenly ex-
plodes into several fragments (Fig. 8.22). What can
be said about the motion of the center of mass of
the system made up of all the fragments after the
explosion?

Solution Neglecting air resistance, the only external
force on the projectile is the gravitational force.
Therefore, if the projectile did not explode, it would
continue to move along the parabolic path indicated
by the dashed line in Figure 8.22. Because the forces
caused by the explosion are internal, they do not af-
fect the motion of the center of mass of the system
(the fragments). Therefore, after the explosion, the
center of mass follows the same parabolic path the
projectile would have followed if there had been no
explosion.

FIGURE 8.22
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Rocket propulsion.
(a) The initial mass of the rocket and
fuel is M � �m at a time t, and its
speed is v. (b) At a time t � �t, the
rocket’s mass has been reduced to M,
and an amount of fuel �m has been
ejected. The rocket’s speed increases
by an amount �v.

FIGURE 8.23

CONTEXT 
connectionROCKET PROPULSION

On our trip to Mars, we will need to control our spacecraft by firing the rocket en-
gines. When ordinary vehicles, such as the automobiles in Context 1, are propelled,
the driving force for the motion is the friction force exerted by the road on the car.
A rocket moving in space, however, has no road to “push” against. The source of
the propulsion of a rocket must therefore be different. The operation of a rocket
depends on the law of conservation of momentum as applied to a system, where
the system is the rocket plus its ejected fuel.

The propulsion of a rocket can be understood by first considering the archer on
ice in Interactive Example 8.2. As an arrow is fired from the bow, the arrow re-
ceives momentum in one direction and the archer receives a momentum of
equal magnitude in the opposite direction. As additional arrows are fired, the
archer moves faster, so a large velocity of the archer can be established by firing
many arrows.

In a similar manner, as a rocket moves in free space (a vacuum), its momentum
changes when some of its mass is released in the form of ejected gases. Because the
ejected gases acquire some momentum, the rocket receives a compensating momen-
tum in the opposite direction. The rocket therefore is accelerated as a result of the
“push,” or thrust, from the exhaust gases. Note that the rocket represents the inverse
of an inelastic collision; that is, momentum is conserved, but the kinetic energy of
the system is increased (at the expense of energy stored in the fuel of the rocket).

Suppose at some time t the magnitude of the momentum of the rocket plus the
fuel is (M � �m)v (Fig. 8.23a). During a short time interval �t, the rocket ejects
fuel of mass �m and the rocket’s speed therefore increases to v � �v (Fig. 8.22b). If
the fuel is ejected with velocity relative to the rocket, the speed of the fuel relative to
a stationary frame of reference is v � ve according to our discussion of relative
velocity in Section 3.6. Therefore, if we equate the total initial momentum of the
system with the total final momentum, we have

Simplifying this expression gives

If we now take the limit as �t goes to zero, �v : dv and �m : dm. Furthermore,
the increase dm in the exhaust mass corresponds to an equal decrease in the rocket
mass, so dm � � dM. Note that the negative sign is introduced into the equation be-
cause dM represents a decrease in mass. Using this fact, we have

[8.42]

Integrating this equation and taking the initial mass of the rocket plus fuel to be Mi
and the final mass of the rocket plus its remaining fuel to be Mf , we have

[8.43]

which is the basic expression for rocket propulsion. It tells us that the increase in
speed is proportional to the exhaust speed ve. The exhaust speed should therefore
be very high.

The thrust on the rocket is the force exerted on the rocket by the ejected
exhaust gases. We can obtain an expression for the instantaneous thrust from Equa-
tion 8.42:

[8.44]Instantaneous thrust � Ma � M 
dv
dt

� 
ve  
dM
dt 


 vf � vi � ve ln � Mi

Mf
�

 �vf

vi

 dv � �ve �Mf

Mi

  
dM
M

 M dv � � ve dM

M �v � �m(ve)

(M � � m)v � M(v � �v) � �m(v � ve)

v:e

m v:

8.7

(a)

(b)

M + ∆m

pi = (M + ∆m)v

M
∆m

v

v + ∆v

■ Velocity change in rocket
propulsion

■ Rocket thrust
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Here we see that the thrust increases as the exhaust speed increases and as the rate
of change of mass (burn rate) increases.

We can now determine the amount of fuel needed to set us on our journey to
Mars. The fuel requirements are well within the capabilities of current technology,
as evidenced by the several missions to Mars that have already been accomplished.
What if we wanted to visit another star, however, rather than another planet? This
question raises many new technological challenges, including the requirement to
consider the effects of relativity, which we investigate in the next chapter.

■ Thinking Physics 8.2
When Robert Goddard proposed the possibility of rocket-propelled vehicles, the
New York Times agreed that such vehicles would be useful and successful within the
Earth’s atmosphere (“Topics of the Times,” New York Times, January 13, 1920, p. 12).
The Times, however, balked at the idea of using such a rocket in the vacuum of
space, noting that “its flight would be neither accelerated nor maintained by the ex-
plosion of the charges it then might have left. To claim that it would be is to deny a
fundamental law of dynamics, and only Dr. Einstein and his chosen dozen, so few
and fit, are licensed to do that. . . . That Professor Goddard, with his ‘chair’ in
Clark College and the countenancing of the Smithsonian Institution, does not
know the relation of action to reaction, and of the need to have something better
than a vacuum against which to react—to say that would be absurd. Of course, he
only seems to lack the knowledge ladled out daily in high schools.” What did the
writer of this passage overlook?

Reasoning The writer of this passage was making a common mistake in believing
that a rocket works by expelling gases that push on something, propelling the
rocket forward. With this belief, it is impossible to see how a rocket fired in empty
space would work.

Gases do not need to push on anything; it is the act itself of expelling the gases
that pushes the rocket forward. This point can be argued from Newton’s third law:
The rocket pushes the gases backward, resulting in the gases pushing the rocket
forward. It can also be argued from conservation of momentum: As the gases gain
momentum in one direction, the rocket must gain momentum in the opposite di-
rection to conserve the original momentum of the rocket–gas system.

The New York Times did publish a retraction 49 years later (“A Correction,” New
York Times, July 17, 1969, p. 43) while the Apollo 11 astronauts were on their way to
the Moon. It appeared on a page with two other articles entitled “Fundamentals of
Space Travel” and “Spacecraft, Like Squid, Maneuver by ‘Squirts’” and contained
the following passages: “an editorial feature of the New York Times dismissed the no-
tion that a rocket could function in a vacuum and commented on the ideas of
Robert H. Goddard. . . . Further investigation and experimentation have con-
firmed the findings of Isaac Newton in the 17th century, and it is now definitely
established that a rocket can function in a vacuum as well as in an atmosphere. The
Times regrets the error.” ■

Solution Applying Equation 8.43, we have

� 6.5 	 103 m/s

 � 3.0 	 103 m/s � (5.0 	 103 m/s) ln � Mi

0.5Mi
�

 vf � vi � ve ln � Mi

Mf
�

A Rocket in SpaceEXAMPLE 8.14
A rocket in free space has a speed of 3.0 	 103 m/s
relative to the Earth. Its engines are turned on, and fuel
is ejected in a direction opposite the rocket’s motion at
a speed of 5.0 	 103 m/s relative to the rocket.

What is the speed of the rocket relative to the
Earth once its mass is reduced to one half its mass
before ignition?

A
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Solution Using Equation 8.44, we have

� 2.5 	 105 N

 Thrust � 
ve 
dM
dt

 
 � (5.0 	 103 m/s)(50 kg/s)

What is the thrust on the rocket if it burns fuel at
the rate of 50 kg/s?

B

SUMMARY

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The linear momentum of any object of mass m moving with a
velocity is

[8.2]

Conservation of linear momentum applied to two interact-
ing objects states that if the two objects form an isolated system,
the total momentum of the system at all times equals its initial
total momentum:

[8.6]

The impulse of a net force is defined as the integral of
the force over the time interval during which it acts. The total
impulse on any system is equal to the change in the momen-
tum of the system and is given by

[8.11]

This is known as the impulse–momentum theorem.
When two objects collide, the total momentum of the iso-

lated system before the collision always equals the total mo-
mentum after the collision, regardless of the nature of the colli-
sion. An inelastic collision is one in which kinetic energy is not
conserved. A perfectly inelastic collision is one in which the
colliding objects stick together after the collision. An elastic

I
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 � F
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ext dt � �p:tot

�F
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p:1i � p: 

2i � p:1f � p:2f

p: � m v:

v:

collision is one in which both momentum and kinetic energy
are conserved.

In a two- or three-dimensional collision, the components of
momentum in each of the directions are conserved indepen-
dently.

The vector position of the center of mass of a system of par-
ticles is defined as

[8.32]

where M is the total mass of the system and is the position
vector of the ith particle.

The velocity of the center of mass for a system of particles is

[8.36]

The total momentum of a system of particles equals the to-
tal mass multiplied by the velocity of the center of mass; that is,

.
Newton’s second law applied to a system of particles is

[8.40]

where is the acceleration of the center of mass and the
sum is over all external forces. The center of mass therefore
moves like an imaginary particle of mass M under the influence
of the resultant external force on the system.
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. Does a large force always produce a larger impulse on an
object than a smaller force does? Explain.

2. If the speed of a particle is doubled, by what factor is its
momentum changed? By what factor is its kinetic energy
changed?

If two particles have equal kinetic energies, are their mo-
menta necessarily equal? Explain.

4. While in motion, a pitched baseball carries kinetic energy
and momentum. (a) Can we say that it carries a force that
it can exert on any object it strikes? (b) Can the baseball

deliver more kinetic energy to the object it strikes than the
ball carries initially? (c) Can the baseball deliver to the ob-
ject it strikes more momentum than the ball carries ini-
tially? Explain your answers.

5. You are watching a movie about a superhero and notice
that the superhero hovers in the air and throws a piano at
some villains while remaining stationary in the air. What is
wrong with this scenario?

6. If two objects collide and one is initially at rest, is it possi-
ble for both to be at rest after the collision? Is it possible
for one to be at rest after the collision? Explain.

Explain how linear momentum is conserved when a ball
bounces from a floor.

7.

3.

www.pop4e.com
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8. A bomb, initially at rest, explodes into several pieces. (a) Is
linear momentum of the system conserved? (b) Is kinetic
energy of the system conserved? Explain.

9. You are standing perfectly still and then you take a step
forward. Before the step your momentum was zero, but af-
terward you have some momentum. Is the principle of
conservation of momentum violated in this case?

10. Consider a perfectly inelastic collision between a car and a
large truck. Which vehicle experiences a larger change in
kinetic energy as a result of the collision?

A sharpshooter fires a rifle while standing with the butt of
the gun against her shoulder. If the forward momentum of
a bullet is the same as the backward momentum of the
gun, why isn’t it as dangerous to be hit by the gun as by the
bullet?

12. A pole-vaulter falls from a height of 6.0 m onto a foam rub-
ber pad. Can you calculate his speed just before he reaches
the pad? Can you calculate the force exerted on him by
the pad? Explain.

13. Firefighters must apply large forces to hold a fire hose
steady (Fig. Q8.13). What factors related to the projection

11.

of the water determine the magnitude of the force needed
to keep the end of the fire hose stationary?

14. A large bedsheet is held vertically by two students. A third
student, who happens to be the star pitcher on the base-
ball team, throws a raw egg at the sheet. Explain why the
egg does not break when it hits the sheet, regardless of its
initial speed. (If you try this demonstration, make sure the
pitcher hits the sheet near its center, and do not allow the
egg to fall on the floor after being caught.)

15. NASA often uses a planet’s gravity to “slingshot” a probe
on its way to a more distant planet. The interaction of the
planet and the spacecraft is a collision in which the objects
do not touch. How can the probe have its speed increased
in this manner?

16. Can the center of mass of an object be located at a position
at which there is no mass? If so, give examples.

17. A juggler juggles three balls in a continuous cycle. Any
one ball is in contact with his hands for one fifth of the
time. Describe the motion of the center of mass of the
three balls. What average force does the juggler exert on
one ball while he is touching it?

18. Explain how you could use a balloon to demonstrate the
mechanism responsible for rocket propulsion.

Does the center of mass of a rocket in free space acceler-
ate? Explain. Can the speed of a rocket exceed the exhaust
speed of the fuel? Explain.

20. On the subject of the following positions, state your own
view and argue to support it. (a) The best theory of motion
is that force causes acceleration. (b) The true measure of a
force’s effectiveness is the work it does, and the best theory
of motion is that work on an object changes its energy. 
(c) The true measure of a force’s effect is impulse, and the
best theory of motion is that impulse imparted to an object
changes its momentum.

19.

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 8.1 ■ Linear Momentum and Its Conservation
1. A 3.00-kg particle has a velocity of . 

(a) Find its x and y components of momentum. (b) Find
the magnitude and direction of its momentum.

2. How fast can you set the Earth moving? In particular, when
you jump straight up as high as you can, what is the order
of magnitude of the maximum recoil speed that you give

to the Earth? Model the Earth as a perfectly solid object. In
your solution, state the physical quantities you take as data
and the values you measure or estimate for them.

3. In research in cardiology and exercise physiology, it is
often important to know the mass of blood pumped by a
person’s heart in one stroke. This information can be
obtained by means of a ballistocardiograph. The instrument
works as follows. The subject lies on a horizontal pallet
floating on a film of air. Friction on the pallet is negligible.
Initially, the momentum of the system is zero. When the
heart beats, it expels a mass m of blood into the aorta with
speed v, and the body and platform move in the opposite
direction with speed V. The blood velocity can be deter-
mined independently (e.g., by observing the Doppler shift
of ultrasound). Assume that it is 50.0 cm/s in one typical
trial. The mass of the subject plus the pallet is 54.0 kg. The
pallet moves 6.00 	 10�5 m in 0.160 s after one heartbeat.
Calculate the mass of blood that leaves the heart. Assume

(3.00 î � 4.00 ĵ)m/s

FIGURE Q8.13 Firefighters attack a burning 
house with a hose line.
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that the mass of blood is negligible compared with the to-
tal mass of the person. (This simplified example illustrates
the principle of ballistocardiography, but in practice a
more sophisticated model of heart function is used.)

4. (a) A particle of mass m moves with momentum p. Show
that the kinetic energy of the particle is given by 
K � p2/2m. (b) Express the magnitude of the particle’s
momentum in terms of its kinetic energy and mass.

5. Two blocks with masses M and 3M are placed on a horizon-
tal, frictionless surface. A light spring is attached to one of
them, and the blocks are pushed together with the spring
between them (Fig. P8.5). A cord initially holding the
blocks together is burned; after this, the block of mass 3M
moves to the right with a speed of 2.00 m/s. (a) What is
the speed of the block of mass M? (b) Find the original
elastic potential energy in the spring, taking M � 0.350 kg.

8. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot with
the ball traveling horizontally at 40.0 m/s in the opposite
direction. (a) What is the impulse delivered to the ball by
the racquet? (b) What work does the racquet do on the
ball?

A 3.00-kg steel ball strikes a wall with a
speed of 10.0 m/s at an angle of 60.0° with the surface. It
bounces off with the same speed and angle (Fig. P8.9). If
the ball is in contact with the wall for 0.200 s, what is the
average force exerted on the ball by the wall?

9.

10. In a slow-pitch softball game, a 0.200-kg softball crosses the
plate at 15.0 m/s at an angle of 45.0° below the horizontal.
The batter hits the ball toward center field, giving it a ve-
locity of 40.0 m/s at 30.0° above the horizontal. (a) Deter-
mine the impulse delivered to the ball. (b) If the force on
the ball increases linearly for 4.00 ms, holds constant for
20.0 ms, and then decreases linearly to zero in another
4.00 ms, what is the maximum force on the ball?

11. A garden hose is held as shown in Figure P8.11. The hose
is originally full of motionless water. What additional force
is necessary to hold the nozzle stationary after the water
flow is turned on if the discharge rate is 0.600 kg/s with a
speed of 25.0 m/s?
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(b)
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M 3M

3M
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12. A glider of mass m is free to slide along a horizontal air
track. It is pushed against a launcher at one end of the
track. Model the launcher as a light spring of force con-
stant k, compressed by a distance x. The glider is re-
leased from rest. (a) Show that the glider attains a speed 
v � x(k/m)1/2. (b) Does a glider of large or of small mass
attain a greater speed? (c) Show that the impulse imparted
to the glider is given by the expression x(km)1/2. (d) Is a

Section 8.2 ■ Impulse and Momentum
6. A friend claims that as long as he has his seat belt on, he

can hold on to a 12.0-kg child in a 60.0 mi/h head-on colli-
sion with a brick wall in which the car passenger compart-
ment comes to a stop in 0.050 0 s. Show that the violent
force during the collision will tear the child from his arms.
(A child should always be in a toddler seat secured with a
seat belt in the back seat of a car.)

An estimated force–time curve for a baseball struck by a
bat is shown in Figure P8.7. From this curve, determine 
(a) the impulse delivered to the ball, (b) the average force
exerted on the ball, and (c) the peak force exerted on
the ball.

7.
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greater impulse imparted to a large or a small mass? (e) Is
more work done on a large or a small mass?

Section 8.3 ■ Collisions 
13. A railroad car of mass 2.50 	 104 kg is moving with a speed

of 4.00 m/s. It collides and couples with three other cou-
pled railroad cars, each of the same mass as the single car
and moving in the same direction with an initial speed of
2.00 m/s. (a) What is the speed of the four cars after the
collision? (b) How much mechanical energy is lost in the
collision?

14. Four railroad cars, each of mass 2.50 	 104 kg, are coupled
together and coasting along horizontal tracks at speed vi
toward the south. A very strong but foolish movie actor,
riding on the second car, uncouples the front car and gives
it a big push, increasing its speed to 4.00 m/s southward.
The remaining three cars continue moving south, now at
2.00 m/s. (a) Find the initial speed of the four cars. 
(b) How much work did the actor do? (c) State the rela-
tionship between the process described here and the
process in Problem 8.13.

A 45.0-kg girl is standing on a plank that has a mass of
150 kg. The plank, originally at rest, is free to slide on a
frozen lake, which is a flat, frictionless supporting surface.
The girl begins to walk along the plank at a constant speed
of 1.50 m/s relative to the plank. (a) What is her speed rel-
ative to the ice surface? (b) What is the speed of the plank
relative to the ice surface?

16. Two blocks are free to slide along the frictionless wooden
track ABC shown in Figure P8.16. A block of mass 
m1 � 5.00 kg is released from A. Protruding from its front
end is the north pole of a strong magnet, repelling the
north pole of an identical magnet embedded in the back
end of the block of mass m2 � 10.0 kg, initially at rest. The
two blocks never touch. Calculate the maximum height to
which m1 rises after the elastic collision.

15.

undergo a perfectly inelastic head-on collision. Each driver
has mass 80.0 kg. Including the drivers, the total vehicle
masses are 800 kg for the car and 4 000 kg for the truck. If
the collision time is 0.120 s, what force does the seat belt
exert on each driver?

18. As shown in Figure P8.18, a bullet of mass m and speed v
passes completely through a pendulum bob of mass M.
The bullet emerges with a speed of v/2. The pendulum
bob is suspended by a stiff rod of length � and negligible
mass. What is the minimum value of v such that the pen-
dulum bob will barely swing through a complete vertical
circle?

A neutron in a nuclear reactor makes an
elastic head-on collision with the nucleus of a carbon atom
initially at rest. (a) What fraction of the neutron’s kinetic
energy is transferred to the carbon nucleus? (b) Assume
that the initial kinetic energy of the neutron is 
1.60 	 10�13 J. Find its final kinetic energy and the kinetic
energy of the carbon nucleus after the collision. (The mass
of the carbon nucleus is nearly 12.0 times the mass of the
neutron.)

20. A 7.00-g bullet, when fired from a gun into a 1.00-kg block
of wood held in a vise, penetrates the block to a depth of
8.00 cm. This block of wood is next placed on a frictionless
horizontal surface, and a second 7.00-g bullet is fired from
the gun into the block. To what depth will the bullet pene-
trate the block in this case?

A 12.0-g wad of sticky clay is hurled
horizontally at a 100-g wooden block initially at rest on a
horizontal surface. The clay sticks to the block. After im-
pact, the block slides 7.50 m before coming to rest. If the
coefficient of friction between the block and the surface is
0.650, what was the speed of the clay immediately before
impact?

22. (a) Three carts of masses 4.00 kg, 10.0 kg, and 3.00 kg
move on a frictionless, horizontal track with speeds of 
5.00 m/s, 3.00 m/s, and 4.00 m/s, respectively, as shown in
Figure P8.22. Velcro couplers make the carts stick together
after colliding. Find the final velocity of the train of three

21.

19.

17. Most of us know intuitively that in a head-on collision be-
tween a large dump truck and a subcompact car, you are
better off being in the truck than in the car. Why? Many
people imagine that the collision force exerted on the car
is much greater than that experienced by the truck. To
substantiate this view, they point out that the car is
crushed, whereas the truck is only dented. This idea of un-
equal forces, of course, is false. Newton’s third law tells us
that both objects experience forces of the same magni-
tude. The truck suffers less damage because it is made of
stronger metal. What about the two drivers? Do they
experience the same forces? To answer this question, sup-
pose each vehicle is initially moving at 8.00 m/s and they
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carts. (b) Does your answer require that all the carts col-
lide and stick together at the same time? What if they col-
lide in a different order?

23. A tennis ball of mass 57.0 g is held just above a basketball
of mass 590 g. With their centers vertically aligned, both
are released from rest at the same time, to fall through a
distance of 1.20 m, as shown in Figure P8.23. (a) Find the
magnitude of the downward velocity with which the basket-
ball reaches the ground. Assume that an elastic collision
with the ground instantaneously reverses the velocity of the
basketball while the tennis ball is still moving down. Next,
the two balls meet in an elastic collision. (b) To what
height does the tennis ball rebound?

Section 8.4 ■ Two-Dimensional Collisions
24. A 90.0-kg fullback running east with a speed of 5.00 m/s is

tackled by a 95.0-kg opponent running north with a speed
of 3.00 m/s. Noting that the collision is perfectly inelastic,
(a) calculate the speed and direction of the players just af-
ter the tackle and (b) determine the mechanical energy
lost as a result of the collision. Account for the missing
energy.

25. Two shuffleboard disks of equal mass, one orange and the
other yellow, are involved in an elastic, glancing collision.
The yellow disk is initially at rest and is struck by the or-
ange disk moving with a speed vi. After the collision, the
orange disk moves along a direction that makes an angle 

with its initial direction of motion. The velocities of the two
disks are perpendicular after the collision. Determine the
final speed of each disk.

26. Two automobiles of equal mass approach an intersection.
One vehicle is traveling with velocity 13.0 m/s toward the
east, and the other is traveling north with speed v2i. Nei-
ther driver sees the other. The vehicles collide in the inter-
section and stick together, leaving parallel skid marks at an
angle of 55.0° north of east. The speed limit for both roads
is 35 mi/h, and the driver of the northward-moving vehicle
claims that he was within the speed limit when the collision
occurred. Is he telling the truth?

A billiard ball moving at 5.00 m/s strikes a stationary ball
of the same mass. After the collision, the first ball moves
at 4.33 m/s, at an angle of 30.0° with respect to the origi-
nal line of motion. Assuming an elastic collision (and
ignoring friction and rotational motion), find the struck
ball’s velocity.

27.

28. A proton, moving with a velocity of , collides elastically
with another proton that is initially at rest. Assuming that
the two protons have equal speeds after the collision, find
(a) the speed of each proton after the collision in terms of
vi and (b) the direction of the velocity vectors after the col-
lision.

An object of mass 3.00 kg, with an initial velocity of
, collides with and sticks to an object of mass 

2.00 kg, with an initial velocity of . Find the fi-
nal velocity of the composite object.

30. A 0.300-kg puck, initially at rest on a horizontal, frictionless
surface, is struck by a 0.200-kg puck moving initially along
the x axis with a speed of 2.00 m/s. After the collision, the
0.200-kg puck has a speed of 1.00 m/s at an angle of 

 � 53.0° to the positive x axis (see Active Fig. 8.11). 
(a) Determine the velocity of the 0.300-kg puck after the
collision. (b) Find the fraction of kinetic energy lost in the
collision.

An unstable atomic nucleus of mass 
17.0 	 10�27 kg initially at rest disintegrates into three par-
ticles. One of the particles, of mass 5.00 	 10�27 kg, moves
along the y axis with a velocity of 6.00 	 106 m/s. Another
particle, of mass 8.40 	 10�27 kg, moves along the x axis
with a speed of 4.00 	 106 m/s. Find (a) the velocity of the
third particle and (b) the total kinetic energy increase in
the process.

Section 8.5 ■ The Center of Mass
32. Four objects are situated along the y axis as follows: a 

2.00-kg object is at � 3.00 m, a 3.00-kg object is at � 2.50 m,
a 2.50-kg object is at the origin, and a 4.00-kg object is at
� 0.500 m. Where is the center of mass of these objects?

A uniform piece of sheet steel is shaped as shown in Figure
P8.33. Compute the x and y coordinates of the center of
mass of the piece.

33.

31.

� 3.00 ĵ m/s
5.00 î m/s

29.
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34. A water molecule consists of an oxygen atom with two hy-
drogen atoms bound to it (Fig. P8.34). The angle between
the two bonds is 106°. If the bonds are 0.100 nm long,
where is the center of mass of the molecule?

35. (a) Consider an extended object whose different portions
have different elevations. Assume that the free fall accelera-
tion is uniform over the object. Prove that the gravitational
potential energy of the object–Earth system is given by 
Ug � MgyCM, where M is the total mass of the object and
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yCM is the elevation of its center of mass above the chosen
reference level. (b) Calculate the gravitational potential en-
ergy associated with a ramp constructed on level ground
with stone with density 3 800 kg/m3 and everywhere 3.60 m
wide (Fig. P8.35). In a side view, the ramp appears as a right
triangle with height 15.7 m at the top end and base 64.8 m.

36. A rod of length 30.0 cm has linear density (mass-per-
length) given by 

� � 50.0 g/m � 20.0x g/m2

where x is the distance from one end, measured in meters.
(a) What is the mass of the rod? (b) How far from the 
x � 0 end is its center of mass?

Section 8.6 ■ Motion of a System of Particles
A 2.00-kg particle has a velocity , and a
3.00-kg particle has a velocity . Find 
(a) the velocity of the center of mass and (b) the total mo-
mentum of the system.

38. Consider a system of two particles in the xy plane: 
m1 � 2.00 kg is at the location 
and has a velocity of ; m2 � 3.00 kg 
is at and has velocity

. (a) Plot these particles on a grid or
graph paper. Draw their position vectors and show their ve-
locities. (b) Find the position of the center of mass of the

(3.00î � 2.00 ĵ) m/s
r:2 � (� 4.00 î � 3.00 ĵ) m

(3.00 î � 0.500 ĵ) m/s
r:1 � (1.00 î � 2.00 ĵ) m

(1.00 î � 6.00 ĵ)m/s
(2.00 î � 3.00 ĵ)m/s37.

system and mark it on the grid. (c) Determine the velocity
of the center of mass and also show it on the diagram. 
(d) What is the total linear momentum of the system?

Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing his
guitar from the rear of their boat at rest in still water,
2.70 m away from Juliet who is in the front of the boat. Af-
ter the serenade, Juliet carefully moves to the rear of the
boat (away from shore) to plant a kiss on Romeo’s cheek.
How far does the 80.0-kg boat move toward the shore it is
facing?

40. A ball of mass 0.200 kg has a velocity of ; a ball of
mass 0.300 kg has a velocity of . They meet in
a head-on elastic collision. (a) Find their velocities after
the collision. (b) Find the velocity of their center of mass
before and after the collision.

Section 8.7 ■ Context Connection — Rocket Propulsion
The first stage of a Saturn V space vehicle

consumed fuel and oxidizer at the rate of 1.50 	 104 kg/s,
with an exhaust speed of 2.60 	 103 m/s. (a) Calculate the
thrust produced by these engines. (b) Find the acceleration
of the vehicle just as it lifted off the launch pad on the
Earth, taking the vehicle’s initial mass as 3.00 	 106 kg. You
must include the gravitational force to solve part (b).

42. Model rocket engines are sized by thrust, thrust duration,
and total impulse, among other characteristics. A size C5
model rocket engine has an average thrust of 5.26 N, a fuel
mass of 12.7 g, and an initial mass of 25.5 g. The duration
of its burn is 1.90 s. (a) What is the average exhaust
speed of the engine? (b) If this engine is placed in a rocket
body of mass 53.5 g, what is the final velocity of the rocket
if it is fired in outer space? Assume that the fuel burns at a
constant rate.

43. A rocket for use in deep space is to be capable of boosting
a total load (payload plus rocket frame and engine) of 3.00
metric tons to a speed of 10 000 m/s. (a) It has an engine
and fuel designed to produce an exhaust speed of 
2 000 m/s. How much fuel plus oxidizer is required? (b) If
a different fuel and engine design could give an exhaust
speed of 5 000 m/s, what amount of fuel and oxidizer
would be required for the same task?

44. Rocket science. A rocket has total mass Mi � 360 kg, including
330 kg of fuel and oxidizer. In interstellar space, it starts
from rest at the position x � 0, turns on its engine at
time t � 0, and puts out exhaust with relative speed ve �
1 500 m/s at the constant rate k � 2.50 kg/s. The fuel will
last for an actual burn time of 330 kg/(2.5 kg/s) � 132 s,
but define a “projected depletion time” as Tp � Mi/k �
360 kg/(2.5 kg/s) � 144 s (which would be the burn time
if the rocket could use its payload and fuel tanks, and even
the walls of the combustion chamber, as fuel.) (a) Show
that during the burn the velocity of the rocket is given as a
function of time by

(b) Make a graph of the velocity of the rocket as a function
of time for times running from 0 to 132 s. (c) Show that
the acceleration of the rocket is 

v(t) � �ve ln �1 �
t

Tp
�

41.

� 0.400 î m/s
1.50 î m/s

39.
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(d) Graph the acceleration as a function of time. (e) Show
that the position of the rocket is 

(f) Graph the position during the burn as a function of
time.

45. An orbiting spacecraft is described not as a “zero-g” but
rather as a “microgravity” environment for its occupants
and for onboard experiments. Astronauts experience
slight lurches due to the motions of equipment and other
astronauts and as a result of venting of materials from the
craft. Assume that a 3 500-kg spacecraft undergoes an ac-
celeration of 2.50 �g � 2.45 � 10�5 m/s2 due to a leak
from one of its hydraulic control systems. The fluid is
known to escape with a speed of 70.0 m/s into the vacuum
of space. How much fluid will be lost in 1.00 h if the leak is
not stopped?

Additional Problems
46. Two gliders are set in motion on an air track. A spring of

force constant k is attached to the near side of one glider.
The first glider of mass m1 has velocity , and the second
glider of mass m2 moves more slowly, with velocity , as
shown in Figure P8.46. When m1 collides with the spring
attached to m2 and compresses the spring to its maximum
compression xmax, the velocity of the gliders is . In terms
of , , m1, m2, and k, find (a) the velocity at maxi-
mum compression, (b) the maximum compression xmax,
and (c) the velocity of each glider after m1 has lost contact
with the spring.

v:v:2v:1

v:

v:2

v:1

x(t) � ve(Tp � t) ln �1 �
t

Tp
� � vet

a(t) �
ve

Tp � t
the change in momentum of the cart. (e) Determine the
displacement of the person relative to the ground while he
is sliding on the cart. (f ) Determine the displacement of
the cart relative to the ground while the person is sliding.
(g) Find the change in kinetic energy of the person. 
(h) Find the change in kinetic energy of the cart. 
(i) Explain why the answers to (g) and (h) differ. (What
kind of collision is this one, and what accounts for the loss
of mechanical energy?)

48. A bullet of mass m is fired into a block of mass M initially
at rest at the edge of a frictionless table of height h
(Fig. P8.48). The bullet remains in the block, and after im-
pact the block lands a distance d from the bottom of the
table. Determine the initial speed of the bullet.

49. When it is threatened, a squid can escape by expelling a
jet of water, sometimes colored with camouflaging ink. Con-
sider a squid originally at rest in ocean water of constant
density 1 030 kg/m3. Its original mass is 90.0 kg, of which a
significant fraction is water inside its mantle. It expels this
water through its siphon, a circular opening of diameter
3.00 cm, at a speed of 16.0 m/s. (a) As the squid is just start-
ing to move, the surrounding water exerts no drag force on
it. Find the squid’s initial acceleration. (b) To estimate the
maximum speed of the escaping squid, model the drag
force of the surrounding water as described by Equation 5.7.
Assume that the squid has a drag coefficient of 0.300 and a
cross-sectional area of 800 cm2. Find the speed at which the
drag force counterbalances the thrust of its jet.

50. Pursued by ferocious wolves, you are in a sleigh with no
horses, gliding without friction across an ice-covered lake.
You take an action described by these equations:

v1f � v2f � 8.00 m/s

� (255 kg)(v2f î)� (15.0 kg)(�v1f î)(270 kg)(7.50 m/s) î

47. Review problem. A 60.0-kg person running at an initial
speed of 4.00 m/s jumps onto a 120-kg cart initially at rest
(Fig. P8.47). The person slides on the cart’s top surface
and finally comes to rest relative to the cart. The coeffi-
cient of kinetic friction between the person and the cart is
0.400. Friction between the cart and ground can be ig-
nored. (a) Find the final velocity of the person and cart
relative to the ground. (b) Find the friction force acting on
the person while he is sliding across the top surface of the
cart. (c) How long does the friction force act on the per-
son? (d) Find the change in momentum of the person and

v 1

v 2

m 1

m 2
k

FIGURE P8.46
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(a) Complete the statement of the problem, giving the
data and identifying the unknowns. (b) Find the values of
v1f and v2f . (c) Find the work you do.

51. A small block of mass m1 � 0.500 kg is released from rest
at the top of a curve-shaped, frictionless wedge of mass 
m2 � 3.00 kg, which sits on a frictionless, horizontal sur-
face as shown in Figure P8.51a. When the block leaves the
wedge, its velocity is measured to be 4.00 m/s to the right
as shown in Figure P8.51b. (a) What is the velocity of
the wedge after the block reaches the horizontal surface?
(b) What is the height h of the wedge?

52. A jet aircraft is traveling at 500 mi/h (223 m/s) in horizon-
tal flight. The engine takes in air at a rate of 80.0 kg/s and
burns fuel at a rate of 3.00 kg/s. The exhaust gases are
ejected at 600 m/s relative to the aircraft. Find the thrust
of the jet engine and the delivered power.

53. Review problem. A light spring of force constant 3.85 N/m
is compressed by 8.00 cm and held between a 0.250-kg block
on the left and a 0.500-kg block on the right. Both blocks
are at rest on a horizontal surface. The blocks are released
simultaneously so that the spring tends to push them apart.
Find the maximum velocity each block attains if the coeffi-
cient of kinetic friction between each block and the surface
is (a) 0, (b) 0.100, and (c) 0.462. Assume that the coefficient
of static friction is larger than that for kinetic friction.

54. Review problem. There are (one can say) three coequal
theories of motion: Newton’s second law, stating that the 
total force on an object causes its acceleration; the work–
kinetic energy theorem, stating that the total work on 
an object causes its change in kinetic energy; and the 
impulse–momentum theorem, stating that the total im-
pulse on an object causes its change in momentum. In this
problem, you compare predictions of the three theories in
one particular case. A 3.00-kg object has velocity 
Then, a total force acts on the object for 5.00 s.
(a) Calculate the object’s final velocity, using the 
impulse–momentum theorem. (b) Calculate its accelera-
tion from . (c) Calculate its accelera-
tion from . (d) Find the object’s vector displace-
ment from . (e) Find the work done
on the object from . (f ) Find the final ki-
netic energy from . (g) Find the final
kinetic energy from .

55. Two particles with masses m and 3m are moving toward
each other along the x axis with the same initial speeds vi.
The particle with mass m is traveling to the left, and parti-
cle 3m is traveling to the right. They undergo a head-on
elastic collision and each rebounds along the same line as
it approached. Find the final speeds of the particles.

1
2  

mv 
2

i � W

1
2  

mv 
2

f � 1
2 
m v:f � v:f

W � F
:

��r:
�r: � v:it � 1

2  a:t 
2

a: � � F
:

/m
a: � ( v:f � v:i)/�t

12.0 î  N
7.00 ĵ m/s.

56. Two particles with masses m and 3m are moving toward
each other along the x axis with the same initial speeds vi.
Particle m is traveling to the left, and particle 3m is travel-
ing to the right. They undergo an elastic glancing collision
such that particle m is moving downward after the collision
at a right angle to its initial direction. (a) Find the final
speeds of the two particles. (b) What is the angle � at
which the particle 3m is scattered?

57. George of the Jungle, with mass m, swings on a light vine
hanging from a stationary tree branch. A second vine of
equal length hangs from the same point, and a gorilla of
larger mass M swings in the opposite direction on it. Both
vines are horizontal when the primates start from rest at the
same moment. George and the gorilla meet at the lowest
point of their swings. Each is afraid that one vine will break,
so they grab each other and hang on. They swing upward
together, reaching a point where the vines make an angle
of 35.0° with the vertical. (a) Find the value of the ratio
m/M. (b) Try this experiment at home. Tie a small magnet
and a steel screw to opposite ends of a string. Hold the cen-
ter of the string fixed to represent the tree branch and
reproduce a model of the motions of George and the go-
rilla. What changes in your analysis will make it apply to this
situation? Assume next that the magnet is strong so that it
noticeably attracts the screw over a distance of a few cen-
timeters. Then the screw will be moving faster just before it
sticks to the magnet. Does this change make a difference?

58. A cannon is rigidly attached to a carriage, which can move
along horizontal rails but is connected to a post by a large
spring, initially unstretched and with force constant 
k � 2.00 � 104 N/m, as shown in Figure P8.58. The
cannon fires a 200-kg projectile at a velocity of 125 m/s
directed 45.0° above the horizontal. (a) Assuming that the
mass of the cannon and its carriage is 5 000 kg, find the
recoil speed of the cannon. (b) Determine the maximum
extension of the spring. (c) Find the maximum force the
spring exerts on the carriage. (d) Consider the system
consisting of the cannon, carriage, and projectile. Is the
momentum of this system conserved during the firing?
Why or why not?

m1

(a)

h

(b)

v2
4.00 m/s

m2m2

FIGURE P8.51

45.0°

FIGURE P8.58

59. Sand from a stationary hopper falls onto a moving con-
veyor belt at the rate of 5.00 kg/s as shown in Figure P8.59.
The conveyor belt is supported by frictionless rollers and
moves at a constant speed of 0.750 m/s under the action
of a constant horizontal external force supplied by theF

:
ext
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motor that drives the belt. Find (a) the sand’s rate of
change of momentum in the horizontal direction, (b) the
force of friction exerted by the belt on the sand, (c) the
external force , (d) the work done by in 1 s, and
(e) the kinetic energy acquired by the falling sand each
second due to the change in its horizontal motion. (f) Why
are the answers to (d) and (e) different?

60. A chain of length L and total mass M is released from rest
with its lower end just touching the top of a table as shown
in Figure P8.60a. Find the force exerted by the table on
the chain after the chain has fallen through a distance x as
shown in Figure P8.60b. (Assume that each link comes to
rest the instant it reaches the table.)

F
:

extF
:

ext

0.750 m/s

Fext

FIGURE P8.59

L – x

x

L

(a) (b)

FIGURE P8.60

ANSWERS TO QUICK QUIZZES

8.1 (d). Two identical objects (m1 � m2) traveling at the
same speed (v1 � v2) have the same kinetic energies and
the same magnitudes of momentum. It also is possible,
however, for particular combinations of masses and ve-
locities to satisfy K1 � K2 but not p1 � p2. For example, a
1-kg object moving at 2 m/s has the same kinetic energy
as a 4-kg object moving at 1 m/s, but the two clearly do
not have the same momenta. Because we have no infor-
mation about masses and speeds, we cannot choose
among (a), (b), or (c).

8.2 (b), (c), (a). The slower the ball, the easier it is to catch.
If the momentum of the medicine ball is the same as the
momentum of the baseball, the speed of the medicine
ball must be one-tenth the speed of the baseball because
the medicine ball has ten times the mass. If the kinetic
energies are the same, the speed of the medicine ball
must be the speed of the baseball because of the
squared speed term in the equation for K. The medicine
ball is hardest to catch when it has the same speed as the
baseball.

8.3 (i), (c), and (e). Object 2 has a greater acceleration be-
cause of its smaller mass. Therefore, it takes less time to
travel the distance d. Even though the force applied to
objects 1 and 2 is the same, the change in momentum is
less for object 2 because �t is smaller. The work W � Fd
done on both objects is the same, because both F and d
are the same in the two cases. Therefore, K1 � K2. (ii),
(b) and (d). The same impulse is applied to both objects,
so they experience the same change in momentum. Ob-
ject 2 has a larger acceleration because of its smaller
mass. Therefore, the distance that object 2 covers in the
time interval �t is larger than that for object 1. As a re-
sult, more work is done on object 2 and K2 � K1.

1/√10

8.4 (b). Because momentum of the two-ball system is con-
served, . Because the Ping-Pong ball
bounces back from the much more massive bowling ball
with approximately the same speed, . As a
consequence, . Kinetic energy can be ex-
pressed as K � p2/2m. Because of the much larger mass
of the bowling ball, its kinetic energy is much smaller
than that of the Ping-Pong ball.

8.5 (b). The piece with the handle will have less mass than
the piece made up of the end of the bat. To see why, take
the origin of coordinates as the center of mass before the
bat was cut. Replace each cut piece by a small sphere lo-
cated at the center of mass for each piece. The sphere
representing the handle piece is farther from the origin,
but the product of less mass and greater distance bal-
ances the product of greater mass and less distance for
the end piece, as shown.

p:B � 2p:Pi

p:Pf � �p:Pi

p:Pi � 0 � p:Pf � p:B

8.6 (i), (a). The vessel–passengers system is isolated. If the
passengers all start running one way, the speed of the ves-
sel increases (a small amount!) the other way, so the
speed of the center of mass of the system remains con-
stant. (ii), (b). Once they stop running, the momentum
of the system is the same as it was before they started run-
ning; you cannot change the momentum of an isolated
system by means of internal forces. In case you are think-
ing that the passengers could run from bow to stern over
and over to take advantage of the speed increase while
they are running, remember that they will slow the ship
down every time they return to the bow!



Our everyday experiences and observations are associated
with objects that move at speeds much less than that of
light in a vacuum, c � 3.00 � 108 m/s. Models based on

Newtonian mechanics and early concepts of space and time were
formulated to describe the motion of such objects. This formal-
ism is very successful in describing a wide range of phenomena
that occur at low speeds, as we have seen in previous chapters. It
fails, however, when applied to objects whose speeds approach
that of light. Experimentally, the predictions of Newtonian the-
ory can be tested by accelerating electrons or other particles to
very high speeds. For example, it is possible to accelerate an elec-
tron to a speed of 0.99c. According to the Newtonian definition
of kinetic energy, if the energy transferred to such an electron
were increased by a factor of 4, the electron speed should double
to 1.98c. Relativistic calculations, however, show that the speed of
the electron—as well as the speeds of all other objects in the
Universe—remains less than the speed of light. Because it places
no upper limit on speed, Newtonian mechanics is contrary to
modern theoretical predictions and experimental results, and
the Newtonian models that we have developed are limited to

Relativity
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Standing on the shoulders of a giant.
David Serway, son of one of the
authors, watches over his children,
Nathan and Kaitlyn, as they frolic in
the arms of Albert Einstein at the
Einstein memorial in Washington,
D.C. It is well known that Einstein, the
principal architect of relativity, was
very fond of children.
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objects moving much slower than the speed of light. Because Newtonian mechanics
does not correctly predict the results of experiments carried out on objects moving
at high speeds, we need a new formalism that is valid for these objects.

In 1905, at the age of only 26, Albert Einstein published his special theory of relativ-
ity, which is the subject of most of this chapter. Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradic-
tions in the old theory from which there seemed no escape. The strength of
the new theory lies in the consistency and simplicity with which it solves all
these difficulties, using only a few very convincing assumptions.1

Although Einstein made many important contributions to science, special rela-
tivity alone represents one of the greatest intellectual achievements of the 20th
century. With special relativity, experimental observations can be correctly pre-
dicted for objects over the range of all possible speeds, from rest to speeds ap-
proaching the speed of light. This chapter gives an introduction to special relativity,
with emphasis on some of its consequences.

THE  PRINCIPLE  OF  NEWTONIAN  RELATIVITY
We will begin by considering the notion of relativity at low speeds. This discussion
was actually begun in Section 3.6 when we discussed relative velocity. At that time,
we discussed the importance of the observer. In a similar way here, we will generate
equations that allow us to express one observer’s measurements in terms of the
other’s. This process will lead to some rather unexpected and startling results about
our understanding of space and time.

As we have mentioned previously, it is necessary to establish a frame of reference
when describing a physical event. You should recall from Chapter 4 that an inertial
frame is one in which an object is measured to have no acceleration if no forces act
on it. Furthermore, any frame moving with constant velocity with respect to an iner-
tial frame must also be an inertial frame. The laws predicting the results of an ex-
periment performed in a vehicle moving with uniform velocity will be identical for
the driver of the vehicle and a hitchhiker on the side of the road. The formal state-
ment of this result is called the principle of Newtonian relativity:

The laws of mechanics must be the same in all inertial frames of reference.

The following observation illustrates the equivalence of the laws of mechanics in
different inertial frames. Consider a pickup truck moving with a constant velocity as
in Figure 9.1a. If a passenger in the truck throws a ball straight up in the air, the pas-
senger observes that the ball moves in a vertical path (ignoring air resistance). The
motion of the ball appears to be precisely the same as if the ball were thrown by a
person at rest on the Earth and observed by that person. The kinematic equations of
Chapter 3 describe the results correctly whether the truck is at rest or in uniform
motion. Now consider the ball thrown in the truck as viewed by an observer at rest
on the Earth. This observer sees the path of the ball as a parabola as in Figure 9.1b.
Furthermore, according to this observer, the ball has a horizontal component of ve-
locity equal to the speed of the truck. Although the two observers measure different
velocities and see different paths of the ball, they see the same forces on the ball and
agree on the validity of Newton’s laws as well as classical principles such as conserva-
tion of energy and conservation of momentum. Their measurements differ, but the
measurements they make satisfy the same laws. All differences between the two views
stem from the relative motion of one frame with respect to the other.

9.1

■ Principle of Newtonian relativity

1A. Einstein and L. Infeld, The Evolution of Physics (New York, Simon and Schuster, 1966), p. 192.



THE PRINCIPLE OF NEWTONIAN RELATIVITY ❚ 261

y g p pp

Suppose some physical phenomenon, which we call an event, occurs. The
event’s location in space and time of occurrence can be specified by an observer
with the coordinates (x, y, z, t). We would like to be able to transform these coordi-
nates from one inertial frame to another moving with uniform relative velocity,
which will allow us to express one observer’s measurements in terms of the other’s.

Consider two inertial frames S and S� (Fig. 9.2). The frame S� moves with a con-
stant velocity along the common x and x� axes, where is measured relative to S.
We assume that the origins of S and S� coincide at t � 0. Therefore, at time t, the
origin of frame S� is to the right of the origin of S by a distance vt. An event occurs
at point P. An observer in S describes the event with space–time coordinates (x, y,
z, t), and an observer in S� describes the same event with coordinates (x�, y�, z�, t�).
As we can see from Figure 9.2, a simple geometric argument shows that the space
coordinates are related by the equations

x� � x � vt y� � y z� � z [9.1]

Time is assumed to be the same in both inertial frames. That is, within the frame-
work of classical mechanics, all clocks run at the same rate, regardless of their veloc-
ity, so that the time at which an event occurs for an observer in S is the same as the
time for the same event in S�:

t� � t [9.2]

Equations 9.1 and 9.2 constitute what is known as the Galilean transformation of
coordinates.

Now suppose a particle moves through a displacement dx in a time interval dt as
measured by an observer in S. It follows from the first of Equations 9.1 that the cor-
responding displacement dx� measured by an observer in S� is dx� � dx � vdt.
Because dt � dt� (Eq. 9.2), we find that

or

[9.3]

where ux and u�x are the instantaneous x components of velocity of the particle2

relative to S and S�, respectively. This result, which is called the Galilean velocity

u�x � ux � v

dx�

dt�
�

dx
dt

� v

v:v:

(b)(a)

(a) The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer sees the path of
the ball to be a parabola.

FIGURE 9.1

y

O x

y′

O ′ x ′

x
vt x ′

P (event)

v

S ′S

An event 
occurs at a point P. The event is seen
by two observers O and O� in inertial
frames S and S�, where S� moves with
a velocity relative to S.v:

FIGURE 9.2

2We have used v for the speed of the S� frame relative to the S frame. To avoid confusion, we will use u
for the speed of an object or particle.

THE RELATIONSHIP BETWEEN THE S
AND S� FRAMES Keep in mind the
relationship between the S and S�
frames. Otherwise, many of the
mathematical representations in
this chapter could be misinter-
preted. We choose the time t � 0 to
be the instant at which the origins
of the two coordinate systems coin-
cide. The x and x� axes coincide ex-
cept that their origins are different
at all times other than t � 0. The y
and y� axes (and the z and z� axes)
are parallel, but they do not coin-
cide for t � 0 because of the dis-
placement of the origin of S� with
respect to that of S. If the S� frame
is moving in the positive x direction
relative to S, v is positive; otherwise,
it is negative.

� PITFALL PREVENTION 9.1
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transformation, is used in everyday observations and is consistent with our intuitive
notion of time and space. It is the same equation we generated in Section 3.6 (Eq.
3.22) when we first discussed relative velocity in one dimension. We find, however,
that it leads to serious contradictions when applied to objects moving at high
speeds.

THE  MICHELSON – MORLEY  EXPERIMENT
Many experiments similar to throwing the ball in the pickup truck, described in the
preceding section, show us that the laws of classical mechanics are the same in all
inertial frames of reference. When similar inquiries are made into the laws of other
branches of physics, however, the results are contradictory. In particular, the laws of
electricity and magnetism are found to depend on the frame of reference used.
It might be argued that these laws are wrong, but that is difficult to accept be-
cause the laws are in total agreement with known experimental results. The
Michelson–Morley experiment was one of many attempts to investigate this
dilemma.

The experiment stemmed from a misconception early physicists had concerning
the manner in which light propagates. The properties of mechanical waves, such as
water and sound waves, were well known, and all these waves require a medium to
support the propagation of the disturbance, as we shall discuss in Chapter 13. For
sound from your stereo system, the medium is the air, and for ocean waves, the
medium is the water surface. In the 19th century, physicists subscribed to a model
for light in which electromagnetic waves also require a medium through which to
propagate. They proposed that such a medium exists, filling all space, and they
named it the luminiferous ether. The ether would define an absolute frame of
reference in which the speed of light is c.

The most famous experiment designed to show the presence of the ether was
performed in 1887 by A. A. Michelson (1852–1931) and E. W. Morley
(1838–1923). The objective was to determine the speed of the Earth through space
with respect to the ether, and the experimental tool used was a device called the
interferometer, shown schematically in Active Figure 9.3.

Light from the source at the left encounters a beam splitter M0, which is a par-
tially silvered mirror. Part of the light passes through toward mirror M2, and the
other part is reflected upward toward mirror M1. Both mirrors are the same dis-
tance from the beam splitter. After reflecting from these mirrors, the light returns
to the beam splitter, and part of each light beam propagates toward the observer at
the bottom.

Suppose one arm of the interferometer (Arm 2, in Active Fig. 9.3) is aligned
along the direction of the velocity of the Earth through space and therefore
through the ether. The “ether wind” blowing in the direction opposite the Earth’s
motion should cause the speed of light, as measured in the Earth’s frame of refer-
ence, to be c � v as the light approaches mirror M2 in Active Figure 9.3 and c � v
after reflection.

The other arm (Arm 1) is perpendicular to the ether wind. For light to travel in
this direction, the vector must be aimed “upstream” so that the vector addition of

and gives the speed of the light perpendicular to the ether wind as 
This situation is similar to Example 3.6, in which a boat crosses a river with a cur-
rent. The boat is a model for the light beam in the Michelson–Morley experiment,
and the river current is a model for the ether wind.

Because they travel in perpendicular directions with different speeds, light
beams leaving the beam splitter simultaneously will arrive back at the beam splitter
at different times. The interferometer is designed to detect this time difference.
Measurements failed, however, to show any time difference! The Michelson–
Morley experiment was repeated by other researchers under varying conditions

√c2 � v2.v:c:
c:

v:

9.2

In the Michelson interferometer, the
ether theory claims that the time of
travel for a light beam traveling from
the beam splitter to mirror M1 and
back will be different from that for a
light beam traveling from the beam
splitter to mirror M2 and back. The
interferometer is sufficiently sensitive
to detect this time difference.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 9.3 to adjust the
speed of the ether wind and see the
effect on the light beams if there were
an ether.

ACTIVE FIGURE 9.3

Telescope

Ether wind

M1

M2

M0

v

Arm 2

Arm 1

www.pop4e.com


y g p pp

EINSTEIN’S PRINCIPLE OF RELATIVITY ❚ 263

(A
IP

 E
m

ili
o 

Se
gr

é 
Vi

su
al

 A
rc

hi
ve

s,
 M

ic
he

ls
on

 C
ol

le
ct

io
n)

Albert A. Michelson (1852 – 1931)
Michelson was born in Prussia in a
town that later became part of
Poland. He moved to the United
States as a small child and spent
much of his adult life making accu-
rate measurements of the speed of
light. In 1907, he was the first
American to be awarded the Nobel
Prize in Physics, which he received
for his work in optics. His most fa-
mous experiment, conducted with
Edward Morley in 1887, indicated
that it was impossible to measure
the absolute velocity of the Earth
with respect to the ether.

and at different locations, but the results were always the same: No time difference of
the magnitude required was ever observed.3

The negative result of the Michelson–Morley experiment not only contradicted
the ether hypothesis, but it also meant that it was impossible to measure the
absolute speed of the Earth with respect to the ether frame. From a theoretical
viewpoint, it was impossible to find the absolute frame. As we shall see in the
next section, however, Einstein offered a postulate that places a different interpreta-
tion on the negative result. In later years, when more was known about the
nature of light, the idea of an ether that permeates all space was abandoned. Light
is now understood to be an electromagnetic wave that requires no medium for
its propagation. As a result, an ether through which light travels is an unnecessary
construct.

Modern versions of the Michelson–Morley experiment have placed an upper
limit of about 5 cm/s � 0.05 m/s on ether wind velocity. We can show that the
speed of the Earth in its orbit around the Sun is 2.97 � 104 m/s, six orders of mag-
nitude larger than the upper limit of ether wind velocity! These results have shown
quite conclusively that the motion of the Earth has no effect on the measured
speed of light.

EINSTEIN’S  PRINCIPLE  OF  RELATIVITY
In the preceding section, we noted the failure of experiments to measure the rela-
tive speed between the ether and the Earth. Einstein proposed a theory that boldly
removed these difficulties and at the same time completely altered our notion of
space and time.4 He based his relativity theory on two postulates:

1. The principle of relativity: All the laws of physics are the same in all iner-
tial reference frames.
2. The constancy of the speed of light: The speed of light in vacuum has the
same value in all inertial frames, regardless of the velocity of the observer or
the velocity of the source emitting the light.

These postulates form the basis of special relativity, which is the relativity theory ap-
plied to observers moving with constant velocity. The first postulate asserts that all
the laws of physics—those dealing with mechanics, electricity and magnetism, op-
tics, thermodynamics, and so on—are the same in all reference frames moving
with constant velocity relative to each other. This postulate is a sweeping generaliza-
tion of the principle of Newtonian relativity that only refers to the laws of mechan-
ics. From an experimental point of view, Einstein’s principle of relativity means that
any kind of experiment performed in a laboratory at rest must agree with the same
laws of physics as when performed in a laboratory moving at constant velocity
relative to the first one. Hence, no preferred inertial reference frame exists and it is
impossible to detect absolute motion.

Note that postulate 2, the principle of the constancy of the speed of light, is re-
quired by postulate 1: If the speed of light were not the same in all inertial frames,
it would be possible to experimentally distinguish between inertial frames and a

9.3

3From an Earth observer’s point of view, changes in the Earth’s speed and direction of motion in the
course of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the ether
were zero at some time, six months later the Earth is moving in the opposite direction, the speed of the
Earth with respect to the ether would be nonzero, and a clear time difference should be detected.
None has ever been observed, however.
4A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English
translation of this article and other publications by Einstein, see the book by H. Lorentz, A. Einstein,
H. Minkowski, and H. Weyl, The Principle of Relativity (New York: Dover, 1958).
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preferred, absolute frame in which the speed of light is c, in contradiction to postu-
late 1. Postulate 2 also eliminates the problem of measuring the speed of the ether
by denying the existence of the ether and boldly asserting that light always moves
with speed c relative to all inertial observers.

CONSEQUENCES  OF  SPECIAL  RELATIVITY
If we accept the postulates of special relativity, we must conclude that relative mo-
tion is unimportant when measuring the speed of light, which is the lesson of the
Michelson–Morley experiment. At the same time, we must alter our commonsense
notion of space and time and be prepared for some very unexpected conse-
quences, as we shall see now.

Simultaneity and the Relativity of Time
A basic premise of Newtonian mechanics is that a universal time scale exists that is
the same for all observers. In fact, Newton wrote, “Absolute, true, and mathematical
time, of itself, and from its own nature, flows equably without relation to anything
external.” Thus, Newton and his followers simply took simultaneity for granted. In
his development of special relativity, Einstein abandoned the notion that two events
that appear simultaneous to one observer appear simultaneous to all observers.
According to Einstein, a time measurement depends on the reference frame in
which the measurement is made.

Einstein devised the following thought experiment to illustrate this point. A
boxcar moves with uniform velocity and two lightning bolts strike its ends, as in
Figure 9.4a, leaving marks on the boxcar and on the ground. The marks on the
boxcar are labeled A� and B�, and those on the ground are labeled A and B. An
observer at O� moving with the boxcar is midway between A� and B�, and a ground
observer at O is midway between A and B. The events recorded by the observers are
the arrivals of light signals from the lightning bolts.

The two light signals reach observer O at the same time as indicated in Figure
9.4b. As a result, O concludes that the events at A and B occurred simultaneously.
Now consider the same events as viewed by the observer on the boxcar at O�. From
our frame of reference, at rest with respect to the tracks in Figure 9.4, we see the
lightning strikes occur as A� passes A, O � passes O, and B� passes B. By the time the
light has reached observer O, observer O � has moved as indicated in Figure 9.4b.
Therefore, the light signal from B� has already swept past O� because it had less
distance to travel, but the light from A� has not yet reached O�. According to
Einstein, observer O� must find that light travels at the same speed as that
measured by observer O. Observer O� therefore concludes that the lightning
struck the front of the boxcar before it struck the back. This thought experiment
clearly demonstrates that the two events, which appear to be simultaneous to ob-
server O, do not appear to be simultaneous to observer O�. In general, two events
separated in space and observed to be simultaneous in one reference frame are
not observed to be simultaneous in a second frame moving relative to the first.
That is, simultaneity is not an absolute concept but one that depends on the state
of motion of the observer.

Einstein’s thought experiment demonstrates that two observers can disagree
on the simultaneity of two events. This disagreement, however, depends on the
transit time of light to the observers and therefore does not demonstrate the
deeper meaning of relativity. In relativistic analyses of high-speed situations, rela-
tivity shows that simultaneity is relative even when the transit time is subtracted
out. In fact, all the relativistic effects that we will discuss from here on will assume
that we are ignoring differences caused by the transit time of light to the
observers.

9.4

Albert Einstein (1879 – 1955)
Einstein, one of the greatest
physicists of all times, was born in
Ulm, Germany. He left Germany in
1932 for the United States and be-
came a U.S. citizen in 1940. In 1905, at
the age of 26, he published four 
scientific papers that revolutionized
physics.Two of these papers were
concerned with what is now consid-
ered his most important contribution
of all, the special theory of relativity.

In 1916, Einstein published his
work on the general theory of rela-
tivity. The most dramatic prediction
of this theory is the degree to which
light is deflected by a gravitational
field. Measurements made by
astronomers on bright stars in the
vicinity of the eclipsed sun in 1919
confirmed Einstein’s prediction, and
Einstein suddenly became a world
celebrity.

Einstein was deeply disturbed by
the development of quantum 
mechanics in the 1920s despite his
own role as a scientific revolution-
ary. In particular, he could never ac-
cept the probabilistic view of events
in nature that is a central feature of
quantum theory. The last few
decades of his life were devoted to
an unsuccessful search for a unified
theory that would combine gravita-
tion and electromagnetism into one
picture.
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(a) Two lightning bolts strike the ends of a moving boxcar. (b) The events appear to be simultane-
ous to the observer at O, who is standing on the ground midway between A and B. The events do not
appear to be simultaneous to the observer O� riding on the boxcar, who claims that the front of the
car is struck before the rear. Note that the leftward-traveling light signal from B� has already passed
observer O�, but the rightward-traveling light signal from A� has not yet reached O�.

Time Dilation
According to the preceding paragraph, observers in different inertial frames mea-
sure different time intervals between a pair of events, independent of the transit
time of the light. This situation can be illustrated by considering a vehicle moving
to the right with a speed v as in the pictorial representation in Active Figure 9.5a. A
mirror is fixed to the ceiling of the vehicle, and observer O�, at rest in a frame
attached to the vehicle, holds a flashlight a distance d below the mirror. At some in-
stant, the flashlight is turned on momentarily and emits a pulse of light (event 1)
directed toward the mirror. At some later time after reflecting from the mirror, the
pulse arrives back at the flashlight (event 2). Observer O� carries a clock that she
uses to measure the time interval �tp between these two events. (The subscript p
stands for “proper,” as will be discussed shortly.) Because the light pulse has a con-
stant speed c, the time interval required for the pulse to travel from O� to the
mirror and back to O� (a distance of 2d) can be found by modeling the light pulse
as a particle under constant speed as discussed in Chapter 2:

[9.4]

This time interval �tp is measured by O �, for whom the two events occur at the same
spatial position.

Now consider the same pair of events as viewed by observer O at rest with
respect to a second frame attached to the ground as in Active Figure 9.5b. Accord-
ing to this observer, the mirror and flashlight are moving to the right with a speed
v. The geometry appears to be entirely different as viewed by this observer. By the
time the light from the flashlight reaches the mirror, the mirror has moved hori-
zontally a distance v �t/2, where �t is the time interval required for the light to
travel from the flashlight to the mirror and back to the flashlight as measured by
observer O. In other words, the second observer concludes that because of the mo-
tion of the vehicle, if the light is to hit the mirror, it must leave the flashlight at an
angle with respect to the vertical direction. Comparing Active Figures 9.5a and
9.5b, we see that the light must travel farther when observed in the second frame
than in the first frame.

According to the second postulate of special relativity, both observers must mea-
sure c for the speed of light. Because the light travels farther in the second frame
but at the same speed, it follows that the time interval �t measured by the observer
in the second frame is longer than the time interval �tp measured by the observer
in the first frame. To obtain a relationship between these two time intervals, it is

�tp �
2d
c

v

A' B'

OA B

(a)

v

A' B'

OA B

(b)

O'O'

FIGURE 9.4

WHO’S RIGHT? At this point, you
might wonder which observer in
Figure 9.4 is correct concerning the
two events. Both are correct because
the principle of relativity states that
no inertial frame of reference is preferred.
Although the two observers reach
different conclusions, both are cor-
rect in their own reference frame
because the concept of simultaneity
is not absolute. In fact, the central
point of relativity is that any uni-
formly moving frame of reference
can be used to describe events and
do physics.

� PITFALL PREVENTION 9.2
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A mirror is fixed to a moving vehicle, and two observers measure the time interval between two events: the leav-
ing of a light pulse from a flashlight and the arrival of the reflected light pulse back at the flashlight. (a) Ob-
server O�, riding on the vehicle, sees the light pulse travel a total distance of 2d and measures a time interval be-
tween the events of �tp . (b) Observer O is standing on the Earth and sees the mirror and O� move to the right
with speed v. Observer O measures the distance that the light pulse travels to be greater than 2d and measures a
time interval between the events of �t. (c) The right triangle for calculating the relationship between �t and �tp .

By logging into PhysicsNow at www.pop4e.com and going to Active Figure 9.5 you can observe the bouncing of the
light pulse for various speeds of the train.

ACTIVE FIGURE 9.5

v

O ′ O ′ O ′

x ′
O

y ′

v∆t

(b)

d

v∆t
2

c∆t
2

(c)

v
Mirror

y ′

x ′

d

O ′

(a)

convenient to use the right triangle geometric model shown in Active Figure 9.5c.
The Pythagorean theorem applied to the triangle gives

Solving for �t gives

[9.5]

Because �tp � 2d/c, we can express Equation 9.5 as

[9.6]

where � � (1 � v2/c2)�1/2. This result says that the time interval �t measured by O
is longer than the time interval �tp measured by O� because � is always greater than
one. That is, �t � �tp . This effect is known as time dilation.

We can see that time dilation is not observed in our everyday lives by consider-
ing the factor �. This factor deviates significantly from a value of 1 only for very
high speeds, as shown in Table 9.1. For example, for a speed of 0.1c, the value of �
is 1.005. Therefore, a time dilation of only 0.5% occurs at one-tenth the speed of
light. Speeds we encounter on an everyday basis are far slower than that, so we do
not see time dilation in normal situations.

The time interval �tp in Equation 9.6 is called the proper time interval. In
general, the proper time interval is defined as the time interval between two events
as measured by an observer for whom the events occur at the same point in space.
In our case, observer O� measures the proper time interval. For us to be able to use
Equation 9.6, the events must occur at the same spatial position in some inertial

�t �
�tp

√1 �
v 2

c 2

� � �tp

�t �
2d

√c2 � v2
�

2d

c√1 �
v2

c2

� c  �t
2 �

2
� � v  �t

2 �
2

� d 2

Approximate Values for � at
Various Speeds

TABLE 9.1

v/c �

0.001 0 1.000 000 5
0.010 1.000 05
0.10 1.005
0.20 1.021
0.30 1.048
0.40 1.091
0.50 1.155
0.60 1.250
0.70 1.400
0.80 1.667
0.90 2.294
0.92 2.552
0.94 2.931
0.96 3.571
0.98 5.025
0.99 7.089
0.995 10.01
0.999 22.37

www.pop4e.com
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frame. Therefore, for instance, this equation cannot be used to relate the measure-
ments made by the two observers in the lightning example described at the begin-
ning of this section because the lightning strikes occur at different positions for
both observers.

If a clock is moving with respect to you, the time interval between ticks of the
moving clock is measured to be longer than the time interval between ticks of an
identical clock in your reference frame. Therefore, it is often said that a moving
clock is measured to run more slowly than a clock in your reference frame by 
a factor �. That is true for mechanical clocks as well as for the light clock just de-
scribed. We can generalize this result by stating that all physical processes, includ-
ing chemical and biological ones, slow down relative to a stationary clock when
those processes occur in a frame moving with respect to the clock. For example, the
heartbeat of an astronaut moving through space would keep time with a clock in-
side the spaceship. Both the astronaut’s clock and heartbeat would be measured to
be slowed down according to an observer on the Earth comparing time intervals
with his own clock at rest with respect to him (although the astronaut would have
no sensation of life slowing down in the spaceship).

Time dilation is a verifiable phenomenon; let us look at one situation in which
the effects of time dilation can be observed and that served as an important histori-
cal confirmation of the predictions of relativity. Muons are unstable elementary par-
ticles that have a charge equal to that of the electron and a mass 207 times that of
the electron. Muons can be produced as a result of collisions of cosmic radiation
with atoms high in the atmosphere. Slow-moving muons in the laboratory have a
lifetime measured to be the proper time interval �tp � 2.2 	s. If we assume that
the speed of atmospheric muons is close to the speed of light, we find that these
particles can travel a distance during their lifetime of approximately 
(3.0 � 108 m/s)(2.2 � 10�6 s) � 6.6 � 102 m before they decay (Fig. 9.6a). Hence,
they are unlikely to reach the surface of the Earth from high in the atmosphere
where they are produced; nonetheless, experiments show that a large number of
muons do reach the surface. The phenomenon of time dilation explains this effect.
As measured by an observer on the Earth, the muons have a dilated lifetime equal
to ��tp . For example, for v � 0.99c, � � 7.1 and � �tp � 16 	s. Hence, the average
distance traveled by the muons in this time interval as measured by an observer on
the Earth is approximately (3.0 � 108 m/s)(16 � 10�6 s) � 4.8 � 103 m, as shown
in Figure 9.6b.

The results of an experiment reported by J. C. Hafele and R. E. Keating provided
direct evidence of time dilation.5 The experiment involved the use of very stable
atomic clocks. Time intervals measured with four such clocks in jet flight were com-
pared with time intervals measured by reference clocks located at the U.S. Naval
Observatory. Their results were in good agreement with the predictions of special rel-
ativity and can be explained in terms of the relative motion between the Earth’s rota-
tion and the jet aircraft. In their paper, Hafele and Keating report the following: “Rel-
ative to the atomic time scale of the U.S. Naval Observatory, the flying clocks lost
59 
 10 ns during the eastward trip and gained 273 
 7 ns during the westward trip.”

5J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains Observed,”
Science, July 14, 1972, p. 168.

(a)

≈ 4.8 × 103 m

(b)

≈ 6.6 × 102 m

Muon is created

Muon decays

Muon is created

Muon decays

(a) Without rela-
tivistic considerations, muons created
in the atmosphere and traveling
downward with a speed of 0.99c would
travel only about 6.6 � 102 m before
decaying with an average lifetime of
2.2 	s. Therefore, very few muons
would reach the surface of the Earth.
(b) With relativistic considerations,
the muon’s lifetime is dilated accord-
ing to an observer on Earth. As a
result, according to this observer, the
muon can travel about 4.8 � 103 m
before decaying, which results in
many of them arriving at the surface.

FIGURE 9.6

Suppose the observer O� on the train in Active Figure 9.5 aims her
flashlight at the far wall of the boxcar and turns it on and off, sending a pulse of light 
toward the far wall. Both O� and O measure the time interval between when the pulse
leaves the flashlight and when it hits the far wall. Which observer measures the proper
time interval between these two events? (a) O� (b) O (c) both observers
(d) neither observer

QUICK QUIZ 9.1
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The Twin Paradox
An intriguing consequence of time dilation is the so-called twin paradox (Fig. 9.7).
Consider an experiment involving a set of twins named Speedo and Goslo. At age
20, Speedo, the more adventuresome of the two, sets out on an epic journey to
Planet X, located 20 lightyears (ly) from the Earth. (Note that 1 ly is the distance
light travels through free space in 1 year. It is equal to 9.46 � 1015 m.) Further-
more, his spaceship is capable of reaching a speed of 0.95c relative to the inertial
frame of his twin brother back home. After reaching Planet X, Speedo becomes
homesick and immediately returns to the Earth at the same speed 0.95c. Upon his
return, Speedo is shocked to discover that Goslo has aged 42 yr and is now 62 yr
old. Speedo, on the other hand, has aged only 13 yr.

At this point, it is fair to raise the following question: Which twin is the traveler
and which is really younger as a result of this experiment? From Goslo’s frame of
reference, he was at rest while his brother traveled at a high speed away from him
and then came back. According to Speedo, however, he himself remained station-
ary while Goslo and the Earth raced away from him and then headed back. There is
an apparent contradiction due to the apparent symmetry of the observations.
Which twin has developed signs of excess aging?

The situation in this problem is actually not symmetrical. To resolve this appar-
ent paradox, recall that the special theory of relativity describes observations made
in inertial frames of reference moving relative to each other. Speedo, the space
traveler, must experience a series of accelerations during his journey because he
must fire his rocket engines to slow down and start moving back toward the Earth.
As a result, his speed is not always uniform, and consequently he is not always in an
inertial frame. Therefore, there is no paradox because only Goslo, who is always in
a single inertial frame, can make correct predictions based on special relativity.
During each passing year noted by Goslo, slightly less than 4 months elapses for
Speedo.

Only Goslo, who is in a single inertial frame, can apply the simple time dilation
formula to Speedo’s trip. Therefore, Goslo finds that instead of aging 42 yr, Speedo
ages only (1 � v2/c2)1/2(42 yr) � 13 yr. According to both twins, Speedo spends
6.5 yr traveling to Planet X and 6.5 yr returning, for a total travel time of 13 yr.

A crew watches a movie that is 2 h long in a spacecraft that is moving
at high speed through space. Will an Earth-bound observer, who is watching the movie
through a powerful telescope, measure the duration of the movie to be (a) longer than,
(b) shorter than, or (c) equal to 2 h?

QUICK QUIZ 9.2

(a) (b)
Speedo Goslo Speedo Goslo

(a) As Speedo
leaves his twin brother, Goslo, on
the Earth, both are the same age. 
(b) When Speedo returns from his
journey to Planet X, he is younger
than Goslo.

FIGURE 9.7

Varying rates of aging in relativity
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■ Thinking Physics 9.1
Suppose a student explains time dilation with the following argument: If I start
running away from a clock at 12:00 at a speed very close to the speed of light,
I would not see the time change, because the light from the clock representing
12:01 would never reach me. What is the flaw in this argument?

Reasoning The implication in this argument is that the velocity of light relative to
the runner is approximately zero because “the light . . . would never reach me.” In
this Galilean point of view, the relative velocity is a simple subtraction of running
velocity from the light velocity. From the point of view of special relativity, one of
the fundamental postulates is that the speed of light is the same for all observers,
including one running away from the light source at the speed of light. Therefore, the light
from 12:01 will move toward the runner at the speed of light, as measured by all ob-
servers, including the runner. ■

Suppose astronauts are paid according to the amount of time they
spend traveling in space. After a long voyage traveling at a speed approaching c, would a
crew rather be paid according to (a) an Earth-based clock, (b) their spacecraft’s clock, or
(c) either clock?

QUICK QUIZ 9.3

Solution For the time interval measured by the ob-
server on the Earth, Equation 9.6 gives

Therefore, the heart rate as measured by this observer is

�

That is, measurements by this observer show that the
heart rate is measured to slow down compared with
that measured by an observer on the spacecraft.

22 beats/min

Heart rate �
1

2.7 s/beat
� 0.36 beat/s � 60 s

1 min �

� (3.2)(0.86 s) � 2.7 s

T � �Tp �
1

√1 �
(0.95c)2

c 2

 Tp

An astronaut at rest on the Earth has a heartbeat rate of
70 beats/min.

When the astronaut is traveling on a spacecraft at
0.95c, what will this rate be as measured by another
observer on the spacecraft?

Solution The proper time interval between beats of the
heart is the period Tp � 60 s/70 beats � 0.86 s/beat.
The observer in the spacecraft will measure this time 
interval because two successive beats of the heart take
place at the same position according to this 
observer.

When the astronaut is traveling on a spacecraft at
0.95c, what will this rate be as measured by an observer
at rest on the Earth?

B

A

What Is the Heart Rate of the Astronaut?EXAMPLE 9.1

Length Contraction
The measured distance between two points also depends on the frame of refer-
ence. The proper length of an object is defined as the distance in space between
the end points of the object measured by someone who is at rest relative to the ob-
ject. An observer in a reference frame that is moving with respect to the object will
measure a length along the direction of the velocity that is always less than the
proper length. This effect is known as length contraction. Although we have intro-
duced this effect through the mental representation of an object, the object is not
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necessary. The distance between any two points in space is measured by an ob-
server to be contracted along the direction of the velocity of the observer relative
to the points.

Consider a spacecraft traveling with a speed v from one star to another. We will
consider the time interval between two events: (1) the leaving of the spacecraft
from the first star and (2) the arrival of the spacecraft at the second star. There are
two observers: one on the Earth and the other in the spacecraft. The observer at
rest on the Earth (and also at rest with respect to the two stars) measures the dis-
tance between the stars to be Lp , the proper length. According to this observer, the
time interval required for the spacecraft to complete the voyage is �t � Lp/v. What
does an observer in the moving spacecraft measure for the distance between the
stars? This observer measures the proper time interval because the passage of each
of the two stars by his spacecraft occurs at the same position in his reference frame,
at his spacecraft. Therefore, because of time dilation, the time interval required to
travel between the stars as measured by the space traveler will be smaller than that
for the Earth-bound observer. Using the time dilation expression, the proper time
interval between events is �tp � �t/�. The space traveler claims to be at rest and
sees the destination star moving toward the spacecraft with speed v. Because the
space traveler reaches the star in the time interval �tp � �t, he concludes that the
distance L between the stars is shorter than Lp . This distance measured by the space
traveler is

Because Lp � v �t, we see that

[9.7]

Because (1 � v2/c2)1/2 is less than 1, the space traveler measures a length that is
shorter than the proper length. Therefore, an observer in motion with respect to
two points in space measures the length L between the points (along the direction
of motion) to be shorter than the length Lp measured by an observer at rest with
respect to the points (the proper length).

Note that length contraction takes place only along the direction of motion. For
example, suppose a meter stick moves past an Earth observer with speed v as in
Active Figure 9.8. The length of the meter stick as measured by an observer in a
frame attached to the stick is the proper length Lp as in Active Figure 9.8a. The
length L of the stick measured by the Earth observer is shorter than Lp by the factor
(1 � v2/c2)1/2, but the width is the same. Furthermore, length contraction is a
symmetric effect. If the stick is at rest on the Earth, an observer in the moving
frame would also measure its length to be shorter by the same factor 
(1 � v2/c2)1/2.

It is important to emphasize that the proper length and proper time interval are
defined differently. The proper length is measured by an observer at rest with
respect to the end points of the length. The proper time interval between two
events is measured by someone for whom the events occur at the same position. Of-
ten, the proper time interval and the proper length are not measured by the same
observer. As an example, let us return to the decaying muons moving at speeds
close to the speed of light. An observer in the muon’s reference frame would mea-
sure the proper lifetime, and an Earth-based observer would measure the proper
length (the distance from creation to decay in Fig. 9.6). In the muon’s reference
frame, no time dilation occurs, but the distance of travel is observed to be shorter

L �
Lp

�
� Lp �1 �

v 2

c 2 �
1/2

L � v �tp � v
�t
�

(a) According to an observer in a
frame attached to the meter stick
(that is, both the stick and the
frame have the same velocity), the
stick is measured to have its
proper length Lp. (b) According
to an observer in a frame in which
the meter stick has a velocity 
relative to the frame, the stick is
measured to be shorter than the
proper length Lp by a factor 
(1 � v 2/c 2)1/2.

By logging
into PhysicsNow at www.pop4e.com
and going to Active Figure 9.8 you
can view the meter stick from the
points of view of two observers to
compare the measured length of
the stick.

v:

ACTIVE FIGURE 9.8

Lp

y′

O ′
(a)

x ′

L
y

O
(b)

x

v

www.pop4e.com
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when measured in this frame. Likewise, in the Earth observer’s reference frame, a
time dilation does occur, but the distance of travel is measured to be the proper
length. Therefore, when calculations on the muon are performed in both frames,
the outcome of the experiment in one frame is the same as the outcome in the
other frame: More muons reach the surface than would be predicted without rela-
tivistic calculations.

You are packing for a trip to another star. During the journey, you
will be traveling at 0.99c. You are trying to decide whether you should buy smaller sizes of
your clothing because you will be thinner on your trip as a result of length contraction.
You are also considering saving money by reserving a smaller cabin to sleep in because
you will be shorter when you lie down. Should you (a) buy smaller sizes of clothing, 
(b) reserve a smaller cabin, (c) do neither, or (d) do both?

QUICK QUIZ 9.4

A Voyage to SiriusEXAMPLE 9.2

So the travel time measured on her clock is

Notice that we have used the speed of light as 
c � 1.00 ly/yr to determine this last result.

�t �
L
v

�
4.80 ly
0.800c

�
4.80 ly

0.800(1.00 ly/yr)
� 6.00 yr

 � (8.00 ly) √1 �
(0.800c)2

c2 � 4.80 ly

L �
Lp

�
�

8.00 ly
�

� (8.00 ly) √1 �
v 2

c 2

An astronaut takes a trip to Sirius, located 8.00 ly from
the Earth. The astronaut measures the time interval for
the one-way journey to be 6.00 yr. If the spacecraft
moves at a constant speed of 0.800c, how can the 8.00-ly
distance be reconciled with the 6.00-yr duration mea-
sured by the astronaut?

Solution The 8.00 ly represents the proper length (the
distance from the Earth to Sirius) measured by an ob-
server for whom both the Earth and Sirius are at rest.
The astronaut measures Sirius to be approaching her at
0.800c but also measures the distance contracted to

The Triangular SpacecraftEXAMPLE 9.3
A spacecraft in the form of a triangle flies by an ob-
server on the Earth with a speed of 0.95c along the x
direction. According to an observer on the spacecraft
(Fig. 9.9a), the distances Lp and y are measured to be
52 m and 25 m, respectively. What are the dimensions
of the spacecraft as measured by the Earth observer
when the spacecraft is in motion along the direction
shown in Figure 9.9b?

Solution In Figure 9.9a, we show the shape of the
spacecraft as measured6 by the observer on the space-
craft. The proper length along the direction of motion

(a)
Lp

y

(b)
L

y
v

(Example 9.3) (a) When the spacecraft is at rest,
its shape is measured as shown. (b) The spacecraft
is measured to have this shape when it moves to
the right with a speed v. Note that only its x dimen-
sion is contracted in this case.

FIGURE 9.9

6Notice that we are careful here to say the shape “as measured” by an observer rather than “as seen” by
an observer. What an observer sees when looking at an object is the set of light rays entering the eye at a
given instant. These rays left different parts of the object at different times because different parts of
the object are at different distances from the eye. Figure 9.9b is a representation of the light rays leav-
ing different parts of the object simultaneously. Viewing an object moving at high speed introduces addi-
tional changes to the object besides length contraction, including apparent rotations of the object.
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The 25-m vertical height is unchanged because it is
perpendicular to the direction of relative motion be-
tween observer and spacecraft. Figure 9.9b represents
the spacecraft’s shape as measured by the Earth
observer.

is Lp � 52 m. The Earth observer watching the moving
spacecraft measures the horizontal length of the space-
craft to be contracted to

16 mL � Lp √1 �
v 2

c 2 � (52 m) √1 �
(0.95c)2

c 2 �

THE  LORENTZ  TRANSFORMATION  EQUATIONS
Suppose an event that occurs at some point P is reported by two observers: one
at rest in a frame S and another in a frame S� that is moving to the right with
speed v as in Figure 9.10. The observer in S reports the event with space– time
coordinates (x, y, z, t), and the observer in S� reports the same event using the
coordinates (x�, y�, z�, t�). If two events occur at P and Q in Figure 9.10, Equation
9.1 predicts that �x � �x�; that is, the distance between the two points in space
at which the events occur does not depend on the motion of the observer. Be-
cause this notion is contradictory to that of length contraction, the Galilean
transformation is not valid when v approaches the speed of light. In this section,
we state the correct transformation equations that apply for all speeds in the
range .

The equations that relate these measurements and enable us to transform coor-
dinates from S to S� are the Lorentz transformation equations:

[9.8]

These transformation equations were developed by Hendrik A. Lorentz
(1853–1928) in 1890 in connection with electromagnetism. Einstein, however,
recognized their physical significance and took the bold step of interpreting them
within the framework of special relativity.

We see that the value for t� assigned to an event by observer O� depends both on
the time t and on the coordinate x as measured by observer O. Therefore, in relativ-
ity, space and time are not separate concepts but rather are closely interwoven with
each other in what we call space–time. This case is unlike that of the Galilean trans-
formation in which t � t �.

If we wish to transform coordinates in the S� frame to coordinates in the S
frame, we simply replace v by �v and interchange the primed and unprimed coor-
dinates in Equation 9.8:

[9.9]

When v �� c, the Lorentz transformation reduces to the Galilean transforma-
tion. To check, note that if v �� c, v2/c2 �� 1, so � approaches 1 and Equation 9.8
reduces in this limit to Equations 9.1 and 9.2:

x � � x � vt y� � y z� � z t� � t

t � � �t � �
v
c2  x ��

z � z�

y � y�

x � � (x� � vt�)

t� � � �t �
v
c 2 x�

z� � z

y� � y

x� � �(x � vt)

0 � v � c

9.5

y y′ v
S ′S

O x x ′

P (event)

O ′

∆x ′

Q (event)

vt
x

x ′
∆x

Events occur at
points P and Q and are observed by
an observer at rest in the S frame and
another in the S� frame, which is mov-
ing to the right with a speed v.

FIGURE 9.10

■ Inverse Lorentz transformation
for S� : S

■ Lorentz transformation for 
S : S�
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Lorentz Velocity Transformation
Let us now derive the Lorentz velocity transformation, which is the relativistic coun-
terpart of the Galilean velocity transformation, Equation 9.3. Once again S� is a
frame of reference that moves at a speed v relative to another frame S along the
common x and x� axes. Suppose an object is measured in S� to have an instanta-
neous velocity component u�x given by

[9.10]

Using Equations 9.8, we have

Substituting these values into Equation 9.10 gives

Note, though, that dx/dt is the velocity component ux of the object measured in S,
so this expression becomes

[9.11]

Similarly, if the object has velocity components along y and z, the components in
S� are 

[9.12]

When ux or v is much smaller than c (the nonrelativistic case), the denominator
of Equation 9.11 approaches unity and so This result corresponds to
the Galilean velocity transformations. In the other extreme, when ux � c, Equation
9.11 becomes

From this result, we see that an object whose speed approaches c relative to an ob-
server in S also has a speed approaching c relative to an observer in S�, independent
of the relative motion of S and S�. Note that this conclusion is consistent with
Einstein’s second postulate, namely, that the speed of light must be c relative to all
inertial frames of reference.

To obtain ux in terms of u�x , we replace v by �v in Equation 9.11 and inter-
change the roles of primed and unprimed variables:

[9.13]ux �
u�x � v

1 �
u�xv
c2

u�x �
c � v

1 �
cv
c2

�

c �1 �
v
c �

1 �
v
c

� c

u�x � ux � v.

u�y �
uy

� �1 �
uxv
c2 �

  and  u�z �
uz

� �1 �
uxv
c2 �

u�x �
ux � v

1 �
uxv
c 2

u�x �
dx �

dt �
�

dx � v dt

dt �
v
c 2  dx

�

dx
dt

� v

1 �
v
c 2  

dx
dt

dx� � �(dx � v dt)  and  dt � �  � �dt �
v
c2  dx�

u�x �
dx�

dt �

WHAT CAN THE OBSERVERS AGREE ON?
We have seen several measurements
on which the two observers O and
O� do not agree. These measure-
ments include (1) the time interval
between events that take place in
the same position in one of the
frames, (2) the distance between
two points that remain fixed in one
of their frames, (3) the velocity
components of a moving particle,
and (4) whether two events occur-
ring at different locations in both
frames are simultaneous. It is worth
noting here what the two observers
can agree on: (1) the relative speed
v with which they move with respect
to each other, (2) the speed c of any
ray of light, and (3) the simultane-
ity of two events taking place at the
same position and time in some
frame.

� PITFALL PREVENTION 9.3

■ Lorentz velocity transformation
for S : S�

■ Inverse Lorentz velocity transfor-
mation for S� : S
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You are driving on a freeway at a relativistic speed. Straight ahead of
you, a technician standing on the ground turns on a searchlight and a beam of light
moves exactly vertically upward, as seen by the technician. As you observe the beam of
light, you measure the magnitude of the vertical component of its velocity as (a) equal to
c, (b) greater than c, or (c) less than c. If the technician aims the searchlight directly at
you instead of upward, you measure the magnitude of the horizontal component of its ve-
locity as (d) equal to c, (e) greater than c, or (f) less than c.

QUICK QUIZ 9.5

(Example 9.4) Two spacecraft A and B move in
opposite directions.

Because the speeds of the spacecraft are large fractions
of the speed of light, we categorize the problem as a rel-
ativistic one. We analyze the problem by taking the S�
frame as being attached to A so that v � 0.750c relative
to the Earth observer (in the S frame). Spacecraft B can
be considered as an object moving with a velocity com-
ponent ux � � 0.850c relative to the Earth observer.
Hence, the velocity of B with respect to A is the velocity
of B as measured by the observer O� on A, which can be
obtained by using Equation 9.11:

�

To finalize the problem, note that the negative sign in
the result indicates that spacecraft B is moving in the
negative x direction as observed by A. Also note that the
relative speed is larger than each of the individual speeds
but is smaller than the speed of light, as it must be.

� 0.980c

u�x �
ux � v

1 �
uxv
c2

�
� 0.850c � 0.750c

1 �
(� 0.850c)(0.750c)

c2

Relative Velocity of SpacecraftEXAMPLE 9.4
Two spacecraft A and B are moving directly toward
each other as in Figure 9.11. An observer on the
Earth measures the speed of A to be 0.750c and the
speed of B to be 0.850c. Find the velocity of B with re-
spect to A.

Solution Conceptualize the problem by studying
Figure 9.11. Note that the spacecraft are approaching
each other, so the speed of one as measured by an ob-
server in the other will be larger than the speed of
either as measured by an observer on the Earth.

Relativistic Leaders of the PackEXAMPLE 9.5INTERACTIVE

Therefore, the speed of Emily as observed by David is

�

Investigate this situation with various speeds of
David and Emily by logging into PhysicsNow at www.pop4e.com and
going to Interactive Example 9.5.

0.96c

u� � √(u�x)2 � (u�y)2 � √(� 0.75c)2 � (� 0.60c)2

� � 0.60c

u�y �
uy

� �1 �
uxv
c 2 �

�
√1 �

(0.75c)2

c 2  (� 0.90c)

�1 �
(0)(0.75c)

c 2 �

u�x �
ux � v

1 �
uxv
c 2

�
0 � 0.75c

1 �
(0)(0.75c)

c 2

� � 0.75c
Two motorcycle pack leaders named David and
Emily are racing at relativistic speeds along 
perpendicular paths as in Figure 9.12. How fast does
Emily recede over David’s right shoulder as seen by
David?

Solution To determine Emily’s speed of recession as
seen by David, we take S� to move in the x direction
along with David. Figure 9.12 represents the situation
as seen by a police officer at rest in frame S who ob-
serves the following:

David:

Emily:

We calculate u�x and u�y for Emily using Equations 9.11 
and 9.12:

uy � � 0.90cux � 0

v � 0.75c

FIGURE 9.11

S ′ (attached to A)
y ′

0.750c –0.850c

BA

x ′O ′

S (attached
to the Earth)

y

xO

www.pop4e.com
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z
y
x

�0.90c

Emily

David

0.75c

Police officer at
rest in S

(Interactive Example 9.5) David moves to the east with a speed 0.75c
relative to the police officer, and Emily travels south at a speed 0.90c rela-
tive to the officer.

FIGURE 9.12

RELATIVISTIC  MOMENTUM  AND  THE  RELATIVISTIC
FORM  OF  NEWTON’S  LAWS

We have seen that to describe the motion of particles within the framework of special
relativity properly, the Galilean transformation must be replaced by the Lorentz trans-
formation. Because the laws of physics must remain unchanged under the Lorentz
transformation, we must generalize Newton’s laws and the definitions of momentum
and energy to conform to the Lorentz transformation and the principle of relativity.
These generalized definitions should reduce to the classical (nonrelativistic) defini-
tions for v �� c or u �� c. (As we have done previously, we will use v for the speed of
one reference frame relative to another and u for the speed of a particle.)

First, recall that the total momentum of an isolated system of particles is con-
served. Suppose a collision between two particles is described in a reference frame
S in which the momentum of the system is measured to be conserved. If the veloci-
ties in a second reference frame S� are calculated using the Lorentz transformation
and the Newtonian definition of momentum, , is used, it is found that the
momentum of the system is not measured to be conserved in the second reference
frame. This finding violates one of Einstein’s postulates: The laws of physics are the
same in all inertial frames. Therefore, assuming the Lorentz transformation to be
correct, we must modify the definition of momentum.

The relativistic equation for the momentum of a particle of mass m that main-
tains the principle of conservation of momentum is

[9.14]

where is the velocity of the particle. When u is much less than c, the denominator
of Equation 9.14 approaches unity, so approaches . Therefore, the relativistic
equation for reduces to the classical expression when u is small compared with c.
Equation 9.14 is often written in simpler form as

[9.15]

using our previously defined expression7 for �.

p: � �mu:

p:
mu:p:

u:

p: � 
mu:

√1 �
u 2

c 2

p: � mu:

9.6

7We defined � previously in terms of the speed v of one frame relative to another frame. The same
symbol is also used for (1 � u2/c2)�1/2, where u is the speed of a particle.

WATCH OUT FOR “RELATIVISTIC MASS”
Some older treatments of relativity
maintained the conservation of
momentum principle at high
speeds by using a model in which
the mass of a particle increases with
speed. You might still encounter
this notion of “relativistic mass” in
your outside reading, especially in
older books. Be aware that this no-
tion is no longer widely accepted;
today, mass is considered as invari-
ant, independent of speed. The
mass of an object in all frames is
considered to be the mass as
measured by an observer at rest
with respect to the object.

� PITFALL PREVENTION 9.4

■ Definition of relativistic 
momentum
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Momentum of an ElectronEXAMPLE 9.6
The classical expression, if used (inappropriately) for
this high-speed particle, gives

p � meu � 2.05 � 10�22 kg  m/s

Hence, the correct relativistic result is more than 50%
larger than the classical result!

An electron, which has a mass of 9.11 � 10�31 kg,
moves with a speed of 0.750c. Find its relativistic mo-
mentum and compare it with the momentum calcu-
lated from the classical expression.

Solution Using Equation 9.14 with u � 0.750c, we have

� 3.10 � 10�22 kgm/s

p �
(9.11 � 10�31 kg)(0.750 � 3.00 � 108 m/s)

√1 �
(0.750c)2

c 2

p �
meu

√1 �
u2

c2

The relativistic force on a particle whose momentum is is defined as

[9.16]

where is given by Equation 9.14. This expression preserves both classical mechan-
ics in the limit of low velocities and conservation of momentum for an isolated sys-
tem ( � 0) both relativistically and classically. 

We leave it to Problem 9.57 at the end of the chapter to show that the accelera-
tion of a particle decreases under the action of a constant force, in which case
a �(1 � u2/c2)3/2. From this proportionality, note that as the particle’s speed ap-
proaches c, the acceleration caused by any finite force approaches zero. It is there-
fore impossible to accelerate a particle from rest to a speed .

Hence, c is an upper limit for the speed of any particle. In fact, it is possible to
show that no matter, energy, or information can travel through space faster than c.
Note that the relative speeds of the two spacecraft in Example 9.4 and the two
motorcyclists in Interactive Example 9.5 were both less than c. If we had attempted
to solve these examples with Galilean transformations, we would have obtained
relative speeds larger than c in both cases.

u � c

a:

� F
:

ext

p:

F
:

 � 
d p:

dt

p:F
:

RELATIVISTIC  ENERGY
We have seen that the definition of momentum requires generalization to make it
compatible with the principle of relativity. We find that the definition of kinetic en-
ergy must also be modified.

To derive the relativistic form of the work–kinetic energy theorem, let us start
with the definition of the work done by a force of magnitude F on a particle initially
at rest. Recall from Chapter 6 that the work–kinetic energy theorem states that the
work done by a net force acting on a particle equals the change in kinetic energy of
the particle. Because the initial kinetic energy is zero, we conclude that the work W
done in accelerating a particle from rest is equivalent to the relativistic kinetic en-
ergy K of the particle: 

[9.17]W � �K � K � 0 � K � �x 2

x 1

 F dx � �x 2

x 1

 
dp
dt

 dx

9.7
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where we are considering the special case of force and displacement vectors along
the x axis for simplicity. To perform this integration and find the relativistic kinetic
energy as a function of u, we first evaluate dp/dt, using Equation 9.14: 

Substituting this expression for dp/dt and dx � u dt into Equation 9.17 gives

Evaluating the integral, we find that

[9.18]

At low speeds, where u/c �� 1, Equation 9.18 should reduce to the classical ex-
pression . We can show this reduction by using the binomial expansion

� 1 � x 2 �    for x �� 1, where the higher-order powers of x are
ignored in the expansion because they are so small. In our case, x � u/c, so

Substituting into Equation 9.18 gives

which agrees with the classical result. Figure 9.13 shows a comparison of the
speed–kinetic energy relationships for a particle using the nonrelativistic expres-
sion for K (the blue curve) and the relativistic expression for K (the brown curve).
The curves are in good agreement at low speeds, but deviate at higher speeds. The
nonrelativistic expression indicates a violation of special relativity because it sug-
gests that sufficient energy can be added to the particle to accelerate it to a speed
larger than c. In the relativistic case, the particle speed never exceeds c, regardless

K � �1 � 1
2

u2

c2 � � mc2 � mc2 � 1
2mu2

� �
1

√1 �
u2

c2

� �1 �
u2

c 2 �
�1/2

� 1 � 1
2

u2

c 2 � 

1
2(1 � x2)�1/2

K � 1
2mu2

K �
mc 2

√1 �
u2

c2

� mc 2 � �mc 2 � mc 2 � (� � 1)mc 2

K � �t

0
  

m(du/dt)u dt

�1 �
u2

c2 �
3/2  � m �u

0
  

u

�1 �
u2

c2 �
3/2  du  

dp
dt

�
d
dt

 
mu

√1 �
u 2

c 2

�
m(du/dt)

�1 �
u2

c 2 �
3/2

■ Relativistic kinetic energy

K/mc2

0.5c 1.0c 1.5c 2.0c

0.5

1.0

1.5

2.0

u

Relativistic
case

Nonrelativistic
case

A graph comparing relativistic and
nonrelativistic kinetic energy of a particle. The
energies are plotted as a function of speed u. In the
relativistic case, u is always less than c.

FIGURE 9.13
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of the kinetic energy, which is consistent with experimental results. When an ob-
ject’s speed is less than one-tenth the speed of light, the classical kinetic energy
equation differs by less than 1% from the relativistic equation (which is experimen-
tally verified at all speeds). Therefore, for practical calculations it is valid to use the
classical equation when the object’s speed is less than 0.1c.

The constant term mc2 in Equation 9.18, which is independent of the speed, is
called the rest energy ER of the particle:

[9.19]

The term �mc2 in Equation 9.18 depends on the particle speed and is the sum
of the kinetic and rest energies. We define �mc2 to be the total energy E; that is,
total energy � kinetic energy � rest energy:

E � �mc2 � K � mc2 � K � ER [9.20]

or, when � is replaced by its equivalent,

[9.21]

The relation ER � mc2 shows that mass is a manifestation of energy. It also shows
that a small mass corresponds to an enormous amount of energy. This concept is
fundamental to much of the field of nuclear physics.

In many situations, the momentum or energy of a particle is measured rather
than its speed. It is therefore useful to have an expression relating the total energy
E to the relativistic momentum p, which is accomplished by using the expressions
E � �mc2 and p � �mu. By squaring these equations and subtracting, we can elimi-
nate u (see Problem 9.37). The result, after some algebra, is

[9.22]

When the particle is at rest, p � 0, and so E � ER � mc2. That is, the total energy
equals the rest energy.

For the case of particles that have zero mass, such as photons (massless, charge-
less particles of light to be discussed further in Chapter 28), we set m � 0 in Equa-
tion 9.22 and see that

E � pc [9.23]

This equation is an exact expression relating energy and momentum for photons,
which always travel at the speed of light.

When dealing with subatomic particles, it is convenient to express their energy
in a unit called an electron volt (eV). The equality between electron volts and our
standard energy unit is

1 eV � 1.60 � 10�19 J

For example, the mass of an electron is 9.11 � 10�31 kg. Hence, the rest energy
of the electron is

ER � mec2 � (9.11 � 10�31 kg)(3.00 � 108 m/s)2 � 8.20 � 10�14 J

Converting to eV, we have

ER � mec2 � (8.20 � 10�14 J) � 1 eV
1.60 � 10�19 J � � 0.511 MeV

E 2 � p 2c 2 � (mc 2)2

E �
mc2

√1 �
u2

c2

ER � mc 2

■ Total energy of a relativistic
particle

■ Energy – momentum relationship
for a relativistic particle

■ Rest energy
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The following pairs of energies represent the rest energy and total
energy of three different particles: particle 1: E, 2E; particle 2: E, 3E; particle 3: 2E, 4E.
Rank the particles, from greatest to least, according to their (a) mass, (b) kinetic energy,
and (c) speed.

QUICK QUIZ 9.6

The Energy of a Speedy ProtonEXAMPLE 9.7
Determine the kinetic energy of the proton in part

B in electron volts.

Solution We use Equation 9.20:

Because mpc2 � 938 MeV, K �

What is the magnitude of the proton’s momentum
in part B?

Solution We can use Equation 9.22 to calculate the mo-
mentum with E � 3mpc2:

�

The unit of momentum is written MeV/c, which is a
momentum unit often used in particle studies.

2.65 � 103 
MeV

c

 p � √8 
mpc2

c
� √8 

(938 MeV)

c

p 2c 2 � 9(mpc 2)2 � (mpc 2)2 � 8(mpc 2)2

 E 2 � p 2c 2 � (mpc 2)2 � (3mpc 2)2

D

1.88 GeV.

K � E � mpc2 � 3mpc2 � mpc2 � 2mpc2

CLet us consider the relativistic motion of a proton.

Find the proton’s rest energy in electron volts.

Solution To find the rest energy, we use Equation 9.19,

�

The total energy of a proton is three times its rest
energy. With what speed is the proton moving?

Solution Because the total energy E is three times the
rest energy, (Eq. 9.20) gives

Solving for u gives

2.83 � 108 m/su �
√8
3

 c �

�1 �
u2

c2 � �
1
9
  or  u2

c2 �
8
9

 3 �
1

√1 �
u2

c 2

E � 3mpc 2 �
mpc 2

√1 �
u2

c2

E � �mc2

B

938 MeV

 � (1.50 � 10�10 J) � 1.00 eV
1.60 � 10�19 J �

 ER � mpc2 � (1.67 � 10�27 kg)(3.00 � 108 m/s)2

A

MASS  AND  ENERGY
Equation 9.20, E � �mc2, which represents the total energy of a particle, suggests
that even when a particle is at rest (� � 1) it still possesses enormous energy
through its mass. The clearest experimental proof of the equivalence of mass and
energy occurs in nuclear and elementary particle interactions in which the conver-
sion of mass into kinetic energy takes place. Hence, we cannot use the principle of
conservation of energy in relativistic situations exactly as it is outlined in Chapter 7.
We must include rest energy as another form of energy storage.

This concept is important in atomic and nuclear processes, in which the change
in mass during the process is on the order of the initial mass. For example, in a
conventional nuclear reactor, the uranium nucleus undergoes fission, a reaction
that results in several lighter fragments having considerable kinetic energy. In the
case of a 235U atom, which is used as fuel in nuclear power plants, the fragments are

9.8
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two lighter nuclei and a few neutrons. The total mass of the fragments is less than
that of the 235U by an amount �m. The corresponding energy �mc2 associated with
this mass difference is exactly equal to the total kinetic energy of the fragments.
The kinetic energy is transferred by collisions with water molecules as the frag-
ments move through water, raising the internal energy of the water. This internal
energy is used to produce steam for the generation of electric power.

Next, consider a basic fusion reaction in which two deuterium atoms combine
to form one helium atom. The decrease in mass that results from the creation
of one helium atom from two deuterium atoms is �m � 4.25 � 10�29 kg. Hence,
the corresponding energy that results from one fusion reaction is calculated to be
�mc2 � 3.83 � 10�12 J � 23.9 MeV. To appreciate the magnitude of this result, con-
sider that if 1 g of deuterium is converted to helium, the energy released is on the
order of 1012 J! At the year 2006 cost of electric energy, this energy would be worth
about $20 000. We will see more details of these nuclear processes in Chapter 30.

Mass Change in a Radioactive DecayEXAMPLE 9.8
Therefore, the mass change is

� 

Find the energy that this mass change represents.

Solution The energy associated with this mass change is

This energy appears as the kinetic energies of the
alpha particle and the 212Pb nucleus after the decay.

6.92 MeV� 1.11 � 10�12 J �

E � �mc2 � (1.23 � 10�29 kg)(3.00 � 108 m/s)2

B

1.23 � 10�29 kg

�m � 216.001 905 u � 215.994 491 u � 0.007 414 u

The 216Po nucleus is unstable and exhibits radioactivity,
which we will study in detail in Chapter 30. It decays to
212Pb by emitting an alpha particle, which is a helium
nucleus, 4He.

Find the mass change in this decay.

Solution Using values in Table A.3, we see that the ini-
tial and final masses are

 � 215.994 491 u

 � 211.991 888 u � 4.002 603 u

 mf � m(212Pb) � m(4He)

 mi � m(216Po) � 216.001 905 u 

A

GENERAL  RELATIVITY
Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly dif-
ferent properties: It determines a force of mutual gravitational attraction between
two objects (Newton’s law of universal gravitation), and it also represents the resis-
tance of a single object to being accelerated (Newton’s second law), regardless of
the type of force producing the acceleration. How can one quantity have two such
different properties? An answer to this question, which puzzled Newton and many
other physicists over the years, was provided when Einstein published his theory of
gravitation, known as general relativity, in 1916. Because it is a mathematically com-
plex theory, we offer merely a hint of its elegance and insight.

In Einstein’s view, the dual behavior of mass was evidence for a very intimate
and basic connection between the two behaviors. He pointed out that no mechani-
cal experiment (e.g., dropping an object) could distinguish between the two situa-
tions illustrated in Figures 9.14a and 9.14b. In Figure 9.14a, a person is standing in
an elevator on the surface of a planet and feels pressed into the floor due to the
gravitational force. If he releases his briefcase, he observes it moving toward the
floor with acceleration . In Figure 9.14b, the person is in an elevator in
empty space accelerating upward with . The person feels pressed into
the floor with the same force as in Figure 9.14a. If he releases his briefcase, he ob-
serves it moving toward the floor with acceleration g, just as in the previous
situation. In each case, an object released by the observer undergoes a downward

a:el � �g ĵ
g: � �g ĵ

9.9
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(a) The observer is at rest in an elevator in a uniform gravitational field , directed downward. The observer
drops his briefcase, which moves downward with acceleration g. (b) The observer is in a region where gravity is negligi-
ble, but the elevator moves upward with an acceleration . The observer releases his briefcase, which moves
downward (according to the observer) with acceleration g relative to the floor of the elevator. According to Einstein,
the frames of reference in parts (a) and (b) are equivalent in every way. No local experiment can distinguish any differ-
ence between the two frames. (c) In the accelerating frame, a ray of light would appear to bend downward due to the
acceleration. (d) If parts (a) and (b) are truly equivalent, as Einstein proposed, part (c) suggests that a ray of light
would bend downward in a gravitational field.

a:el � � g ĵ

g: � � g ĵ

acceleration of magnitude g relative to the floor. In Figure 9.14a, the person is at
rest in an inertial frame in a gravitational field due to the planet. (A gravitational
field exists around any object with mass, such as a planet. We will define the gravita-
tional field formally in Chapter 11.) In Figure 9.14b, the person is in a noninertial
frame accelerating in gravity-free space. Einstein’s claim is that these two situations
are completely equivalent.

Einstein carried this idea further and proposed that no experiment, mechanical
or otherwise, could distinguish between the two cases. This extension to include all
phenomena (not just mechanical ones) has interesting consequences. For exam-
ple, suppose a light pulse is sent horizontally across the elevator as in Figure 9.14c,
in which the elevator is accelerating upward in empty space. From the point of view
of an observer in an inertial frame outside the elevator, the light travels in a straight
line while the floor of the elevator accelerates upward. According to the observer
on the elevator, however, the trajectory of the light pulse bends downward as the
floor of the elevator (and the observer) accelerates upward. Therefore, based on
the equality of parts (a) and (b) of the figure for all phenomena, Einstein proposed
that a beam of light should also be bent downward by a gravitational field, as in 
Figure 9.14d.

The two postulates of Einstein’s general theory of relativity are as follows:

• All the laws of nature have the same form for observers in any frame of reference,
whether accelerated or not.

• In the vicinity of any given point, a gravitational field is equivalent to an acceler-
ated frame of reference in the absence of gravitational effects. (This postulate is
known as the principle of equivalence.)

One interesting effect predicted by general relativity is that the passage of time
is altered by gravity. A clock in the presence of gravity runs more slowly than one
for which gravity is negligible. Consequently, the frequencies of radiation emitted
by atoms in the presence of a strong gravitational field are shifted to lower values
compared with the same emissions in a weak field. This gravitational shift has been
detected in light emitted by atoms in massive stars. It has also been verified on the
Earth by comparing the frequencies of gamma rays (a high-energy form of electro-
magnetic radiation) emitted from nuclei separated vertically by about 20 m.

(b)(a) (c) (d)

vel = 0

ael = 0

vel = 0

ael = 0
ael = + g j ael = + g j 

g = – g j g = – g j ̂ ˆ

ˆ ˆ

FIGURE 9.14

■ Postulates of general relativity
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The second postulate suggests that a gravitational field may be “transformed
away” at any point if we choose an appropriate accelerated frame of reference, a
freely falling one. Einstein developed an ingenious method of describing the accel-
eration necessary to make the gravitational field “disappear.” He specified a certain
quantity, the curvature of space– time, that describes the gravitational effect of a mass.
In fact, the curvature of space–time completely replaces Newton’s gravitational the-
ory. According to Einstein, there is no such thing as a gravitational force. Rather,
the presence of a mass causes a curvature of space–time in the vicinity of the mass,
and this curvature dictates the space-time path that all freely moving objects must
follow.

One important test of general relativity is the prediction that a light ray passing
near the Sun should be deflected by some angle. This prediction was confirmed by
astronomers as the bending of starlight during a total solar eclipse shortly following
World War I (Fig. 9.15).

As an example of the effects of curved space–time, imagine two travelers mov-
ing on parallel paths a few meters apart on the surface of the Earth and maintain-
ing an exact northward heading along two longitude lines. As they observe each
other near the equator, they will claim that their paths are exactly parallel. As they
approach the North Pole, however, they will notice that they are moving closer to-
gether and that they will actually meet at the North Pole. Thus, they will claim that
they moved along parallel paths, but moved toward each other, as if there were an at-
tractive force between them. They will make this conclusion based on their everyday ex-
perience of moving on flat surfaces. From our mental representation, however, we
realize that they are walking on a curved surface, and the geometry of the curved
surface, rather than an attractive force, causes them to converge. In a similar way,
general relativity replaces the notion of forces with the movement of objects
through curved space–time.

If a concentration of mass in space becomes very great, as is believed to occur
when a large star exhausts its nuclear fuel and collapses to a very small volume, a
black hole may form. Here the curvature of space–time is so extreme that, within a
certain distance from the center of the black hole, all matter and light become
trapped. We will say more about black holes in Chapter 11.

■ Thinking Physics 9.2
Atomic clocks are extremely accurate; in fact, an error of 1 s in 3 million years is typi-
cal. This error can be described as about 1 part in 1014. On the other hand, the
atomic clock in Boulder, Colorado, near Denver, is often 15 ns faster than the one in
Washington, D.C., after only one day. This error is one of about 1 part in 6 � 1012,
which is about 17 times larger than the previously expressed error. If atomic clocks
are so accurate, why does a clock in Boulder not remain in synchronization with one
in Washington, D.C.? (Hint: Denver is known as the Mile High City.)

Reasoning According to the general theory of relativity, the passage of time de-
pends on gravity. Time is measured to run more slowly in strong gravitational fields.
Washington, D.C., is at an elevation very close to sea level, but Boulder is about a

1.75"

Sun
Light from star

(actual direction)

Apparent
direction to star

Deflected path of light
from star

Earth

Deflection of
starlight passing near the Sun. Be-
cause of this effect, the Sun or other
remote objects can act as a gravita-
tional lens. In his general theory of rel-
ativity, Einstein calculated that
starlight just grazing the Sun’s surface
should be deflected by an angle of
1.75 seconds of arc.

FIGURE 9.15
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CONTEXT 
connection

mile higher in altitude. This difference results in a weaker gravitational field at
Boulder than at Washington, D.C. As a result, time is measured to run more rapidly
in Boulder than in Washington, D.C. ■

FROM  MARS  TO  THE  STARS
In this chapter, we have discussed the strange effects of traveling at high speeds. Do
we need to consider these effects in our planned mission to Mars?

To answer this question, let us consider a typical spacecraft speed necessary to
travel from the Earth to Mars. This speed is on the order of 104 m/s. Let us evalu-
ate � for this speed:

where we have completely ignored the rules of significant figures so that we could
find the first nonzero digit to the right of the decimal place!

It is clear from this result that relativistic considerations are not important for
our trip to Mars. Yet what about deeper travels into space? Suppose we wish to
travel to another star. This distance is several orders of magnitude larger. The near-
est star is about 4.2 ly from the Earth. In comparison, Mars is 4.0 � 10�5 ly at its far-
thest from the Earth. Therefore, we are talking about a distance to the nearest star
that is five orders of magnitude larger than the distance to Mars. Very long travel
times will be needed to reach even the nearest star. At the escape speed from the
Sun, for example, assuming that this speed is maintained during the entire trip, the
travel time is 30 000 years to the nearest star. This time period is clearly prohibitive,
especially if we would like the people who leave the Earth to be the same people
who arrive at the star!

We can use the principles of relativity to reduce this travel time significantly by
traveling at very high speeds. Suppose our spacecraft travels at a constant speed of
0.99c. The travel time as measured by an observer on the Earth then is

where the distance between the Earth and the destination star is the proper
length Lp.

Because the spacecraft occupants see both the Earth and the destination star
moving, the distance between them is measured to be shorter than that measured
by observers on the Earth. We can use length contraction to calculate the distance
from the Earth to the star as measured by the spacecraft occupants:

The time interval required to reach the star is now

which is clearly a reduction in travel time from the low-speed trip!
There are three major problems with this scenario, however. The first is the

technological challenge of designing and building a spacecraft and rocket engine
assembly that can attain a speed of 0.99c. Second is the design of a safety system
that will provide early warnings about running into asteroids, meteoroids, or other
bits of matter while traveling at almost light speed through space. Even a small
piece of rock could be disastrous if struck at 0.99c. The third problem is related to

�t �
L
u

�
0.59 ly

0.99(1.0 ly/yr)
� 0.60 yr

L �
Lp

�
� Lp √1 �

u 2

c 2 � (4.2 ly) √1 �
(0.99c)2

c 2 � 0.59 ly

�t �
Lp

u
�

4.2 ly

0.99(1.0 ly/yr)
� 4.2 yr

� �
1

√1 �
u2

c2

�
1

√1 �
(104 m/s)2

(3.00 � 108 m/s)2

� 1.000 000 000 6
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the twin paradox discussed earlier in this chapter. During the trip to the star, 4.2 yr
will pass on the Earth. If the travelers return to the Earth, another 4.2 yr will pass.
Therefore, the travelers will have aged by only 2(0.6 yr) � 1.2 yr, but 8.4 yr will have
passed on the Earth. For stars farther away than the nearest star, these effects could
result in the personnel assisting with the liftoff from the Earth no longer being alive
when the travelers return. In conclusion, we see that travel to the stars will be an
enormous challenge!

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The two basic postulates of special relativity are:

• All the laws of physics are the same in all inertial reference
frames.

• The speed of light in vacuum has the same value, in all iner-
tial frames, regardless of the velocity of the observer or the
velocity of the source emitting the light.

Three consequences of special relativity are:

• Events that are simultaneous for one observer may not be si-
multaneous for another observer who is in motion relative to
the first.

• Clocks in motion relative to an observer are measured to be
slowed down by a factor �. This phenomenon is known as
time dilation.

• Lengths of objects in motion are measured to be shorter in
the direction of motion. This phenomenon is known as
length contraction.

To satisfy the postulates of special relativity, the Galilean
transformations must be replaced by the Lorentz transforma-
tion equations:

[9.8]

where .� � (1 � v2/c 2)�1/2

 t � � � �t �
v
c 2  x�

 z� � z

 y� � y

 x� � �(x � vt)

The relativistic form of the Lorentz velocity transformation is

[9.11]

where ux is the speed of an object as measured in the S frame
and u�x is its speed measured in the S� frame.

The relativistic expression for the momentum of a particle
moving with a velocity is

[9.14, 9.15]

The relativistic expression for the kinetic energy of a particle is

[9.18]

where ER � mc2 is the rest energy of the particle.
The total energy E of a particle is given by the expression

[9.21]

The total energy of a particle is the sum of its rest energy and
its kinetic energy: E � ER � K.

The relativistic momentum of a particle is related to its total
energy through the equation

[9.22]

The general theory of relativity claims that no experiment
can distinguish between a gravitational field and an accelerat-
ing reference frame. It correctly predicts that the path of light
is affected by a gravitational field.

E2 � p2c2 � (mc2)2

E �
mc2

√1 �
u2

c2

K � �mc2 � mc2 � (� � 1)mc2

p:
 
� 

mu:

√1 �
u2

c 2

� �mu:

u:

u�x �
ux � v

1 �
uxv
c 2

SUMMARY

� answer available in the Student Solutions Manual and
Study Guide

1. On what two speed measurements do two observers in rela-
tive motion always agree?

2. A spacecraft with the shape of a sphere moves past an ob-
server on Earth with a speed 0.5c. What shape does the
observer measure for the spacecraft as it moves past?

QUESTIONS
3. The speed of light in water is 230 Mm/s. Suppose an elec-

tron is moving through water at 250 Mm/s. Does that vio-
late the principle of relativity?

4. Two identical clocks are synchronized. One is then put
in orbit directed eastward around the Earth, and the
other remains on the Earth. According to an observer
on the Earth, which clock runs more slowly? When the
moving clock returns to the Earth, are the two still syn-
chronized?

www.pop4e.com
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Explain why it is necessary, when defining the length of a
rod, to specify that the positions of the ends of the rod are
to be measured simultaneously.

6. A train is approaching you at very high speed as you stand
next to the tracks. Just as an observer on the train passes
you, you both begin to play the same Beethoven symphony
on portable compact disc players. (a) According to you,
whose CD player finishes the symphony first? (b) Accord-
ing to the observer on the train, whose CD player finishes
the symphony first? (c) Whose CD player really finishes the
symphony first?

List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

8. A particle is moving at a speed less than c/2. If the speed of
the particle is doubled, what happens to its momentum?

Give a physical argument that shows that it is impossible to
accelerate an object of mass m to the speed of light, even
with a continuous force acting on it.

10. The upper limit of the speed of an electron is the speed of
light c. Does that mean that the momentum of the elec-
tron has an upper limit?

11. Because mass is a measure of energy, can we conclude that
the mass of a compressed spring is greater than the mass of
the same spring when it is not compressed?

12. It is said that Einstein, in his teenage years, asked the ques-
tion, “What would I see in a mirror if I carried it in my
hands and ran at the speed of light?” How would you an-
swer this question?

13. Some distant astronomical objects, called quasars, are re-
ceding from us at half the speed of light (or greater). What
is the speed of the light we receive from these quasars?

9.

7.

5. 14. Photons of light have zero mass. How is it possible that
they have momentum?

15. “Newtonian mechanics correctly describes objects moving
at ordinary speeds, and relativistic mechanics correctly de-
scribes objects moving very fast.” “Relativistic mechanics
must make a smooth transition as it reduces to Newtonian
mechanics in a case where the speed of an object becomes
small compared with the speed of light.” Argue for or
against each of these two statements.

16. Two cards have straight edges. Suppose the top edge of
one card crosses the bottom edge of another card at a
small angle as shown in Figure Q9.16a. A person slides the
cards together at a moderately high speed. In what
direction does the intersection point of the edges move?
Show that it can move at a speed greater than the speed of
light. 

A small flashlight is suspended in a horizontal plane
and set into rapid rotation. Show that the spot of light it
produces on a distant screen can move across the screen at
a speed greater than the speed of light. (If you use a laser
pointer, as shown in Fig. Q9.16b, make sure that the direct
laser light cannot enter a person’s eyes.) Argue that these
experiments do not invalidate the principle that no mater-
ial, no energy, and no information can move faster than
light moves in a vacuum.

17. With regard to reference frames, how does general relativ-
ity differ from special relativity?

18. Two identical clocks are in the same house, one upstairs in
a bedroom and the other downstairs in the kitchen. Which
clock runs more slowly? Explain.

(b)(a)

FIGURE Q9.16
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PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 9.1 ■ The Principle of Newtonian Relativity
In a laboratory frame of reference, an observer notes that
Newton’s second law is valid. Show that it is also valid for
an observer moving at a constant speed, small compared
with the speed of light, relative to the laboratory frame.

2. Show that Newton’s second law is not valid in a reference
frame moving past the laboratory frame of Problem 9.1
with a constant acceleration.

3. A 2 000-kg car moving at 20.0 m/s collides and locks to-
gether with a 1 500-kg car at rest at a stop sign. Show that
momentum is conserved in a reference frame moving at
10.0 m/s in the direction of the moving car.

Section 9.2 ■ The Michelson – Morley Experiment
Section 9.3 ■ Einstein’s Principle of Relativity
Section 9.4 ■ Consequences of Special Relativity

Problem 3.36 in Chapter 3 can be assigned with this section.

4. How fast must a meter stick be moving if its length is mea-
sured to shrink to 0.500 m?

5. At what speed does a clock move if it is measured to run at
a rate that is one-half the rate of a clock at rest with respect
to an observer?

6. An astronaut is traveling in a space vehicle that has a
speed of 0.500c relative to the Earth. The astronaut mea-
sures her pulse rate at 75.0 beats per minute. Signals gen-
erated by the astronaut’s pulse are radioed to the Earth
when the vehicle is moving in a direction perpendicular to
the line that connects the vehicle with an observer on the
Earth. (a) What pulse rate does the Earth observer mea-
sure? (b) What would be the pulse rate if the speed of the
space vehicle were increased to 0.990c?

7. An astronomer on the Earth observes a meteoroid in the
southern sky approaching the Earth at a speed of 0.800c.
At the time of its discovery the meteoroid is 20.0 ly from
the Earth. Calculate (a) the time interval required for the
meteoroid to reach the Earth as measured by the Earth-
bound astronomer, (b) this time interval as measured by a
tourist on the meteoroid, and (c) the distance to the Earth
as measured by the tourist.

8. A muon formed high in the Earth’s atmosphere travels 
at speed v � 0.990c for a distance of 4.60 km before it 

1.

decays into an electron, a neutrino, and an antineutrino
(	� : e� � � � ). (a) How long does the muon live, as
measured in its reference frame? (b) How far does the
Earth travel, as measured in the frame of the muon?

An atomic clock moves at 1 000 km/h for 1.00 h as mea-
sured by an identical clock on the Earth. How many
nanoseconds slow will the moving clock be compared with
the Earth clock at the end of the 1.00-h interval?

10. For what value of v does � � 1.010 0? Observe that for
speeds lower than this value, time dilation and length con-
traction are effects amounting to less than 1%.

A spacecraft with a proper length of 
300 m takes 0.750 	s to pass an Earth observer. Determine
the speed of the spacecraft as measured by the Earth
observer.

12. (a) An object of proper length Lp takes a time interval �t
to pass an Earth observer. Determine the speed of the ob-
ject as measured by the Earth observer. (b) A column of
tanks, 300 m long, takes 75.0 s to pass a child waiting at a
street corner on her way to school. Determine the speed of
the armored vehicles. (c) Show that the answer to part
(a) includes the answer to Problem 9.11 as a special case
and includes the answer to part (b) as another special case.

13. A friend passes by you in a spacecraft traveling at a high
speed. He tells you that his craft is 20.0 m long and that
the identically constructed craft you are sitting in is 19.0 m
long. According to your observations, (a) how long is your
spacecraft, (b) how long is your friend’s craft, and (c) what
is the speed of your friend’s craft?

14. The identical twins Speedo and Goslo join a migration
from the Earth to Planet X. It is 20.0 ly away in a reference
frame in which both planets are at rest. The twins, of the
same age, depart at the same time on different spacecraft.
Speedo’s craft travels steadily at 0.950c, and Goslo’s travels
at 0.750c. Calculate the age difference between the twins
after Goslo’s spacecraft lands on Planet X. Which twin is
the older?

15. An interstellar space probe is launched from the Earth. Af-
ter a brief period of acceleration it moves with a constant
velocity, with a magnitude of 70.0% of the speed of light. Its
nuclear-powered batteries supply the energy to keep its data
transmitter active continuously. The batteries have a life-
time of 15.0 yr as measured in a rest frame. (a) How long
do the batteries on the space probe last as measured by Mis-
sion Control on the Earth? (b) How far is the probe from
the Earth when its batteries fail as measured by Mission
Control? (c) How far is the probe from the Earth when
its batteries fail as measured by its built-in trip odometer?
(d) For what total time interval after launch are data re-
ceived from the probe by Mission Control? Note that radio
waves travel at the speed of light and fill the space between
the probe and the Earth at the time of battery failure.

Section 9.5 ■ The Lorentz Transformation Equations
16. Suzanne observes two light pulses to be emitted from the

same location, but separated in time by 3.00 	s. Mark sees

11.

9.

� 

www.pop4e.com


y g p pp

PROBLEMS ❚ 287

positive x axis. Another spacecraft is moving past with a ve-
locity of 0.700c in the negative x direction. Determine the
magnitude and direction of the velocity of the first space-
craft as measured by the pilot of the second spacecraft.

Section 9.6 ■ Relativistic Momentum and the 
Relativistic Form of Newton’s Laws

23. Calculate the momentum of an electron moving with a
speed of (a) 0.010 0c, (b) 0.500c, and (c) 0.900c.

24. The nonrelativistic expression for the momentum of a par-
ticle, p � mu, agrees with experimental results if u �� c.
For what speed does the use of this equation give an error
in the momentum of (a) 1.00% and (b) 10.0%?

25. A golf ball travels with a speed of 90.0 m/s. By what 
fraction does its relativistic momentum magnitude p
differ from its classical value mu? That is, find the ratio 
(p � mu)/mu.

26. The speed limit on a certain roadway is 90.0 km/h. Sup-
pose speeding fines are made proportional to the amount
by which a vehicle’s momentum exceeds the momentum it
would have when traveling at the speed limit. The fine for
driving at 190 km/h (that is, 100 km/h more than the
speed limit) is $80.0. What, then, will be the fine for travel-
ing at (a) 1 090 km/h and (b) 1 000 000 090 km/h?

An unstable particle at rest breaks into
two fragments of unequal mass. The mass of one fragment
is 2.50 � 10�28 kg and that of the other is 1.67 � 10�27 kg.
If the lighter fragment has a speed of 0.893c after the
breakup, what is the speed of the heavier fragment?

28. Show that the speed of an object having momentum of
magnitude p and mass m is 

Section 9.7 ■ Relativistic Energy
29. Determine the energy required to accelerate an electron

from (a) 0.500c to 0.900c and (b) 0.900c to 0.990c.

30. Show that, for any object moving at less than one-tenth the
speed of light, the relativistic kinetic energy agrees with the
result of the classical equation to within less
than 1%. Therefore, for most purposes the classical equa-
tion is good enough to describe these objects, whose mo-
tion we call nonrelativistic.

31. An electron has a kinetic energy five times greater than its
rest energy. Find (a) its total energy and (b) its speed.

32. Find the kinetic energy of a 78.0-kg spacecraft launched out
of the solar system with speed 106 km/s by using 
(a) the classical equation and (b) the relativis-
tic equation.

A proton moves at 0.950c. Calculate its
(a) rest energy, (b) total energy, and (c) kinetic energy.

34. A cube of steel has a volume of 1.00 cm3 and a mass of 
8.00 g when at rest on the Earth. If this cube is now given a
speed u � 0.900c, what is its density as measured by a sta-
tionary observer? Note that relativistic density is defined as
ER/c2V.

33.

K �  12mu2

K �  12mu2

u �
c

√1 � (mc/p)2

27.

the emission of the same two pulses separated in time by
9.00 	s. (a) How fast is Mark moving relative to Suzanne?
(b) According to Mark, what is the separation in space of
the two pulses?

17. A moving rod is measured to have a length of 2.00 m and
to be oriented at an angle of 30.0° with respect to the di-
rection of motion as shown in Figure P9.17. The rod has a
speed of 0.995c. (a) What is the proper length of the rod?
(b) What is the orientation angle in the proper frame?

18. An observer in reference frame S measures two events as si-
multaneous. Event A occurs at the point (50.0 m, 0, 0) at
the instant 9:00:00 Universal time on January 15, 2005.
Event B occurs at the point (150 m, 0, 0) at the same mo-
ment. A second observer, moving past with a velocity of

, also observes the two events. In her reference
frame S�, which event occurred first and what time interval
elapsed between the events?

19. A red light flashes at position xR � 3.00 m and time 
tR � 1.00 � 10�9 s, and a blue light flashes at xB � 5.00 m
and tB � 9.00 � 10�9 s, all measured in the S reference
frame. Reference frame S� has its origin at the same point
as S at t � t� � 0; frame S� moves uniformly to the right.
Both flashes are observed to occur at the same place in S�.
(a) Find the relative speed between S and S�. (b) Find the
location of the two flashes in frame S�. (c) At what time
does the red flash occur in the S� frame?

20. A Klingon spacecraft moves away from the Earth at a speed
of 0.800c (Fig. P9.20). The starship Enterprise pursues at a
speed of 0.900c relative to the Earth. Observers on the
Earth measure the Enterprise overtaking the Klingon craft
at a relative speed of 0.100c. With what speed is the Enter-
prise overtaking the Klingon craft as measured by the crew
of the Enterprise ?

0.800c î

Two jets of material from the center of a
radio galaxy are ejected in opposite directions. Both jets
move at 0.750c relative to the galaxy. Determine the speed
of one jet relative to the other.

22. A spacecraft is launched from the surface of the Earth with
a velocity of 0.600c at an angle of 50.0° above the horizontal

21.

Direction of motion

30.0°

2.00 m

FIGURE P9.17

u = 0.900c

S

x

S ′

x ′

v = 0.800c

FIGURE P9.20
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35. The rest energy of an electron is 0.511 MeV. The rest en-
ergy of a proton is 938 MeV. Assume that both particles
have kinetic energies of 2.00 MeV. Find the speed of 
(a) the electron and (b) the proton. (c) By how much
does the speed of the electron exceed that of the proton?
(d) Repeat the calculations assuming that both particles
have kinetic energies of 2 000 MeV.

36. An unstable particle with a mass of 3.34 � 10�27 kg is ini-
tially at rest. The particle decays into two fragments that fly
off along the x axis with velocity components 0.987c and
�0.868c. Find the masses of the fragments. (Suggestion:
Conserve both energy and momentum.)

Show that the energy–momentum relationship E2 �
p2c2 � (mc2)2 follows from the expressions E � �mc2 and
p � �mu.

38. An object having mass 900 kg and traveling at speed 0.850c
collides with a stationary object having mass 1 400 kg. The
two objects stick together. Find (a) the speed and (b) the
mass of the composite object. 

A pion at rest (m� � 273me) decays to a muon (m	 �
207me) and an antineutrino ( ). The reaction is
written . Find the kinetic energy of the
muon and the energy of the antineutrino in electron volts.
(Suggestion: Conserve both energy and momentum.)

Section 9.8 ■ Mass and Energy
40. When 1.00 g of hydrogen combines with 8.00 g of oxygen,

9.00 g of water is formed. During this chemical reaction,
2.86 � 105 J of energy is released. How much mass do the
constituents of this reaction lose? Is the loss of mass likely
to be detectable?

The power output of the Sun is 3.85 � 1026 W. How much
mass is converted to energy in the Sun each second?

42. In a nuclear power plant, the fuel rods last 3 yr before they
are replaced. If a plant with rated thermal power 1.00 GW
operates at 80.0% capacity for the 3.00 yr, what is the loss
of mass of the fuel?

43. A gamma ray (a high-energy photon) can produce an elec-
tron (e�) and a positron (e�) when it enters the electric
field of a heavy nucleus: � : e� � e�. What minimum
gamma-ray energy is required to accomplish this task? (Note:
The masses of the electron and the positron are equal.)

44. (a) In a crash test, two 1 500-kg cars, both moving at
20.0 m/s, collide head-on and stick together. Consider the
whole quantity of wreckage before it loses any energy by
such processes as thermal radiation. Is its mass greater or
less than the original total mass of the two cars? By how
much? (b) Repeat the problem for a relativistic crash test in
which two 1 500-kg space vehicles, both moving at 
200 Mm/s, meet head-on in a completely inelastic collision.

Section 9.9 ■ General Relativity
45. An Earth satellite used in the Global Positioning System

(GPS) moves in a circular orbit with radius 2.66 � 107 m
and period 11 h 58 min. (a) Determine its speed. (b) The
satellite contains an oscillator producing the principal
nonmilitary GPS signal. Its frequency is 1 575.42 MHz in
the reference frame of the satellite. When it is received on
the Earth’s surface, what is the fractional change in this

41.

�� : 	� � �
m�� � 0

39.

37.

frequency due to time dilation, as described by special rela-
tivity? (c) The gravitational “blueshift” of the frequency ac-
cording to general relativity is a separate effect. It is called
a blueshift to indicate a change to a higher frequency. The
magnitude of that fractional change is given by 

where �Ug is the change in gravitational potential energy of
an object–Earth system when the object of mass m is moved
between the two points at which the signal is observed. Cal-
culate this fractional change in frequency. (d) What is the
overall fractional change in frequency? Superposed on
both of these relativistic effects is a Doppler shift that is gen-
erally much larger. It can either increase or decrease the
frequency received, depending on the motion of a particu-
lar satellite relative to a GPS receiver (Fig. P9.45).

�f

f
�

�Ug

mc 2

Section 9.10 ■ Context Connection — From Mars 
to the Stars

46. In 1963, Mercury astronaut Gordon Cooper orbited the
Earth 22 times. The press stated that for each orbit he
aged 2 millionths of a second less than he would have if he
had remained on the Earth. (a) Assuming that he was
160 km above the Earth moving at 7.82 km/s in a circular
orbit, determine the time difference between someone on
the Earth and the orbiting astronaut for the 22 orbits. You
may use the approximation 

for small x. (b) Did the press report accurate information?
Explain.

47. An astronaut wishes to visit the Andromeda galaxy, making a
one-way trip that will take 30.0 yr in the spacecraft’s frame of
reference. Assume that the galaxy is 2.00 million ly away and
that the astronaut’s speed is constant. (a) How fast must he
travel relative to the Earth? (b) What will be the kinetic en-
ergy of his 1 000-metric-ton spacecraft? (c) What is the cost
of this energy if it is purchased at a typical consumer price
for energy from the electric company of $0.130/kWh? 

1

√1 � x
 � 1 �

x
2

FIGURE P9.45 This Global Positioning System (GPS) receiver
incorporates relativistically corrected time calculations in its
analysis of signals it receives from orbiting satellites, allowing the
unit to determine its position on the Earth’s surface to within a
few meters. If these corrections were not made, the location error
would be about 1 km.
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Additional Problems
48. An electron has a speed of 0.750c. (a) Find the speed of a

proton that has the same kinetic energy as the electron.
(b) Find the speed of a proton that has the same momen-
tum as the electron.

The cosmic rays of highest energy are
protons that have kinetic energy on the order of 1013 MeV.
(a) How long would it take a proton of this energy to travel
across the Milky Way galaxy, having a diameter on the or-
der of 105 ly, as measured in the proton’s frame? (b) From
the point of view of the proton, how many kilometers
across is the galaxy?

50. Ted and Mary are playing a game of catch in frame S�,
which is moving at 0.600c with respect to frame S, while
Jim, at rest in frame S, watches the action (Fig. P9.50). Ted
throws the ball to Mary at 0.800c (according to Ted), and
their separation (measured in S�) is 1.80 1012 m. (a) Ac-
cording to Mary, how fast is the ball moving? (b) Accord-
ing to Mary, how long does it take the ball to reach her?
(c) According to Jim, how far apart are Ted and Mary, and
how fast is the ball moving? (d) According to Jim, how
long does it take the ball to reach Mary?

�

49.

x ′

v = 0.600c
S ′

Ted

1.80 × 1012 m

Mary

Jim
x

S 0.800c

FIGURE P9.50

54. A physics professor on the Earth gives an exam to her stu-
dents, who are in a spacecraft traveling at speed v relative to
the Earth. The moment the craft passes the professor, she
signals the start of the exam. She wishes her students to have
a time interval T0 (spacecraft time) to complete the exam.
Show that she should wait a time interval (Earth time) of

before sending a light signal telling them to stop. (Sugges-
tion: Remember that it takes some time for the second
light signal to travel from the professor to the students.)

A supertrain (proper length 100 m) travels at a speed of
0.950c as it passes through a tunnel (proper length 50.0 m).
As seen by a trackside observer, is the train ever completely
within the tunnel? If so, with how much space to spare?

56. Energy reaches the upper atmosphere of the Earth from
the Sun at the rate of 1.79 � 1017 W. If all this energy were
absorbed by the Earth and not re-emitted, how much
would the mass of the Earth increase in 1.00 yr?

A particle with electric charge q moves along a straight line
in a uniform electric field with a speed of u. The electric
force exerted on the charge is . The motion and the
electric field are both in the x direction. (a) Show that the
acceleration of the particle in the x direction is given by

(b) Discuss the significance of the dependence of the ac-
celeration on the speed. (c) If the particle starts from rest
at x � 0 at t � 0, how could you proceed to find the speed
of the particle and its position at time t?

58. Imagine that the entire Sun collapses to a sphere of radius
Rg such that the work required to remove a small mass m
from the surface would be equal to its rest energy mc2. This
radius is called the gravitational radius for the Sun. Find Rg .
(It is believed that the ultimate fate of very massive stars is to
collapse beyond their gravitational radii into black holes.)

59. The creation and study of new elementary particles is an
important part of contemporary physics. Especially interest-
ing is the discovery of a very massive particle. To create a
particle of mass M requires an energy Mc2. With enough
energy, an exotic particle can be created by allowing a fast-
moving particle of ordinary matter, such as a proton, to col-
lide with a similar target particle. Let us consider a perfectly
inelastic collision between two protons in which an incident
proton with mass mp, kinetic energy K, and momentum
magnitude p joins with an originally stationary target pro-
ton to form a single product particle of mass M. You might
think that the creation of a new product particle, nine
times more massive than in a previous experiment, would
require just nine times more energy for the incident pro-
ton. Unfortunately, not all the kinetic energy of the incom-
ing proton is available to create the product particle
because conservation of momentum requires that after the
collision the system as a whole still must have some kinetic
energy. Only a fraction of the energy of the incident parti-
cle is thus available to create a new particle. Determine how
the energy available for particle creation depends on the

a �
du
dt

�
qE
m

 �1 �
u 2

c 2 �
3/2

qE
:

E
:

57.

55.

T � T0 √ 1 � v/c
1 � v/c

51. The net nuclear fusion reaction inside the Sun can be writ-
ten as 4 1H : 4He � E. The rest energy of each hydrogen
atom is 938.78 MeV and the rest energy of the helium-4
atom is 3 728.4 MeV. Calculate the percentage of the start-
ing mass that is transformed to other forms of energy.

52. An object disintegrates into two fragments. One of
the fragments has mass 1.00 MeV/c2 and momentum 
1.75 MeV/c in the positive x direction. The other fragment
has mass 1.50 MeV/c2 and momentum 2.00 MeV/c in the
positive y direction. Find (a) the mass and (b) the speed of
the original object.

53. An alien spaceship traveling at 0.600c toward the Earth
launches a landing craft with an advance guard of purchas-
ing agents and physics teachers. The lander travels in the
same direction with a speed of 0.800c relative to the
mother ship. As observed on the Earth, the spaceship
is 0.200 ly from the Earth when the lander is launched.
(a) What speed do the Earth observers measure for the
approaching lander? (b) What is the distance to the Earth
at the time of lander launch as observed by the aliens?
(c) How long does it take the lander to reach the Earth as
observed by the aliens on the mother ship? (d) If the
lander has a mass of 4.00 � 105 kg, what is its kinetic en-
ergy as observed in the Earth reference frame?
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energy of the moving proton. In particular, show that the
energy available to create a product particle is given by

From this result, when the kinetic energy K of the incident
proton is large compared with its rest energy mpc2, we see
that M approaches (2mp K)1/2/c. Thus, if the energy of the
incoming proton is increased by a factor of nine, the mass
you can create increases only by a factor of three. This disap-
pointing result is the main reason that most modern acceler-
ators, such as those at CERN (in Europe), at Fermilab (near
Chicago), at SLAC (at Stanford), and at DESY (in Germany),
use colliding beams. Here the total momentum of a pair of
interacting particles can be zero. The center of mass can be
at rest after the collision, so in principle all the initial kinetic
energy can be used for particle creation, according to

where K is the total kinetic energy of two identical collid-
ing particles. Here, if K �� mc2, we have M directly propor-
tional to K, as we would desire. These machines are diffi-
cult to build and to operate, but they open new vistas in
physics.

60. An observer in a coasting spacecraft moves toward a mirror
at speed v relative to the reference frame labeled by S in
Figure P9.60. The mirror is stationary with respect to S. A
light pulse emitted by the spacecraft travels toward the mir-
ror and is reflected back to the craft. The front of the craft
is a distance d from the mirror (as measured by observers
in S) at the moment the light pulse leaves the craft. What is
the total travel time of the pulse as measured by observers
in (a) the S frame and (b) the front of the spacecraft?

Mc2 � 2mc2 � K � 2mc2 �1 �
K

2mc2 �

Mc2 � 2mpc2 √1 �
K

2mpc2

61. A rod of length L0 moving with a speed v along the hori-
zontal direction makes an angle �0 with respect to the x�
axis. (a) Show that the length of the rod as measured by
a stationary observer is L � L0[1 � (v2/c2)cos2�0]1/2.
(b) Show that the angle that the rod makes with the x axis
is given by tan � � � tan �0. These results show that the rod
is both contracted and rotated. (Take the lower end of the
rod to be at the origin of the primed coordinate system.)

62. Prepare a graph of the relativistic kinetic energy and
the classical kinetic energy, both as a function of speed, for
an object with a mass of your choice. At what speed does
the classical kinetic energy underestimate the experimen-
tal value by 1%, by 5%, and by 50%?

63. Suppose our Sun is about to explode. In an effort to es-
cape, we depart in a spacecraft at v � 0.800c and head to-
ward the star Tau Ceti, 12.0 ly away. When we reach the
midpoint of our journey from the Earth, we see our Sun
explode and, unfortunately, at the same instant we see Tau
Ceti explode as well. (a) In the spacecraft’s frame of refer-
ence, should we conclude that the two explosions occurred
simultaneously? If not, which occurred first? (b) In a frame
of reference in which the Sun and Tau Ceti are at rest, did
they explode simultaneously? If not, which exploded first?

MirrorS

0

v = 0.800c

FIGURE P9.60

ANSWERS TO QUICK QUIZZES

9.1 (d). The two events (the pulse leaving the flashlight and
the pulse hitting the far wall) take place at different loca-
tions for both observers, so neither measures the proper
time interval.

9.2 (a). The two events are the beginning and the end of the
movie, both of which take place at rest with respect to
the spacecraft crew. Therefore, the crew measures the
proper time interval of 2 h. Any observer in motion with
respect to the spacecraft, which includes the observer on
Earth, will measure a longer time interval because of
time dilation.

9.3 (a). If their on-duty time is based on clocks that remain on
the Earth, they will have larger paychecks. A shorter time
interval will have passed for the astronauts in their frame
of reference than for their employer back on the Earth.

9.4 (c). Both your body and your sleeping cabin are at rest in
your reference frame; therefore, they will have their
proper length according to you. There will be no change
in measured lengths of objects, including yourself, within
your spacecraft. 

9.5 (c), (d). Because of your motion toward the source of
the light, the light beam has a horizontal component of
velocity as measured by you. The magnitude of the vector
sum of the horizontal and vertical component vectors
must be equal to c, so the magnitude of the vertical com-
ponent must be smaller than c. When the searchlight is
aimed directly toward you, there is only a horizontal
component of the velocity of the light and you must mea-
sure a speed of c.

9.6 (a) m3 � m2 � m1; the rest energy of particle 3 is 2E,
whereas it is E for particles 1 and 2. (b) K3 � K2 � K1;
the kinetic energy is the difference between the total
energy and the rest energy. The kinetic energy is 
4E � 2E � 2E for particle 3, 3E � E � 2E for particle 2,
and 2E � E � E for particle 1. (c) u2 � u3 � u1; from
Equation 9.21, E � �ER . Solving for the square of the
particle speed u, we find that u2 � c2[1 � (ER/E)2].
Therefore, the particle with the smallest ratio of rest en-
ergy to total energy will have the largest speed. Particles 1
and 3 have the same ratio as each other, and the ratio of
particle 2 is smaller.



When an extended object, such as a wheel, rotates about
its axis, the motion cannot be analyzed by treating the
object as a particle because at any given time different

parts of the object are moving with different speeds and in differ-
ent directions. We can, however, analyze the motion by consider-
ing an extended object to be composed of a collection of moving
particles.

In dealing with a rotating object, analysis is greatly
simplified by assuming that the object is rigid. A rigid object
is one that is nondeformable; that is, it is an object in
which the relative locations of all particles of which the
object is composed remain constant. All real objects are
deformable to some extent; our rigid-object model, how-
ever, is useful in many situations in which deformation is
negligible.

Rotational Motion

C H A P T E R 10

The Malaysian pastime of gasing in-
volves the spinning of tops that can
have masses up to 5 kg. Professional
spinners can spin their tops so that
they might rotate for 1 to 2 h before
stopping. We will study the rota-
tional motion of objects such as
these tops in this chapter.

C H A P T E R  O U T L I N E
10.1 Angular Position, Speed, and Acceleration
10.2 Rotational Kinematics: The Rigid Object

Under Constant Angular Acceleration
10.3 Relations Between Rotational and

Translational Quantities
10.4 Rotational Kinetic Energy
10.5 Torque and the Vector Product
10.6 The Rigid Object in Equilibrium
10.7 The Rigid Object Under a Net Torque
10.8 Angular Momentum
10.9 Conservation of Angular Momentum
10.10 Precessional Motion of Gyroscopes
10.11 Rolling Motion of Rigid Objects
10.12 Context Connection — Turning the

Spacecraft
SUMMARY
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ANGULAR  POSITION, SPEED, AND  ACCELERATION
We began our study of translational motion in Chapter 2 by defining the terms
position, velocity, and acceleration. For example, we locate a particle in one-dimensional
space with the position variable x. In this chapter, we will insert the word translational
before our previously studied kinematic variables to distinguish them from the
analogous rotational variables that we will develop.

Let us think about a rotating object. How would we describe its position in its
rotational motion? We do so by describing its orientation relative to some fixed refer-
ence direction. For example, imagine two soldiers performing a military about-face
maneuver. They both begin by facing due north. One soldier, who has been
practicing diligently, ends up after the maneuver with his body facing due south.
The second, who has not been practicing, ends up facing southeast. We could de-
scribe their respective rotational positions after the maneuver by reporting the an-
gle through which each turned from the original direction. The first soldier turned
through 180°, but the second turned through only 135°. Thus, we can use an angle
measured from a reference direction as a measure of rotational position, or angular
position, which is our starting point for our description of rotational motion.

Figure 10.1 illustrates an overhead view of a rotating compact disc. The disc is
rotating about a fixed axis through O. The axis is perpendicular to the plane of the
figure. Let us investigate the motion of only one of the millions of “particles” mak-
ing up the disc. A particle at P is at a fixed distance r from the origin and rotates
about it in a circle of radius r. (In fact, every particle on the disc undergoes circular
motion about O.) It is convenient to represent the position of P with its polar coor-
dinates (r, �), where r is the distance from the origin to P and � is measured counter-
clockwise from some reference line shown in Figure 10.1. In this representation, the
only coordinate for the particle that changes in time is the angle � ; r remains con-
stant. As the particle moves along the circle from the reference line (� � 0) to an
angular position �, it moves through an arc of length s as in Figure 10.1b. The arc
length s is related to the angle � through the relationship

[10.1a]

[10.1b]

It is important to note the units of � in Equation 10.1b. Because � is the ratio of
an arc length and the radius of the circle, it is a pure number. Nonetheless, we com-
monly give � the artificial unit radian (rad), where

one radian is the angle subtended by an arc length equal to the radius of the arc.

Because the circumference of a circle is 2�r, it follows from Equation 10.1b that
360° corresponds to an angle of (2�r/r) rad � 2� rad. (Also note that 2� rad cor-
responds to one complete revolution.) Hence, 1 rad � 360°/2� � 57.3°. To con-
vert an angle in degrees to an angle in radians, we use � rad � 180°, so

For example, 60° equals �/3 rad, and 45° equals �/4 rad.
Because the disc in Figure 10.1 is a rigid object, as the particle moves along the

circle from the reference line every other particle on the object rotates through the
same angle �. Therefore, we can associate the angle � with the entire rigid object as
well as with an individual particle, which allows us to define the angular position of
a rigid object in its rotational motion. We choose a radial line on the object, such as

�  (rad) �
� 

180�
 �  (deg)

� �
s
r

s � r�

10.1

Reference
line

(a)

O P
r

(b)

O

P

Reference
line

r s
u

A compact disc
rotating about a fixed axis through O
perpendicular to the plane of the
figure. (a) To define angular position
for the disc, a fixed reference line is
chosen. A particle at P is located at a
radial distance r from the rotation axis
at O. (b) As the disc rotates, point P
moves through an arc length s on a
circular path of radius r. The angular
position of P is �.

FIGURE 10.1

■ The radian

REMEMBER THE RADIAN Keep in
mind that Equation 10.1b defines
an angle expressed in radians.
Don’t fall into the trap of using this
equation for angles measured in
degrees. Also, be sure to set your
calculator in radian mode when
doing problems in rotation.

� PITFALL PREVENTION 10.1
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a line connecting O and a chosen particle on the object. The angular position of
the rigid object is the angle � between this radial line on the object and the fixed
reference line in space, which is often chosen as the x axis. This process is similar to
the way we identify the position of an object in translational motion as the distance
x between the object and the reference position, which is the origin, x � 0.

As a particle on a rigid object travels from position � to position � in a time in-
terval �t as in Figure 10.2, the radial line of length r sweeps out an angle 
�� � �f � �i . This quantity �� is defined as the angular displacement of the rigid
object:

�� � �f � �i

The rate at which this angular displacement occurs can vary. If the rigid object
spins rapidly, this displacement can occur in a short time interval. If it rotates slowly,
this displacement occurs in a longer time interval. These different rotation rates
can be quantified by introducing angular speed. We define the average angular
speed as the ratio of the angular displacement of a rigid object to the time in-
terval �t during which the displacement occurs:

[10.2]

In analogy to linear speed, the instantaneous angular speed � is defined as the
limit of the ratio ��/�t as �t approaches zero:

[10.3]

Angular speed has units of rad/s (or s�1 because radians are not dimensional).
Let us adopt the convention that the fixed axis of rotation for an object is the z axis,
which is directed out of the page in Figures 10.1 and 10.2. We shall take � to be
positive when � is increasing (counterclockwise motion in Figs. 10.1 and 10.2) and
negative when � is decreasing (clockwise motion).

If the instantaneous angular speed of a particle changes from �i to �f in the
time interval �t, the particle has an angular acceleration. The average angular
acceleration of a particle moving in a circular path is defined as the ratio of the
change in the angular speed to the time interval �t :

[10.4]

In analogy to linear acceleration, the instantaneous angular acceleration is de-
fined as the limit of the ratio ��/�t as �t approaches zero:

[10.5]

Angular acceleration has units of rad/s2 or s�2.
As pointed out in the introduction, we will focus much of our attention in this

chapter on rigid objects. Approximating a real object as a rigid object is a simplifi-
cation model, similar to the particle model, which we call the rigid object model. If
we were to imagine a rotating block of gelatin, which is not a rigid object, the
motion is very complicated because of the combination of rotation of the particles

� � lim
�t : 0

 
�� 
�t

�
d� 
dt

�avg � 
�f � �i

tf � ti
�

�� 

�t

�avg

� � lim
�t : 0

 
�� 
�t

�
d� 
dt

�avg � 
�f � �i

tf � ti
�

�� 
�t
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■ Average angular speed

■ Instantaneous angular speed

■ Average angular acceleration

■ Instantaneous angular 
acceleration

x

y

�, t f

�, ti
r

i

O

θ

fθ

A particle on a ro-
tating rigid object moves from � to �
along the arc of a circle. In the time
interval �t � tf � t i , the radial line 
of length r sweeps out an angle 
�� � �f � � i .

FIGURE 10.2
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and the movement of particles within the deformable block relative to one another.
Another example of a nonrigid object is our own Sun; the region of the Sun near
the solar equator is moving with a higher angular speed than the region near the
poles. We shall not analyze such messy problems, however. Instead, our analyses will
address only rigid objects. As we investigate rotational motion, we shall develop a
number of analysis models for rigid objects that have analogs in our analysis models
for particles.

With our simplification model of a rigid object, we can make a statement about
the various particles in the rigid object: When a rigid object is rotating about a fixed
axis, every particle on the object rotates about that axis through the same angle in a
given time interval and has the same angular speed and the same angular accelera-
tion. That is, the quantities �, �, and � characterize the rotational motion of the
entire rigid object as well as individual particles in the object. Using these quanti-
ties, we can greatly simplify the analysis of rigid-object rotation.

The angular position �, angular speed �, and angular acceleration � of a
rigid object are analogous to translational position x, translational speed v, and
translational acceleration a, respectively, for the corresponding one-dimensional
motion of a particle discussed in Chapter 2. The variables �, �, and � differ di-
mensionally from the variables x, v, and a only by a length factor, as we shall see
shortly.

We have not associated any direction with the angular speed and angular accel-
eration.1 Strictly speaking, these variables are the magnitudes of the angular veloc-
ity and angular acceleration vectors and . Because we are considering rotation
about a fixed axis, we can indicate the directions of these vectors by assigning a pos-
itive or negative sign to � and �, as discussed for � after Equation 10.3. For rotation
about a fixed axis, the only direction in space that uniquely specifies the rotational
motion is the direction along the axis, but we still must specify one of the two direc-
tions along this axis as positive.

The direction of is along the axis of rotation, which is the z axis in Figure
10.1. By convention, we take the direction of to be out of the plane of the dia-
gram when the rotation is counterclockwise and into the plane of the diagram when
the rotation is clockwise. To further illustrate this convention, it is convenient to use
the right-hand rule illustrated by Figure 10.3. The four fingers of the right hand are
wrapped in the direction of the rotation. The extended right thumb points in the
direction of .

The direction of follows from its vector definition as d /dt. For rotation
about a fixed axis, the direction of is the same as if the angular speed (the
magnitude of ) is increasing in time and is antiparallel to if the angular speed
is decreasing in time.

The full vector treatment of rotational motion is beyond the scope of this book
and not necessary for our level of understanding, so we will not use vector notation
for most of this chapter.

� :� :
� :� :

� :� :
� :

� :
� :

� :� :

A rigid object is rotating in a counterclockwise sense around a fixed
axis. Each of the following pairs of quantities represents an initial angular position and a
final angular position of the rigid object. (i) Which of the sets can only occur if the rigid
object rotates through more than 180°? (a) 3 rad, 6 rad (b) �1 rad, 1 rad (c) 1 rad,
5 rad (ii) If each of the displacements occurs during the same time interval, which
choice represents the lowest average angular speed?

QUICK QUIZ 10.1

ω

ω

The orange disk
rotates in the directions indicated.
The right-hand rule determines the
direction of the angular velocity
vector.

FIGURE 10.3

1Although we do not verify it here, the instantaneous angular velocity and instantaneous angular accel-
eration are vector quantities, but the corresponding average values are not because angular displace-
ments do not add as vector quantities for finite rotations.

SPECIFY YOUR AXIS In solving
rotation problems, you will need to
specify an axis of rotation, a feature
we did not see in our study of
translational motion. The choice is
arbitrary, but once you make it, you
need to maintain that choice consis-
tently throughout the problem. In
some problems, a natural axis is
suggested by the physical situation,
such as the center of an automobile
wheel. In other problems, the
choice may not be obvious, and you
will need to choose an axis.

� PITFALL PREVENTION 10.2
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ROTATIONAL  KINEMATICS: THE  RIGID  OBJECT
UNDER  CONSTANT  ANGULAR  ACCELERATION

In our study of one-dimensional motion, we found that the simplest accelerated
motion to analyze is motion under constant translational acceleration (Chapter 2).
Likewise, for rotational motion about a fixed axis, the simplest accelerated motion
to analyze is motion of a rigid object under constant angular acceleration. We will
identify this situation as an analysis model that can be used to solve a wide variety of
rotational problems.

If we write Equation 10.5 in the form d� � � dt and let � � �i at ti � 0, we can
integrate this expression directly to find the final angular speed �f of the rigid ob-
ject as a function of time:

[10.6]

Likewise, if we rewrite Equation 10.3 and substitute Equation 10.6, we can integrate
once more (with � � �i at ti � 0) to find the angular position of the rigid object as
a function of time:

[10.7]

If we eliminate t from Equations 10.6 and 10.7, we obtain

[10.8]

If we eliminate �, we find

[10.9]

Notice that these kinematic expressions for rotational motion of a rigid object un-
der constant angular acceleration are of the same mathematical form as those for
translational motion of a particle under constant acceleration, with the substitu-
tions x : �, v : �, and a : �. The similarities between rotational and transla-
tional kinematic equations are shown in Table 10.1.

(for constant �)�f � �i 	 1
2(�i 	 �f )t

(for constant �)�f 

2 � �i 

2 	 2�(�f � �i)

(for constant �)�f � �i 	 �it 	 1
2 

�t2

(for constant �)  �f � �i 	 �t

10.2

Consider again the pairs of angular positions for the rigid object in
Quick Quiz 10.1. If the object starts from rest at the initial angular position, moves coun-
terclockwise with constant angular acceleration, and arrives at the final angular position
with the same angular speed in all three cases, for which choice is the angular accelera-
tion the highest?

QUICK QUIZ 10.2

A Comparison of Equations for
Rotational and Translational Motion:
Kinematic Equations

TABLE 10.1

Rotational Motion About a Translational Motion
Fixed Axis with � � Constant with a � Constant
Variables: �f and �f Variables: xf and vf

�f � �i 	 �t vf � vi 	 at

vf
2 � vi

2 	 2a(xf � xi)�f
2 � �i

2 	 2� (�f � �i)

xf � xi 	 1
2(vi 	 vf )t�f � �i 	 1

2(�i 	 �f )t

x f � xi 	 vit 	 1
2at2�f � �i 	 �it 	 1

2�t2

JUST LIKE TRANSLATION? Table 10.1
suggests that rotational kinematics
is just like translational kinematics.
That is almost true, but keep in
mind two differences that you must
address. (1) In rotational kinemat-
ics, as suggested in Pitfall Preven-
tion 10.2, you need to specify a rota-
tion axis. (2) In rotational motion,
the object keeps returning to its
original orientation; therefore, you
may be asked for the number of
revolutions made by a rigid object,
a concept that has no meaning in
translational motion.

� PITFALL PREVENTION 10.3
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RELATIONS  BETWEEN  ROTATIONAL  AND
TRANSLATIONAL  QUANTITIES

In this section, we shall derive some useful relations between the angular speed and
angular acceleration of a single particle on a rotating rigid object and its transla-
tional speed and translational acceleration. Keep in mind that when a rigid object
rotates about a fixed axis, every particle of the object moves in a circle whose center
is on the axis of rotation.

Consider a particle on a rotating rigid object, moving in a circle of radius r
about the z axis, as in Active Figure 10.4. Because the particle moves along a circu-
lar path, its translational velocity vector is always tangent to the path; hence, we
often call this quantity tangential velocity. The magnitude of the tangential velocity
of the particle is, by definition, the tangential speed, given by v � ds/dt, where s is
the distance traveled by the particle along the circular path. Recalling from Equa-
tion 10.1a that s � r� and noting that r is a constant, we have

[10.10]

That is, the tangential speed of the particle equals the distance of the particle from
the axis of rotation multiplied by the particle’s angular speed.

We can relate the angular acceleration of the particle to its tangential accelera-
tion at —which is the component of its acceleration tangent to the path of
motion—by taking the time derivative of v :

[10.11]

That is, the tangential component of the translational acceleration of a particle
undergoing circular motion equals the distance of the particle from the axis of
rotation multiplied by the angular acceleration.

at � r�

at �
dv
dt

� r 
d� 
dt

v � r� 

v �
ds
dt

� r 
d� 
dt

v:

10.3

� 

which is equivalent to 11.0 rad/(2� rad/rev) � 1.75 rev.

What is the angular speed of the wheel at t � 2.00 s?

Solution We use Equation 10.6:

�

We could also obtain this result using Equation 10.8
and the results of part A. Try it!

9.00 rad/s

�f � �i 	 �t � 2.00 rad/s 	 (3.50 rad/s2)(2.00 s)

B

11.0 rad

 � 0 	 (2.00 rad/s)(2.00 s)	 1
2(3.50 rad/s2)(2.00 s)2

�f � �i 	 �it 	 1
2�t2

Rotating WheelEXAMPLE 10.1
A wheel rotates with a constant angular acceleration of
3.50 rad/s2.

If the angular speed of the wheel is 2.00 rad/s at 
t � 0, through what angle does the wheel rotate between
t � 0 and t � 2.00 s?

Solution We assume that the wheel is perfectly rigid,
so we can use the rigid object model. Because the an-
gular acceleration in the problem is given as constant,
we model the wheel as a rigid object under constant
angular acceleration and use the rotational kinematic
equations. We use Equation 10.7, setting �i � 0, and
obtain

A

y

P

x
O

v

r
u

s

As a rigid object rotates about the
fixed axis through O, the point P
has a tangential velocity that is
always tangent to the circular path
of radius r.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 10.4 to
move point P and see the change
in the tangential velocity.

v:

ACTIVE FIGURE 10.4

www.pop4e.com
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In Chapter 3, we found that a particle rotating in a circular path undergoes a
centripetal, or radial, acceleration of magnitude v2/r directed toward the center of
rotation (Fig. 10.5). Because v � r�, we can express the centripetal acceleration of
the particle in terms of the angular speed as

[10.12]

The total translational acceleration of the particle is . The magnitude
of the total translational acceleration of the particle is therefore

[10.13]a � √at 

2 	 ar 

2 � √r 2�2 	 r 2�4 � r √�2 	 �4

a: � a:t 	 a:r

ac �
v2

r
� r�2

x

y

O

ar

at

P
a

As a rigid object
rotates about a fixed axis through O, a
particle at point P experiences a tan-
gential component at and a radial
component ar of translational accel-
eration. The total translational accel-
eration of this particle is ,
where .a:r � � ac r̂

a: � a:t 	 a:r

FIGURE 10.5

Benjamin and Torrey are riding on a merry-go-round. Benjamin
rides on a horse at the outer rim of the circular platform, twice as far from the center of
the circular platform as Torrey, who rides on an inner horse. (i) When the merry-
go-round is rotating at a constant angular speed, what is Benjamin’s angular speed?
(a) twice Torrey’s (b) the same as Torrey’s (c) half of Torrey’s (d) impossible to
determine. (ii) When the merry-go-round is rotating at a constant angular speed, what
is Benjamin’s tangential speed from the same list of choices?

QUICK QUIZ 10.3

■ Thinking Physics 10.1
A phonograph record (LP, for long-playing) rotates at a constant angular speed. A
compact disc (CD) rotates so that the surface sweeps past the laser at a constant
tangential speed. Consider two circular grooves of information on an LP, one
near the outer edge and one near the inner edge. Suppose the outer groove
“contains” 1.8 s of music. Does the inner groove also contain 1.8 s of music? And
for the CD, do the inner and outer “grooves” contain the same time interval of
music?

Reasoning On the LP the inner and outer grooves must both rotate once in the
same time interval. Therefore, each groove, regardless of where it is on the record,
contains the same time interval of information. Of course, on the inner grooves,
this same information must be compressed into a smaller circumference. On a CD,
the constant tangential speed requires that no such compression occur; the digital
pits representing the information are spaced uniformly everywhere on the surface.
Therefore, there is more information in an outer “groove,” because of its larger cir-
cumference and, as a result, a longer time interval of music than in the inner
“groove.” ■

■ Thinking Physics 10.2
The launch area for the European Space Agency is not in Europe, but rather in
South America. Why?

Reasoning Placing a satellite in Earth orbit requires providing a large tangential
speed to the satellite, which is the task of the rocket propulsion system. Anything
that reduces the requirements on the propulsion system is a welcome contribu-
tion. The surface of the Earth is already traveling toward the east at a high speed
due to the rotation of the Earth. Therefore, if rockets are launched toward the
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east, the rotation of the Earth provides some initial tangential speed, reducing
somewhat the requirements on the propulsion system. If rockets were launched
from Europe, which is at a relatively large latitude, the contribution of the Earth’s
rotation is relatively small because the distance between Europe and the rotation
axis of the Earth is relatively small. The ideal place for launching is at the equa-
tor, which is as far as one can be from the rotation axis of the Earth and still be
on the surface of the Earth. This location results in the largest possible tangential
speed due to the Earth’s rotation. The European Space Agency exploits this ad-
vantage by launching from French Guiana, which is only a few degrees north of
the equator.

A second advantage of this location is that launching toward the east takes
the spacecraft over water. In the event of an accident or a failure, the wreckage
will fall into the ocean rather than into populated areas as it would if launched
to the east from Europe. Similarly, the United States launches spacecraft from
Florida rather than California, despite the more favorable weather conditions in
California. ■

ROTATIONAL  KINETIC  ENERGY
Imagine that you begin a workout session on a stationary exercise bicycle. You apply
a force with your feet on the pedals, moving them through a displacement; as a
result, you have done work. The result of this work is the spinning of the wheel.
This rotational motion represents kinetic energy because an object with mass is in
motion. In this section, we will investigate this kinetic energy for rotating objects. In
a later section, we will consider the work done in rotational motion and develop a
rotational version of the work–kinetic energy theorem.

Let us consider a rigid object as a collection of particles and assume that it ro-
tates about a fixed z axis with an angular speed � (Fig. 10.6). Each particle of the
object is in motion and therefore has some kinetic energy, determined by its mass
and tangential speed. If the mass of the ith particle is mi and its tangential speed is
vi , the kinetic energy of this particle is

We can express the total kinetic energy KR of the rotating rigid object as the sum
of the kinetic energies of the individual particles. Therefore, incorporating Equa-
tion 10.10,

where we have factored �2 from the sum because it is common to every particle
in the object. The quantity in parentheses is called the moment of inertia I of the
rigid object:

[10.14]

Therefore, we can express the kinetic energy of the rotating rigid object around the
z axis as

I � �
i

 mi ri 

2

 � 1
2 ��

i
miri 

2�  � 2

KR � �
i

 Ki � � 
i

1
2mivi 

2 � 1
2 �

i
 miri 

2� 2

Ki � 1
2mivi 

2

10.4

vi

mi

ri

z axis

O

v

A rigid object
rotating about the z axis with angular
speed �. The kinetic energy of the
particle of mass mi is . The ki-
netic energy of the rigid object is
called its rotational kinetic energy.

1
2mi v 2

i

FIGURE 10.6

■ Moment of inertia for a system
of particles

NO SINGLE MOMENT OF INERTIA We
have pointed out that moment of
inertia is analogous to mass, but
there is one major difference. Mass
is an inherent property of an object
and has a single value. The moment
of inertia of an object depends on
your choice of rotation axis; there-
fore, an object has no single value
of the moment of inertia. An object
does have a minimum value of the
moment of inertia, which is that
calculated around an axis passing
through the center of mass of the
object.

� PITFALL PREVENTION 10.4
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[10.15]

From the definition of moment of inertia, we see that it has dimensions of 
ML2 (kg ·m2 in SI units). The moment of inertia is a measure of an object’s resis-
tance to change in its angular speed. Therefore, it plays a role in rotational motion
identical to the role mass plays in translational motion. Notice that moment of
inertia depends not only on the mass of the rigid object but also on how the mass is
distributed around the rotation axis.

Although we shall commonly refer to the quantity as the rotational
kinetic energy, it is not a new form of energy. It is ordinary kinetic energy because
it was derived from a sum over individual kinetic energies of the particles con-
tained in the rigid object. It is a new role for kinetic energy for us, however,
because we have only considered kinetic energy associated with translation
through space so far. On the storage side of the continuity equation for energy
(see Eq. 6.20), we should now consider that the kinetic energy term should be the
sum of the changes in both translational and rotational kinetic energy. Therefore,
in energy versions of system models, we should keep in mind the possibility of
rotational kinetic energy.

Equation 10.14 gives the moment of inertia of a collection of particles. For an
extended, continuous object, we can calculate the moment of inertia by dividing
the object into many small elements with mass �mi. Then, the moment of inertia is
approximately where ri is the perpendicular distance of the element
of mass �mi from the rotation axis. Now we take the limit as �mi : 0, in which case
the sum becomes an integral:

[10.16]

It is usually easier to calculate moments of inertia in terms of the volume of the
elements rather than their mass, and we can easily make this change by using
Equation 1.1, 
 � m/V, where 
 is the density of the object and V is its volume. We
can express the mass of an element by writing Equation 1.1 in differential form, 
dm � 
 dV. Using this form, Equation 10.16 becomes

[10.17]

If the object is homogenous, the density 
 is constant and the integral can
be evaluated for a given geometry. If 
 is not uniform over the volume of the
object, its variation with position must be known in order to perform the inte-
gration.

For symmetric objects, the moment of inertia can be expressed in terms of the
total mass of the object and one or more dimensions of the object. Table 10.2 shows
the moments of inertia of various common symmetric objects. 

I � � 
r 2 dV

I � lim
�mi : 0

 �
i

ri 

2 �mi � �r 2 dm

I � �ri 

2 �mi,

1
2I� 2

KR � 1
2I� 2 ■ Kinetic energy of a rotating rigid

object

A section of hollow pipe and a solid cylinder have the same radius,
mass, and length. They both rotate about their long central axes with the same angular
speed. Which object has the higher rotational kinetic energy? (a) the pipe (b) the
solid cylinder (c) they have the same rotational kinetic energy (d) impossible to
determine

QUICK QUIZ 10.4

■ Moment of inertia for an
extended, continuous object
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Moments of Inertia of Homogeneous Rigid Objects
With Different Geometries

TABLE 10.2

Hoop or thin
cylindrical shell
I CM = MR2 R

Solid cylinder
or disk

R
I CM = 1

2
MR2

Long thin rod
with rotation axis
through center

I CM = 1
12

ML2 L

R

Solid sphere

I CM = 2
5

MR 2

Hollow cylinder

R2

Long thin
rod with
rotation axis
through end

L

Thin spherical
shell

I CM = 2
3

MR 

2

R1I CM = 1
2

M(R1
2 + R2

2)

R

Rectangular plate

I CM = 1
12

M(a2 + b2)

b

a

I = 1
3

ML2

�

A typical angular speed of a molecule is 
4.60 � 1012 rad/s. If the oxygen molecule is rotating
with this angular speed about the z axis, what is its
rotational kinetic energy?

Solution We use Equation 10.15:

� 2.06 � 10�21 J

 � 1
2(1.95 � 10�46 kg � m2)(4.60 � 1012 rad/s)2

KR � 1
2I� 2

B

1.95 � 10�46 kg � m2

 �
(2.66 � 10�26 kg)(1.21 � 10�10 m)2

2

The Oxygen MoleculeEXAMPLE 10.2
Consider the diatomic oxygen molecule O2, which is
rotating in the xy plane about the z axis passing
through its center, perpendicular to its length. The
mass of each oxygen atom is 2.66 � 10�26 kg, and at
room temperature, the average separation between the
two oxygen atoms is d � 1.21 � 10�10 m.

Calculate the moment of inertia of the molecule
about the z axis.

Solution We model the molecule as a rigid object, con-
sisting of two particles (the two oxygen atoms), in rota-
tion. Because the distance of each particle from the z
axis is d/2, the moment of inertia about the z axis is

I � �
i

 mi ri 

2 � m � d
2 �

2
� m � d

2 �
2

�
md 2

2

A



ROTATIONAL KINETIC ENERGY ❚ 301

y g p pp

the chosen axis of rotation; hence, they have no kinetic
energy.

Suppose the system rotates in the xy plane about
an axis (the z axis) through O (Fig. 10.7b). Calculate
the moment of inertia about the z axis and the rota-
tional energy about this axis.

Solution Because ri in Equation 10.14 is the perpendic-
ular distance to the axis of rotation, we have

Comparing the results for parts A and B, we see
explicitly that the moment of inertia and therefore
the rotational energy associated with a given angular
speed depend on the axis of rotation. In part B,
we expect the result to include all masses and
distances because all four spheres are in motion for
rotation in the xy plane. Furthermore, that the
rotational energy in part A is smaller than in part B
indicates that there is less resistance to changes in ro-
tational motion about the y axis than about the z axis.

(Ma2 � mb 2)� 2KR � 1
2Iz� 2 � 1

2(2Ma2 � 2mb2)� 2 �

2Ma2 � 2mb2Iz � �
i
miri 

2 � Ma2 �Ma2 � mb2 �mb2 �

B

Four Rotating ObjectsEXAMPLE 10.3
Four small spheres are fastened to the corners of a frame
of negligible mass lying in the xy plane (Fig. 10.7).

If the rotation of the system occurs about the y
axis, as in Figure 10.7a, with an angular speed �, find
the moment of inertia Iy about the y axis and the rota-
tional kinetic energy about this axis.

Solution Because the spheres are small, we will model
them as particles. First, note that the two spheres of
mass m that lie on the y axis do not contribute to Iy. Be-
cause they are modeled as particles, ri � 0 for these
spheres about this axis. Applying Equation 10.14, we
have for the two spheres on the x axis

Therefore, the rotational kinetic energy about the y
axis is

That the spheres of mass m do not enter into this
result makes sense because they have no motion about

Ma2�2KR � 1
2Iy�

2 � 1
2(2Ma2)�2 �

Iy � �
i

 miri 

2 � Ma2 � Ma2 � 2Ma2

A

m

m

M

M

O

a

a

b

b

(b)

y

m

m

M M
a a

b

b

x

(a)

FIGURE 10.7 (Example 10.3) Four spheres form an unusual baton. (a) The baton is
rotated about the y axis. (b) The baton is rotated about the z axis.
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Solution The integral in Equation 10.17 can be evalu-
ated relatively simply by dividing the cylinder into many
cylindrical shells of radius r, thickness dr, and length L as
shown in Figure 10.8. The volume dV of a shell is its cross-
sectional area multiplied by its length: dV � (dA)L �
(2�r dr)L. Equation 10.17 gives the moment of inertia:

The volume of the entire cylinder is �R2L, so the den-
sity is � � M/V � M/�R2L. Substituting this value of �
in the above result gives

Note that this result, which appears in Table 10.2, does
not depend on L. Therefore, it applies equally well to a
long cylinder and a flat disk.

1
2MR2I � 1

2� � M
�R2L �LR4 �

 � 2��L �R

0
 r 3 dr � 1

2��LR 4

I � � �r 2 dV � �R

0
 �r 2(2�rL) dr

Moment of Inertia of a Uniform Solid CylinderEXAMPLE 10.4
A uniform solid cylinder has a radius R, mass M, and
length L. Calculate its moment of inertia about its cen-
tral axis (the z axis shown in Fig. 10.8).

Rotating RodEXAMPLE 10.5INTERACTIVE

rotational kinetic energy , where I is the moment
of inertia about the pivot. 

Because (see Table 10.2) for a geometric
model of a long, thin rod and because mechanical
energy of the isolated system is conserved, we have

Determine the tangential speed of the center of
mass and the tangential speed of the lowest point on
the rod in the vertical position.

Solution Using Equation 10.10, we have

The lowest point on the rod, because it is twice as far
from the pivot as the center of mass, has a tangential
speed equal to .

By logging into PhysicsNow at www.pop4e.com
and going to Interactive Example 10.5 you can alter the mass and
length of the rod and see the effect on the velocity at the lowest point.

√3gL2vCM �

1
2√3gLvCM � r� �

L
2

 � �

B

√ 3g
L

� �

0 � 0 � � 
1
2MgL � 1

2I� 2 � � 
1
2MgL � 1

2(1
3ML2)� 2

Ki � Ui � Kf � Uf

I � 1
3ML2

1
2I� 2A uniform rod of length L and mass M is free to rotate

on a frictionless pin through one end (Fig. 10.9). The
rod is released from rest in the horizontal position.

What is the angular speed of the rod at its lowest
position?

Solution We consider the rod and the Earth as an iso-
lated system and use the energy version of the isolated
system model. Consider the mechanical energy of the
system. When the rod is horizontal, as in Figure 10.9, it
has no rotational kinetic energy. Let us also define this
position of the rod as representing the zero of gravita-
tional potential energy of the system. When the rod’s
center of mass is at the lowest position, the potential
energy of the system is �MgL/2 and the rod has

A

L

dr

z

r

R

(Example 10.4) The geometry for calculating the
moment of inertia about the central axis of a 
uniform solid cylinder.

FIGURE 10.8

L

Pivot

M g

(Interactive Example 10.5) A uniform rod rotates
freely under the influence of gravity around a
pivot at the left end.

FIGURE 10.9

www.pop4e.com
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TORQUE  AND  THE  VECTOR  PRODUCT
Recall our stationary exercise bicycle from the preceding section. We caused the ro-
tational motion of the wheel by applying forces to the pedals. When a net force is
exerted on a rigid object pivoted about some axis and the line of action2 of the
force does not pass through the pivot, the object tends to rotate about that axis. For
example, when you push on a door, the door rotates about an axis through the
hinges. The tendency of a force to rotate an object about some axis is measured by
a vector quantity called torque. Torque is the cause of changes in rotational motion
and is analogous to force, which causes changes in translational motion. Consider
the wrench pivoted about the axis through O in Figure 10.10. The applied force 
generally can act at an angle � with respect to the position vector locating the
point of application of the force. We define the torque � resulting from the force 
with the expression3

� � rF sin � [10.18]

It is very important to recognize that torque is defined only when a reference
axis is specified, from which the distance r is determined. We can interpret Equa-
tion 10.18 in two different ways. Looking at the force components in Figure 10.10,
we see that the component F cos � parallel to will not cause a rotation of the
wrench around the pivot point because its line of action passes right through the
pivot point. Similarly, you cannot open a door by pushing on the hinges! There-
fore, only the perpendicular component F sin � causes a rotation of the wrench
about the pivot. In this case, we can write Equation 10.18 as

� � r(F sin �)

so that the torque is the product of the distance to the point of application of the
force and the perpendicular component of the force. In some problems, this
method is the easiest way to interpret the calculation of the torque.

The second way to interpret Equation 10.18 is to associate the sine function with
the distance r so that we can write

� � F(r sin �) � Fd

The quantity d � r sin �, called the moment arm (or lever arm) of the force ,
represents the perpendicular distance from the rotation axis to the line of action
of . In some problems, this approach to the calculation of the torque is easier
than that of resolving the force into components.

If two or more forces are acting on a rigid object, as in Active Figure 10.11, each
has a tendency to produce a rotation about the pivot at O. For example, if the ob-
ject is initially at rest, tends to rotate the object clockwise and tends to rotate
the object counterclockwise. We shall use the convention that the sign of the torque
resulting from a force is positive if its turning tendency is counterclockwise around
the rotation axis and negative if its turning tendency is clockwise. For example, in
Active Figure 10.11, the torque resulting from , which has a moment arm of
d1, is positive and equal to � F1d1; the torque from is negative and equal to 
� F2d2. Hence, the net torque acting on the rigid object about an axis through O is

� net � � 1 � � 2 � F1d1 � F2d2

F
:

2

F
:

1

F
:

1F
:

2

F
:

F
:

r:

F
:

r:
F
:

10.5

2 The line of action of a force is an imaginary line colinear with the force vector and extending to infin-
ity in both directions.
3In general, torque is a vector. For rotation about a fixed axis, however, we will use italic, nonbold nota-
tion and specify the direction with a positive or a negative sign as we did for angular speed and acceler-
ation in Section 10.1. We will treat the vector nature of torque briefly in a short while.

r

F sin
F

F cos

d

O
Line of
action

φ

φ

φ

φ
r

A force is
applied to a wrench in an effort to
loosen a bolt. The force has a greater
rotating tendency about O as F
increases and as the moment arm d
increases. The component F sin �
tends to rotate the system about O.

F
:FIGURE 10.10

O

d2

d1

F2

F1

The force tends to rotate the
object counterclockwise about an
axis through O, and tends to
rotate the object clockwise.

Change the
magnitudes, directions, and points
of application of forces and 
to see how the object accelerates
under the action of the two forces
by logging into PhysicsNow at
www.pop4e.com and going to
Active Figure 10.11.

F
:

2F
:

1

F
:

2

F
:

1

ACTIVE FIGURE 10.11

TORQUE DEPENDS ON YOUR CHOICE

Like moment of inertia, torque has
no unique value. Its value depends
on your choice of rotation axis.

� PITFALL PREVENTION 10.5

www.pop4e.com
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From the definition of torque, we see that the rotating tendency increases as F
increases and as d increases. For example, we cause more rotation of a door if 
(a) we push harder or (b) we push at the doorknob rather than at a point close to
the hinges. Torque should not be confused with force. Torque depends on force, but
it also depends on where the force is applied. Torque has units of force times length, or
newton·meters (N·m) in SI units.4

So far, we have not discussed the vector nature of torque aside from assigning a
positive or negative value to �. Consider a force acting on a particle of a rigid ob-
ject located at the vector position (Active Fig. 10.12). The magnitude of the torque
due to this force relative to an axis through the origin is , where � is the
angle between and . The axis about which would tend to produce rotation of
the object is perpendicular to the plane formed by and . If the force lies in the
xy plane, as in Active Figure 10.12, the torque is represented by a vector parallel to
the z axis. The force in Active Figure 10.12 creates a torque that tends to rotate the
object counterclockwise when we are looking down the z axis. We define the
direction of torque such that the vector is in the positive z direction (i.e., coming
toward your eyes). If we reverse the direction of in Active Figure 10.12, is in the
negative z direction. With this choice, the torque vector can be defined to be equal
to the vector product, or cross product, of and :

[10.19]

We now give a formal definition of the vector product, first introduced in Sec-
tion 1.8. Given any two vectors and , the vector product is defined as a
third vector , the magnitude of which is AB sin �, where � is the angle between 
and :

[10.20]

[10.21]

Note that the quantity AB sin � is equal to the area of the parallelogram formed by 
and , as shown in Figure 10.13. The direction of is perpendicular to

the plane formed by and and is determined by the right-hand rule illustrated
in Figure 10.13. The four fingers of the right hand are pointed along and then
“wrapped” into through the angle �. The direction of the upright thumb is the
direction of . Because of the notation, is often read “ cross ,”
hence the term cross product.
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4In Chapter 6, we saw the product of newtons and meters when we defined work and called this prod-
uct a joule. We do not use this term here because the joule is only to be used when discussing energy.
For torque, the unit is simply the newton � meter, or N � m.

O

r

P

φ
x

F

y

τ  =  r  �  F

z

r�

The torque vector lies in a direction
perpendicular to the plane formed by
the position vector and the applied
force vector .

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 10.12 you can
move point P and change the force
vector to see the effect on the
torque vector.

F
:

F
:

r:

� :

ACTIVE FIGURE 10.12

■ Definition of torque using the
cross product

Right-hand rule

– C  =  B  ×  A

C  =  A  ×  B

A

θ

B

The vector product

is a third vector having a
magnitude AB sin � equal to the area
of the parallelogram shown. The 
vector is perpendicular to the plane
formed by and , and its direction is
determined by the right-hand rule.

B
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A
:

C
:

C
:

A
:

� B
:

FIGURE 10.13
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Some properties of the vector product follow from its definition:

• Unlike the case of the scalar product, the vector product is not commutative; in
fact,

[10.22]

Therefore, if you change the order of the vector product, you must change
the sign. One can easily verify this relation with the right-hand rule (see Fig.
10.13).

• If is parallel to (� � 0° or 180°), then ; therefore, it follows 
that .

• If is perpendicular to , then . It is left to Problem 10.25 to
show, from Equations 10.20 and 10.21 and the definition of unit vectors, that
the vector products of the unit vectors , , and obey the following expres-
sions:

[10.23]

Signs are interchangeable. For example, .î �  (� ĵ) � � î �  ĵ � � k̂

k̂ �  î � � î � k̂ � ĵ

ĵ �  k̂ � � k̂ � ĵ � î

î �  ĵ � � ĵ � î � k̂ 

î �  î � ĵ � ĵ � k̂ � k̂ � 0

k̂ĵî

� A
:

� B
:

� � ABB
:

A
:

A
:

� A
:

� 0
A
:

� B
:

� 0B
:

A
:

A
:

� B
:

� � B
:

� A
:

If you are trying to loosen a stubborn screw from a piece of wood with
a screwdriver and fail, should you find a screwdriver for which the handle is (a) longer or
(b) fatter? If you are trying to loosen a stubborn bolt from a piece of metal with a wrench
and fail, should you find a wrench for which the handle is (c) longer or (d) fatter?

QUICK QUIZ 10.5

Solution We substitute numerical values in the result
from part A:

Because the net torque is negative, the cylinder rotates
from rest.clockwise

� 2.0 N � m� net �(6.0 N)(0.50 m) �(5.0 N)(1.0 m)�

The Net Torque on a CylinderEXAMPLE 10.6
A one-piece cylinder is shaped as in Figure 10.14, with a
core section protruding from the larger drum. The
cylinder is free to rotate around the central axis shown
in the drawing. A rope wrapped around the drum, of
radius R1, exerts a force to the right on the cylinder.
A rope wrapped around the core, of radius R2, exerts a
force downward on the cylinder.

What is the net torque acting on the cylinder about
the rotation axis (which is the z axis in Fig. 10.14)?

Solution The torque due to is �R1T1. It is negative
because it tends to produce a clockwise rotation from
the point of view in Figure 10.14. The torque due to 
is � R2T2 and is positive because it tends to produce a
counterclockwise rotation. Therefore, the net torque
about the rotation axis is

Suppose T1 � 5.0 N, R1 � 1.0 m, T2 � 6.0 N, and
R 2 � 0.50 m. What is the net torque about the rotation
axis and which way does the cylinder rotate if it starts
from rest?

B

R 2T2 � R1T1� net � � 1 � � 2 �

T
:

2

T
:

1

A

T
:

2

T
:

1

z

x

y

R 1

R 2

O

T1

T2

(Example 10.6) A solid cylinder pivoted about the
z axis through O. The moment arm of is R1,
and the moment arm of is R2.T

:
2

T
:

1

FIGURE 10.14
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(We have omitted the terms containing and 
because, as Equation 10.23 shows, they are equal to
zero.)

We can show that , because

Therefore, .A
:

� B
:

� � B
:

� A
:

� 3k̂ � 4k̂ � � 7k̂ � � î � 3 ĵ 	 2 ĵ � 2 î �

B
:

� A
:

� (� î 	 2 ĵ) � (2 î 	 3 ĵ)

A
:

� B
:

� � B
:

� A
:

ĵ � ĵî �  î

The Vector ProductEXAMPLE 10.7
Two vectors lying in the xy plane are given by the
equations and . Find 
and verify explicitly that .

Solution Using Equation 10.23 for the vector product
of unit vectors gives

4k̂ 	 3k̂ � 7k̂ � 2 î � 2 ĵ 	 3 ĵ � (� î) �

A
:

� B
:

� (2 î 	 3 ĵ) � (� î 	 2 ĵ)

A
:

� B
:

� � B
:

� A
:

A
:

� B
:

B
:

� � î 	 2 ĵA
:

� 2 î 	 3 ĵ

THE  RIGID  OBJECT  IN  EQUILIBRIUM
We have defined a rigid object and have discussed torque as the cause of changes in
rotational motion of a rigid object. We can now establish models for a rigid object
subject to torques that are analogous to those for a particle subject to forces. We be-
gin by imagining a rigid object with balanced torques, which will give us an analysis
model that we call the rigid object in equilibrium. 

Consider two forces of equal magnitude and opposite direction applied to an
object as shown in Figure 10.15a. The force directed to the right tends to rotate the
object clockwise about an axis perpendicular to the diagram through O, whereas
the force directed to the left tends to rotate it counterclockwise about that axis. Be-
cause the forces are of equal magnitude and act at the same perpendicular distance
from O, their torques are equal in magnitude. Therefore, the net torque on the
rigid object is zero. The situation shown in Figure 10.15b is another case in which
the net torque about O is zero (although the net force on the object is not zero),
and we can devise many more cases.

With no net torque, no change occurs in rotational motion and the rotational
motion of the rigid object remains in its original state. This state is an equilibrium
situation, analogous to translational equilibrium, discussed in Chapter 4.

We now have two conditions for complete equilibrium of an object, which can
be stated as follows:

• The net external force must equal zero:

[10.24]

• The net external torque must be zero about any axis:

[10.25] 

The first condition is a statement of translational equilibrium. The second con-
dition is a statement of rotational equilibrium. In the special case of static equilib-
rium, the object is at rest, so it has no translational or angular speed (i.e., vCM � 0
and � � 0).

The two vector expressions given by Equations 10.24 and 10.25 are equivalent,
in general, to six scalar equations: three from the first condition of equilibrium and
three from the second (corresponding to x, y, and z components). Hence, in a
complex system involving several forces acting in various directions, you would be
faced with solving a set of equations with many unknowns. Here, we restrict our
discussion to situations in which all the forces on an object lie in the xy plane.
(Forces whose vector representations are in the same plane are said to be coplanar.)
With this restriction, we need to deal with only three scalar equations. Two of them

� � : � 0

� F
:

� 0

10.6

r

�F

�F

O

F

(a)

2F

(b)

O

2r

(a) The two forces
acting on the object are equal in mag-
nitude and opposite in direction. Be-
cause they also act along the same
line of action, the net torque is zero
and the object is in equilibrium. 
(b) Another situation in which two
forces act on an object to produce
zero net torque about O (but not zero
net force).

FIGURE 10.15
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come from balancing the forces on the object in the x and y directions. The third
comes from the torque equation, namely, that the net torque on the object about
an axis through any point in the xy plane must be zero. Hence, the two conditions
of equilibrium provide the equations

[10.26]

where the axis of the torque equation is arbitrary.
In working static equilibrium problems, it is important to recognize all external

forces acting on the object. Failure to do so will result in an incorrect analysis. The
following procedure is recommended when analyzing an object in equilibrium
under the action of several external forces: 

� Fx � 0  � Fy � 0  � �z � 0

1. Conceptualize Think about the object that is in equilib-
rium and identify the forces on it. Imagine what effect each
force would have on the rotation of the object if it were the
only force acting. 

2. Categorize Confirm that the object under consideration is
indeed a rigid object in equilibrium.

3. Analyze Draw a free-body diagram and label all external
forces acting on the object. Try to guess the correct direc-
tion for each force.

Resolve all forces into rectangular components, choos-
ing a convenient coordinate system. Then apply the first
condition for equilibrium, Equation 10.24. Remember to
keep track of the signs of the various force components.

Choose a convenient axis for calculating the net torque
on the rigid object. Remember that the choice of the axis
for the torque equation is arbitrary; therefore, choose an
axis that will simplify your calculation as much as possible.

Usually, the most convenient axis for calculating torques is
one through a point at which several forces act, so their
torques around this axis are zero. If you don’t know a force
or don’t need to know a force, it is often beneficial to
choose an axis through the point at which this force acts.
Apply the second condition for equilibrium, Equation
10.25.

Solve the simultaneous equations for the unknowns in
terms of the known quantities.

4. Finalize Make sure your results are consistent with the
free-body diagram. If you selected a direction that leads to a
negative sign in your solution for a force, do not be
alarmed; it merely means that the direction of the force is
the opposite of what you guessed. Add up the vertical and
horizontal forces on the object and confirm that each set of
components adds to zero. Add up the torques on the object
and confirm that the sum equals zero.

Rigid Object in EquilibriumPROBLEM-SOLVING STRATEGY

Standing on a Horizontal BeamEXAMPLE 10.8INTERACTIVE

A uniform horizontal beam of length 8.00 m and weight
200 N is attached to a wall by a pin connection. Its far
end is supported by a cable that makes an angle of 53.0°
with the horizontal (Fig. 10.16a). If a 600-N man stands
2.00 m from the wall, find the tension in the cable and
the force exerted by the wall on the beam at the pivot.

Solution The beam–man system is at rest and remains
at rest, so it is clearly in static equilibrium. First, we
must identify all the external forces acting on the
system, which we do in the free-body diagram in Figure
10.16b. These forces are the gravitational forces on 
the beam and the man, the force exerted by the ca-
ble, and the force exerted by the wall at the pivot
(the direction of this force is unknown). (The force be-
tween the man and the beam is internal to the system,
so it is not included in the free-body diagram.) Notice
that we have imagined the gravitational force on the

R
:

T
:

beam as acting at its center of gravity. Because the
beam is uniform, the center of gravity is at the geomet-
ric center. If we resolve and into horizontal and
vertical components (Fig. 10.16c) and apply the first
condition for equilibrium for the beam, we have

(1)

(2)

Because we have three unknowns—R, T, and �—we
cannot obtain a solution from these two expressions
alone.

To generate a third expression, let us invoke the
condition for rotational equilibrium because the beam
can be modeled as a rigid object in equilibrium. A con-
venient axis to choose for our torque equation is the
one that passes through the pivot at the wall. The fea-
ture that makes this point so convenient is that the

� Fy � R sin � 	T sin 53.0� � 600 N � 200 N � 0 

� Fx � R cos � � T cos 53.0� � 0

R
:

T
:
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force and the horizontal component of both have
a lever arm of zero, and hence zero torque, about this
pivot. Recalling our convention for the sign of the
torque about an axis and noting that the lever arms of
the 600-N, 200-N, and T sin 53° forces are 2.00 m, 
4.00 m, and 8.00 m, respectively, we have

T �

The torque equation gives us one of the unknowns
directly, thanks to our judicious choice of the axis! This
value is substituted into (1) and (2) to give

We divide these two equations to find

Finally,

If we had selected some other axis for the torque
equation, the results would have been the same al-
though the details of the solution would be somewhat
different. For example, if we had chosen to have the
axis pass through the center of gravity of the beam, the
torque equation would involve both T and R. This
equation, coupled with (1) and (2), however could still
be solved for the unknowns T, R , and �, yielding the
same results. Try it!

Adjust the position of the person and observe
the effect on the forces by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 10.8.

581 NR �
188 N
cos � 

�
188 N

cos 71.1�
�

 � � 71.1�

tan � �
550 N
188 N

� 2.93

R sin � � 550 N

R cos � � 188 N

313 N

� (200 N)(4.00 m) � 0
� � � (T sin 53.0�)(8.00 m) � (600 N)(2.00 m)

T
:

R
:

53.0°

8.00 m

(a)

R T

(c)

200 N

600 N

(b)

53.0°

200 N

600 N

4.00 m

2.00 m

R cos θ

R sin θ

T cos 53.0°

T sin 53.0°

θ

θ

θ

(Interactive Example 10.8) (a) A uniform beam
supported by a cable. A man walks out on the beam.
(b) The free-body diagram for the beam–man 
system. (c) The free-body diagram with forces 
resolved into horizontal and vertical components.

FIGURE 10.16

The Leaning LadderEXAMPLE 10.9INTERACTIVE

body diagram showing all the external forces acting
on the ladder is illustrated in Figure 10.17b. The
force exerted by the ground on the ladder is the vec-
tor sum of a normal force and the force of static
friction s. The reaction force exerted by the wall
on the ladder is horizontal because the wall is
smooth, meaning that it is frictionless. Therefore, is
simply the normal force on the ladder from the wall.

P
:

P
:

f
:

n:

A uniform ladder of length � and mass m rests against a
smooth, vertical wall (Fig. 10.17a). If the coefficient of
static friction between ladder and ground is �s � 0.40,
find the minimum angle �min such that the ladder does
not slip.

Solution The ladder is at rest and remains at rest, so
we model it as a rigid object in equilibrium. The free-

www.pop4e.com
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THE  RIGID  OBJECT  UNDER  A  NET  TORQUE
In the preceding section, we investigated the equilibrium situation in which the net
torque on a rigid object is zero. What if the net torque on a rigid object is not zero?
In analogy with Newton’s second law for translational motion, we should expect the
angular speed of the rigid object to change. The net torque will cause angular ac-
celeration of the rigid object. We describe this situation with a new analysis model,
the rigid object under a net torque, and investigate this model in this section.

Let us imagine a rotating rigid object again as a collection of particles. The rigid
object will be subject to a number of forces applied at various locations on the rigid
object at which individual particles will be located. Therefore, we can imagine that
the forces on the rigid object are exerted on individual particles of the rigid object.
We will calculate the net torque on the object due to the torques resulting from
these forces around the rotation axis of the rotating object. Any applied force can
be represented by its radial component and its tangential component. The radial
component of an applied force provides no torque because its line of action goes
through the rotation axis. Therefore, only the tangential component of an applied
force contributes to the torque.

On any given particle, described by index variable i, within the rigid object, we
can use Newton’s second law to describe the tangential acceleration of the particle:

where the t subscript refers to tangential components. Let us multiply both sides of
this expression by ri, the distance of the particle from the rotation axis:

Using Equation 10.11 and recognizing the definition of torque (� � rF sin  � rFt
in this case), we can rewrite this expression as

� i � mir i 

2�i

riFti � rimiati

Fti � miati

10.7

We see from the second equation that  n � mg. Further-
more, when the ladder is on the verge of slipping, the
force of static friction must be a maximum, given by
fs, max � �sn.

To find �, we use the second condition of equilib-
rium. When the torques are taken about the origin O at
the bottom of the ladder, we have

This expression gives

It is interesting that the result does not depend on � or
m. The answer depends only on �s.

Adjust the angle of the ladder and watch what
happens when it is released by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 10.9.

51��min �

tan �min �
mg
2P

�
n

2fs, max
�

n
2(�sn)

�
1

2(0.40)
�1.25

� � O � P� sin � � mg  
�

 2
 cos � � 0

From the first condition of equilibrium applied to the
ladder, we have

 � Fy � n � mg � 0

� Fx � fs � P � 0

(a)

θ

�

(b)

θ

mgO
s

n

P

gf

(Interactive Example 10.9) (a) A uniform ladder
at rest, leaning against a frictionless wall. (b) The
free-body diagram for the ladder.

FIGURE 10.17

www.pop4e.com
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Now, let us add up the torques on all particles of the rigid object:

The left side is the net torque on all particles of the rigid object. The net torque
associated with internal forces is zero, however. To understand why, recall that
Newton’s third law tells us that the internal forces occur in equal and opposite pairs
that lie along the line of separation of each pair of particles. The torque due to
each action–reaction force pair is therefore zero. On summation of all torques, we
see that the net internal torque vanishes. The term on the left, then, reduces to the net
external torque.

On the right, we adopt the rigid object model by demanding that all particles
have the same angular acceleration �. Therefore, this equation becomes

where the torque and angular acceleration no longer have subscripts because they
refer to quantities associated with the rigid object as a whole rather than to individ-
ual particles. We recognize the quantity in parentheses as the moment of inertia I.
Therefore,

[10.27]

That is, the net torque acting on the rigid object is proportional to its angular accel-
eration, and the proportionality constant is the moment of inertia. It is important
to note that � � � I� is the rotational analog of Newton’s second law of motion, 
� F � ma.

� � � I�

� � � ��
i

 mi r 2
i � �

�
i

 �i �  �
i

mi r 2
i �i

■ Rotational analog to Newton’s
second law

You turn off your electric drill and find that the time interval for the
rotating bit to come to rest due to frictional torque in the drill is �t. You replace the drill
bit with a larger one that results in a doubling of the moment of inertia of the drill’s en-
tire rotating mechanism. When this larger bit is rotated at the same angular speed as the
first and turned off, the frictional torque remains the same as that for the previous situa-
tion. What is the time interval for this second bit to come to rest? (a) 4�t (b) 2�t
(c) �t (d) 0.5�t (e) 0.25�t (f) impossible to determine

QUICK QUIZ 10.6

volves a massive object in rotation as well as two other
objects in translational motion, we categorize it as one
involving the rigid object under a net torque model
(for the pulley) and the particle under a net force
model (for the hanging objects). 

To analyze the problem, we first set up a coordinate
system. Because counterclockwise angular acceleration
of the pulley is defined as positive, we define the posi-
tive directions for m1 and m2 as shown in Figure 10.18
so that all accelerations, translational and rotational,
are positive if m1 accelerates downward. If the pulley
has mass and friction, the tensions T1 and T2 in the
string on either side of the pulley are not equal in
magnitude as they are in Example 4.4. Indeed, it is the

An Atwood Machine with a Massive PulleyEXAMPLE 10.10
In Example 4.4, we analyzed an Atwood machine in
which two objects with unequal masses hang from a
string that passes over a light, frictionless pulley. Suppose
the pulley, which is modeled as a disk, has mass M and
radius R, and suppose the pulley surface is not friction-
less so that the string does not slide on the pulley 
(Fig. 10.18a). We will assume that the frictional torque
acting at the bearing of the pulley is negligible. Calculate
the magnitude of the acceleration of the two objects.

Solution Conceptualize the problem by imagining the
motion of the two objects in Figure 10.18, as we did in
Example 4.4. The difference here is that the pulley is
not considered to be massless. Because this problem in-
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Work and Energy in Rotational Motion
In translational motion, we found energy concepts, and in particular the reduction
of the continuity equation for energy called the work–kinetic energy theorem, to
be extremely useful in describing the motion of a system. Energy concepts can be
equally useful in simplifying the analysis of rotational motion, as we saw in the
isolated system analysis in Interactive Example 10.5. From the continuity equation
for energy, we expect that for rotation of an object about a fixed axis, the work
done by external forces on the object will equal the change in the rotational kinetic
energy as long as energy is not stored by any other means. To show that this case is
in fact true, we begin by finding an expression for the work done by a torque.

Consider a rigid object pivoted at the point O in Figure 10.19. Suppose a single
external force is applied at the point P and d is the displacement of the point of
application of the force. The small amount of work dW done on the object by as
the point of application rotates through an infinitesimal distance ds � r d� in a time
interval dt is

dW � F
:

�d s:� (F sin )r d� 

F
:

s:F
:

difference in torque due to these different tensions that
provides the net torque to cause the angular accelera-
tion of the pulley (Fig. 10.18b). Consequently, some of
what we do here will look similar to Example 4.4, with
the exception of incorporating T1 and T2 in our mathe-
matical representation instead of just a single T. The
forces and (the force supporting the pulley)
both act through the pulley axle, so these forces do not
contribute to the torque on the pulley.

With the help of the free-body diagrams in Figure
10.18b, we apply Newton’s second law to m1 so that

(1)

and for m2,

(2)

We cannot solve these two equations for a, as is done in
Example 4.4, because we have three unknowns: a, T1,
and T2. We can find a third equation by applying Equa-
tion 10.27 to the pulley (Fig. 10.18b):

(3)   

We substitute into (3) expressions for T1 and T2 from
(1) and (2):

To finalize this problem, notice that this result differs
from the result for Example 4.4 only in the extra term

in the denominator. If the pulley mass M : 0, this
expression reduces to that in Example 4.4.

1
2M

� m1 � m2

m1 	 m2 	 1
2M � ga �

� 1
2Ma (m1g � m1a) � (m 2a 	 m 2g)

T1 � T2 � 1
2Ma

� � � T1R � T2R � I� � (1
2MR2)� a

R � � 1
2MRa

� Fy � T2 � m2g � m2a

� Fy � m1g � T1 � m1a

F
:

M g:

T2T1

(b)

F

M g

m1

m1g

T1

+

m2g

T2

+

m2

(a)

m1

m2
+

+

M, R

(Example 10.10) (a) An Atwood machine with a
massive pulley. The pulley is modeled as a disk. 
(b) Free-body diagrams for the two hanging
objects and the pulley.

FIGURE 10.18

φ

O

P

r
d

d

F

θ

s

A rigid object ro-
tates about an axis through O under
the action of an external force 
applied at P.

F
:

FIGURE 10.19
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where F sin  is the tangential component of , or the component of the force
along the displacement. Note from Figure 10.19 that the radial component of 
does no work because it is perpendicular to the displacement of the point of appli-
cation of the force.

Because the magnitude of the torque due to about the origin is defined as 
rF sin , we can write the work done for the infinitesimal rotation in the form

[10.28]

Notice that this expression is the product of torque and angular displacement,
making it analogous to the work done in translational motion, which is the product
of force and translational displacement (Eq. 6.2).

Now, we will combine this result with the rotational form of Newton’s second
law, � � I�. Using the chain rule from calculus, we can express the torque as

Rearranging this expression and noting that � d� � dW from Equation 10.28, we
have

Integrating this expression, we find the total work done by the torque:

[10.29]

Notice that this equation has exactly the same mathematical form as the work–
kinetic energy theorem for translation. If a system consists of components that are
both translating and rotating, the work–kinetic energy theorem generalizes to 
W � �K 	 �KR.

We finish this discussion of energy concepts for rotation by investigating the
rate at which work is being done by on an object rotating about a fixed
axis. This rate is obtained by dividing the left and right sides of Equation 10.28
by dt :

[10.30]

The quantity dW/dt is, by definition, the instantaneous power � delivered by the
force. Furthermore, because d�/dt � �, Equation 10.30 reduces to

[10.31]

This expression is analogous to � � Fv in the case of translational motion.

� � �� 

dW
dt

� �  
d� 
dt

F
:

 W � 1
2 I� f 

2 � 1
2 I�i 

2 � �KR

W � �� f

� i
 � d� � �� f

� i
 I� d� 

� d� � dW � I� d� 

� � I� � I 
d�

dt
� I 

d�

d� 
 
d�

dt
� I 

d� 
d� 

 � 

dW � � d� 

F
:

F
:

F
:

■ Work – kinetic energy theorem
for pure rotation

■ Power delivered to a rotating
object

acting on the hanging block. From the continuity equa-
tion for energy, the work must be equal to the change
in kinetic energy of the system:

where K is the translational kinetic energy of the block
and KR is the rotational kinetic energy of the wheel.

W � �K 	 �KR

A Block Unwinding from a WheelEXAMPLE 10.11
The wheel in Figure 10.20 is a solid disk of mass 
M � 2.00 kg and radius R � 30.0 cm. The suspended
block has a mass m � 0.500 kg. If the suspended block
starts from rest and descends to a position 1.00 m
lower, what is its speed when it is at this position?

Solution The work done on the system of the block
and the wheel is due to the gravitational force mg:
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ANGULAR  MOMENTUM
Imagine an object rotating in space with no motion of its center of mass. Each parti-
cle in the object is moving in a circular path, so momentum is associated with the
motion of each particle. Although the object has no linear momentum (its center of
mass is not moving through space), a “quantity of motion” is associated with its rota-
tion. We will investigate the angular momentum that the object has in this section.

Let us first consider a particle of mass m, situated at the vector position and
moving with a momentum , as shown in Active Figure 10.21. For now, we don’t
consider it as a particle on a rigid object; it is any particle moving with momentum

. We will apply the result to a rotating rigid object shortly. The instantaneous angu-
lar momentum of the particle relative to the origin O is defined by the vector
product of its instantaneous position vector and the instantaneous linear momen-
tum :

[10.32]

The SI units of angular momentum are kg ·m2/s. Note that both the magnitude
and the direction of depend on the choice of origin. The direction of is
perpendicular to the plane formed by and , and the sense of is governed by
the right-hand rule. For example, in Active Figure 10.21, and are assumed to
be in the xy plane and points in the z direction. Because , the magnitude
of is

[10.33]L � mvr sin �

L
:

p: � mv:L
:

p:r:
L
:

p:r:
L
:

L
:

L 
:

� r: � p:

p:
r:

L
:

p:

p:
r:

10.8

The system begins from rest, so we can write this
expression as

where v is the speed of the block at its final position. It
is also the speed of the string at this instant as well as
the speed of a point on the rim of the wheel at this
instant. Therefore, � � v/R. In addition, because the
wheel is a solid disk, its moment of inertia is .
Consequently,

Solving for v, we find that

2.56 m/s� √ (0.500 kg)(9.80 m/s2)(1.00 m)
1
2(0.500 kg) � 1

4(2.00 kg)
�

v � √ mg(�y)
1
2m � 1

4M

mg(�y) � 1
2mv 2 � 1

2(1
2MR 2)� v

R �
2

� 1
2mv 2 � 1

4Mv 2

I � 1
2MR 2

� 1
2mv2 � 1

2I�2
W � F

:
� � r: � (�mg  ĵ) �(��y ĵ) � mg(�y)

M

O

R

T

m g

m

T

(Example 10.11) An object hangs from a cord
wrapped around a wheel. The tension in the cord
produces a torque about the axle passing through O.

FIGURE 10.20

O

z

L  =  r  ×  p

m p

φ

y

x

r

The angular momentum of a
particle of mass m and linear mo-
mentum located at the position

is given by . The value
of depends on the origin about
which it is measured and is a vector
perpendicular to both and .

By logging
into PhysicsNow at ww.pop4e.com
and going to Active Figure 10.21
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and the momentum vector to
see the effect on the angular mo-
mentum vector.
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where  is the angle between and . It follows that is zero when is parallel to
( � 0° or 180°). In other words, when the particle moves along a line that

passes through the origin, it has zero angular momentum with respect to the ori-
gin, which is equivalent to stating that the momentum vector is not tangent to any
circle drawn about the origin. On the other hand, if is perpendicular to ( �
90°), L is a maximum and equal to mvr. In fact, at that instant the particle moves ex-
actly as though it were on the rim of a wheel of radius r rotating at angular speed
� � v/r about an axis through the origin in a plane defined by and . A particle
has nonzero angular momentum about some point if the position vector of the par-
ticle measured from that point rotates about the point as the particle moves.

For translational motion, we found that the net force on a particle equals the
time rate of change of the particle’s linear momentum (Eq. 8.4). We shall now
show that Newton’s second law implies an analogous situation for rotation: that the
net torque acting on a particle equals the time rate of change of the particle’s angu-
lar momentum. Let us start by writing the torque on the particle in the form

[10.34]

where we have used � d /dt (Eq. 8.4). Now let us differentiate Equation 10.32
with respect to time, using the product rule for differentiation:

It is important to adhere to the order of factors in the vector product because the
vector product is not commutative.

The last term on the right in the preceding equation is zero because � d /dt
is parallel to . Therefore,

[10.35]

Comparing Equations 10.34 and 10.35, we see that

[10.36]

This result is the rotational analog of Newton’s second law, � d /dt. Equation
10.36 says that the torque acting on a particle is equal to the time rate of change of
the particle’s angular momentum. Note that Equation 10.36 is valid only if the axes
used to define and are the same. Equation 10.36 is also valid when several
forces are acting on the particle, in which case is the net torque on the particle.
Of course, the same origin must be used in calculating all torques as well as the an-
gular momentum.

Now, let us apply these ideas to a system of particles. The total angular momen-
tum of the system of particles about some point is defined as the vector sum of
the angular momenta of the individual particles:

where the vector sum is over all the n particles in the system.
Because the individual angular momenta of the particles may change in time,

the total angular momentum may also vary in time. In fact, from Equations 10.34
and 10.35 we find that the time rate of change of the total angular momentum of
the system equals the vector sum of all torques, including those associated with in-
ternal forces between particles and those associated with external forces.

As we found in our discussion of the rigid object under a net torque, however, the
sum of the internal torques is zero. Therefore, we conclude that the total angular
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■ Torque on a particle equals time
rate of change of angular mo-
mentum of the particle

IS ROTATION NECESSARY FOR ANGULAR

MOMENTUM? We can define angular
momentum even if the particle is not
moving in a circular path. Even a
particle moving in a straight line has
angular momentum about any axis
displaced from the path of the
particle.

� PITFALL PREVENTION 10.6
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momentum can vary with time only if there is a net external torque on the system, so
that we have

[10.37]

That is, the time rate of change of the total angular momentum of the system
about some origin in an inertial frame equals the net external torque acting on
the system about that origin. Note that Equation 10.37 is the rotational analog of

� d /dt (Eq. 8.40) for a system of particles.
This result is valid for a system of particles that change their positions with respect

to one another, that is, a nonrigid object. In this discussion of angular momentum of
a system of particles, notice that we never imposed the rigid-object condition.

Equation 10.37 is the primary equation in the angular momentum version of
the nonisolated system model. The system’s angular momentum changes in re-
sponse to an interaction with the environment, described by means of the net
torque on the system.

One final result can be obtained for angular momentum, which will serve as an
analog to the definition of linear momentum. Let us imagine a rigid object rotating
about an axis. Each particle of mass mi in the rigid object moves in a circular path
of radius ri , with a tangential speed vi. Therefore, the total angular momentum of
the rigid object is

Let us now replace the tangential speed with the product of the radial distance and
the angular speed (Eq. 10.10):

We recognize the combination in the parentheses as the moment of inertia, so we
can write the angular momentum of the rigid object as

which is the rotational analog to p � mv. Table 10.3 is a continuation of Table 10.1,
with additional translational and rotational analogs that we have developed in the
past few sections.

L � I� 
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■ Net external torque on a system
equals time rate of change of
angular momentum of the
system

■ Angular momentum of an object
with moment of inertia I

A Comparison of Equations for Rotational and
Translational Motion: Dynamic Equations

TABLE 10.3

Rotational Motion Translational
About a Fixed Axis Motion

Kinetic energy

Equilibrium

Newton’s second law

Newton’s second law

Momentum

Conservation principle

Power  � � Fv � � �� 

 p:i �  p:f L
:

 i � L
:

f

 p: � mv: L � I� 

 F
:

�
d p:

dt
 � : �

d L
:

dt

 � F
:

� ma: � � � I�

 � F
:

� 0 � � : � 0

K � 1
2mv2KR � 1

2I� 2

Note: Equations in translation motion expressed in terms of vectors have rotational analogs
in terms of vectors. Because the full vector treatment of rotation is beyond the scope of this
book, however, some rotational equations are given in nonvector form.
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A solid sphere and a hollow sphere have the same mass and radius.
They are rotating with the same angular speed. Which is the one with the higher angular
momentum? (a) the solid sphere (b) the hollow sphere (c) both have the same an-
gular momentum (d) impossible to determine

QUICK QUIZ 10.7

moment arm around the center of the pulley, so they
do not contribute to the torque. The external forces 
on the system that produce torques about the axle are

, with a torque of m1gR , and , with a torque of
� m2gR . Combining the net external torque with (1)
and Equation 10.37 gives us

(2)

Because dv/dt � a, we can solve Equation (2) for a to
find

which is the same result as that obtained in Example
10.10. You may wonder why we did not include the ten-
sion forces that the cord exerts on the objects in evalu-
ating the net torque about the axle. The reason is that
these forces are internal to the system under considera-
tion. Only the external torques contribute to the change
in angular momentum.

� m1 � m2

m1 	 m 2 	 1
2M � ga �

 m1gR � m 2gR � (m1 	 m 2 	 1
2M)R 

dv
dt

 m 1gR � m 2gR �
d
dt

 [(m 1 	 m 2 	 1
2M)vR]

�ext �
dL
dt

m 2g:m 1g:

The Atwood Machine Once AgainEXAMPLE 10.12
Consider again the Atwood machine with the massive
pulley in Example 10.10. Determine the acceleration of
the two objects using an angular momentum approach.

Solution This example is of a nonrigid object experi-
encing a net torque, so we use the nonisolated system
model. We will evaluate the angular momentum of the
system at any time and then differentiate the angular
momentum, setting it equal to the net external torque.
We will solve the resulting expression for the accelera-
tion of the objects.

Let us first calculate the angular momentum of the
system, which consists of the two objects plus the pulley.
At the instant m1 and m2 have a speed v, the angular
momentum of m1 around the axle of the pulley is m1vR
and that of m2 is m2vR. At the same instant, the angular
momentum of the pulley around its center is L � I� �
Iv/R . Therefore, the total angular momentum of the
system is

(1)

Now let us evaluate the total external torque on the sys-
tem about the axle. The weight of the pulley and the
force of the axle upward on the pulley have zero

 � (m1 	 m 2 	 1
2M)vR

 � m 1vR 	m 2vR 	 (1
2MR 2) 

v
R

 L � m 1vR 	m 2vR 	I 
v
R

CONSERVATION  OF  ANGULAR  MOMENTUM
In Chapter 8, we found that the total linear momentum of a system of particles is
conserved when the net external force acting on the system is zero. In rotational
motion, we have an analogous conservation law that states that the total angular
momentum of a system is conserved if the net external torque acting on the system
is zero.

Because the net external torque acting on the system equals the time rate of
change of the system’s angular momentum, we see from Equation 10.37 that if

[10.38]

then

[10.39]

Equation 10.39 represents a third conservation law to add to our list of funda-
mental conservation principles. We can now state that the total energy, linear

L
:

tot � constant  :   L
:

tot, i � L
:

tot, f

� � :
ext �

d L
:

tot

dt
� 0

10.9

■ Conservation of angular
momentum for an isolated
system
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momentum, and angular momentum of an isolated system are all conserved. We
have focused our attention in this chapter on rigid objects; the conservation of
angular momentum principle, however, is a general result of the isolated system
model. Therefore, the angular momentum of an isolated system is conserved
whether the system is a rigid object or not.

At any instant of time, the angular momentum of a system of particles about a
fixed axis has a magnitude given by L � I�, where I is the moment of inertia of the
system about the axis. In this case, if the net external torque on the system is zero,
we can express the conservation of angular momentum principle as I� � constant.
Imagine a situation in which a rotating system undergoes a change in moment of
inertia. Because of the principle of conservation of angular momentum, there must
be a corresponding change in the angular speed.

Many examples can be used to demonstrate this effect; some of them should be
familiar to you. You may have observed a figure skater spinning (Fig. 10.22). The
angular speed of the skater is large when his hands and feet are close to the trunk
of his body. Ignoring friction between skater and ice, we see that there are no exter-
nal torques on the skater. The moment of inertia of his body increases as his hands
and feet are moved away from his body at the finish of the spin. According to the
principle of conservation of angular momentum, his angular speed must decrease.

An interesting astrophysical example of conservation of angular momentum oc-
curs when, at the end of its lifetime, a massive star uses up all its fuel and collapses
under the influence of gravitational forces, causing a gigantic outburst of energy
called a supernova explosion. The best-studied example of a remnant of a super-
nova explosion is the Crab Nebula, a chaotic, expanding mass of gas (Fig. 10.23).
In a supernova, part of the star’s mass is released into space, where it eventually
condenses into new stars and planets. Most of what is left behind typically collapses
into a neutron star, an extremely dense sphere of matter with a diameter of about
10 km in comparison with the 106-km diameter of the original star and containing a
large fraction of the star’s original mass. As the moment of inertia of the system de-
creases during the collapse, the star’s rotational speed increases, similar to the
change in speed of the skater in Figure 10.22. More than 700 rapidly rotating neu-
tron stars have been identified since the first discovery of such astronomical bodies
in 1967, with periods of rotation ranging from a millisecond to several seconds. The
neutron star—an object with a mass greater than the Sun, rotating about its axis
many times each second—is a most dramatic system!

Angular momen-
tum is conserved as Russian figure
skater Evgeni Plushenko performs dur-
ing the 2004 World Figure Skating
Championships. When his arms and
legs are close to his body, his moment
of inertia is small and his angular
speed is large. To slow down for the
finish of his spin, he moves his arms
and legs outward, increasing his mo-
ment of inertia.

FIGURE 10.22
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The Crab Neb-
ula, in the constellation Taurus.
This nebula is the remnant of a su-
pernova explosion, which was seen
on Earth in the year A.D. 1054. It is
located some 6 300 lightyears away
and is approximately 6 lightyears
in diameter, still expanding out-
ward.

FIGURE 10.23
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string on the puck acts toward the center of rotation, and
the vector position is directed away from O. Therefore,
we see that � 0, so no torque is applied on
the puck due to this force. Three forces are acting on the
puck, but zero net torque occurs. Therefore, is a
constant of the motion. The puck can be modeled as a
particle moving in a circular path, so L � mviR � mvf r, or

From this result we see that as r decreases, the speed v
increases. 

Is the kinetic energy of the puck conserved in this
process?

Solution We set up the ratio of the final kinetic energy
to the initial kinetic energy:

Because this ratio is not equal to 1, kinetic energy is not
conserved. Furthermore, because R � r, the kinetic en-
ergy of the puck has increased. This increase corre-
sponds to energy entering the system of the puck by
means of the work done by the person pulling the string.

Kf

Ki
�

1
2mvf 

2

1
2mvi 

2 �
1

vi 

2  � viR
r �

2
�

R2

r 2

B

viR
r

vf �

L
:

� : � r: � F
:

r:

A Revolving Puck on a Horizontal, Frictionless SurfaceEXAMPLE 10.13
A puck of mass m on a horizontal, frictionless table is
connected to a string that passes through a small hole
in the table. The puck is set into circular motion of ra-
dius R , at which time its speed is vi (Fig. 10.24).

vi

m

F

O R

(Example 10.13) When the string is pulled 
downward, the speed of the puck changes.

FIGURE 10.24

If the string is pulled from the bottom so that the
radius of the circular path is decreased to r, what is the
final speed vf of the puck?

Solution We identify the system as the puck. We will cal-
culate torque about the center of rotation O. Note that
the gravitational force acting on the puck is balanced by
the upward normal force, so these forces cancel, resulting
in zero net torque from these forces. The force of theF

:

A

ing its collapse, the angular speed increases. From con-
servation of angular momentum,

We have no information about the variation in the den-
sity of material with radius in either the initial star or
the neutron star, so we choose a simplification model in
which the density is uniform. Our result will most likely
not be entirely accurate, but we can consider it an

Ii � i � If � f

Rotation Period of a Neutron StarEXAMPLE 10.14
A star undergoes a supernova explosion. The material
left behind forms a sphere of radius 8.0 � 106 m just af-
ter the explosion with a rotation period of 15 h. This
remaining material collapses into a neutron star of ra-
dius 8.0 km. What is the rotation period T of the neu-
tron star?

Solution We model the star as an isolated system. As
the moment of inertia of the stellar core decreases dur-

(i) A competitive diver leaves the diving board and falls toward the
water with her body straight and rotating slowly. She pulls her arms and legs into a tight
tuck position. What happens to her angular speed? (a) It increases. (b) It decreases. 
(c) It stays the same. (d) It is impossible to determine. (ii) From the same list of choices,
what happens to the rotational kinetic energy of her body?

QUICK QUIZ 10.8



PRECESSIONAL MOTION OF GYROSCOPES ❚ 319

y g p pp

PRECESSIONAL  MOTION  OF  GYROSCOPES
Angular momentum is the basis of the operation of a gyroscope, which is a spin-
ning object used to control or maintain the orientation in space of the object or a
system containing the object. As an example, consider a quarterback passing a foot-
ball. If he imparts no spin to the ball, there is no angular momentum to be con-
served and forces from the air might cause the ball to tumble as it moves through
its trajectory. If a spin is imparted to the ball along the long axis of the football,
however, the angular momentum vector stays fixed in direction and the football
maintains its orientation throughout the trajectory, resulting in much less air resis-
tance and a longer pass. In this application, the football is acting as a gyroscope to
maintain its own orientation in space.

An unusual and fascinating type of motion you probably have observed is that of
a top spinning rapidly about its axis of symmetry, as shown in Figure 10.25a. The
top is acting as a gyroscope and one might expect the orientation to remain fixed
in space. If the top is leaning over, however, it is observed that the symmetry axis
rotates about the z axis, sweeping out a cone (see Fig. 10.25b). This phenomenon is
called precessional motion. The angular speed of the symmetry axis about the verti-
cal is usually slow relative to the angular speed of the top about the symmetry axis. 

It is quite natural to wonder why the top does not maintain its direction of spin.
Because the center of mass of the top is not directly above the pivot point O, a net
torque is acting on the top about O, a torque resulting from the gravitational force

. The top would certainly fall over if it were not spinning. Because it is spinning,
however, it has an angular momentum directed along its symmetry axis. As we
shall show, the motion of this symmetry axis about the z axis (the precessional mo-
tion) occurs because the torque produces a change in the direction of the symmetry
axis. This motion is an excellent example of the importance of the directional
nature of angular momentum.

The two forces acting on the top are the downward gravitational force and
the normal force acting upward at the pivot point O. The normal force produces
no torque about the pivot because its moment arm through that point is zero. The
gravitational force, however, produces a torque about O, where the
direction of is perpendicular to the plane formed by and . By necessity,
the vector lies in a horizontal plane perpendicular to the angular momentum
vector. The net torque and angular momentum of the top are related through
Equation 10.37:

From this expression we see that the nonzero torque produces a change in angular
momentum , a change that is in the same direction as . Therefore, like
the torque vector, must also be perpendicular to . Figure 10.25b illustrates the
resulting precessional motion of the symmetry axis of the top. In a time interval 
�t, the change in angular momentum is . Because is�L
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Precessional mo-
tion of a top spinning about its sym-
metry axis. (a) The only external
forces acting on the top are the nor-
mal force and the gravitational
force . The direction of the angu-
lar momentum is along the axis of
symmetry. The right-hand rule indi-
cates that is
in the xy plane. (b). The direction of

is parallel to that of in part 
(a). That indicates that
the top precesses about the z axis.
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FIGURE 10.25

estimate. Using the moment of inertia of a sphere of
uniform density (see Table 10.2),

Now, because � � 2�/T, we have

(2
5MR i 

2)�i � (2
5MRf 

2)�f : �f � � R i

R f
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2
 �i Substituting numerical values, we have

0.054 sTf � � 8.0 � 103 m
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perpendicular to , the magnitude of does not change Rather,
what is changing is the direction of . Because the change in angular momentum

is in the direction of , which lies in the xy plane, the top undergoes preces-
sional motion. 

With careful manufacturing tolerances, precession due to gravitational torque
can be made very small and gyroscopes can be used for guidance systems in
vehicles, whereby a change in the direction of the velocity of a vehicle is detected as
a change between the direction of the angular momentum of the gyroscope and a
reference direction attached to the vehicle. With proper electronic feedback, the
deviation from the desired direction of motion can be removed, bringing the angu-
lar momentum back in line with the reference direction. Precession rates for highly
specialized military gyroscopes are as low as 0.02° per day.

ROLLING MOTION OF RIGID OBJECTS
In this section, we shall investigate the special case of rotational motion in which a
round object rolls on a surface. Many everyday examples exist for such motion, in-
cluding automobile tires rolling on roads and bowling balls rolling toward the pins.

Suppose a cylinder is rolling on a straight path as in Figure 10.26. The center of
mass moves in a straight line, but a point on the rim moves in a more complex path
called a cycloid. Let us further assume that the cylinder of radius R is uniform and
rolls on a surface with friction. We make a rather odd, but valid, simplification
model here for rolling objects. The surfaces must exert friction forces on each
other; otherwise, the cylinder would simply slide rather than roll. If the friction
force on the cylinder is large enough, the cylinder rolls without slipping. In this sit-
uation, the friction force is static rather than kinetic because the contact point of
the cylinder with the surface is at rest relative to the surface at any instant. The sta-
tic friction force acts through no displacement, so it does no work on the cylinder
and causes no decrease in mechanical energy of the cylinder. In real rolling objects,
deformations of the surfaces result in some rolling resistance. If both surfaces are
hard, however, they will deform very little, and rolling resistance can be negligibly
small. Therefore, we can model the rolling motion as maintaining constant me-
chanical energy. The wheel was a great invention!

As the cylinder rotates through an angle �, its center of mass moves a distance of
s � r�. Therefore, the speed and acceleration of the center of mass for pure rolling
motion are

[10.40]

[10.41]aCM �
dvCM

dt
� R 

d�

dt
� R�

vCM �
ds
dt

� R 
d�

dt
� R� 
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Light sources at
the center and rim of a rolling cylin-
der illustrate the different paths these
points take. The center moves in a
straight line (green line), whereas a
point on the rim moves in the path of
a cycloid (red curve).

FIGURE 10.26
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■ Relations between translational
and rotational variables for a
rolling object
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The translational velocities of various points on the rolling cylinder are illustrated
in Figure 10.27. Note that the translational velocity of any point is in a direction
perpendicular to the line from that point to the contact point. At any instant, the
point P is at rest relative to the surface because sliding does not occur.

We can express the total kinetic energy of a rolling object of mass M and mo-
ment of inertia I as the combination of the rotational kinetic energy around the
center of mass plus the translational kinetic energy of the center of mass:

[10.42] 

A useful theorem called the parallel axis theorem enables us to express this energy
in terms of the moment of inertia Ip through any axis parallel to the axis through
the center of mass of an object. This theorem states that

[10.43]

where D is the distance from the center-of-mass axis to the parallel axis and M is the
total mass of the object. Let us use this theorem to express the moment of inertia
around an axis passing through the contact point P between the rolling object and
the surface. The distance from this point to the center of mass of the symmetric ob-
ject is its radius, so

If we write the translational speed of the center of mass of the object in Equation
10.42 in terms of the angular speed, we have

[10.44]

Therefore, the kinetic energy of the rolling object can be considered as equivalent
to a purely rotational kinetic energy of the object rotating around its contact point.

We can use the energy version of the isolated system model to treat a class of prob-
lems concerning the rolling motion of a rigid object down a rough incline. In these
types of problems, gravitational potential energy of the object–Earth system decreases
as the rotational and translational kinetic energies of the object increase. For exam-
ple, consider a sphere rolling without slipping after being released from rest at the
top of an incline. Note that accelerated rolling motion is possible only if a friction
force is present between the sphere and the incline to produce a net torque about the
center of mass. Despite the presence of friction, no loss of mechanical energy occurs
because the contact point is at rest relative to the surface at any instant. (On the other
hand, if the sphere were to slip, mechanical energy of the sphere–incline–Earth sys-
tem would be lost due to the nonconservative force of kinetic friction.)

Using vCM � R� for pure rolling motion, we can express Equation 10.42 as

[10.45]

For the system of the sphere and the Earth, we define the zero configuration of
gravitational potential energy to be when the sphere is at the bottom of the incline.
Therefore, conservation of mechanical energy gives us

Kf 	 Uf � Ki 	 Ui

[10.46]vCM � � 2gh
1 	 ICM/MR2 �

1/2

1
2� ICM

R2 	 M�vCM 
2 	 0 � 0 	 Mgh

 K � 1
2 � ICM

R 2 	 M� v 2
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K � 1
2ICM � vCM

R �
2

	 1
2Mv 2

CM

K � 1
2ICM�2 	 1

2MR2�2 � 1
2(ICM 	 MR2)� 2 � 1

2Ip� 2

Ip � ICM 	 MR 2

Ip � ICM 	 MD 2

K � 1
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2

P
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P ′
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All points on a
rolling object move in a direction per-
pendicular to a line through the
instantaneous point of contact P. The
center of the object moves with a
velocity , whereas the point P�

moves with a velocity .2v:CM

v:CM

FIGURE 10.27

■ Total kinetic energy of a rolling
object
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Solution To find the acceleration, let us recognize that
the constant gravitational force should cause a constant
acceleration of the center of mass of the sphere. From
Equation 2.13,

we can solve for the acceleration

These results are quite interesting in that both the
speed and the acceleration of the center of mass are
independent of the mass and radius of the sphere. That
is, all homogeneous solid spheres experience the same
speed and acceleration on a given incline!

If we repeated the calculations for a hollow sphere,
a solid cylinder, or a hoop, we would obtain similar re-
sults with different numerical factors appearing in the
expressions for vCM, f and aCM. These factors depend
only on the moment of inertia about the center of mass
for the specific object. In all cases, the acceleration of
the center of mass is less than g sin �, the value it would
have if the plane were frictionless and no rolling
occurred.

5
7 g sin � aCM �

vCM, f
2 � vCM, i

2

2(xCM, f � xCM, i)
�

10
7 gh � 0

2 � h
sin � �

�

vCM, f
2 � vCM, i

2 	 2a CM(x CM, f � x CM, i)

Sphere Rolling Down an InclineEXAMPLE 10.15

If the object in Active Figure 10.28 is a solid sphere,
calculate the speed of its center of mass at the bottom.

Solution We shall consider the sphere and the Earth as
an isolated system and use the energy version of the iso-
lated system model. The energy of the system when the
sphere is at the top of the incline is gravitational poten-
tial energy only. We choose the zero configuration of
gravitational potential energy to be when the sphere is
at the bottom of the incline. Therefore, conservation of
mechanical energy for the system gives us

Using Equation 10.40 to relate the translational and an-
gular speeds, and substituting the moment of inertia
for a sphere, we have

vCM, f �

Determine the magnitude of the translational
acceleration of the center of mass. 

B

√10
7 gh

 12MvCM, f
2 	 1

5MvCM, f
2 � 7

10MvCM, f
2 � Mgh

1
2MvCM, f

2 	 1
2(2

5MR2) 
vCM, f

2

R2 � Mgh

(1
2 MvCM, f

2 	 1
2 ICM� f 2) 	 0 � 0 	 Mgh

 Kf 	 Uf � Ki 	 Ui

A

h
x

vCM

ω

M

R

θ

(Example 10.15) A round object
rolling down an incline. Mechani-
cal energy of the object–-
surface–Earth system is conserved
if no slipping occurs and there is
no rolling resistance.
.

Roll several
objects down the hill and see the
effect on the final speed by
logging into PhysicsNow at
www.pop4e.com and going to
Active Figure 10.28.

ACTIVE FIGURE 10.28

Two items A and B are placed at the top of an incline and released
from rest. For each of the three pairs of items in (i), (ii), and (iii), which item arrives at
the bottom of the incline first? (i) a ball A rolling without slipping and a box B sliding
on a frictionless portion of the incline (ii) a sphere A that has twice the mass and twice
the radius of a sphere B, where both roll without slipping (iii) a sphere A that has the
same mass and radius as a sphere B, but sphere A is solid while sphere B is hollow and
both roll without slipping. Choose from the following list for each of the three pairs of
items. (a) item A (b) item B (c) items A and B arrive at the same time
(d) impossible to determine

QUICK QUIZ 10.9

www.pop4e.com
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TURNING  THE  SPACECRAFT
In the Context Connection of Chapter 8, we discussed how to make a spacecraft
move in empty space by firing its rocket engines. Let us know consider how to make
the spacecraft turn in empty space.

One way to change the orientation of a spacecraft is to have small rocket en-
gines that fire perpendicularly out the side of the spacecraft, providing a torque
around its center of mass. This torque causes an angular acceleration around the
center of mass of the spacecraft and therefore an angular speed. This rotation can
be stopped to give the spacecraft the desired final orientation by firing the
sideward-mounted rocket engines in the opposite direction. This option is desir-
able, and many spacecraft have such sideward-mounted rocket engines. An undesir-
able feature of this technique is that it consumes nonrenewable fuel on the space-
craft, both to initiate and to stop the rotation.

Let us consider another possibility related to angular momentum. Suppose the
spacecraft carries a gyroscope that is not rotating, as in Figure 10.29a. In this case,
the angular momentum of the spacecraft about its center of mass is zero. Suppose
the gyroscope is set into rotation. Now, it would appear that the spacecraft system
has a nonzero angular momentum because of the rotation of the gyroscope. Yet
there is no external torque on the system, so the angular momentum of the
isolated system must remain zero according to the principle of conservation of
angular momentum. This principle can be satisfied by realizing that the spacecraft
will turn in the direction opposite to that of the gyroscope so that the angular
momentum vectors of the gyroscope and the spacecraft cancel, resulting in no
angular momentum of the system. The result of rotating the gyroscope, as in
Figure 10.29b, is that the spacecraft turns! By including three gyroscopes with
mutually perpendicular axles, any desired rotation in space can be achieved.
Once the desired orientation is achieved, the rotation of the gyroscope is halted.

This effect occurred in an undesirable situation with the Voyager 2 spacecraft
during its flight. The spacecraft carried a tape recorder whose reels rotated at high
speeds. Each time the tape recorder was turned on, the reels acted as gyroscopes
and the spacecraft started an undesirable rotation in the opposite direction. This
rotation had to be counteracted by Mission Control by using the sideward-firing jets
to stop the rotation!

10.12 CONTEXT 
connection

(a) (b)

Gyroscope rotates
counterclockwise

Spacecraft
rotates
clockwise

(a) A spacecraft
carries a gyroscope that is not spin-
ning. (b) When the gyroscope is set
into rotation, the spacecraft turns the
other way so that the angular momen-
tum of the system is conserved.

FIGURE 10.29
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Take a practice test by logging into 
PhysicsNow at www.pop4e.com and click-
ing on the Pre-Test link for this chapter.

The instantaneous angular speed of a particle rotating in a cir-
cle or of a rigid object rotating about a fixed axis is

[10.3]

where � is in rad/s or s�1.
The instantaneous angular acceleration of a particle rotating

in a circle or of a rigid object rotating about a fixed axis is

[10.5]

and has units of rad/s2 or s�2.
When a rigid object rotates about a fixed axis, every part of

the object has the same angular speed and the same angular
acceleration. Different parts of the object, in general, have dif-
ferent translational speeds and different translational accelera-
tions, however.

If a particle (or object) undergoes rotational motion about a
fixed axis under constant angular acceleration �, one can apply
equations of kinematics by analogy with kinematic equations for
translational motion with constant translational acceleration:

[10.6]

[10.7]

[10.8]

[10.9]

When a particle rotates about a fixed axis, the angular posi-
tion, the angular speed, and the angular acceleration are re-
lated to the tangential position, the tangential speed, and the
tangential acceleration through the relationships

s � r� [10.1a]

[10.10]

[10.11]

The moment of inertia of a system of particles is

[10.14]

If a rigid object rotates about a fixed axis with angular speed
�, its rotational kinetic energy can be written

[10.15]

where I is the moment of inertia about the axis of rotation.

KR � 1
2I�2

I � �
i

 miri 

2

at � r�

v � r� 

� f � � i 	 1
2(� i 	 � f)t

� f 

2 � � i 

2 	 2�(� f � � i)

� f � � i 	 � it 	 1
2�t 2

� f � � i 	 � t

� � 
d� 
dt

� � 
d� 
dt

SUMMARY

The moment of inertia of a continuous object of density 
 is

[10.17]

The torque due to a force about an origin in an inertial
frame is defined to be

[10.19]

where is the position vector of the point of application of the
force.

Given two vectors and , their vector product or cross
product is a vector having the magnitude

C � AB sin � [10.21]

where � is the angle between and . The direction of is
perpendicular to the plane formed by and , and is deter-
mined by the right-hand rule.

The net torque acting on an object is proportional to the
angular acceleration of the object, and the proportionality con-
stant is the moment of inertia I :

[10.27]

The angular momentum of a particle with linear momentum
is

[10.32]

where is the vector position of the particle relative to the ori-
gin. If  is the angle between and , the magnitude of is

[10.33]

The net external torque acting on a system is equal to the
time rate of change of its angular momentum:

[10.37]

The law of conservation of angular momentum states that
the total angular momentum of a system remains constant if
the net external torque acting on the system is zero:

[10.39]

The total kinetic energy of a rigid object, such as a cylinder,
that is rolling on a rough surface without slipping equals the
rotational kinetic energy about the object’s center of
mass plus the translational kinetic energy of the center
of mass:

[10.42]

In this expression, vCM is the speed of the center of mass and
vCM � R� for pure rolling motion.

K � 1
2ICM� 2 	 1

2MvCM 

2

1
2MvCM

2

1
2ICM� 2

L
:

tot, i � L
:

tot, f

� �ext
: �

dL
:

tot

dt

L � mvr sin 

L
:
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L
:

 � r: � p:
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L
:
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B
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A
:

C
:

B
:

A
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C
:

A
:
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:

B
:

A
:
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� : � r: � F

:

F
:
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I � �
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

What is the angular speed of the second hand of a clock?
What is the direction of as you view a clock hanging on a� :

1.

vertical wall? What is the magnitude of the angular acceler-
ation vector of the second hand?

2. If a car’s standard tires are replaced with tires of larger out-
side diameter, will the reading of the speedometer change?
Explain.

�:

www.pop4e.com
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3. Suppose just two external forces act on a stationary rigid
object and the two forces are equal in magnitude and op-
posite in direction. Under what condition does the object
start to rotate? 

4. Suppose you remove two eggs from the refrigerator,
one hard-boiled and the other uncooked. You wish to de-
termine which is the hard-boiled egg without breaking
the eggs. You can do so by spinning the two eggs on the
floor and comparing the rotational motions. Which egg
spins faster? Which rotates more uniformly? Explain.

If you see an object rotating, is there necessarily a net
torque acting on it?

6. Which of the entries in Table 10.2 applies to finding the
moment of inertia of a long, straight sewer pipe rotating
about its axis of symmetry? of an embroidery hoop rotat-
ing about an axis through its center and perpendicular to
its plane? of a uniform door turning on its hinges? of a
coin turning about an axis through its center and perpen-
dicular to its faces?

7. In a tape recorder, the tape is pulled past the read-and-
write heads at a constant speed by the drive mechanism.
Consider the reel from which the tape is pulled. As the
tape is pulled from it, the radius of the roll of remaining
tape decreases. How does the torque on the reel change
with time? How does the angular speed of the reel change
in time? If the drive mechanism is switched on so that
the tape is suddenly jerked with a large force, is the tape
more likely to break when it is being pulled from a nearly
full reel or from a nearly empty reel?

8. Vector is in the negative y direction and vector is
in the negative x direction. What are the directions of 
(a) and (b) ?

9. For a helicopter to be stable as it flies, it must have at least
two propellers. Why?

10. Often when a high diver wants to turn a flip in midair, she
draws her legs up against her chest. Why does this move-

B
:

� A
:

A
:

� B
:

B
:

A
:

5.

ment make her rotate faster? What should she do when
she wants to come out of her flip?

Why does a long pole help a tightrope walker stay balanced?

12. In some motorcycle races, the riders drive over small hills
and the motorcycle becomes airborne for a short time. If
the motorcycle racer keeps the throttle open while leaving
the hill and going into the air, the motorcycle tends to
nose upward. Why?

13. If global warming continues over the next one hundred
years, it is likely that some polar ice will melt and the water
will be distributed closer to the Equator. How would that
change the moment of inertia of the Earth? Would the
length of the day (one revolution) increase or decrease?

14. Two uniform solid spheres, a large, massive sphere and a
small sphere with low mass, are rolled down a hill. Which
one reaches the bottom of the hill first? Next, we roll a
large, low-density sphere and a small high-density sphere
of equal mass. Which one wins in this case?

15. In a soapbox derby race, the cars have no engines; they
simply coast down a hill to race with one another. Suppose
you are designing a car for a coasting race. Do you want to
use large wheels or small wheels? Do you want to use solid
disk-like wheels or hoop-like wheels? Should the wheels be
heavy or light?

16. Stand with your back against a wall. Why can’t you put your
heels firmly against the wall and then bend forward with-
out falling?

A ladder stands on the ground, leaning against a wall. Would
you feel safer climbing up the ladder if you were told that the
ground is frictionless but the wall is rough, or that the wall is
frictionless but the ground is rough? Justify your answer.

18. (a) Give an example in which the net force acting on an
object is zero and yet the net torque is nonzero. (b) Give
an example in which the net torque acting on an object is
zero and yet the net force is nonzero.

17.

11.

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 10.1 ■ Angular Position, Speed, and Acceleration
1. During a certain period of time, the angular position of a

swinging door is described by � � 5.00 	 10.0t 	 2.00t2,
where � is in radians and t is in seconds. Determine the
angular position, angular speed, and angular acceleration
of the door (a) at t � 0 and (b) at t � 3.00 s.

Section 10.2 ■ Rotational Kinematics: The Rigid Object
Under Constant Angular Acceleration

2. A dentist’s drill starts from rest. After 3.20 s of constant an-
gular acceleration, it turns at a rate of 2.51 � 104 rev/min.
(a) Find the drill’s angular acceleration. (b) Determine
the angle (in radians) through which the drill rotates dur-
ing this period.

An electric motor rotating a grinding
wheel at 100 rev/min is switched off. The wheel then
moves with a constant negative angular acceleration of
magnitude 2.00 rad/s2. (a) During what time interval does
the wheel come to rest? (b) Through how many radians
does it turn while it is slowing down?

4. A centrifuge in a medical laboratory rotates at an angular
speed of 3 600 rev/min. When switched off, it rotates
through 50.0 revolutions before coming to rest. Find the
constant angular acceleration of the centrifuge.

3.

www.pop4e.com
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Chain
SprocketCrank

FIGURE P10.11

x
O

y  =  3.00 m4.00 kg

3.00 kg

2.00 kg

y

y  =  –2.00 m

y  =  –4.00 m

FIGURE P10.14

5. The tub of a washer goes into its spin cycle, starting from rest
and gaining angular speed steadily for 8.00 s, at which time it
is turning at 5.00 rev/s. At this point, the person doing the
laundry opens the lid and a safety switch turns off the washer.
The tub smoothly slows to rest in 12.0 s. Through how many
revolutions does the tub turn while it is in motion?

6. A rotating wheel requires 3.00 s to rotate through 37.0 rev.
Its angular speed at the end of the 3.00-s interval is 
98.0 rad/s. What is the constant angular acceleration of
the wheel?

7. (a) Find the angular speed of the Earth’s rotation on its
axis. As the Earth turns toward the east, we see the sky
turning toward the west at this same rate.

(b) The rainy Pleiads wester
And seek beyond the sea

The head that I shall dream of
That shall not dream of me.
—A. E. Housman (© Robert E. Symons)

Cambridge, England, is at longitude 0° and Saskatoon,
Saskatchewan, is at longitude 107° west. How much time
elapses after the Pleiades set in Cambridge until these stars
fall below the western horizon in Saskatoon?

Section 10.3 ■ Relations Between Rotational and 
Translational Quantities

8. Make an order-of-magnitude estimate of the number of
revolutions through which a typical automobile tire turns
in 1 yr. State the quantities you measure or estimate and
their values.

A disk 8.00 cm in radius rotates at a con-
stant rate of 1 200 rev/min about its central axis. Determine
(a) its angular speed, (b) the tangential speed at a point
3.00 cm from its center, (c) the radial acceleration of a point
on the rim, and (d) the total distance a point on the rim
moves in 2.00 s.

10. A wheel 2.00 m in diameter lies in a vertical plane and ro-
tates with a constant angular acceleration of 4.00 rad/s2. The
wheel starts at rest at t � 0, and the radius vector of a certain
point P on the rim makes an angle of 57.3° with the horizon-
tal at this time. At t � 2.00 s, find (a) the angular speed of
the wheel, (b) the tangential speed and the total acceleration
of the point P, and (c) the angular position of the point P.

11. Figure P10.11 shows the drivetrain of a bicycle that has
wheels 67.3 cm in diameter and pedal cranks 17.5 cm long.
The cyclist pedals at a steady cadence of 76.0 rev/min. The
chain engages with a front sprocket 15.2 cm in diameter and
a rear sprocket 7.00 cm in diameter. (a) Calculate the speed
of a link of the chain relative to the bicycle frame.(b) Calcu-
late the angular speed of the bicycle wheels. (c) Calculate
the speed of the bicycle relative to the road. (d) What pieces
of data, if any, are not necessary for the calculations?

12. A digital audio compact disc carries data, each bit of
which occupies 0.6 �m along a continuous spiral track
from the inner circumference of the disc to the outside
edge. A CD player turns the disc to carry the track coun-
terclockwise above a lens at a constant speed of 1.30 m/s.
Find the required angular speed (a) at the beginning of
the recording, where the spiral has a radius of 2.30 cm,
and (b) at the end of the recording, where the spiral has a

9.

radius of 5.80 cm. (c) A full-length recording lasts for
74 min 33 s. Find the average angular acceleration of the
disc. (d) Assuming that the acceleration is constant, find
the total angular displacement of the disc as it plays. 
(e) Find the total length of the track.

13. A car traveling on a flat (unbanked) circular track acceler-
ates uniformly from rest with a tangential acceleration of
1.70 m/s2. The car makes it one fourth of the way around
the circle before it skids off the track. Determine the coef-
ficient of static friction between the car and track from
these data.

Section 10.4 ■ Rotational Kinetic Energy
14. Rigid rods of negligible mass lying along the y axis connect

three particles (Fig. P10.14). The system rotates about the
x axis with an angular speed of 2.00 rad/s. Find (a) the
moment of inertia about the x axis and the total rotational
kinetic energy evaluated from and (b) the tangential
speed of each particle and the total kinetic energy evalu-
ated from .� 1

2miv 2
i

1
2I� 2

This problem describes one experimental method for de-
termining the moment of inertia of an irregularly shaped
object such as the payload for a satellite. Figure P10.15
shows a counterweight of mass m suspended by a cord
wound around a spool of radius r, forming part of a

15.
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turntable supporting the object. The turntable can rotate
without friction. When the counterweight is released from
rest, it descends through a distance h, acquiring a speed v.
Show that the moment of inertia I of the rotating appara-
tus (including the turntable) is mr 2(2gh/v2 � 1).

16. Big Ben, the Parliament tower clock in London, has an
hour hand 2.70 m long with a mass of 60.0 kg and a minute
hand 4.50 m long with a mass of 100 kg (Fig. P10.16).
Calculate the total rotational kinetic energy of the two
hands about the axis of rotation. (You may model the
hands as uniform long, thin rods.)

m

FIGURE P10.15

FIGURE P10.16 Problems 10.16, 10.42, and 10.64.

17. Consider two objects with m1 � m2 connected by a light
string that passes over a pulley having a moment of inertia
of I about its axis of rotation as shown in Figure P10.17.
The string does not slip on the pulley or stretch. The
pulley turns without friction. The two objects are released
from rest separated by a vertical distance 2h. (a) Use the
principle of conservation of energy to find the transla-
tional speeds of the objects as they pass each other. 
(b) Find the angular speed of the pulley at this time.

18. As a gasoline engine operates, a flywheel turning with the
crankshaft stores energy after each fuel explosion, providing
the energy required to compress the next charge of fuel and
air. For the engine of a certain lawn tractor, suppose a fly-
wheel must be no more than 18.0 cm in diameter. Its thick-
ness, measured along its axis of rotation, must be no larger
than 8.00 cm. The flywheel must release energy 60.0 J when
its angular speed drops from 800 rev/min to 600 rev/min.
Design a sturdy, steel flywheel to meet these requirements
with the smallest mass that you can reasonably attain.

2h

m1

I
R

m2

FIGURE P10.17
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Assume that the material has the density listed for iron in
Table 15.1. Specify the shape and mass of the flywheel.

19. A war-wolf or trebuchet is a device used during the Middle Ages
to throw rocks at castles and sometimes now used to fling pi-
anos as a sport. A simple trebuchet is shown in Figure
P10.19. Model it as a stiff rod of negligible mass, 3.00 m long,
joining particles of mass 60.0 kg and 0.120 kg at its ends. It
can turn on a frictionless horizontal axle perpendicular to
the rod and 14.0 cm from the large-mass particle. The rod is
released from rest in a horizontal orientation. Find the maxi-
mum speed that the small-mass object attains.

FIGURE P10.19

100 N

20.0°

20.0°
37.0°

2.00 m

FIGURE P10.20

Section 10.5 ■ Torque and the Vector Product
20. The fishing pole in Figure P10.20 makes an angle of 20.0°

with the horizontal. What is the torque exerted by the fish
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about an axis perpendicular to the page and passing
through the angler’s hand?

Find the net torque on the wheel in
Figure P10.21 about the axle through O, taking a � 10.0 cm
and b � 25.0 cm.

21.

22. Given and , calculate
the vector product .

23. A force of is applied to an object
that is pivoted about a fixed axle aligned along the z
coordinate axis. The force is applied at the point

. Find (a) the magnitude of the
net torque about the z axis and (b) the direction of the
torque vector .

24. Two vectors are given by and
. Evaluate the following quantities:

(a) cos�1[ /AB] and (b) sin�1[ /AB]. 
(c) Which give(s) the angle between the vectors?

25. Use the definition of the vector product and the definitions
of the unit vectors , , and to prove Equations 10.23. You
may assume that the x axis points to the right, the y axis up,
and the z axis toward you (not away from you). This choice
is said to make the coordinate system right-handed.

Section 10.6 ■ The Rigid Object in Equilibrium
26. In exercise physiology studies, it is sometimes impor-

tant to determine the location of a person’s center of mass,
which can be done with the arrangement shown in Figure
P10.26. A light plank rests on two scales, which read Fg1 �
380 N and Fg2 � 320 N. A distance of 2.00 m separates the
scales. How far from the woman’s feet is her center of mass?

k̂ĵî

� A
:

� B
:

�A
:

� B
:

B
:

� 6 î  � 10 ĵ 	 9k̂
A
:

� �3 î 	 7 ĵ � 4k̂

� :

r: � (4.00 î 	 5.00 ĵ) m

F
:

� (2.00 î 	 3.00 ĵ) N

M
:

� N
:

N
:

� 2 î  � ĵ � 3k̂M
:

� 6 î  	 2 ĵ � k̂

10.0 N

30.0° a

O

b
12.0 N

9.00 N

FIGURE P10.21

of x will the beam be balanced at P such that the normal
force at O is zero?

28. A uniform plank of length 6.00 m and mass 30.0 kg rests
horizontally across two horizontal bars of a scaffold. The
bars are 4.50 m apart, and 1.50 m of the plank hangs over
one side of the scaffold. Draw a free-body diagram of the
plank. How far can a painter of mass 70.0 kg walk on the
overhanging part of the plank before it tips?

29. Figure P10.29 shows a claw hammer as it is being used to
pull a nail out of a horizontal board. A force of 150 N is ex-
erted horizontally as shown. Find (a) the force exerted by
the hammer claws on the nail and (b) the force exerted by
the surface on the point of contact with the hammer head.
Assume that the force the hammer exerts on the nail is
parallel to the nail.

Fg1 Fg 2

2.00 m

FIGURE P10.26

d

P

x

O

�
2

�

m2m1

CG

FIGURE P10.27

A uniform beam of mass mb and length � supports blocks
with masses m1 and m2 at two positions as shown in Figure
P10.27. The beam rests on two knife edges. For what value

27.

Single point
of contact

5.00 cm

30.0°

30.0 cm

F

FIGURE P10.29

30. A uniform ladder of length L and mass m1 rests against a
frictionless wall. The ladder makes an angle � with the
horizontal. (a) Find the horizontal and vertical forces
the ground exerts on the base of the ladder when a
firefighter of mass m2 is a distance x from the bottom. (b) If
the ladder is just on the verge of slipping when the fire-
fighter is a distance d from the bottom, what is the coeffi-
cient of static friction between ladder and ground?

A uniform sign of weight Fg and width
2L hangs from a light, horizontal beam hinged at the wall
and supported by a cable (Fig. P10.31). Determine (a) the
tension in the cable and (b) the components of the reaction

31.
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force exerted by the wall on the beam, in terms of Fg , d, L,
and �.

d

θ

2L

FIGURE P10.31

32. A crane of mass 3 000 kg supports a load of 10 000 kg as
shown in Figure P10.32. The crane is pivoted with a fric-
tionless pin at A and rests against a smooth support at B.
Find the reaction forces at A and B.

the flywheel has a clockwise angular acceleration of
1.67 rad/s2. Find the tension in the lower (slack) segment
of the belt.

10 000 kg

(3 000 kg)g
B

A

2.00 m

6.00 m

1.00 m

FIGURE P10.32

Section 10.7 ■ The Rigid Object Under a Net Torque
33. The combination of an applied force and a friction force

produces a constant total torque of 36.0 on a wheel
rotating about a fixed axis. The applied force acts for 
6.00 s. During this time the angular speed of the wheel
increases from 0 to 10.0 rad/s. The applied force is then
removed, and the wheel comes to rest in 60.0 s. Find 
(a) the moment of inertia of the wheel, (b) the magnitude
of the frictional torque, and (c) the total number of revo-
lutions of the wheel.

34. A potter’s wheel—a thick stone disk of radius 0.500 m and
mass 100 kg—is freely rotating at 50.0 rev/min. The
potter can stop the wheel in 6.00 s by pressing a wet rag
against the rim and exerting a radially inward force of 
70.0 N. Find the effective coefficient of kinetic friction
between wheel and rag.

35. An electric motor turns a flywheel through a drive belt
that joins a pulley on the motor and a pulley that is rigidly
attached to the flywheel, as shown in Figure P10.35. The
flywheel is a solid disk with a mass of 80.0 kg and a diame-
ter of 1.25 m. It turns on a frictionless axle. Its pulley has
much smaller mass and a radius of 0.230 m. The tension
in the upper (taut) segment of the belt is 135 N, and

N �m

FIGURE P10.35

36. In Figure P10.36, the sliding block has a mass of 0.850 kg,
the counterweight has a mass of 0.420 kg, and the pulley is
a hollow cylinder with a mass of 0.350 kg, an inner radius
of 0.020 0 m, and an outer radius of 0.030 0 m. The coeffi-
cient of kinetic friction between the block and the horizon-
tal surface is 0.250. The pulley turns without friction on its
axle. The light cord does not stretch and does not slip on
the pulley. The block has a velocity of 0.820 m/s toward
the pulley when it passes through a photogate. (a) Use en-
ergy methods to predict its speed after it has moved to a
second photogate, 0.700 m away. (b) Find the angular
speed of the pulley at the same moment.

Two blocks, as shown in Figure P10.37, are connected by a
string of negligible mass passing over a pulley of radius
0.250 m and moment of inertia I. The block on the fric-
tionless incline is moving up with a constant acceleration
of 2.00 m/s2. (a) Determine T1 and T2, the tensions in the

37.

FIGURE P10.36

37.0°

15.0 kg

T1

m1
20.0 kg

T2

2.00 m/s2

m2

FIGURE P10.37
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(c) Prove that the total torque on the ring, multiplied by
the time interval found in part (b), is equal to the
change in angular momentum, found in part (a). This
equality represents the angular impulse –angular momen-
tum theorem.

two parts of the string. (b) Find the moment of inertia of
the pulley.

38. A uniform rod of length L and mass M is free to rotate
about a frictionless pivot at one end as shown in Figure
10.9. The rod is released from rest in the horizontal posi-
tion. What are the initial angular acceleration of the rod
and the initial translational acceleration of the right end of
the rod?

An object with a weight of 50.0 N is attached to the free
end of a light string wrapped around a reel of radius 0.250 m
and mass 3.00 kg. The reel is a solid disk, free to rotate in a
vertical plane about the horizontal axis passing through its
center. The suspended object is released 6.00 m above the
floor. (a) Determine the tension in the string, the accelera-
tion of the object, and the speed with which the object hits
the floor. (b) Verify your last answer by using the principle
of conservation of energy to find the speed with which the
object hits the floor.

Section 10.8 ■ Angular Momentum
40. Heading straight toward the summit of Pikes Peak, an

airplane of mass 12 000 kg flies over the plains of Kansas at
nearly constant altitude 4.30 km with constant velocity 
175 m/s west. (a) What is the airplane’s vector angular
momentum relative to a wheat farmer on the ground
directly below the airplane? (b) Does this value change as
the airplane continues its motion along a straight line? 
(c) What is its angular momentum relative to the summit
of Pikes Peak?

The position vector of a particle of
mass 2.00 kg is given as a function of time by

. Determine the angular momen-
tum of the particle about the origin as a function of time.

42. Big Ben (Fig. P10.16), the Parliament tower clock in
London, has hour and minute hands with lengths of
2.70 m and 4.50 m and masses of 60.0 kg and 100 kg, re-
spectively. Calculate the total angular momentum of these
hands about the center point. Treat the hands as long,
thin, uniform rods. 

43. A particle of mass 0.400 kg is attached to the 100-cm mark
of a meter stick of mass 0.100 kg. The meter stick rotates
on a horizontal, frictionless table with an angular speed of
4.00 rad/s. Calculate the angular momentum of the system
when the stick is pivoted about an axis (a) perpendicular
to the table through the 50.0-cm mark and (b) perpendic-
ular to the table through the 0-cm mark.

44. A space station is constructed in the shape of a hollow
ring of mass 5.00 � 104 kg. Members of the crew walk on
a deck formed by the inner surface of the outer cylindri-
cal wall of the ring, with radius 100 m. At rest when con-
structed, the ring is set rotating about its axis so that the
people inside experience an effective free-fall accelera-
tion equal to g. (Fig. P10.44 shows the ring together with
some other parts that make a negligible contribution to
the total moment of inertia.) The rotation is achieved by
firing two small rockets attached tangentially to opposite
points on the outside of the ring. (a) What angular mo-
mentum does the space station acquire? (b) How long
must the rockets be fired if each exerts a thrust of 125 N?

r: � (6.00 î 	 5.00t ĵ) m

41.

39.

FIGURE P10.44 Problems 10.44 and 10.50.

Section 10.9 ■ Conservation of Angular Momentum
45. A cylinder with moment of inertia I1 rotates about a verti-

cal, frictionless axle with angular speed �i. A second cylin-
der, this one having moment of inertia I2 and initially not
rotating, drops onto the first cylinder (Fig. P10.45).
Because of friction between the surfaces, the two eventu-
ally reach the same angular speed �f . (a) Calculate �f . 
(b) Show that the kinetic energy of the system decreases in
this interaction and calculate the ratio of the final to the
initial rotational energy.

I2

ωi
ωf

I1

Before After

ω
ω

FIGURE P10.45

46. A playground merry-go-round of radius R � 2.00 m 
has a moment of inertia I � 250 and is rotating at
10.0 rev/min about a frictionless vertical axle. Facing the
axle, a 25.0-kg child hops onto the merry-go-round and
manages to sit down on the edge. What is the new angular
speed of the merry-go-round?
A 60.0-kg woman stands at the rim of a horizontal
turntable having a moment of inertia of 500 kg�m2 and a
radius of 2.00 m. The turntable is initially at rest and is free
to rotate about a frictionless, vertical axle through its cen-
ter. The woman then starts walking around the rim clock-
wise (as viewed from above the system) at a constant speed
of 1.50 m/s relative to the Earth. (a) In what direction and

47.

kg�m2
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with what angular speed does the turntable rotate? 
(b) How much work does the woman do to set herself and
the turntable into motion?

48. A student sits on a freely rotating stool holding two
weights, each of mass 3.00 kg (Fig. P10.48). When his
arms are extended horizontally, the weights are 1.00 m
from the axis of rotation and he rotates with an angular
speed of 0.750 rad/s. The moment of inertia of the stu-
dent plus stool is 3.00 and is assumed to be con-
stant. The student pulls the weights inward horizontally to
a position 0.300 m from the rotation axis. (a) Find the
new angular speed of the student. (b) Find the kinetic en-
ergy of the rotating system before and after he pulls the
weights inward.

kg � m2

49. A puck of mass 80.0 g and radius 4.00 cm slides along an
air table at a speed of 1.50 m/s as shown in Figure P10.49a.
It makes a glancing collision with a second puck of radius
6.00 cm and mass 120 g (initially at rest) such that their
rims just touch.  Because their rims are coated with instant-
acting glue, the pucks stick together and spin after the col-
lision (Fig. P10.49b). (a) What is the angular momentum
of the system relative to the center of mass? (b) What is the
angular speed about the center of mass?

FIGURE P10.48

(a) (b)

iω fω

acceleration is experienced by the managers remaining
at the rim? 

51. The puck in Figure 10.24 has a mass of 0.120 kg. The dis-
tance of the puck from the center of rotation is originally
40.0 cm, and the puck is sliding with a speed of 80.0 cm/s.
The string is pulled downward 15.0 cm through the hole
in the frictionless table. Determine the work done on
the puck. (Suggestion: Consider the change of kinetic
energy.)

Section 10.10 ■ Precessional Motion of Gyroscopes
52. The angular momentum vector of a precessing gyroscope

sweeps out a cone as shown in Figure 10.25b. Its angular
speed, called its precessional frequency, is given by 
�p � �/L, where � is the magnitude of the torque on the
gyroscope and L is the magnitude of its angular momen-
tum. In the motion called precession of the equinoxes, repre-
sented in Figure P10.52, the Earth’s axis of rotation
precesses about the perpendicular to its orbital plane with
a period of 2.58 � 104 yr. Model the Earth as a uniform
sphere and calculate the torque on the Earth that is causing
this precession.

(b)(a)

1.50 m/s

FIGURE P10.49

North Star

(b)

Cone of
precession

(a)

FIGURE P10.52 (a) At present, the spin axis of the Earth
points toward the North Star. (b) Torque on the spinning
Earth will cause it to precess, so the spin axis will no
longer be pointing in this direction in the future.

(N
AS

A)

50. A space station shaped like a giant wheel has a radius of
100 m and a moment of inertia of 5.00 � 108 . A
crew of 150 is living on the rim, and the station’s rotation
causes the crew to experience an apparent free-fall
acceleration of g (Fig. P10.44). When 100 people move
to the center of the station for a union meeting, the
angular speed changes. Assume that the average mass
for each inhabitant is 65.0 kg. What apparent free-fall

kg �m2

Section 10.11 ■ Rolling Motion of Rigid Objects
A cylinder of mass 10.0 kg rolls without slipping on a hori-
zontal surface. At a certain instant its center of mass has a
speed of 10.0 m/s. Determine (a) the translational kinetic
energy of its center of mass, (b) the rotational kinetic en-
ergy about its center of mass, and (c) its total energy.

54. A uniform solid disk and a uniform hoop are placed
side by side at the top of an incline of height h. If they
are released from rest and roll without slipping, which
object reaches the bottom first? Verify your answer by
calculating their speeds when they reach the bottom in
terms of h.

55. A tennis ball is a hollow sphere with a thin wall. It is set
rolling without slipping at 4.03 m/s on a horizontal section
of a track as shown in Figure P10.55. It rolls around the
inside of a vertical circular loop 90.0 cm in diameter and

53.



332 ❚ CHAPTER 10 ROTATIONAL MOTION

y g p pp

finally leaves the track at a point 20.0 cm below the hori-
zontal section. (a) Find the speed of the ball at the top of
the loop. Demonstrate that it will not fall from the
track. (b) Find its speed as it leaves the track. (c) Suppose
static friction between ball and track were negligible
so that the ball slid instead of rolling. Would its speed then
be higher, lower, or the same at the top of the loop?
Explain.

60. A uniform, hollow, cylindrical spool has inside radius R/2,
outside radius R, and mass M (Fig. P10.60). It is mounted
so that it rotates on a fixed, horizontal axle. A counter-
weight of mass m is connected to the end of a string wound
around the spool. The counterweight falls from rest at t � 0
to a position y at time t. Show that the torque due to the
friction forces between spool and axle is

�f � R �m �g �
2y
t2 � � M

5y
4t2 	

FIGURE P10.55

56. A metal can containing condensed mushroom soup has
mass 215 g, height 10.8 cm, and diameter 6.38 cm. It is
placed at rest on its side at the top of a 3.00-m-long incline
that is at 25.0° to the horizontal and is then released to
roll straight down. It takes 1.50 s to reach the bottom
of the incline. Assuming mechanical energy conservation,
calculate the moment of inertia of the can. Which
pieces of data, if any, are unnecessary in calculating the
solution?

Section 10.12 ■ Context Connection — Turning 
the Spacecraft

57. A spacecraft is in empty space. It carries on board a gyro-
scope with a moment of inertia of Ig � 20.0 kg m2 about
the axis of the gyroscope. The moment of inertia of the
spacecraft around the same axis is Is � 5.00 � 105 kg m2.
Neither the spacecraft nor the gyroscope is originally rotat-
ing. The gyroscope can be powered up in a negligible pe-
riod of time to an angular speed of 100 s�1. If the orienta-
tion of the spacecraft is to be changed by 30.0°, for how
long should the gyroscope be operated?

Additional Problems
58. Review problem. A mixing beater consists of three thin

rods, each 10.0 cm long. The rods diverge from a central
hub, separated from each other by 120°, and all turn in the
same plane. A ball is attached to the end of each rod. Each
ball has cross-sectional area 4.00 cm2 and is so shaped that
it has a drag coefficient of 0.600. Calculate the power input
required to spin the beater at 1 000 rev/min (a) in air and
(b) in water.

A long uniform rod of length L and mass M is pivoted
about a horizontal, frictionless pin through one end. The
rod is released from rest in a vertical position as shown in
Figure P10.59. At the instant the rod is horizontal, find 
(a) its angular speed, (b) the magnitude of its angular ac-
celeration, (c) the x and y components of the acceleration
of its center of mass, and (d) the components of the reac-
tion force at the pivot.

59.

�

�

xPivot
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y

FIGURE P10.59

M

m
R/2

R/2 y

FIGURE P10.60

61. The reel shown in Figure P10.61 has radius R and
moment of inertia I. One end of the block of mass m is
connected to a spring of force constant k, and the other
end is fastened to a cord wrapped around the reel. The
reel axle and the incline are frictionless. The reel is
wound counterclockwise so that the spring stretches a dis-
tance d from its unstretched position and is then released
from rest. (a) Find the angular speed of the reel when
the spring is again unstretched. (b) Evaluate the angular
speed numerically at this point taking I � 1.00 kg m2,
R � 0.300 m, k � 50.0 N/m, m � 0.500 kg, d � 0.200 m,
and � � 37.0°.

�

m

R

k

θ

FIGURE P10.61
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62. A block of mass m1 � 2.00 kg and a block of mass 
m2 � 6.00 kg are connected by a massless string over a pul-
ley in the shape of a solid disk having radius R � 0.250 m
and mass M � 10.0 kg. These blocks are allowed to move
on a fixed block-wedge of angle � � 30.0° as shown in
Figure P10.62. The coefficient of kinetic friction is 0.360
for both blocks. Draw free-body diagrams of both blocks
and of the pulley. Determine (a) the acceleration of the
two blocks and (b) the tensions in the string on both sides
of the pulley.

64. The hour hand and the minute hand of Big Ben, the
Parliament tower clock in London, are 2.70 m and 4.50 m
long and have masses of 60.0 kg and 100 kg, respectively
(see Fig. P10.16). (a) Determine the total torque due to
the weight of these hands about the axis of rotation when
the time reads (i) 3:00, (ii) 5:15, (iii) 6:00, (iv) 8:20, and
(v) 9:45. (You may model the hands as long, thin, uniform
rods.) (b) Determine all times when the total torque about

63. A common demonstration, illustrated in Figure P10.63,
consists of a ball resting at one end of a uniform board
of length �, hinged at the other end, and elevated at an
angle �. A light cup is attached to the board at rc so that
it will catch the ball when the support stick is suddenly
removed. (a) Show that the ball will lag behind the
falling board when � is less than 35.3°. (b) Assume that
the board is 1.00 m long and is supported at this limiting
angle. Show that the cup must be 18.4 cm from the mov-
ing end.

m1

m2

I, R

θ

FIGURE P10.62

the axis of rotation is zero. Determine the times to the
nearest second, solving a transcendental equation numeri-
cally.

65. A string is wound around a uniform disk of radius R and
mass M. The disk is released from rest with the string verti-
cal and its top end tied to a fixed bar (Fig. P10.65). Show
that (a) the tension in the string is one-third the weight of
the disk, (b) the magnitude of the acceleration of the cen-
ter of mass is 2g/3, and (c) the speed of the center of mass
is (4gh/3)1/2 after the disk has descended through dis-
tance h. Verify your answer to (c) using the energy
approach.

66. A new General Electric stove has a mass of 68.0 kg and the
dimensions shown in Figure P10.66. The stove comes with
a warning that it can tip forward if a person stands or sits
on the oven door when it is open. What can you conclude
about the weight of such a person? Could it be a child? List
the assumptions you make in solving this problem. The
stove is supplied with a wall bracket to prevent the acci-
dent.

r c

Cup

�

Hinged end

Support
stick

θ

FIGURE P10.63
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FIGURE P10.65
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FIGURE P10.66

67. (a) Without the wheels, a bicycle frame has a mass of 
8.44 kg. Each of the wheels can be roughly modeled as a
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uniform solid disk with a mass of 0.820 kg and a radius of
0.343 m. Find the kinetic energy of the whole bicycle when
it is moving forward at 3.35 m/s. (b) Before the invention
of a wheel turning on an axle, ancient people moved heavy
loads by placing rollers under them. (Modern people use
rollers, too. Any hardware store will sell you a roller bear-
ing for a lazy Susan.) A stone block of mass 844 kg moves
forward at 0.335 m/s, supported by two uniform cylindri-
cal tree trunks each of mass 82.0 kg and radius 0.343 m.
No slipping occurs between the block and the rollers or
between the rollers and the ground. Find the total kinetic
energy of the moving objects.

68. A skateboarder with his board can be modeled as a parti-
cle of mass 76.0 kg, located at his center of mass. As
shown in Figure P7.59 on page 218, the skateboarder
starts from rest in a crouching position at one lip of a
half-pipe (point �). The half-pipe forms one half of a
cylinder of radius 6.80 m with its axis horizontal. On his
descent, the skateboarder moves without friction and
maintains his crouch so that his center of mass moves
through one quarter of a circle of radius 6.30 m. (a) Find
his speed at the bottom of the half-pipe (point �). (b) Find
his angular momentum about the center of curvature.
(c) Immediately after passing point �, he stands up and
raises his arms, lifting his center of gravity from 0.500 m
to 0.950 m above the concrete (point �). Explain why his
angular momentum is constant in this maneuver, whereas
his linear momentum and his mechanical energy are not
constant. (d) Find his speed immediately after he stands
up, when his center of mass is moving in a quarter circle
of radius 5.85 m. (e) What work did the skateboarder’s
legs do on his body as he stood up?  Next, the skate-
boarder glides upward with his center of mass moving in
a quarter circle of radius 5.85 m. His body is horizontal
when he passes point �, the far lip of the half-pipe.
(f) Find his speed at this location. At last he goes ballistic,
twisting around while his center of mass moves vertically.
(g) How high above point � does he rise? (h) Over what
time interval is he airborne before he touches down, fac-
ing downward and again in a crouch, 2.34 m below the
level of point �? (i) Compare the solution to this prob-
lem with the solution to Problem 7.59. Which is more ac-
curate? Why? (Caution: Do not try this maneuver yourself
without the required skill and protective equipment, or in
a drainage channel to which you do not have legal access.)

69. Two astronauts (Fig. P10.69), each having a mass M, are
connected by a rope of length d having negligible mass.
They are isolated in space, orbiting their center of mass at
speeds v. Treating the astronauts as particles, calculate 

(a) the magnitude of the angular momentum of the sys-
tem and (b) the rotational energy of the system. By pulling
on the rope, one of the astronauts shortens the distance
between them to d/2. (c) What is the new angular mo-
mentum of the system? (d) What are the astronauts’ new
speeds? (e) What is the new rotational energy of the
system? (f) How much work does the astronaut do in
shortening the rope?

70. When a person stands on tiptoe (a strenuous position),
the position of the foot is as shown in Figure P10.70a. The
total gravitational force on the body is supported by the
force exerted by the floor on the toes of one foot. A me-
chanical model for the situation is shown in Figure
P10.70b, where is the force exerted by the Achilles ten-
don on the foot and is the force exerted by the tibia on
the foot. Find the values of T, R, and � when Fg � 700 N.

R
:

T
:

n:
F
:

g

d

CM

FIGURE P10.69
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FIGURE P10.70

71. A person bending forward to lift a load “with his back”
(Fig. P10.71a) rather than “with his knees” can be injured
by large forces exerted on the muscles and vertebrae. The
spine pivots mainly at the fifth lumbar vertebra, with the
principal supporting force provided by the erector spinalis
muscle in the back. To see the magnitude of the forces in-
volved and to understand why back problems are common
among humans, consider the model shown in Fig. P10.71b
for a person bending forward to lift a 200-N object.
The spine and upper body are represented as a
uniform horizontal rod of weight 350 N, pivoted at
the base of the spine. The erector spinalis muscle,
attached at a point two thirds of the way up the spine,
maintains the position of the back. The angle between
the spine and this muscle is 12.0°. Find the tension
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in the back muscle and the compressional force in the
spine.

A force acts on a rectangular cabinet weighing 400 N as
shown in Figure P10.73. (a) Assuming that the cabinet slides
with constant speed when F � 200 N and h � 0.400 m, find
the coefficient of kinetic friction and the position of the re-
sultant normal force. (b) Taking F � 300 N, find the value
of h for which the cabinet just begins to tip.

73.

72. A wad of sticky clay with mass m and velocity is fired at a
solid cylinder of mass M and radius R (Fig. P10.72). The
cylinder is initially at rest and is mounted on a fixed hori-
zontal axle that runs through its center of mass. The line
of motion of the projectile is perpendicular to the axle and
at a distance d � R from the center. (a) Find the angular
speed of the system just after the clay strikes and sticks to
the surface of the cylinder. (b) Is mechanical energy of the
clay–cylinder system conserved in this process? Explain
your answer.

v:i

Ry

Rx

T 12.0°

200 N

350 N

Pivot

Back muscle

(a) (b)

FIGURE P10.71

74. The following equations are obtained from a free-body dia-
gram of a rectangular farm gate, supported by two hinges
on the left-hand side. A bucket of grain is hanging from
the latch.

(a) Draw the free-body diagram and complete the statement
of the problem, specifying the unknowns. (b) Determine
the values of the unknowns and state the physical meaning
of each.

75. A stepladder of negligible weight is constructed as shown
in Figure P10.75. A painter of mass 70.0 kg stands on the
ladder 3.00 m from the bottom. Assuming that the floor is
frictionless, find (a) the tension in the horizontal bar con-
necting the two halves of the ladder, (b) the normal forces
at A and B, and (c) the components of the reaction force
at the single hinge C that the left half of the ladder exerts
on the right half. (Suggestion: Treat the ladder as a single
object, but also treat each half of the ladder separately.)

 � 50.0 N(3.00 m) � 0
 A(0) 	 B(0) 	 C(1.80 m) � 392 N(1.50 m)

	B � 392 N � 50.0 N � 0

�A 	 C � 0

MR

vim

d

FIGURE P10.72
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� = 100 cm

F
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FIGURE P10.76

76. A solid sphere of mass m and radius r rolls without slipping
along the track shown in Figure P10.76. It starts from rest
with the lowest point of the sphere at height h above the
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bottom of the loop of radius R, much larger than r. 
(a) What is the minimum value of h (in terms of R) such
that the sphere completes the loop? (b) What are the force
components on the sphere at the point P if h � 3R ?

77. Figure P10.77 shows a vertical force applied tangentially to
a uniform cylinder of weight Fg . The coefficient of static
friction between the cylinder and all surfaces is 0.500. In
terms of Fg , find the maximum force P that can be applied
that does not cause the cylinder to rotate. (Suggestion:
When the cylinder is on the verge of slipping, both friction
forces are at their maximum values. Why?)

P

FIGURE P10.77

ANSWERS TO QUICK QUIZZES

10.1 (i), (c). For a rotation of more than 180°, the angular
displacement must be larger than � � 3.14 rad. The
angular displacements in the three choices are 
(a) 6 rad � 3 rad � 3 rad, (b) 1 rad � (� 1) rad � 2 rad,
and (c) 5 rad � 1 rad � 4 rad. (ii), (b). Because all an-
gular displacements occur in the same time interval, the
displacement with the lowest value will be associated with
the lowest average angular speed.

10.2 (b). In Equation 10.8, both the initial and final angular
speeds are the same in all three cases. As a result, the an-
gular acceleration is inversely proportional to the angular
displacement. Therefore, the highest angular accelera-
tion is associated with the lowest angular displacement.

10.3 (i), (b). The system of the platform, Benjamin, and Tor-
rey is a rigid object, so all points on the rigid object have
the same angular speed. (ii), (a). The tangential speed is
proportional to the radial distance from the rotation axis.

10.4 (a). Almost all the mass of the pipe is at the same dis-
tance from the rotation axis, so it has a larger moment of
inertia than the solid cylinder.

10.5 (b), (c). The fatter handle of the screwdriver gives you a
larger moment arm and increases the torque that you
can apply with a given force from your hand. The longer
handle of the wrench gives you a larger moment arm
and increases the torque that you can apply with a given
force from your hand.

10.6 (b). With twice the moment of inertia and the same fric-
tional torque, there is half the angular acceleration. With

half the angular acceleration, it will require twice as long
to change the speed to zero.

10.7 (b). The hollow sphere has a larger moment of inertia
than the solid sphere because much of its mass is far
from the rotation axis. Because L � I� and � is the same
for both objects, the hollow sphere has a larger angular
momentum.

10.8 (i), (a). The diver is an isolated system, so the product I�
remains constant. As the moment of inertia of the diver
decreases, the angular speed increases by the same factor.
For example, if I goes down by a factor of 2, � goes up by
a factor of 2. (ii), (a). The rotational kinetic energy varies
as the square of �. If I is halved, �2 increases by a factor of
4 and the energy increases by a factor of 2.

10.9 (i), (b). All the gravitational potential energy of the
box–Earth system is transformed to kinetic energy of
translation. For the ball, some of the gravitational poten-
tial energy of the ball–Earth system is transformed to
rotational kinetic energy, leaving less for translational
kinetic energy, so the ball moves downhill more slowly
than the box does. (ii), (c). In Equation 10.46, ICM for a
sphere is . Therefore, MR 2 will cancel and the
remaining expression on the right-hand side of the equa-
tion is independent of mass and radius. (iii), (a). The
moment of inertia of the hollow sphere B is larger than
that of sphere A. As a result, Equation 10.46 tells us that
sphere B will have a smaller speed of the center of mass,
so sphere A should arrive first.

2
5MR2



At the beginning of our discussion of mechanics in
Chapter 1, we introduced the notion of modeling and
defined four categories of models: geometric, simplifica-

tion, analysis, and structural. We can apply our analysis models
to two very common structural models. In this chapter we shall
discuss a structural model for a large system—the Solar Sys-
tem—and a structural model for a small system—the hydrogen
atom.

We return to Newton’s law of universal gravitation—one of
the fundamental force laws in nature—and show how it,
together with our analysis models, enables us to understand the
motions of planets, moons, and artificial Earth satellites.

We conclude this chapter with a discussion of Niels Bohr’s
model of the hydrogen atom, which represents an interesting
mixture of classical and nonclassical physics. Despite the hybrid
nature of the model, some of its predictions agree with experi-
mental measurements made on hydrogen atoms. This discussion
will be our first major venture into the area of quantum physics,
which we will continue in Chapter 28.

Gravity, Planetary Orbits, and
the Hydrogen Atom

C H A P T E R 11

The Rosette Nebula is a region of gas and dust
surrounding an open cluster of stars. Bundles
of matter in the Universe such as this one
interact with other bundles of matter by
means of the gravitational force. The red
color is due to hydrogen atoms, excited by
light from the stars in the cluster, making
transitions from the n � 3 quantum state to
the n � 2 state. In this chapter, we will study
both the gravitational force and the origin of
the red color in the hydrogen atoms.

C H A P T E R  O U T L I N E
11.1 Newton’s Law of Universal Gravitation 

Revisited
11.2 Structural Models
11.3 Kepler’s Laws
11.4 Energy Considerations in Planetary 

and Satellite Motion
11.5 Atomic Spectra and the Bohr Theory 

of Hydrogen
11.6 Context Connection — Changing From 

a Circular to an Elliptical Orbit
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NEWTON’S  LAW  OF  UNIVERSAL  
GRAVITATION  REVISITED

Prior to 1686, many data had been collected on the motions of the Moon and the
planets, but a clear understanding of the forces involved with the motions was not
yet attainable. In that year, Isaac Newton provided the key that unlocked the secrets
of the heavens. He knew, from the first law of motion, that a net force had to be act-
ing on the Moon. If not, the Moon would move in a straight-line path rather than
in its almost circular orbit. Newton reasoned that this force between the Moon and
the Earth was an attractive force. He also concluded that there could be nothing
special about the Earth–Moon system or the Sun and its planets that would cause
gravitational forces to act on them alone.

As you should recall from Chapter 5, every particle in the Universe attracts every
other particle with a force that is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them. If
two particles have masses m1 and m2 and are separated by a distance r, the magni-
tude of the gravitational force between them is

[11.1]

where G is the universal gravitational constant whose value in SI units is

[11.2]

The force law given by Equation 11.1 is often referred to as an inverse-square
law because the magnitude of the force varies as the inverse square of the separa-
tion of the particles. We can express this attractive force in vector form by defining
a unit vector directed from m1 toward m2 as shown in Active Figure 11.1. The
force exerted by m1 on m2 is

[11.3]

where the negative sign indicates that particle 1 is attracted toward particle 2.
Likewise, by Newton’s third law, the force exerted by m 2 on m 1, designated ,
is equal in magnitude to and in the opposite direction. That is, these forces
form an action–reaction pair, and

As Newton demonstrated, the gravitational force exerted by a finite-sized, spher-
ically symmetric mass distribution on a particle outside the distribution is the same
as if the entire mass of the distribution were concentrated at its center. For exam-
ple, the force on a particle of mass m at the Earth’s surface has the magnitude

where ME is the Earth’s mass and RE is the Earth’s radius. This force is directed to-
ward the center of the Earth.

Measurement of the Gravitational Constant
The universal gravitational constant G was first measured in an important experi-
ment by Sir Henry Cavendish in 1798. The apparatus he used consists of two small
spheres, each of mass m, fixed to the ends of a light horizontal rod suspended by a
thin wire as in Figure 11.2. Two large spheres, each of mass M, are then placed near
the smaller spheres. The attractive force between the smaller and larger spheres
causes the rod to rotate and twist the wire. If the system is oriented as shown in
Figure 11.2, the rod rotates clockwise when viewed from the top. The angle
through which it rotates is measured by the deflection of a light beam that is

Fg � G  
MEm
RE 

2

F
:

21 � �F
:

12.
F
:

12

F
:

21

F
:

12 � �G  
m1m2

r2  r̂12

r̂12

G � 6.673 � 10�11 N �m2/kg2

Fg � G  
m1m 2

r 2

11.1

The gravitational force between two
particles is attractive. The unit vector

is directed from particle 1 toward 
particle 2. Note that .

By logging into
PhysicsNow at www.pop4e.com and 
going to Active Figure 11.1 you can
change the separation distance be-
tween the particles to see the effect on
the gravitational force.

F
:

21 � �F
:

12

r̂12

ACTIVE FIGURE 11.1

m1

m2
r

r̂

F21

F12

12

Mirror

r
m

M

Light
source

Schematic diagram
of the Cavendish apparatus for mea-
suring G. As the small spheres of mass
m are attracted to the large spheres of
mass M, the rod rotates through a
small angle. A light beam reflected
from a mirror on the rotating appara-
tus measures the angle of rotation.
The dashed line represents the origi-
nal position of the rod. (In reality, the
length of wire above the mirror is
much larger than that below it.)

FIGURE 11.2

BE CLEAR ON g AND G Be sure you
understand the difference between
g and G. The symbol g represents
the magnitude of the free-fall accel-
eration near a planet. At the sur-
face of the Earth, g has the value
9.80 m/s2. On the other hand, G is
a universal constant that has the
same value everywhere in the 
Universe.

� PITFALL PREVENTION 11.1
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reflected from a mirror attached to the wire. The experiment is carefully repeated
with different masses at various separations. In addition to providing a value for G,
the results confirm that the force is attractive, proportional to the product mM, and
inversely proportional to the square of the distance r.

It is interesting that G is the least well known of the fundamental constants, with
a percentage uncertainty thousands of times larger than those for other constants
such as the speed of light c and the fundamental electric charge e. Several measure-
ments of G made in the 1990s varied significantly from the previous value and from
one another! The search for a more precise value of G continues to be an area of
active research.

■ Gravitational field

A planet has two moons of equal mass. Moon 1 is in a circular orbit
of radius r. Moon 2 is in a circular orbit of radius 2r. What is the magnitude of the gravita-
tional force exerted by the planet on Moon 2? (a) four times as large as that on Moon 1
(b) twice as large as that on Moon 1 (c) equal to that on Moon 1 (d) half as large as
that on Moon 1 (e) one-fourth as large as that on Moon 1

■ Thinking Physics 11.1
The novel Icebound, by Dean Koontz (Bantam Books, 2000), is a story of a group of sci-
entists trapped on a floating iceberg near the North Pole. One of the devices the scien-
tists have with them is a transmitter with which they can fix their position with “the aid
of a geosynchronous polar satellite.” Can a satellite in a polar orbit be geosynchronous?

Reasoning A geosynchronous satellite is one that stays over one location on the
Earth’s surface at all times. Therefore, an antenna on the surface that receives sig-
nals from the satellite, such as a television dish, can stay pointed in a fixed direction
toward the sky. The satellite must be in an orbit with the correct radius such that its
orbital period is the same as that of the Earth’s rotation. This orbit results in the
satellite appearing to have no east–west motion relative to the observer at the cho-
sen location. Another requirement is that a geosynchronous satellite must be in orbit
over the equator. Otherwise it would appear to undergo a north–south oscillation
during one orbit. Therefore, it would be impossible to have a geosynchronous satel-
lite in a polar orbit. Even if such a satellite were at the proper distance from the
Earth, it would be moving rapidly in the north–south direction, resulting in the ne-
cessity of accurate tracking equipment. What’s more, it would be below the horizon
for long periods of time, making it useless for determining one’s position. ■

The Gravitational Field
When Newton first published his theory of gravitation, his contemporaries found it
difficult to accept the concept of a force that one object could exert on another with-
out anything happening in the space between them. They asked how it was possible
for two objects with mass to interact even though they were not in contact with each
other. Although Newton himself could not answer this question, his theory was con-
sidered a success because it satisfactorily explained the motions of the planets.

An alternative mental representation of the gravitational force is to think of the
gravitational interaction as a two-step process involving a field, as discussed in Sec-
tion 4.1. First, one object (a source mass) creates a gravitational field throughout
the space around it. Then, a second object (a test mass) of mass m residing in
this field experiences a force . In other words, we model the field as exert-
ing a force on the test mass rather than the source mass exerting the force directly.
The gravitational field is defined by

[11.4]g: � 
F
:

g

m

F
:

g � mg:

g:

QUICK QUIZ 11.1
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(a) The gravita-
tional field vectors in the vicinity of a
uniform spherical mass vary in both
direction and magnitude. (b) The
gravitational field vectors in a small
region near the Earth’s surface are
uniform; that is, they all have the
same direction and magnitude.

(a) (b)

FIGURE 11.3

A satellite of mass m moves in a circular orbit about
the Earth with a constant speed v and at a height of 
h � 1 000 km above the Earth’s surface as in Fig-
ure 11.4. (For clarity, this figure is not drawn to scale.)
Find the orbital speed of the satellite.

Solution The only external force on the satellite is the
gravitational force exerted by the Earth. This force is
directed toward the center of the satellite’s circular
path. We apply Newton’s second law to the satellite

modeled as a particle in uniform circular motion.
Because the magnitude of the gravitational force be-
tween the Earth and the satellite is GMEm/r 2 we find
that

 v � √ GME

r

Fg � G  
MEm

r 
2 � m  

v 
2

r

An Earth SatelliteEXAMPLE 11.1INTERACTIVE

That is, the gravitational field at a point in space equals the gravitational force that
a test mass m experiences at that point divided by the mass. Consequently, if is
known at some point in space, a particle of mass m experiences a gravitational force

when placed at that point. We will also see the model of a particle in a
field for electricity and magnetism in later chapters, where it plays a much larger
role than it does for gravity.

As an example, consider an object of mass m near the Earth’s surface. The gravi-
tational force on the object is directed toward the center of the Earth and has a mag-
nitude mg. Therefore, we see that the gravitational field experienced by the object at
some point has a magnitude equal to the free-fall acceleration at that point. Because
the gravitational force on the object has a magnitude GMEm/r 2 (where ME is the
mass of the Earth), the field at a distance r from the center of the Earth is given by

[11.5]

where is a unit vector pointing radially outward from the Earth and the negative
sign indicates that the field vector points toward the center of the Earth as shown in
Figure 11.3a. Note that the field vectors at different points surrounding the spheri-
cal mass vary in both direction and magnitude. In a small region near the Earth’s
surface, is approximately constant and the downward field is uniform as indi-
cated in Figure 11.3b. Equation 11.5 is valid at all points outside the Earth’s surface,
assuming that the Earth is spherical and that rotation can be neglected. At the
Earth’s surface, where r � RE , has a magnitude of 9.80 m/s2.g:

g:

r̂

g: �
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:
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m
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r 2  r̂
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(Example 11.1) A satellite of mass m moving
around the Earth in a circular orbit of radius r
with constant speed v. The only force acting on
the satellite is the gravitational force . (Not
drawn to scale.)

F
:

g

h

RE

m

Fg

r

v

FIGURE 11.4

In this expression, the distance r is the Earth’s radius
plus the height of the satellite; that is, r � RE � h �
6.37 � 106 � 1.00 � 106 � 7.37 � 106 m, so that

Note that v is independent of the mass of the satellite!

You can adjust the altitude of the satellite
and observe the orbit by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 11.1.

16 400 mi/h� 7.36 � 103 m/s �

v � √ (6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)
7.37 � 106 m

STRUCTURAL  MODELS
In Chapter 1, we mentioned that we would discuss four categories of models. The
fourth category is structural models. In these models, we propose theoretical struc-
tures in an attempt to understand the behavior of a system with which we cannot in-
teract directly because it is far different in scale—either much smaller or much
larger—from our macroscopic world.

One of the earliest structural models to be explored was that of the place of the
Earth in the Universe. The movements of the planets, stars, and other celestial bod-
ies have been observed by people for thousands of years. Early in history, scientists
regarded the Earth as the center of the Universe because it appeared that objects in
the sky moved around the Earth. This organization of the Earth and other objects is
a structural model for the Universe called the geocentric model. It was elaborated and
formalized by the Greek astronomer Claudius Ptolemy in the second century A.D.
and was accepted for the next 1400 years. In 1543, Polish astronomer Nicolaus
Copernicus (1473–1543) offered a different structural model in which the Earth is
part of a local Solar System, suggesting that the Earth and the other planets revolve
in perfectly circular orbits about the Sun (the heliocentric model ).

In general, a structural model contains the following features:

1. A description of the physical components of the system; in the heliocentric
model, the components are the planets and the Sun.

2. A description of where the components are located relative to one another and
how they interact; in the heliocentric model, the planets are in orbit around
the Sun and they interact via the gravitational force.

3. A description of the time evolution of the system; the heliocentric model as-
sumes a steady-state Solar System, with planets revolving in orbits around the
Sun with fixed periods.

4. A description of the agreement between predictions of the model and actual
observations and, possibly, predictions of new effects that have not yet been
observed; the heliocentric model predicts Earth-based observations of Mars that
are in agreement with historical and present measurements. The geocentric
model was also able to find agreement between predictions and observations,
but only at the expense of a very complicated structural model in which the
planets moved in circles built on other circles. The heliocentric model, along
with Newton’s law of universal gravitation, predicted that a spacecraft could be
sent from the Earth to Mars long before it was actually first done in the 1970s.

11.2

■ Features of structural models

www.pop4e.com
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In Sections 11.3 and 11.4, we explore some of the details of the structural model
of the Solar System. In Section 11.5, we investigate a structural model of the hydro-
gen atom.

KEPLER’S  LAWS
Danish astronomer Tycho Brahe (1546–1601) made accurate astronomical mea-
surements over a period of 20 years and provided the basis for the currently ac-
cepted structural model of the Solar System. These precise observations, made on
the planets and 777 stars, were carried out with nothing more elaborate than a
large sextant and compass; the telescope had not yet been invented.

German astronomer Johannes Kepler, who was Brahe’s assistant, acquired
Brahe’s astronomical data and spent about 16 years trying to deduce a mathemati-
cal model for the motions of the planets. After many laborious calculations, he
found that Brahe’s precise data on the revolution of Mars about the Sun provided
the answer. Kepler’s analysis first showed that the concept of circular orbits about
the Sun in the heliocentric model had to be abandoned. He discovered that the or-
bit of Mars could be accurately described by a curve called an ellipse. He then gener-
alized this analysis to include the motions of all planets. The complete analysis is
summarized in three statements, known as Kepler’s laws of planetary motion, each
of which is discussed in the following sections.

Newton demonstrated that these laws are consequences of the gravitational
force that exists between any two masses. Newton’s law of universal gravitation, to-
gether with his laws of motion, provides the basis for a full mathematical represen-
tation of the motion of planets and satellites.

Kepler’s First Law
We are familiar with circular orbits of objects around gravitational force centers
from Interactive Example 11.1. Kepler’s first law indicates that the circular orbit is a
very special case and that elliptical orbits are the general situation:1

Each planet in the Solar System moves in an elliptical orbit with the Sun at
one focus. 

Active Figure 11.5 shows the geometry of an ellipse, which serves as our
geometric model for the elliptical orbit of a planet.2 An ellipse is mathematically de-
fined by choosing two points, F1 and F2, each of which is a called a focus, and then
drawing a curve through points for which the sum of the distances r1 and r2 from F1
and F2 is a constant. The longest distance through the center between points on the
ellipse (and passing through both foci) is called the major axis, and this distance is
2a. In Active Figure 11.5, the major axis is drawn along the x direction. The distance
a is called the semimajor axis. Similarly, the shortest distance through the center be-
tween points on the ellipse is called the minor axis of length 2b, where the distance
b is the semiminor axis. Either focus of the ellipse is located at a distance c from the
center of the ellipse, where a2 � b2 � c2. In the elliptical orbit of a planet around
the Sun, the Sun is at one focus of the ellipse. Nothing is at the other focus.

11.3

1We choose a simplification model in which a body of mass m is in orbit around a body of mass M, with
M �� m. In this way, we model the body of mass M to be stationary. In reality, that is not true; both
M and m move around the center of mass of the system of two objects. That is how we indirectly detect
planets around other stars; we see the “wobbling” motion of the star as the planet and the star rotate
about the center of mass.
2Actual orbits show perturbations due to moons in orbit around the planet and passages of the planet
near other planets. We will ignore these perturbations and adopt a simplification model in which the
planet follows a perfectly elliptical orbit.

Johannes Kepler (1571 – 1630)
Kepler, a German astronomer, is best
known for developing the laws of
planetary motion based on the 
careful observations of Tycho Brahe.
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Plot of an ellipse. The semimajor axis
has length a, and the semiminor axis
has length b. A focus is located at a
distance c from the center on each
side of the center.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 11.5 to move the focal
points or enter values for a, b, c, and e
and see the resulting elliptical shape.

ACTIVE FIGURE 11.5
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The eccentricity of an ellipse is defined as e � c/a and describes the general
shape of the ellipse. For a circle, c � 0 and the eccentricity is therefore zero. The
smaller b is than a, the shorter the ellipse is along the y direction compared with its
extent in the x direction in Active Figure 11.5. As b decreases, c increases and the
eccentricity e increases. Therefore, higher values of eccentricity correspond to
longer and thinner ellipses. The range of values of the eccentricity for an ellipse is
0 � e � 1. Eccentricities higher than 1 correspond to hyperbolas.

Eccentricities for planetary orbits vary widely in the Solar System. The eccentric-
ity of the Earth’s orbit is 0.017, which makes it nearly circular. On the other hand,
the eccentricity of Pluto’s orbit is 0.25, the highest of all the nine planets. Figure
11.6a shows an ellipse with the eccentricity of that of Pluto’s orbit. Notice that even
this highest eccentricity orbit is difficult to distinguish from a circle, which is why
Kepler’s first law is an admirable accomplishment.

The eccentricity of the orbit of Comet Halley is 0.97, describing an orbit whose
major axis is much longer than its minor axis as shown in Figure 11.6b. As a result,
Comet Halley spends much of its 76-year period far from the Sun and invisible
from the Earth. It is only visible to the naked eye during a small part of its orbit
when it is near the Sun.

Let us imagine now a planet in an elliptical orbit such as that shown in Active Fig-
ure 11.5 with the Sun at focus F2. When the planet is at the far left in the diagram,
the distance between the planet and the Sun is a � c. This point is called the aphelion,
where the planet is the farthest away from the Sun that it can be in the orbit (for an
object in orbit around the Earth, this point is called the apogee). Conversely, when the
planet is at the right end of the ellipse, the point is called the perihelion (for an Earth
orbit, the perigee), and the distance between the planet and the Sun is a � c.

Kepler’s first law is a direct result of the inverse-square nature of the gravitational
force. We have discussed circular and elliptical orbits, which are the allowed shapes of
orbits for objects that are bound to the gravitational force center. These objects in-
clude planets, asteroids, and comets that move repeatedly around the Sun, as well as
moons orbiting a planet. Unbound objects might also occur, such as a meteoroid from
deep space that might pass by the Sun once and then never return. The gravitational
force between the Sun and these objects also varies as the inverse square of the sepa-
ration distance, and the allowed paths for these objects are parabolas and hyperbolas.

Kepler’s Second Law
Let us now look at the second of Kepler’s laws:

The radius vector drawn from the Sun to any planet sweeps out equal areas
in equal time intervals.

This law can be shown to be a consequence of angular momentum conservation as
follows. Consider a planet of mass Mp moving about the Sun in an elliptical orbit
(Active Fig. 11.7a). Let us consider the planet as a system. We shall assume that the
Sun is much more massive than the planet, so the Sun does not move. The gravita-
tional force acting on the planet is a central force, that is, a force that is always
directed along the radius vector. Therefore, the force on the planet is directed to-
ward the Sun. The torque on the planet due to this central force is zero because 
is parallel to . That is,

Recall that the external net torque on a system equals the time rate of change
of angular momentum of the system; that is, . Therefore, because 
for the planet, the angular momentum of the planet is a constant of the motion:

L
:

� r: � p: � Mp r: � v: � constant

L
:

�: � 0�: � d L
:

/dt

�: � r: � F
:

� r: � F(r)r̂ � 0

r:
F
:

(a) The shape of
the orbit of Pluto, which has the high-
est eccentricity (e � 0.25) among the
planets in the Solar System. The Sun
is located at the large yellow dot,
which is a focus of the ellipse. Noth-
ing physical is located at the center of
the orbit (the small dot) or the other
focus (the blue dot). (b) The shape of
the orbit of Comet Halley.

Sun

Center

Sun

Center

(a)

(b)

Orbit
of Pluto

Orbit of
Comet Halley

FIGURE 11.6

■ Kepler’s second law

WHERE IS THE SUN? The Sun is
located at one focus of the elliptical
orbit of a planet. It is not located at
the center of the ellipse.

� PITFALL PREVENTION 11.2
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We can relate this result to the following geometric consideration. In a time in-
terval dt, the radius vector in Active Figure 11.7b sweeps out the area dA, which
equals one-half the area of the parallelogram formed by the vectors 
and . Because the displacement of the planet in the time interval dt is given by

, we have

[11.6]

where L and Mp are both constants. Therefore, we conclude that the radius vector
from the Sun to any planet sweeps out equal areas in equal times.

It is important to recognize that this result is a consequence of the gravitational
force being a central force, which in turn implies that angular momentum of the
planet is constant. Therefore, the law applies to any situation that involves a central
force, whether inverse-square or not.

■ Thinking Physics 11.2
The Earth is closer to the Sun when it is winter in the Northern Hemisphere than
when it is summer. July and January both have 31 days. In which month, if either,
does the Earth move through a longer distance in its orbit?

Reasoning The Earth is in a slightly elliptical orbit around the Sun. Because of an-
gular momentum conservation, the Earth moves more rapidly when it is close to
the Sun and more slowly when it is farther away. Therefore, because it is closer to
the Sun in January, it is moving faster and will cover more distance in its orbit than
it will in July. ■

Kepler’s Third Law
Kepler’s third law reads as follows:

The square of the orbital period of any planet is proportional to the cube of
the semimajor axis of the elliptical orbit.

This law can be shown easily for circular orbits. Consider a planet of mass Mp that is
assumed to be moving about the Sun (mass MS) in a circular orbit as in Figure 11.8.
Because the gravitational force provides the centripetal acceleration of the planet
as it moves in a circle, we use Newton’s second law for a particle in uniform circular
motion:

The orbital speed of the planet is 2�r/T, where T is the period; therefore, the
preceding expression becomes

 T 2 � � 4�2

GMS
� r 3 � KSr 3

GMS

r 2 �
(2�r/T)2

r

GMSMp

r 2 �
Mpv2

r

 
dA
dt

�
L

2Mp
� constant

dA � 1
2� r: � d r: � � 1

2� r: � v:dt � �
L

2Mp
 dt

d r: � v:dt
d r:

r:� r: � d r: �
r:

A planet of mass
Mp moving in a circular orbit about
the Sun. Kepler’s third law relates the
period of the orbit to the radius.

(a) The gravitational force acting on a
planet acts toward the Sun, along the
radius vector. (b) As a planet orbits
the Sun, the area swept out by the
radius vector in a time interval dt is
equal to one-half the area of the
parallelogram formed by the vectors

and .

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 11.7 you can
assign a value of the eccentricity and
see the resulting motion of the planet
around the Sun.

d r: � v:dtr:

ACTIVE FIGURE 11.7
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where KS is a constant given by

For elliptical orbits, Kepler’s third law is expressed by starting with T 2 � KSr 3 and
replacing r with the length a of the semimajor axis (see Fig. 11.5):

[11.7]

Equation 11.7 is Kepler’s third law. Because the semimajor axis of a circular orbit is
its radius, Equation 11.7 is valid for both circular and elliptical orbits. Note that the
constant of proportionality KS is independent of the mass of the planet. Equation
11.7 is therefore valid for any planet. If we were to consider the orbit of a satellite
about the Earth, such as the Moon, the constant would have a different value, with
the Sun’s mass replaced by the Earth’s mass; that is, KE � 4� 2/GME .

Table 11.1 is a collection of useful planetary data. The last column verifies that
the ratio T 2/a3 is constant. The small variations in the values in this column are be-
cause of uncertainties in the data measured for the periods and semimajor axes of
the planets.

T 2 � � 4�2

GMS
� a3 � KSa3

KS �
4�2

GMS
� 2.97 � 10�19 s2/m3

Average
Mass Mean Radius Period Distance

Body (kg) (m) (s) from Sun (m)

Mercury 3.18 � 1023 2.43 � 106 7.60 � 106 5.79 � 1010 2.97 � 10�19

Venus 4.88 � 1024 6.06 � 106 1.94 � 107 1.08 � 1011 2.99 � 10�19

Earth 5.98 � 1024 6.37 � 106 3.156 � 107 1.496 � 1011 2.97 � 10�19

Mars 6.42 � 1023 3.37 � 106 5.94 � 107 2.28 � 1011 2.98 � 10�19

Jupiter 1.90 � 1027 6.99 � 107 3.74 � 108 7.78 � 1011 2.97 � 10�19

Saturn 5.68 � 1026 5.85 � 107 9.35 � 108 1.43 � 1012 2.99 � 10�19

Uranus 8.68 � 1025 2.33 � 107 2.64 � 109 2.87 � 1012 2.95 � 10�19

Neptune 1.03 � 1026 2.21 � 107 5.22 � 109 4.50 � 1012 2.99 � 10�19

Pluto �1.4 � 1022 �1.5 � 106 7.82 � 109 5.91 � 1012 2.96 � 10�19

Moon 7.36 � 1022 1.74 � 106 — — —
Sun 1.991 � 1030 6.96 � 108 — — —

Note: For a more complete set of data, see, for example, the Handbook of Chemistry and Physics (Boca
Raton, FL: CRC Press, published annually).

A comet is in a highly elliptical orbit around the Sun. The period of
the comet’s orbit is 90 days. Which of the following statements is true about the possibility
of a collision between this comet and the Earth? (a) Collision is not possible. (b) Collision
is possible. (c) Not enough information is available to determine whether a collision is
possible.

QUICK QUIZ 11.2

ENERGY  CONSIDERATIONS  IN  PLANETARY
AND  SATELLITE MOTION

So far we have approached orbital mechanics from the point of view of forces and
angular momentum. Let us now investigate the motion of planets in orbit from the
energy point of view.

11.4

■ Kepler’s third law

Useful Planetary DataTABLE 11.1

T  
2

a 
3  (s2/m3)
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Consider an object of mass m moving with a speed v in the vicinity of a massive
object of mass M �� m. This two-object system might be a planet moving around
the Sun, a satellite orbiting the Earth, or a comet making a one-time flyby past the
Sun. We will treat the two objects of mass m and M as an isolated system. If we
assume that M is at rest in an inertial reference frame (because M �� m), the total
mechanical energy E of the two-object system is the sum of the kinetic energy of the
object of mass m and the gravitational potential energy of the system:

Recall from Chapter 7 that the gravitational potential energy Ug associated with
any pair of particles of masses m1 and m2 separated by a distance r is given by

where we have defined Ug : 0 as r : 	; therefore, in our case, the mechanical en-
ergy of the system of m and M is

[11.8]

Equation 11.8 shows that E may be positive, negative, or zero, depending on
the value of v at a particular separation distance r. If we consider the energy dia-
gram method of Section 7.7, we can show the potential and total energies of the
system as a function of r as in Figure 11.9. A planet moving around the Sun and a
satellite in orbit around the Earth are bound systems, such as those we discussed in
Section 11.3; the Earth will always stay near the Sun and the satellite near the
Earth. In Figure 11.9, these systems are represented by a total energy that is
negative. The point at which the total energy line intersects the potential energy
curve is a turning point, the maximum separation distance rmax between the two
bound objects.

A one-time meteoroid flyby represents an unbound system. The meteoroid in-
teracts with the Sun but is not bound to it. Therefore, the meteoroid can in theory
move infinitely far away from the Sun as represented in Figure 11.9 by a total en-
ergy line in the positive region of the graph. This line never intersects the potential
energy curve, so all values of r are possible.

For a bound system, such as the Earth and Sun, E is necessarily less than zero be-
cause we have chosen the convention that Ug : 0 as r : 	. We can easily establish
that E � 0 for the system consisting of an object of mass m moving in a circular or-
bit about an object of mass M �� m. Applying Newton’s second law to the object of
mass m in uniform circular motion gives

�F � ma : GMm
r 2 �

mv2

r

E � 1
2mv 2 �

GMm
r

Ug � � 
Gm1m2

r

E � K � Ug

Many artificial satellites have been placed in orbit about the
Earth. This diagram shows a plot of all known unclassified
satellites and satellite debris larger in size than a baseball as of
1995. Note the large number of geosynchronous satellites (see
Thinking Physics 11.1) that form a visible circle above the
Earth’s equator.
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The lower total
energy line represents a bound system.
The separation distance r between the
two gravitationally bound objects
never exceeds rmax. The upper total
energy line represents an unbound
system of two objects interacting gravi-
tationally. The separation distance r
between the two objects can have any
value.
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FIGURE 11.9



ENERGY CONSIDERATIONS IN PLANETARY AND SATELLITE MOTION ❚ 347

y g p pp

Multiplying both sides by r and dividing by 2 gives

[11.9]

Substituting this result into Equation 11.8, we obtain

[11.10]

This result clearly shows that the total mechanical energy must be negative in the case
of circular orbits. Furthermore, Equation 11.9 shows that the kinetic energy of an ob-
ject in a circular orbit is equal to one-half the magnitude of the potential energy of
the system (when the potential energy is chosen to be zero at infinite separation).

The total mechanical energy is also negative in the case of elliptical orbits. The
expression for E for elliptical orbits is the same as Equation 11.10, with r replaced
by the semimajor axis a:

[11.11]

The total energy, the total angular momentum, and the total linear momentum of
a planet–star system are constants of the motion, according to the isolated system
model.

E � �
GMm

2a

 E � �
GMm

2r

E �
GMm

2r
�

GMm
r

1
2mv2 �

GMm
2r

A comet moves in an elliptical orbit around the Sun. Which point
in its orbit represents the highest value of (a) the speed of the comet, (b) the potential
energy of the comet–Sun system, (c) the kinetic energy of the comet, and (d) the total
energy of the comet–Sun system?

QUICK QUIZ 11.3

(Example 11.2)
A satellite in an elliptical orbit
about the Earth.

torque exerted on the satellite. There is also zero
torque on the Earth for the same reason. Consequently,
we categorize the problem as one involving an isolated
system for which the angular momentum is conserved.
Because the mass of the satellite is negligible compared
with the Earth’s mass, we take the center of mass of the
Earth to be at rest. Therefore, we only need to consider
the angular momentum of the satellite. To analyze the
problem, we assign subscripts a and p for the apogee
and perigee positions, and apply the principle of con-
servation of angular momentum for the satellite at
these two positions. The result is Lp � La , or

Using the Earth’s radius of 6.37 � 106 m and the 
given data, we find that ra � 9.37 � 106 m and 
rp � 6.77 � 106 m. Therefore,

(1)
vp

va
�

ra

rp
�

9.37 � 106 m
6.77 � 106 m

� 1.38

 vprp � vara

mvprp � mvara

A Satellite in an Elliptical OrbitEXAMPLE 11.2
A satellite moves in an elliptical orbit about the Earth as
in Figure 11.10. The minimum and maximum distances
from the surface of the Earth are 400 km and 3 000 km,
respectively. Find the speeds of the satellite at apogee
and perigee.

Solution Figure 11.10 helps conceptualize the motion
of the satellite. Gravity is a central force, so there is zero

va

ra

vpp

a

rp

FIGURE 11.10

■ Total energy of a planet – star
system
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Because the satellite and the Earth form an isolated sys-
tem, we can apply conservation of energy for the system
and obtain Ep � Ea , or

(2)  2GME � 1
ra

�
1
rp
� � (va 

2 � vp 

2)

�G 
MEm

rp
� 1

2mvp 

2 � �G 
MEm

ra
� 1

2mva 

2

 Up � Kp � Ua � Ka

Because we know the numerical values of G, ME , rp ,
and ra , we can use Equations (1) and (2) to determine
the two unknowns vp and va . Solving the equations si-
multaneously, we obtain

To finalize the problem, note that vp � va , as we would
expect.

5.98 km/sva �8.27 km/svp �

Escape Speed
Suppose an object of mass m is projected vertically from the Earth’s surface with an
initial speed vi as in Figure 11.11. We can use energy considerations to find the min-
imum value of the initial speed such that the object will continue to move away
from the Earth forever. Equation 11.8 gives the total energy of the object–Earth sys-
tem at any point when the speed of the object and its distance from the center of
the Earth are known. At the surface of the Earth, ri � RE . When the object reaches
its maximum altitude, vf � 0 and rf � rmax. Because the total energy of the system is
conserved, substitution of these conditions into Equation 11.8 gives

Solving for vi
2 gives

[11.12]

If the initial speed is known, this expression can therefore be used to calculate the
maximum altitude h because we know that h � rmax � RE .

We are now in a position to calculate the minimum speed the object must have
at the Earth’s surface to continue to move away forever. This escape speed vesc re-
sults in the speed asymptotically approaching zero. Letting rmax : 	 in Equation
11.12 and setting vi � vesc, we have

[11.13]

Note that this expression for vesc is independent of the mass of the object projected
from the Earth. For example, a spacecraft has the same escape speed as a molecule.
Furthermore, the result is independent of the direction of the velocity.

Note also that Equations 11.12 and 11.13 can be applied to objects projected
from any planet. That is, in general, the escape speed from any planet of mass M
and radius R is

[11.14]

A list of escape speeds for the planets, the Moon, and the Sun is given in
Table 11.2. Note that the values vary from 1.1 km/s for Pluto to about 618 km/s for
the Sun. These results, together with some ideas from the kinetic theory of gases
(Chapter 16), explain why our atmosphere does not contain significant amounts
of hydrogen, which is the most abundant element in the Universe. As we shall
see later, gas molecules have an average kinetic energy that depends on the

vesc � √ 2GM
R

vesc � √ 2GME

RE

vi 

2 � 2GME � 1
RE

�
1

rmax
�

1
2mvi 

2 �
GMEm

RE
� �

GMEm
rmax

An object of mass
m projected upward from the Earth’s
surface with an initial speed vi reaches
a maximum altitude h � rmax � R E.

M E

R E

h

m

v i

rmax

vf = 0

FIGURE 11.11

YOU CAN’T REALLY ESCAPE Although
Equation 11.13 provides the escape
speed, remember that this conven-
tional name is misleading. It is im-
possible to escape completely from
the Earth’s gravitational influence
because the gravitational force is of
infinite range. No matter how far
away you are, you will always feel
some gravitational force due to the
Earth. In practice, however, this
force will be much smaller than
forces due to other astronomical
objects closer to you, so the gravita-
tional force from the Earth can be
ignored.

� PITFALL PREVENTION 11.3
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temperature of the gas. Lighter molecules in an atmosphere have translational
speeds that are closer to the escape speed than more massive molecules, so they
have a higher probability of escaping from the planet and the lighter molecules dif-
fuse into space. This mechanism explains why the Earth does not retain hydrogen
molecules and helium atoms in its atmosphere but does retain much heavier mole-
cules, such as oxygen and nitrogen. On the other hand, Jupiter has a very large es-
cape speed (60 km/s), which enables it to retain hydrogen, the primary constituent
of its atmosphere.

Black Holes
In Chapter 10, we briefly described a rare event called a supernova, the cata-
strophic explosion of a very massive star. The material that remains in the central
core of such an object continues to collapse, and the core’s ultimate fate depends
on its mass. If the core has a mass less than 1.4 times the mass of our Sun, it gradu-
ally cools down and ends its life as a white dwarf star. If, however, the core’s mass is
greater than that, it may collapse further due to gravitational forces. What remains
is a neutron star, discussed in Chapter 10, in which the mass of a star is compressed
to a radius of about 10 km. (On the Earth, a teaspoon of this material would weigh
about 5 billion tons!)

An even more unusual star death may occur when the core has a mass greater
than about three solar masses. The collapse may continue until the star becomes a
very small object in space, commonly referred to as a black hole. In effect, black
holes are the remains of stars that have collapsed under their own gravitational
force. If an object such as a spacecraft comes close to a black hole, it experiences an
extremely strong gravitational force and is trapped forever.

The escape speed from any spherical body depends on the mass and radius
of the body. The escape speed for a black hole is very high because of the concen-
tration of the star’s mass into a sphere of very small radius. If the escape speed
exceeds the speed of light c, radiation from the body (e.g. visible light) cannot
escape and the body appears to be black, hence the origin of the term black hole.
The critical radius RS at which the escape speed is c is called the Schwarzschild
radius (Fig. 11.12). The imaginary surface of a sphere of this radius surrounding
the black hole is called the event horizon, which is the limit of how close you can
approach the black hole and hope to be able to escape.

Although light from a black hole cannot escape, light from events taking place
near the black hole should be visible. For example, it is possible for a binary star sys-
tem to consist of one normal star and one black hole. Material surrounding the or-
dinary star can be pulled into the black hole, forming an accretion disk around the

Escape Speeds from the Surfaces of
the Planets, the Moon, and the Sun

TABLE 11.2

Planet vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Pluto 1.1
Moon 2.3
Sun 618

A black hole. The
distance R S equals the Schwarzschild
radius. Any event occurring within the
boundary of radius R S, called the
event horizon, is invisible to an out-
side observer.

Black
hole

RS

Event
horizon

FIGURE 11.12
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A binary star
system consisting of an ordinary star
on the left and a black hole on the
right. Matter pulled from the ordinary
star forms an accretion disk around
the black hole, in which matter is
raised to very high temperatures,
resulting in the emission of x-rays.

FIGURE 11.13

black hole as suggested in Figure 11.13. Friction among particles in the accretion
disk results in transformation of mechanical energy into internal energy. As a re-
sult, the orbital height of the material above the event horizon decreases and the
temperature rises. This high-temperature material emits a large amount of radia-
tion, extending well into the x-ray region of the electromagnetic spectrum. These
x-rays are characteristic of a black hole. Several possible candidates for black holes
have been identified by observation of these x-rays.

Evidence also supports the existence of supermassive black holes at the centers of
galaxies, with masses very much larger than the Sun. (The evidence is strong for a su-
permassive black hole of mass 2 to 3 million solar masses at the center of our galaxy.)
Theoretical models for these bizarre objects predict that jets of material should be ev-
ident along the rotation axis of the black hole. Figure 11.14 shows a Hubble Space
Telescope photograph of the galaxy M87. The jet of material coming from this galaxy
is believed to be evidence for a supermassive black hole at the center of the galaxy.

Hubble Space
Telescope images of the galaxy M87.
The inset shows the center of the
galaxy. The wider view shows a jet of
material moving away from the center
of the galaxy toward the upper right
of the figure at about one-tenth the
speed of light. Such jets are believed
to be evidence of a supermassive black
hole at the galaxy’s center.

FIGURE 11.14

(H
. F

or
d 

et
 a

l. 
&

 N
AS

A)



ATOMIC SPECTRA AND THE BOHR THEORY OF HYDROGEN ❚ 351

y g p pp

Black holes are of considerable interest to those searching for gravity waves,
which are ripples in space–time caused by changes in a gravitational system. These
ripples can be caused by a star collapsing into a black hole, a binary star consisting
of a black hole and a visible companion, and supermassive black holes at a galaxy
center. A gravity wave detector, the Laser Interferometer Gravitational Wave Obser-
vatory (LIGO), is currently being built and tested in the United States, and hopes
are high for detecting gravitational waves with this instrument.

ATOMIC  SPECTRA  AND  THE  BOHR  THEORY  
OF  HYDROGEN

In the preceding sections, we described a structural model for a large-scale system,
the Solar System. Let us now do the same for a very small-scale system, the hydro-
gen atom. We shall find that a Solar System model of the atom, with a few extra fea-
tures, provides explanations for some of the experimental observations made on
the hydrogen atom.

As you may have already learned in a chemistry course, the hydrogen atom is the
simplest known atomic system and an especially important one to understand. Much
of what is learned about the hydrogen atom (which consists of one proton and one
electron) can be extended to single-electron ions such as He� and Li2�. Further-
more, a thorough understanding of the physics underlying the hydrogen atom can
then be used to describe more complex atoms and the periodic table of the elements.

Atomic systems can be investigated by observing electromagnetic waves emitted
from the atom. Our eyes are sensitive to visible light, one type of electromagnetic
wave. The wave will be one of our four simplification models around which we will
identify analysis models, as we have done for a particle, a system, and a rigid object.
A common form of periodic wave is the sinusoidal wave, whose shape is depicted in
Figure 11.15. If this graph represents an electromagnetic wave, the vertical axis rep-
resents the magnitude of the electric field. (We will study electric fields in Chapter
19.) The horizontal axis is position in the direction of travel of the wave. The dis-
tance between two consecutive crests of the wave is called the wavelength 
. As the
wave travels to the right with a speed v, any point on the wave travels a distance of
one wavelength in a time interval of one period T (the time interval for one cycle),
so the wave speed is given by v � 
/T. The inverse of the period, 1/T, is called the
frequency f of the wave; it represents the number of cycles per second. Therefore,
the speed of the wave is often written as v � 
f. In this section, because we shall
deal with electromagnetic waves—which travel at the speed of light c—the appro-
priate relation is

[11.15]

Suppose an evacuated glass tube is filled with hydrogen (or some other gas). If a
voltage applied between metal electrodes in the tube is great enough to produce an
electric current in the gas, the tube emits light with colors that are characteristic of
the gas. (That is how a neon sign works.) When the emitted light is analyzed with a
device called a spectroscope, in which the light passes through a narrow slit, a series
of discrete spectral lines is observed, each line corresponding to a different wave-
length, or color, of light. Such a series of spectral lines is commonly referred to as
an emission spectrum. The wavelengths contained in a given spectrum are charac-
teristic of the element emitting the light. Figure 11.16 is a semigraphical represen-
tation of the spectra of various elements. It is semigraphical because the horizontal
axis is linear in wavelength, but the vertical axis has no significance. Because no two
elements emit the same line spectrum, this phenomenon represents a marvelous
and reliable technique for identifying elements in a substance.

c � 
 f

11.5

A sinusoidal wave
traveling to the right with wave speed
v. Any point on the wave moves a dis-
tance of one wavelength 
 in a time
interval equal to the period T of the
wave.

y
l

x

v

FIGURE 11.15

■ Relation between wavelength,
frequency, and wave speed
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Visible spectra. (a) Line spectra produced by emission in the visible range for the elements hydrogen, mercury, and
neon. (b) The absorption spectrum for hydrogen. The dark absorption lines occur at the same wavelengths as the 
emission lines for hydrogen shown in (a).
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FIGURE 11.16
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In addition to emitting light at specific wavelengths, an element can also absorb
light at specific wavelengths. The spectral lines corresponding to this process form
what is known as an absorption spectrum. An absorption spectrum can be obtained
by passing a continuous radiation spectrum (one containing all wavelengths)
through a vapor of the element being analyzed. The absorption spectrum consists
of a series of dark lines superimposed on the otherwise continuous spectrum
(Fig. 11.16b).

The emission spectrum of hydrogen shown in Figure 11.17 includes four
prominent lines that occur at wavelengths of 656.3 nm, 486.1 nm, 434.1 nm, and
410.2 nm. In 1885, Johann Balmer (1825–1898) found that the wavelengths of
these and less prominent lines can be described by the following simple empirical
equation:

in which n is an integer starting at 3 and the wavelengths given by this expression
are in nanometers. These spectral lines are called the Balmer series. The first line
in the Balmer series, at 656.3 nm, corresponds to n � 3, the line at 486.1 nm corre-
sponds to n � 4, and so on. At the time this equation was formulated, it had no
valid theoretical basis; it simply predicted the wavelengths correctly. Therefore, this
equation is not based on a model but is simply a trial-and-error equation that hap-
pens to work. A few years later, Johannes Rydberg (1854–1919) recast the equation
in the following form:

[11.16]
1
�

� RH � 1
22 �

1
n2 �  n � 3, 4, 5, . . .

n � 3, 4, 5, . . .� � 364.56 
n2

n2 � 4A series of spectral
lines for atomic hydrogen. The promi-
nent lines labeled are part of the
Balmer series.

410.2 434.1

486.1 656.3

364.6

l (nm)

FIGURE 11.17

■ Rydberg equation
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where n may have integral values of 3, 4, 5, . . . and RH is a constant, now called
the Rydberg constant, which has the value

Equation 11.16 is no more based on a model than is Balmer’s equation. In this
form, however, we can compare it with the predictions of a structural model of the
hydrogen atom that is described below.

At the beginning of the 20th century, scientists were perplexed by the failure of
classical physics to explain the characteristics of atomic spectra. Why did atoms of a
given element emit only certain wavelengths of radiation so that the emission spec-
trum displayed discrete lines? Furthermore, why did the atoms absorb many of the
same wavelengths that they emitted? In 1913, Niels Bohr provided an explanation
of atomic spectra that includes some features of the currently accepted theory.
Using the simplest atom, hydrogen, Bohr described a structural model for the
atom. His model of the hydrogen atom contains some classical features that can be
related to our analysis models as well as some revolutionary postulates that could
not be justified within the framework of classical physics. The basic assumptions of
the Bohr model as it applies to the hydrogen atom are as follows:

1. The electron moves in a circular orbit about the proton under the influence of
the electric force of attraction as in Figure 11.18. This notion is purely classical
and is very similar to our previous discussion of planets in orbit around the Sun
in our structural model of the Solar System.

2. Only certain electron orbits are stable, and they are the only orbits in which we
find the electron. In these orbits, the hydrogen atom does not emit energy in
the form of radiation. Hence, the total energy of the atom remains constant,
and classical mechanics can be used to describe the electron’s motion. This
restriction to certain orbits is a new idea that is not consistent with classical
physics. As we shall see in Chapter 24, an accelerating electron should emit
energy by electromagnetic radiation. Therefore, according to the continuity
equation for energy, the emission of radiation from the atom should result in a
decrease in the energy of the atom. Bohr’s postulate boldly claims that this
radiation simply does not happen.

3. Radiation is emitted by the hydrogen atom when the atom makes a transition
from a more energetic initial state to a lower state. The transition cannot be
visualized or treated classically. In particular, the frequency f of the radiation
emitted in the transition is related to the change in the atom’s energy. The fre-
quency of the emitted radiation is found from

[11.17]

where Ei is the energy of the initial state, Ef is the energy of the final state, h is
Planck’s constant (h � 6.63 � 10�34 J � s; we will see Planck’s constant exten-
sively in our studies of modern physics), and Ei � Ef . The notion of energy
being emitted only when a transition occurs is nonclassical. Given this notion,
however, Equation 11.17 is simply the continuity equation for energy, 
�E � �T : Ef � Ei � �hf. On the left is the change in energy of the system—
the atom—and on the right is the energy transferred out of the system by elec-
tromagnetic radiation.

4. The size of the allowed electron orbits is determined by a condition imposed
on the electron’s orbital angular momentum. The allowed orbits are those for
which the electron’s orbital angular momentum about the nucleus is an inte-
gral multiple of � h/2� :

[11.18]mevr � n�  n � 1, 2, 3, . . .

�

Ei � Ef � hf

R H � 1.097  373   2 � 107 m�1
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Niels Bohr (1885 – 1962)
Bohr, a Danish physicist, was an 
active participant in the early 
development of quantum 
mechanics and provided much of its
philosophical framework. During
the 1920s and 1930s, Bohr headed
the Institute for Advanced Studies in
Copenhagen. The institute was a
magnet for many of the world’s best
physicists and provided a forum for
the exchange of ideas. Bohr was
awarded the 1922 Nobel Prize in
Physics for his investigation of the
structure of atoms and of the radia-
tion emanating from them.

A pictorial 
representation of Bohr’s model of the
hydrogen atom, in which the electron
is in a circular orbit about the proton.

FIGURE 11.18
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This new idea cannot be related to any of the models we have developed so far.
It can be related, however, to a model that will be developed in later chapters,
and we shall return to this idea at that time to see how it is predicted by the
model. This concept is our first introduction to a notion from quantum
mechanics, which describes the behavior of microscopic particles.

Using these four assumptions, Bohr built a structural model that explains the
emission wavelengths of the hydrogen atom. The electric potential energy of the
system shown in Figure 11.18 is given by Equation 7.23, Ue � � ke e 2/r, where ke is
the electric constant, e is the charge on the electron, and r is the electron–proton
separation. Therefore, the total energy of the atom, which contains both kinetic
and potential energy terms, is

[11.19]

According to assumption 2, the energy of the system remains constant; the system is
isolated because the structural model does not allow for electromagnetic radiation
for a given orbit.

Applying Newton’s second law to this system, we see that the magnitude of the
attractive electric force on the electron, kee 2/r 2 (Eq. 5.15), is equal to the product
of its mass and its centripetal acceleration (ac � v 2/r):

From this expression, the kinetic energy of the electron is found to be

[11.20]

Substituting this value of K into Equation 11.19 gives the following expression for
the total energy E of the hydrogen atom:

[11.21]

Note that the total energy is negative,3 indicating a bound electron–proton system.
Therefore, energy in the amount of kee2/2r must be added to the atom just to sepa-
rate the electron and proton by an infinite distance and make the total energy zero.4

An expression for r, the radius of the allowed orbits, can be obtained by eliminating
v by substitution between Equations 11.18 and 11.20:

[11.22]

This result shows that the radii have discrete values, or are quantized. The integer n
is called a quantum number and specifies the particular allowed quantum state of
the atomic system.

rn �
n2�2

me ke e 
2   n � 1, 2, 3 . . .

E � � 
ke e 

2

2r

K � 1
2mev 

2 �
kee 

2

2r

ke e 
2

r 
2 �

mev 
2

r

E � K � Ue � 1
2mev 

2 � ke 
e 

2

r

3Compare this expression with Equation 11.11 for a gravitational system.
4This process is called ionizing the atom. In theory, ionization requires separating the electron and pro-
ton by an infinite distance. In reality, however, the electron and proton are in an environment with
huge numbers of other particles. Therefore, ionization means separating the electron and proton by a
distance large enough so that the interaction of these particles with other entities in their environment
is larger than the remaining interaction between them.

■ Total energy of the hydrogen
atom

■ Radii of Bohr orbits in hydrogen
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The orbit for which n � 1 has the smallest radius; it is called the Bohr radius a0
and has the value

[11.23]

The first three Bohr orbits are shown to scale in Active Figure 11.19.
The quantization of the orbit radii immediately leads to quantization of the en-

ergy of the atom, which can be seen by substituting rn � n2a0 into Equation 11.21.
The allowed energies of the atom are

[11.24]

Insertion of numerical values into Equation 11.24 gives

[11.25]

(Recall from Section 9.7 that 1 eV � 1.60 � 10�19 J.) The lowest quantum state,
corresponding to n � 1, is called the ground state and has an energy of
E1 � � 13.606 eV. The next state, the first excited state, has n � 2 and an energy of
E2 � E1/22 � � 3.401 eV. Active Figure 11.20 is an energy level diagram showing
the energies of these discrete energy states and the corresponding quantum num-
bers. This diagram is another semigraphical representation. The vertical axis is
linear in energy, but the horizontal axis has no significance. The horizontal lines
correspond to the allowed energies. The atomic system cannot have any energies
other than those represented by the lines. The vertical lines with arrowheads repre-
sent transitions between states, during which energy is emitted.

The upper limit of the quantized levels, corresponding to n : 	(or r : 	) and
E : 0, represents the state for which the electron is removed from the atom.5 Above
this energy is a continuum of available states for the ionized atom. The minimum en-
ergy required to ionize the atom is called the ionization energy. As can be seen from
Active Figure 11.20, the ionization energy for hydrogen, based on Bohr’s calculation,
is 13.6 eV. This finding constituted a major achievement for the Bohr theory because
the ionization energy for hydrogen had already been measured to be 13.6 eV.

Active Figure 11.20 also shows various transitions of the atom from one state to a
lower state, as referred to in Bohr’s assumption 3. As the energy of the atom de-
creases in a transition, the difference in energy between the states is carried away by
electromagnetic radiation. Those transitions ending on n � 2 are shown in color,
corresponding to the color of the light they represent. The transitions ending on 
n � 2 form the Balmer series of spectral lines, the wavelengths of which are
correctly predicted by the Rydberg equation (see Eq. 11.16). Active Figure 11.20
also shows other spectral series (the Lyman series and the Paschen series) that were
found after Balmer’s discovery.

Equation 11.24, together with Bohr’s third postulate, can be used to calculate
the frequency of the radiation that is emitted when the atom makes a transition6

from a high-energy state to a low-energy state:

En � �
13.606 eV

n2   n � 1, 2, 3, . . .

En � �
ke e 

2

2a 0
 � 1

n2 �  n � 1, 2, 3, . . .

a0 �
� 

2

me ke e 
2 � 0.052 9 nm

5The phrase “the electron is removed from the atom” is very commonly used, but, of course, we realize
that we mean that the electron and proton are separated from each other.
6The phrase “the electron makes a transition” is also commonly used, but we will use “the atom makes
a transition” to emphasize that the energy belongs to the system of the atom, not just to the electron.
This wording is similar to our discussion in Chapter 7 of gravitational potential energy belonging to the
system of an object and the Earth, not to the object alone.

The first three circular orbits predicted
by the Bohr model for hydrogen.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 11.19 to choose the ini-
tial and final states of the hydrogen
atom and observe the transitions in
this figure and in Active Figure 11.20.

ACTIVE FIGURE 11.19

9a0

4a0
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a0
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■ The Bohr radius

■ Energies of quantum states of
the hydrogen atom
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[11.26]

Because the quantity expressed in the Rydberg equation is wavelength, it is conve-
nient to convert frequency to wavelength, using c � f
, to obtain

[11.27]

Notice that the theoretical expression, Equation 11.27, is identical to the empirical
Rydberg equation (Equation 11.16), provided that the combination of constants
kee2/2a0hc is equal to the experimentally determined Rydberg constant and that
nf � 2. After Bohr demonstrated the agreement of the constants in these two equa-
tions to a precision of about 1%, it was soon recognized as the crowning achieve-
ment of his structural model of the atom.

One question remains: What is the significance of nf � 2? Its importance is sim-
ply because those transitions ending on nf � 2 result in radiation that happens to
lie in the visible; therefore, they were easily observed! As seen in Active Figure
11.20, other series of lines end on other final states. These lines lie in regions of
the spectrum not visible to the eye, the infrared and ultraviolet. The generalized
Rydberg equation for any initial and final states is

[11.28]

In this equation, different series correspond to different values of nf and different
lines within a series correspond to varying values of ni .

Bohr immediately extended his structural model for hydrogen to other ele-
ments in which all but one electron had been removed. Ionized elements such as
He�, Li2�, and Be3� were suspected to exist in hot stellar atmospheres, where fre-
quent atomic collisions occur with enough energy to completely remove one or

1



� R H � 1
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2 �

1
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2a 0hc
 � 1

nf 

2 �
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Ei � Ef
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2a 0h
 � 1
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1
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2 �

An energy level diagram for hydro-
gen. The discrete allowed energies
are plotted on the vertical axis. Noth-
ing is plotted on the horizontal axis,
but the horizontal extent of the dia-
gram is made large enough to show
allowed transitions. Quantum num-
bers are given on the left and energies
(in electron volts) on the right. Verti-
cal arrows represent the four lowest-
energy transitions in each of the spec-
tral series shown. The colored arrows
for the Balmer series indicate that this
series results in visible light.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 11.20 to choose the
initial and final states of the hydrogen
atom and observe the transitions in
this figure and in Active Figure 11.19.

ACTIVE FIGURE 11.20
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■ Frequency of radiation emitted
from hydrogen

■ Emission wavelengths of 
hydrogen

THE BOHR MODEL IS GREAT, BUT . . .
The Bohr model correctly predicts
the ionization energy for hydrogen,
but it cannot account for the spec-
tra of more complex atoms and is
unable to predict many subtle spec-
tral details of hydrogen and other
simple atoms. Despite its cultural
popularity, the notion of electrons
in well-defined orbits about the
nucleus is not consistent with
current models of the atom.

� PITFALL PREVENTION 11.4

www.pop4e.com
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A hydrogen atom makes a transition from the n � 3 level to the 
n � 2 level. It then makes a transition from the n � 2 level to the n � 1 level. Which
transition results in emission of the longest-wavelength photon? (a) the first transition
(b) the second transition (c) neither, because the wavelengths are the same for both
transitions

QUICK QUIZ 11.4

A hydrogen atom makes a transition from the n � 2
state to the ground state (corresponding to n � 1). Find
the wavelength and frequency of the emitted radiation.

Solution We can use Equation 11.28 directly to obtain

, with ni � 2 and nf � 1:

Because c � f
, the frequency of the radiation is

Investigate transitions of the atom between
states by logging into PhysicsNow at www.pop4e.com and going
to Interactive Example 11.3.

2.47 � 1015 s�1f �
c



�
3.00 � 108 m/s
1.215 � 10�7 m

�

121.5 nm (ultraviolet)� 1.215 � 10�7 m �


 �
4

3R H
�

4
3(1.097 � 10�7 m�1)
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� R H � 1
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An Electronic Transition in HydrogenEXAMPLE 11.3INTERACTIVE

CONTEXT 
connectionCHANGING  FROM  A  CIRCULAR  

TO  AN  ELLIPTICAL  ORBIT
In Interactive Example 11.1, we discussed a spacecraft in a circular orbit around the
Earth. From our studies of Kepler’s laws in this chapter, we are also aware that an
elliptical orbit is possible for our spacecraft. Let us investigate how the motion of
our spacecraft can be changed from a circular to an elliptical orbit, which will set us
up for the conclusion to our Mission to Mars Context.

Let us identify the system as the spacecraft and the Earth, but not the portion of the
fuel in the spacecraft that we use to change the orbit. In a given orbit, the mechanical en-
ergy of the spacecraft–Earth system is given by Equation 11.10,

This energy includes the kinetic energy of the spacecraft and the potential en-
ergy associated with the gravitational force between the spacecraft and the Earth. If
the rocket engines are fired, the exhausted fuel can be seen as doing work on the
spacecraft–Earth system because the thrust force moves through a displacement.
As a result, the mechanical energy of the spacecraft–Earth system increases.

The spacecraft has a new, higher energy but is constrained to be in an orbit that
includes the original starting point. It cannot be in a higher-energy circular orbit
having a larger radius because this orbit would not contain the starting point. The
only possibility is that the orbit is elliptical. Figure 11.21 shows the change from the
original circular orbit to the new elliptical orbit for our spacecraft.

E � �
GMm

2r

11.6

A spacecraft, 
originally in a circular orbit about the
Earth, fires its engines and enters an
elliptical orbit about the Earth.

ME

RE

Elliptical orbit

Circular orbit

Rocket engine
is fired here

FIGURE 11.21

more atomic electrons. Bohr showed that many mysterious lines observed in the
Sun and several stars could not be due to hydrogen, but were correctly predicted by
his theory if attributed to singly ionized helium.

www.pop4e.com
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A spacecraft in
orbit about the Earth can be modeled
as one in a circular orbit about the
Sun, with its orbit about the Earth
appearing as small perturbations from
the circular orbit.

Equation 11.11 gives the energy of the spacecraft–Earth system for an elliptical
orbit. Therefore, if we know the new energy of the orbit, we can find the semimajor
axis of the elliptical orbit. Conversely, if we know the semimajor axis of an elliptical
orbit we would like to achieve, we can calculate how much additional energy is
required from the rocket engines. This information can then be converted to a re-
quired burn time for the rockets.

Larger amounts of energy increase supplied by the rocket engines will move
the spacecraft into elliptical orbits with larger semimajor axes. What happens if
the burn time of the engines is so long that the total mechanical energy of the
spacecraft–Earth system becomes positive? A positive energy refers to an unbound
system. Therefore, in this case, the spacecraft will escape from the Earth, going into
a hyperbolic path that would not bring it back to the Earth.

This process is the essence of what must be done to transfer to Mars. Our rocket
engines must be fired to leave the circular parking orbit and escape the Earth. At
this point, our thinking must shift to a spacecraft–Sun system rather than a
spacecraft–Earth system. From this point of view, the spacecraft in orbit around the
Earth can also be considered to be in a circular orbit around the Sun, moving
along with the Earth, as shown in Figure 11.22. The orbit is not a perfect circle
because there are perturbations corresponding to its extra motion around the
Earth, but these perturbations are small compared with the radius of the orbit
around the Sun. When our engines are fired to escape from the Earth, our orbit
around the Sun changes from a circular orbit (ignoring the perturbations) to an
elliptical one with the Sun at one focus. We shall choose the semimajor axis of our
elliptical orbit so that it intersects the orbit of Mars! In the Context 2 Conclusion,
we shall look at more details of this process.

to the Sun

Path of the Earth
around the Sun

Path of spacecraft
around the Sun

FIGURE 11.22

From this equation, we can find the semimajor axis for
the elliptical orbit:

The maximum distance from the center of the Earth
will occur when the spacecraft is at apogee and is given
by

Now, if we subtract the radius of the Earth, we have the
maximum height above the surface:

� 1.77 � 103 km

h max � rmax � RE � 8.14 � 103 km � 6.37 � 103 km

� 8.14 � 103 km

rmax � 2a � r � 2(7.40 � 103 km) � (6.67 � 103 km)

� 7.40 � 103 km

a � 1.11r � 1.11(6.37 � 103 km � 3.00 � 102 km)

0.900 �
r
a

   :   a �
r

0.900
� 1.11r

How High Do We Go?EXAMPLE 11.4
Imagine that you are in a spacecraft in circular orbit
around the Earth, at a height of 300 km from the
surface. You fire your rocket engines, and as a result
the magnitude of the mechanical energy of the
spacecraft–Earth system decreases by 10.0%. (Because
the mechanical energy is negative, a decrease in magni-
tude is an increase in energy.) What is the greatest
height of your spacecraft above the surface of the Earth
in your new orbit?

Solution We set up a ratio of the energies of the two
orbits, using Equations 11.10 and 11.11 for circular and
elliptical orbits:

The ratio on the left is 0.900 because of the 
10.0% decrease in magnitude of the mechanical 
energy. Therefore,

E elliptical

E circular
�

��
GMm

2a �
��

GMm
2r �

�
r

a
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Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

Newton’s law of universal gravitation states that the gravita-
tional force of attraction between any two particles of masses
m1 and m2 separated by a distance r has the magnitude

[11.1]

where G is the universal gravitational constant whose value is
6.673 � 10�11 N � m2/kg2.

Rather than considering the gravitational force as a direct
interaction between two objects, we can imagine that one ob-
ject sets up a gravitational field in space:

[11.4]

A second object in this field experiences a force when
placed in this field.

Kepler’s laws of planetary motion state the following:

1. Each planet in the Solar System moves in an elliptical orbit
with the Sun at one focus.

2. The radius vector drawn from the Sun to any planet sweeps
out equal areas in equal time intervals.

3. The square of the orbital period of any planet is proportional
to the cube of the semimajor axis of the elliptical orbit.

Kepler’s first law is a consequence of the inverse-square na-
ture of the law of universal gravitation. The semimajor axis of
an ellipse is a, where 2a is the longest dimension of the ellipse.
The semiminor axis of the ellipse is b, where 2b is the shortest
dimension of the ellipse. The eccentricity of the ellipse is 
e � c/a, where c is the distance between the center and a focus
and a 2 � b 2 � c 2.

Kepler’s second law is a consequence of the gravitational
force being a central force. For a central force, the angular
momentum of the planet is conserved.

Kepler’s third law is a consequence of the inverse-square
nature of the universal law of gravitation. Newton’s second law,
together with the force law given by Equation 11.1, verifies that
the period T and semimajor axis a of the orbit of a planet
about the Sun are related by

F
:

g � mg:

g: � 
F
:

g

m

Fg � G  
m1m 2

r 2

SUMMARY

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. If the gravitational force on an object is directly propor-
tional to its mass, why don’t objects with large masses fall
with greater acceleration than small ones?

2. The gravitational force exerted by the Sun on you is down-
ward into the Earth at night and upward into the sky dur-
ing the day. If you had a sensitive enough bathroom scale,
would you expect to weigh more at night than during the
day? Note also that you are farther away from the Sun at
night than during the day. Would you expect to weigh less?

[11.7]

where MS is the mass of the Sun.
If an isolated system consists of a particle of mass m moving

with a speed v in the vicinity of a massive body of mass M, the
total energy of the system is constant and is

[11.8]

If m moves in an elliptical orbit of major axis 2a about M,
where M �� m, the total energy of the system is

[11.11]

The total energy is negative for any bound system, that is, one in
which the orbit is closed, such as a circular or an elliptical orbit.

The Bohr model of the atom successfully describes the
spectra of atomic hydrogen and hydrogen-like ions. One basic
assumption of this structural model is that the electron can ex-
ist only in discrete orbits such that the angular momentum
mevr is an integral multiple of � � h/2�. Assuming circular or-
bits and a simple electrical attraction between the electron
and proton, the energies of the quantum states for hydrogen
are calculated to be

[11.24]

where ke is the Coulomb constant, e is the fundamental electric
charge, n is a positive integer called a quantum number, and
a0 � 0.052 9 nm is the Bohr radius.

If the hydrogen atom makes a transition from a state whose
quantum number is ni to one whose quantum number is nf ,
where nf � ni , the frequency of the radiation emitted by the
atom is

[11.26]

Using Ei � Ef � hf � hc/
, one can calculate the wave-
lengths of the radiation for various transitions. The calculated
wavelengths are in excellent agreement with those in observed
atomic spectra.

f �
ke e 
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2a 0h
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3. The gravitational force that the Sun exerts on the Moon is
about twice as great as the gravitational force that the
Earth exerts on the Moon. Why doesn’t the Sun pull
the Moon away from the Earth during a total eclipse of the
Sun?

4. A satellite in orbit is not truly traveling through a vacuum.
It is moving through very thin air. Does the resulting air
friction cause the satellite to slow down?

Explain why it takes more fuel for a spacecraft to travel
from the Earth to the Moon than for the return trip. Esti-
mate the difference.

6. Explain why no work is done on a planet as it moves in a
circular orbit around the Sun, even though a gravitational
force is acting on the planet. What is the net work done on
a planet during each revolution as it moves around the Sun
in an elliptical orbit?

Why don’t we put a geosynchronous weather satellite in
orbit around the 45th parallel? Wouldn’t that be more use-
ful in the United States than one in orbit around the
equator?

8. If a hole could be dug to the center of the Earth, would the
force on an object of mass m still obey Equation 11.1 there?
What do you think the force on m would be at the center
of the Earth?

7.

5.

At what position in its elliptical orbit is the speed of a planet
a maximum? At what position is the speed a minimum?

10. Each Voyager spacecraft was accelerated toward escape
speed from the Sun by Jupiter’s gravitational force exerted
on the spacecraft. How is that possible?

In his 1798 experiment, Cavendish was said to have
“weighed the Earth.” Explain this statement.

12. The Apollo 13 spacecraft developed trouble in the oxygen
system about halfway to the Moon. Why did the mission
continue on around the Moon and then return home,
rather than immediately turn back to the Earth?

13. Suppose the system of a hydrogen atom obeyed classical
mechanics rather than quantum mechanics. Why should
such a hypothetical atom emit a continuous spectrum
rather than the observed line spectrum?

14. Can the electron in the ground state of hydrogen absorb a
photon of energy (a) less than 13.6 eV and (b) greater
than 13.6 eV?

15. Explain why, in the Bohr model, the total energy of the
atom is negative.

16. Let �E represent the energy of a hydrogen atom. What is
the kinetic energy of the electron? What is the potential
energy of the atom?

11.

9.

PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem
� paired numerical and symbolic problems
� biomedical application

Section 11.1 ■ Newton’s Law of Universal 
Gravitation Revisited

Problems 5.31 through 5.33 in Chapter 5 can be assigned
with this section.

1. Two ocean liners, each with a mass of 40 000 metric tons,
are moving on parallel courses, 100 m apart. What is the
magnitude of the acceleration of one of the liners toward
the other due to their mutual gravitational attraction?
Treat the ships as particles.

2. A 200-kg object and a 500-kg object are separated by
0.400 m. (a) Find the net gravitational force exerted by
these objects on a 50.0-kg object placed midway between
them. (b) At what position (other than an infinitely

remote one) can the 50.0-kg object be placed so as to expe-
rience a net force of zero?

In introductory physics laboratories, a
typical Cavendish balance for measuring the gravitational
constant G uses lead spheres with masses of 1.50 kg and
15.0 g whose centers are separated by about 4.50 cm. Cal-
culate the gravitational force between these spheres, treat-
ing each as a particle located at the center of the sphere.

4. Three uniform spheres of mass 2.00 kg, 4.00 kg, and
6.00 kg are placed at the corners of a right triangle as
shown in Figure P11.4. Calculate the resultant gravitational
force on the 4.00-kg object, assuming that the spheres are
isolated from the rest of the Universe.

3.

y

2.00 kg

F24

(0, 3.00) m

x
O

6.00 kg

(– 4.00, 0) m

64 4.00 kgF

FIGURE P11.4
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FIGURE P11.11

a

M

Pr

M

FIGURE P11.10

10.0 km100 m

Black hole

Compute the magnitude and direction of the gravitational
field at a point P on the perpendicular bisector of the line
joining two objects of equal mass separated by a distance
2a, as shown in Figure P11.11.

11.

12. A satellite of mass 300 kg is in a circular orbit around the
Earth at an altitude equal to the Earth’s mean radius. Find
(a) the satellite’s orbital speed, (b) the period of its revolu-
tion, and (c) the gravitational force acting on it.

Section 11.3 ■ Kepler’s Laws
13. A communication satellite in geosynchronous orbit remains

above a single point on the Earth’s equator as the planet ro-
tates on its axis. (a) Calculate the radius of its orbit. (b) The
satellite relays a radio signal from a transmitter near the
North Pole to a receiver, also near the North Pole. Traveling
at the speed of light, how long is the radio wave in transit?

14. The Explorer VIII satellite, placed into orbit November 3,
1960, to investigate the ionosphere, had the following orbit
parameters: perigee, 459 km; apogee, 2 289 km (both dis-
tances above the Earth’s surface); period, 112.7 min. Find
the ratio vp/va of the speed at perigee to that at apogee.

Io, a satellite of Jupiter, has an orbital
period of 1.77 days and an orbital radius of 4.22 � 105 km.
From these data, determine the mass of Jupiter.

16. Comet Halley approaches the Sun to within 0.570 AU (Fig.
P11.16), and its orbital period is 75.6 yr. (AU is the symbol
for astronomical unit, where 1 AU � 1.50 � 1011 m is the
mean Earth–Sun distance.) How far from the Sun will this
comet travel before it starts its return journey?

15.

difference in the gravitational fields acting on the occu-
pants in the nose of the ship and on those in the rear of
the ship, farthest from the black hole? This difference in
accelerations grows rapidly as the ship approaches the
black hole. It puts the body of the ship under extreme ten-
sion and eventually tears it apart.

FIGURE P11.9 (a) Miranda, a moon of Uranus. (b) A magnified
image of a 5 000-m cliff on Miranda

10. A spacecraft in the shape of a long cylinder has a length of
100 m, and its mass with occupants is 1 000 kg. It has
strayed too close to a black hole having a mass 100 times
that of the Sun (Fig. P11.10). The nose of the spacecraft
points toward the black hole, and the distance between the
nose and the center of the black hole is 10.0 km. (a) Deter-
mine the total force on the spacecraft. (b) What is the

(a) (b)

5. During a solar eclipse, the Moon, the Earth, and the Sun
all lie on the same line, with the Moon between the Earth
and the Sun. (a) What force is exerted by the Sun on
the Moon? (b) What force is exerted by the Earth on the
Moon? (c) What force is exerted by the Sun on the
Earth?

6. A student proposes to measure the gravitational constant
G by suspending two spherical objects from the ceiling of
a tall cathedral and measuring the deflection of the cables
from the vertical. Draw a free-body diagram of one of the
objects. If two 100.0-kg objects are suspended at the lower
ends of cables 45.00 m long and the cables are attached
to the ceiling 1.000 m apart, what is the separation of the
objects?

The free-fall acceleration on the surface of the Moon is
about one-sixth that on the surface of the Earth. Assuming
that the radius of the Moon is about 0.250R E , find the ra-
tio of their average densities, Moon/Earth.

8. On the way to the Moon, the Apollo astronauts passed a
point after which the Moon’s gravitational pull became
stronger than the Earth’s. (a) Determine the distance of
this point from the center of the Earth. (b) What is the ac-
celeration due to the Earth’s gravitation at this point?

9. Review problem. Miranda, a satellite of Uranus, is shown
in Figure P11.9a. It can be modeled as a sphere of radius
242 km and mass 6.68 � 1019 kg. (a) Find the free-fall
acceleration on its surface. (b) A cliff on Miranda is 
5 000 m high. It appears on the limb at the 11 o’clock posi-
tion in Figure P11.9a and is magnified in Figure P11.9b. If
a devotee of extreme sports runs horizontally off the top of
the cliff at 8.50 m/s, for what time interval will he be in
flight? (Or will he be in orbit?) (c) How far from the base
of the vertical cliff will he strike the icy surface of Miranda?
(d) What will be his vector impact velocity?

7.
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FIGURE P11.16 The elliptical orbit of Comet Halley (not to scale).

FIGURE P11.17
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Plaskett’s binary system consists of two stars that revolve in
a circular orbit about a center of mass midway between
them. Therefore, the masses of the two stars are equal (Fig.
P11.17). Assume that the orbital speed of each star is 
220 km/s and that the orbital period of each is 14.4 days.
Find the mass M of each star. (For comparison, the mass of
our Sun is 1.99 � 1030 kg.)

17.

18. Two planets X and Y travel counterclockwise in circular or-
bits about a star as shown in Figure P11.18. The radii of
their orbits are in the ratio 3:1. At some time, they are
aligned as shown in Figure P11.18a, making a straight line
with the star. During the next five years, the angular dis-
placement of planet X is 90.0°, as shown in Figure P11.18b.
Where is planet Y at this time?

19. Suppose the Sun’s gravity were switched off. The planets
would leave their nearly circular orbits and fly away in
straight lines, as described by Newton’s first law. Would
Mercury ever be farther from the Sun than Pluto? If so,
find how long it would take for Mercury to achieve this pas-
sage. If not, give a convincing argument that Pluto is always
farther from the Sun than is Mercury.

20. As thermonuclear fusion proceeds in its core, the Sun loses
mass at a rate of 3.64 � 109 kg/s. During the 5 000-yr

FIGURE P11.18

(a)

Y X

Y

X

(b)

period of recorded history, by how much has the length of
the year changed due to the loss of mass from the Sun?
(Suggestions: Assume that the Earth’s orbit is circular. No
external torque acts on the Earth–Sun system, so angular
momentum is conserved. If x is small compared to 1, then
(1 � x)n is nearly equal to 1 � nx.)

Section 11.4 ■ Energy Considerations in Planetary 
and Satellite Motion

Problems 7.35 through 7.38 in Chapter 7 can be assigned
with this section.

After our Sun exhausts its nuclear fuel, its ultimate fate
may be to collapse to a white dwarf state, in which it has ap-
proximately the same mass as it has now but a radius equal
to the radius of the Earth. Calculate (a) the average den-
sity of the white dwarf, (b) the free-fall acceleration, and
(c) the gravitational potential energy associated with a
1.00-kg object at its surface.

22. How much work is done by the Moon’s gravitational field
as a 1 000-kg meteor comes in from outer space and im-
pacts on the Moon’s surface?

23. An asteroid is on a collision course with Earth. An astro-
naut lands on the rock to bury explosive charges that will
blow the asteroid apart. Most of the small fragments will
miss the Earth, and those that fall into the atmosphere
will produce only a beautiful meteor shower. The astronaut
finds that the density of the spherical asteroid is equal to
the average density of the Earth. To ensure its pulveriza-
tion, she incorporates into the explosives the rocket fuel
and oxidizer intended for her return journey. What maxi-
mum radius can the asteroid have for her to be able to
leave it entirely simply by jumping straight up? On Earth
she can jump to a height of 0.500 m.

24. (a) Determine the amount of work that must be done on a
100-kg payload to elevate it to a height of 1 000 km above
the Earth’s surface. (b) Determine the amount of addi-
tional work that is required to put the payload into circular
orbit at this elevation.

A space probe is fired up from the Earth’s
surface with an initial speed of 2.00 � 104 m/s. What will
its speed be when it is very far from the Earth? Ignore fric-
tion and the rotation of the Earth.

25.

21.
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FIGURE P11.27
By permission of John Hart FLP, and Creators Syndicate, Inc.

26. (a) What is the minimum speed, relative to the Sun, neces-
sary for a spacecraft to escape the solar system if it starts at
the Earth’s orbit? (b) Voyager 1 achieved a maximum speed
of 125 000 km/h on its way to photograph Jupiter. Beyond
what distance from the Sun is this speed sufficient to
escape the solar system?

A “treetop satellite” (Fig. P11.27) moves in a circular orbit
just above the surface of a planet, assumed to offer no air
resistance. Show that its orbital speed v and the escape
speed from the planet are related by the expression

.

28. An object is released from rest at an altitude h above
the surface of the Earth. (a) Show that its speed at a dis-
tance r from the Earth’s center, where RE � r � RE � h, is
given by 

(b) Assume that the release altitude is 500 km. Perform
the integral

to find the time of fall during which the object moves from
the release point to the Earth’s surface. The negative sign
appears because the object is moving opposite to the radial
direction, so its speed is v � �dr/dt. Perform the integral
numerically.

29. A 500-kg satellite is in a circular orbit at an altitude of 500 km
above the Earth’s surface. Because of air friction, the satellite
eventually falls to the Earth’s surface, where it hits the

�t � �f

i
 dt � �f

i
�

dr
v

v � √2GME  � 1
r

�
1

RE � h �

vesc �  √2v

27.

ground with a speed of 2.00 km/s. How much energy was
transformed into internal energy by means of air friction?

30. A satellite of mass m, originally on the surface of the Earth,
is placed into Earth orbit at an altitude h. (a) With a circu-
lar orbit, how long does the satellite take to complete one
orbit? (b) What is the satellite’s speed? (c) What is the min-
imum energy input necessary to place this satellite in or-
bit? Ignore air resistance but include the effect of the
planet’s daily rotation. At what location on the Earth’s sur-
face and in what direction should the satellite be launched
to minimize the required energy investment? Represent
the mass and radius of the Earth as ME and RE .

31. An object is fired vertically upward from the surface of the
Earth (of radius RE) with an initial speed vi that is compa-
rable to but less than the escape speed vesc. (a) Show that
the object attains a maximum height h given by

(b) A space vehicle is launched vertically upward from the
Earth’s surface with an initial speed of 8.76 km/s, which is
less than the escape speed of 11.2 km/s. What maximum
height does it attain? (c) A meteorite falls toward the
Earth. It is essentially at rest with respect to the Earth when
it is at a height of 2.51 � 107 m. With what speed does the
meteorite strike the Earth? (d) Assume that a baseball is
tossed up with an initial speed that is very small compared
with the escape speed. Show that the equation from part
(a) is consistent with Equation 3.15.

32. Derive an expression for the work required to move an
Earth satellite of mass m from a circular orbit of radius 2RE
to one of radius 3RE .

h �
R Ev 

2
i

v 
2
esc � v 

2
i
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33. A comet of mass 1.20 � 1010 kg moves in an elliptical orbit
around the Sun. Its distance from the Sun ranges between
0.500 AU and 50.0 AU. (a) What is the eccentricity of its
orbit? (b) What is its period? (c) At aphelion, what is the
potential energy of the comet–Sun system? (Note: 1 AU �
one astronomical unit � the average distance from the
Sun to the Earth � 1.496 � 1011 m.)

Section 11.5 ■ Atomic Spectra and the Bohr Theory 
of Hydrogen

34. Within the Rosette Nebula shown in the photograph
opening this chapter, a hydrogen atom emits light as it
undergoes a transition from the n � 3 state to the n � 2
state. Calculate (a) the energy, (b) the wavelength, and 
(c) the frequency of the radiation.

(a) What value of ni is associated with the 94.96-nm spec-
tral line in the Lyman series of hydrogen? (b) Could this
wavelength be associated with the Paschen series or the
Balmer series?

36. For a hydrogen atom in its ground state, use the Bohr
model to compute (a) the orbital speed of the electron,
(b) the kinetic energy of the electron, and (c) the electric
potential energy of the atom.

37. Four possible transitions for a hydrogen atom are as fol-
lows:

(i) ni � 2; nf � 5 (ii) ni � 5; nf � 3

(iii) ni � 7; nf � 4 (iv) ni � 4; nf � 7

(a) In which transition is light of the shortest wavelength
emitted? (b) In which transition does the atom gain the
most energy? (c) In which transition(s) does the atom lose
energy?

38. How much energy is required to ionize hydrogen (a) when
it is in the ground state and (b) when it is in the state for
which n � 3?

A hydrogen atom is in its first excited
state (n � 2). Using the Bohr theory of the atom, calculate
(a) the radius of the orbit, (b) the linear momentum of
the electron, (c) the angular momentum of the electron,
(d) the kinetic energy, (e) the potential energy, and 
(f) the total energy.

40. Show that the speed of the electron in the nth Bohr orbit
in hydrogen is given by

vn �

41. Two hydrogen atoms collide head-on and end up with zero
kinetic energy. Each atom then emits light with a wave-
length of 121.6 nm (n � 2 to n � 1 transition). At what
speed were the atoms moving before the collision?

Section 11.6 ■ Context Connection—Changing From 
a Circular to an Elliptical Orbit

42. A spacecraft of mass 1.00 � 104 kg is in a circular orbit at
an altitude of 500 km above the Earth’s surface. Mission
Control wants to fire the engines so as to put the spacecraft
in an elliptical orbit around the Earth with an apogee of

kee 2

n�

39.

35.

2.00 � 104 km. How much energy must be used from the
fuel to achieve this orbit? (Assume that all the fuel energy
goes into increasing the orbital energy. This model will
give a lower limit to the required energy because some of
the energy from the fuel will appear as internal energy in
the hot exhaust gases and engine parts.)

43. A spacecraft is approaching Mars after a long trip from the
Earth. Its velocity is such that it is traveling along a parabolic
trajectory under the influence of the gravitational force
from Mars. The distance of closest approach will be 300 km
above the Martian surface. At this point of closest approach,
the engines will be fired to slow down the spacecraft and
place it in a circular orbit 300 km above the surface. (a) By
what percentage must the speed of the spacecraft be re-
duced to achieve the desired orbit? (b) How would the an-
swer to part (a) change if the distance of closest approach
and the desired circular orbit altitude were 600 km instead
of 300 km? (Note: The energy of the spacecraft–Mars system
for a parabolic orbit is E � 0.)

Additional Problems
44. The Solar and Heliospheric Observatory (SOHO) space-

craft has a special orbit, chosen so that its view of the Sun is
never eclipsed and it is always close enough to the Earth to
transmit data easily. It moves in a near-circle around the
Sun that is smaller than the Earth’s circular orbit. Its pe-
riod, however, is not less than 1 yr, but just equal to 1 yr. It
is always located between the Earth and the Sun along the
line joining them. Both objects exert gravitational forces
on the observatory. Show that the spacecraft’s distance
from the Earth must be between 1.47 � 109 m and 
1.48 � 109 m. In 1772, Joseph Louis Lagrange determined
theoretically the special location allowing this orbit. The
SOHO spacecraft took this position on February 14, 1996.
(Suggestions: Use data that are precise to four digits. The
mass of the Earth is 5.983 � 1024 kg.)

45. Let �gM represent the difference in the gravitational fields
produced by the Moon at the points on the Earth’s surface
nearest to and farthest from the Moon. Find the fraction
�gM/g, where g is the Earth’s gravitational field. (This
difference is responsible for the occurrence of the lunar
tides on the Earth.)

46. Review problem. Two identical hard spheres, each of
mass m and radius r, are released from rest in otherwise
empty space with their centers separated by the distance
R. They are allowed to collide under the influence of
their gravitational attraction. (a) Show that the magni-
tude of the impulse received by each sphere before they
make contact is given by [Gm3(1/2r � 1/R )]1/2. (b) Find
the magnitude of the impulse each receives if they collide
elastically.

47. (a) Show that the rate of change of the free-fall accelera-
tion with distance above the Earth’s surface is 

This rate of change over distance is called a gradient.
(b) Assuming that h is small in comparison to the radius of

dg
dr

� �
2GME

R 3 
E
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the Earth, show that the difference in free-fall acceleration
between two points separated by vertical distance h is

(c) Evaluate this difference for h � 6.00 m, a typical
height for a two-story building.

48. A ring of matter is a familiar structure in planetary 
and stellar astronomy. Examples include Saturn’s rings 
and a ring nebula. Consider a uniform ring of mass 
2.36 � 1020 kg and radius 1.00 � 108 m. An object of mass
1 000 kg is placed at a point A on the axis of the ring,
2.00 � 108 m from the center of the ring (Fig. P11.48).
When the object is released, the attraction of the ring
makes the object move along the axis toward the center of
the ring (point B). (a) Calculate the gravitational potential
energy of the object–ring system when the object is at A.
(b) Calculate the gravitational potential energy of the sys-
tem when the object is at B. (c) Calculate the speed of the
object as it passes through B.

� �g � �
2GMEh

R 3  
E

50. As an astronaut, you observe a small planet to be spheri-
cal. After landing on the planet, you set off, walking always
straight ahead, and find yourself returning to your space-
craft from the opposite side after completing a lap of
25.0 km. You hold a hammer and a falcon feather at a
height of 1.40 m, release them, and observe that they fall
together to the surface in 29.2 s. Determine the mass of
the planet.

51. Many people assume that air resistance acting on a moving
object will always make the object slow down. It can actu-
ally be responsible for making the object speed up. Con-
sider a 100-kg Earth satellite in a circular orbit at an
altitude of 200 km. A small force of air resistance makes
the satellite drop into a circular orbit with an altitude of
100 km. (a) Calculate its initial speed. (b) Calculate its
final speed in this process. (c) Calculate the initial energy
of the satellite–Earth system. (d) Calculate the final en-
ergy of the system. (e) Show that the system has lost
mechanical energy and find the amount of the loss due to
friction. (f) What force makes the satellite’s speed in-
crease? You will find a free-body diagram useful in explain-
ing your answer.

52. The maximum distance from the Earth to the Sun (at our
aphelion) is 1.521 � 1011 m, and the distance of closest
approach (at perihelion) is 1.471 � 1011 m. The Earth’s
orbital speed at perihelion is 3.027 � 104 m/s. Determine
(a) the Earth’s orbital speed at aphelion, (b) the kinetic
and potential energies of the Earth–Sun system at perihe-
lion, and (c) the kinetic and potential energies at aphe-
lion. Is the total energy constant? (Ignore the effect of the
Moon and other planets.)

Two hypothetical planets of masses m1
and m2 and radii r1 and r 2, respectively, are nearly at rest
when they are an infinite distance apart. Because of their
gravitational attraction, they head toward each other on a
collision course. (a) When their center-to-center separa-
tion is d, find expressions for the speed of each planet and
for their relative speed. (b) Find the kinetic energy of each
planet just before they collide, taking m1 � 2.00 � 1024 kg,
m2 � 8.00 � 1024 kg, r1 � 3.00 � 106 m, and r2 � 5.00 �
106 m. (Note: Both energy and momentum of the system
are conserved.)

54. Assume that you are agile enough to run across a horizon-
tal surface at 8.50 m/s, independently of the value of the
gravitational field. What would be (a) the radius and
(b) the mass of an airless spherical asteroid of uniform
density 1.10 � 103 kg/m3 on which you could launch your-
self into orbit by running? (c) What would be your period?
(d) Take your mass as 90.0 kg. If the asteroid were origi-
nally stationary, your running would set it into rotation
with what period?

55. Studies of the relationship of the Sun to its galaxy—the
Milky Way—have revealed that the Sun is located near the
outer edge of the galactic disc, about 30 000 ly from the cen-
ter. The Sun has an orbital speed of approximately 250 km/s
around the galactic center. (a) What is the period of the
Sun’s galactic motion? (b) What is the order of magnitude of
the mass of the Milky Way galaxy? Suppose the galaxy is
made mostly of stars of which the Sun is typical. What is the
order of magnitude of the number of stars in the Milky Way?

53.

A

B

FIGURE P11.48
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49. Voyager 1 and Voyager 2 surveyed the surface of Jupiter’s
moon Io and photographed active volcanoes spewing
liquid sulfur to heights of 70 km above the surface of this
moon. Find the speed with which the liquid sulfur left
the volcano. Io’s mass is 8.9 � 1022 kg, and its radius is
1 820 km.
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56. The oldest artificial satellite in orbit is Vanguard I,
launched March 3, 1958. Its mass is 1.60 kg. In its initial or-
bit, its minimum distance from the center of the Earth was
7.02 Mm and its speed at this perigee point was 8.23 km/s.
(a) Find the total energy of the satellite–Earth system.
(b) Find the magnitude of the angular momentum of the
satellite. (c) Find its speed at apogee and its maximum
(apogee) distance from the center of the Earth. (d) Find
the semimajor axis of its orbit. (e) Determine its period.

57. Astronomers detect a distant meteoroid moving along a
straight line that, if extended, would pass at a distance 3RE
from the center of the Earth, where RE is the radius of the
Earth. What minimum speed must the meteoroid have if
the Earth’s gravitation is not to deflect the meteoroid to
make it strike the Earth?

58. A spherical planet has uniform density . Show that the
minimum period for a satellite in orbit around it is 

independent of the radius of the planet.

Two stars of masses M and m, separated by a distance d,
revolve in circular orbits about their center of mass
(Fig. P11.59). Show that each star has a period given by

Proceed as follows: Apply Newton’s second law to each star.
Note that the center-of-mass condition requires that 
Mr2 � mr1, where r 1 � r 2 � d.

T 2 �
4�2d3

G(M � m)

59.

Tmin � √ 3�

G

FIGURE P11.59
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60. (a) A 5.00-kg object is released 1.20 � 107 m from the cen-
ter of the Earth. It moves with what acceleration relative to
the Earth? (b) A 2.00 � 1024 kg object is released
1.20 � 107 m from the center of the Earth. It moves with
what acceleration relative to the Earth? Assume that the
objects behave as pairs of particles, isolated from the rest
of the Universe.

The positron is the antiparticle to the electron. It has the
same mass and a positive electric charge of the same mag-
nitude as the electron charge. Positronium is a hydrogen-
like atom consisting of a positron and an electron revolv-
ing around each other. Using the Bohr model, find the
allowed distances between the two particles and the al-
lowed energies of the system.

61.

ANSWERS TO QUICK QUIZZES

11.1 (e). The gravitational force follows an inverse-square
behavior, so doubling the distance causes the force to be
one-fourth as large.

11.2 (a). From Kepler’s third law and the given period, the
major axis of the asteroid can be calculated. It is found to
be 1.2 � 1011 m. Because this axis is smaller than the
Earth–Sun distance, the asteroid cannot possibly collide
with the Earth.

11.3 (a) Perihelion. Because of conservation of angular mo-
mentum, the speed of the comet is highest at its closest

position to the Sun. (b) Aphelion. The potential energy
of the comet–Sun system is highest when the comet is at
its farthest distance from the Sun. (c) Perihelion. The
kinetic energy is highest at the point at which the speed
of the comet is highest. (d) All points. The total energy
of the system is the same regardless of where the comet is
in its orbit.

11.4 (a). The longest-wavelength photon is associated with the
lowest-energy transition, which is n � 3 to n � 2.
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A Successful Mission Plan
Now that we have explored the physics of classical mechanics, let us return to our
central question for the Mission to Mars Context:

How can we undertake a successful transfer of a spacecraft from the Earth to Mars?

We make use of the physical principles that we now understand and apply them to
our journey from the Earth to Mars.

Let us start with a more modest proposition. Suppose a spacecraft is in a circular
orbit around the Earth and you are a passenger on the spacecraft. If you toss a
wrench in the direction of travel, tangent to the circular path, what orbital path will
the wrench follow?

Let us adopt a simplification model in which the spacecraft is much more mas-
sive than the wrench. Conservation of momentum for the isolated system of the
wrench and the spacecraft tells us that the spacecraft must slow down slightly once
the wrench is thrown. Because of the mass difference between the wrench and
spacecraft, however, we can ignore the small change in the spacecraft’s speed. The
wrench now enters a new orbit, from its perigee position, and the wrench–Earth
system has more energy than it had when the wrench was in the circular orbit. Be-
cause the orbital energy is related to the major axis, the wrench is injected into an el-
liptical orbit as discussed in the Context Connection of Chapter 11 and as shown in
Figure 1. Therefore, the path of the wrench is changed from a circular orbit to an el-
liptical orbit by providing the wrench–Earth system with extra energy. The energy is
provided by the force you apply to the wrench tangent to the circular orbit because
you have done work on the system. The elliptical orbit will take the wrench farther
from the Earth than the circular orbit. If there were another spacecraft in a higher
circular orbit than your spacecraft, you could throw the wrench so that it transfers
from one spacecraft to another as shown in Figure 2. For that to occur, the elliptical
orbit of the wrench must intersect with the higher spacecraft orbit. Furthermore, the
wrench and the second spacecraft must arrive at the same point at the same time.

C O N T E X T CONCLUSION2

Elliptical orbit
of wrench

Circular orbit
of spacecraft

A wrench thrown tangent to
the circular orbit of a space-
craft enters an elliptical orbit.

FIGURE 1

Circular orbit of
second spacecraft

Wrench is
caught at
second
spacecraft.

Wrench
is thrown
from first
spacecraft.

If a second spacecraft were in a higher circular
orbit, the wrench could be carefully thrown so as
to be transferred from one spacecraft to the other.

FIGURE 2
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This scenario is the essence of our planned mission from the Earth to Mars.
Rather than transferring a wrench between two spacecraft in orbit around the
Earth, we will transfer a spacecraft between two planets in orbit around the Sun.
Kinetic energy is added to the wrench–Earth system by throwing the wrench.
Kinetic energy is added to the spacecraft–Sun system by firing the engines.

What if you were to throw the wrench harder and harder in the previous exam-
ple? The wrench would be placed in a larger and larger elliptical orbit around the
Earth. As you increased the launch velocity, you could inject the wrench into a hy-
perbolic escape orbit, relative to the Earth, and into an elliptical orbit around the Sun.
This approach is the one we will take for the trip from the Earth to Mars; we will
break free from a circular parking orbit around the Earth and move into an elliptical
transfer orbit around the Sun. The spacecraft will then continue on its journey to
Mars, where it will enter a new parking orbit.

Now let us focus our attention on the transfer orbit part of the journey. One sim-
ple transfer orbit is called a Hohmann transfer, the type of transfer imparted to the
wrench shown in Figure 2. The Hohmann transfer involves the least energy expen-

diture and thus requires the smallest amount of fuel. As
might be expected for a lowest-energy transfer, the transfer
time for a Hohmann transfer is longer than for other types
of orbits. We shall investigate the Hohmann transfer be-
cause of its simplicity and its general usefulness in planetary
transfers.

The rocket engine on the spacecraft is fired from the
parking orbit such that the spacecraft enters an elliptical
orbit around the Sun at its perihelion and encounters the
planet at the spacecraft’s aphelion. Therefore, the space-
craft makes exactly one half of a revolution about its ellipti-
cal path during the transfer as shown in Figure 3.

This process is energy efficient because fuel is expended
only at the beginning and the end. The movement between
parking orbits around the Earth and Mars is free; the space-
craft simply follows Kepler’s laws while in an elliptical orbit
around the Sun.

Let us perform a simple numerical calculation to see
how to apply the mechanical laws to this process. We assume
that the spacecraft is in a parking orbit above the Earth’s

surface. Notice also that the spacecraft is in orbit around the Sun, with a perturba-
tion in its orbit caused by the Earth. Therefore, if we calculate the tangential speed
of the Earth about the Sun, we can let this speed represent the average speed of the
spacecraft around the Sun. This speed is calculated from Newton’s second law for a
particle in uniform circular motion:

This result is the original speed of the spacecraft, to which we add a change �v to
inject the spacecraft into the transfer orbit.

The major axis of the elliptical transfer orbit is found by adding together the
orbit radii of the Earth and Mars (see Fig. 3):

Major axis � 2a � rEarth � rMars

� 1.50 � 1011 m � 2.28 � 1011 m � 3.78 � 1011 m

� 2.97 � 104 m/s

  : v � √ GMSun

r
� √ (6.67 � 10�11N �m2/kg2)(1.99 � 1030 kg)

1.50 � 1011 m

F � ma : G  
MSun m Earth

r 2 � m Earth 
v 2

r
 

Arrival at
Mars

Transfer orbit

Sun

Earth orbit

Launch from the
Earth

Mars orbit

The Hohmann transfer orbit from the Earth to
Mars. It is similar to transferring the wrench from one
spacecraft to another in Figure 2, but here we are
transferring a spacecraft from one planet to another.

FIGURE 3
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Therefore

a � 1.89 � 1011 m

From this value, Kepler’s third law is used to find the travel time, which is one half
of the period of the orbit:

Therefore, the journey to Mars will require 260 Earth days. We can also determine
where in their orbits Mars and the Earth must be so that the planet will be there
when the spacecraft arrives. Mars has an orbital period of 687 Earth days. During
the transfer time, the angular position change of Mars is

Therefore, for the spacecraft and Mars to arrive at the same point at the same
time, the spacecraft must be launched when Mars is 180° � 136° � 44° ahead of
the Earth in its orbit. This geometry is shown in Figure 4.

With relatively simple mathematics, that is as
far as we can go in describing the details of a trip
to Mars. We have found the desired path, the
time for the trip, and the position of Mars at
launch time. Another important issue for the
spacecraft captain would be that of the amount
of fuel required for the trip. This question is re-
lated to the speed changes necessary to put us
into a transfer orbit. These types of calculations
involve energy considerations and are explored
in Problem 3.

Although many considerations for a success-
ful mission to Mars have not been addressed, we
have successfully designed a transfer orbit from
the Earth to Mars that is consistent with the laws
of mechanics. We consequently declare success
for our endeavor and bring this Mission to Mars
Context to a close.

Questions
1. Some science fiction stories describe a twin planet to the Earth. It is exactly 180°

ahead of us in the same orbit as the Earth, so we will never see it because it is on
the other side of the Sun. Assuming you are in a spacecraft in orbit around the
Earth, describe conceptually how you could visit this planet by altering your orbit.

2. You are in an orbiting spacecraft. Another spacecraft is in precisely the same
orbit but is 1 km ahead of you, moving in the same direction around the circle.
Through an oversight, your food supplies have been exhausted, but there is
more than enough food in the other spacecraft. The commander of the other
spacecraft is going to throw, from her spacecraft to yours, a picnic basket full of
sandwiches. Give a qualitative description of how she should throw it.

Problems
1. Consider a Hohmann transfer from the Earth to Venus. (a) How long will this

transfer take? (b) Should Venus be ahead of or behind the Earth in its orbit

��Mars �
260 d
687 d

 (2�) � 2.38 rad � 136	

 � 2.24 � 107 s � 0.711 yr � 260 d

 � 1
2 √ 4� 2

(6.67 � 10�11 N�m2/kg2)(1.99 � 1030 kg)
 (1.89 � 1011 m)3 

�t travel � 1
2T � 1

2 √ 4� 2

GMSun
 a3

Position of Mars
when spacecraft
arrives 

Transfer orbit 

Sun

Earth orbit

Mars
orbit

Launch from the
Earth

44°

Position of Mars when
spacecraft leaves the Earth  

The spacecraft must be launched when Mars is 44° ahead of the
Earth in its orbit.

FIGURE 4



370 ❚ CONTEXT 2 CONCLUSION A SUCCESSFUL MISSION PLAN

y g p pp

when the spacecraft leaves the Earth on its way to the rendezvous? How many
degrees is Venus ahead or behind the Earth?

2. You are on a space station in a circular orbit 500 km above the surface of the
Earth. Your passenger and guest is a large, strong, intelligent extraterrestrial.
You cannot answer her penetrating questions about bigotry and war, so you try
to teach her to play golf. Walking on the space station surface with magnetic
shoes, you demonstrate a drive. The alien tees up a golf ball and hits it with
incredible power, sending it off with speed �v, relative to the space station, in a
direction parallel to the instantaneous velocity vector of the space station. You
notice that after you then complete precisely 2.00 orbits of the Earth, the golf
ball also returns to the same location, so you reach up and catch the ball as it is
passing the space station. With what speed �v was the golf ball hit?

3. Investigate what the engine has to do to make a spacecraft follow the Hohmann
transfer orbit from the Earth to Mars described in the text. Short-duration burns
of our rocket engine are required to change the speed of our spacecraft when-
ever we alter our orbit. There are no brakes in space, so fuel is required both to
increase and to decrease the speed of the spacecraft. First, ignore the gravita-
tional attraction between the spacecraft and the planets. (a) Calculate the speed
change required for switching the craft from a circular orbit around the Sun at
the Earth’s distance to the transfer orbit to Mars. (b) Calculate the speed
change required for switching from the transfer orbit to a circular orbit around
the Sun at the distance of Mars. Now consider the effects of the two planets’
gravity. (c) Calculate the speed change required to carry the craft from the
Earth’s surface to its own independent orbit around the Sun. You may suppose
the craft is launched from the Earth’s equator toward the east. (d) Model the
craft as falling to the surface of Mars from solar orbit. Calculate the magnitude
of the speed change required to make a soft landing on Mars at the end of the
fall. Mars rotates on its axis with a period of 24.6 h.



west of Mexico City. Near the
coast, the shaking of the ground
was mild and caused little dam-
age. As the seismic waves raced

The Northridge earthquake in California in
1994 caused billions of dollars in damage.
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C O N T E X T

Earthquakes
Earthquakes result in massive move-
ment of the ground, as evidenced by
the accompanying photograph of rail-
road tracks in Mexico, damaged se-
verely by an earthquake in 1985. Any-
one who has experienced a serious
earthquake can attest to the violent
shaking it produces. In this Context, we
shall focus on earthquakes as an appli-
cation of our study of the physics of
vibrations and waves.

The cause of an earthquake is a re-
lease of energy within the Earth at a
point called the focus, or hypocenter, of
the earthquake. The point on the
Earth’s surface radially above the fo-
cus is called the epicenter. As the en-
ergy from the focus reaches the sur-
face, it spreads out along the surface
of the Earth. We might expect that
the risk of damage in an earthquake
decreases as one moves farther from
the epicenter, and over long distances
that assumption is correct. For exam-
ple, structures in Kansas are not af-
fected by earthquakes in California.
In regions close to the earthquake,
however, the notion of decrease in
risk with distance is not consistent.
Consider, for example, the following
quotations describing damage in two
different earthquakes.

After the Northridge, California, earth-
quake, January 17, 1994:1

Although the city [Santa Mon-
ica] sits 25 kilometers from the
shock’s epicenter, it suffered
more [damage] than did other
areas less than one-third that dis-
tance from the jolt.

After the Michoacán earthquake,
September 19, 1985:2

An earthquake rattled the coast
of Mexico in the state of Mi-
choacán, about 400 kilometers

3
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1Science News, Volume 145, 1994, p. 287.
2American Scientist, November–December 1992,
p. 566.

In this Context, we shall study the physics of vibrations and
waves by investigating earthquakes. These deformed railroad
tracks suggest the large amounts of energy released in an
earthquake.
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How can we choose locations and build structures to minimize the risk
of damage in an earthquake?

Severe damage occurred in local-
ized regions of Mexico City in
1985, even though the epicenter
of the Michoacán earthquake was
hundreds of kilometers away.

FIGURE 3
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inland, the ground shook even
less, and by the time the waves
were 100 kilometers from Mex-
ico City, the shaking had nearly
subsided. Nevertheless, the seis-
mic waves induced severe shak-
ing in the city, and some areas
continued to shake for several
minutes after the seismic waves
had passed. Some 300 buildings
collapsed and more than 20,000
people died.

It is clear from these quotations that
the notion of a simple decrease in risk
with distance is misleading. We will use
these quotations as motivation in our
study of the physics of vibrations and
waves so that we can better analyze the
risk of damage to structures in an
earthquake. Our study here will also be
important when we investigate electro-
magnetic waves in Chapters 24 through
27. In this Context, we shall address the
central question:
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Y ou are most likely familiar with several examples of periodic
motion, such as the oscillations of an object on a spring,
the motion of a pendulum, and the vibrations of a stringed

musical instrument. Numerous other systems exhibit periodic be-
havior. For example, the molecules in a solid oscillate about their
equilibrium positions; electromagnetic waves, such as light waves,
radar, and radio waves, are characterized by oscillating electric
and magnetic field vectors; in alternating-current circuits, such as
in your household electrical service, voltage and current vary
periodically with time. In this chapter, we will investigate mechan-
ical systems that exhibit periodic motion.

We have experienced a number of situations in which the net
force on a particle is constant. In these situations, the acceleration
of the particle is also constant and we can describe the motion
of the particle using the kinematic equations of Chapter 2. If a
force acting on a particle varies in time, the acceleration of the
particle also changes with time and so the kinematic equations
cannot be used.

A special kind of periodic motion occurs when the force that
acts on a particle is always directed toward an equilibrium position
and is proportional to the position of the particle relative to the

Oscillatory Motion

C H A P T E R 12

To reduce swaying in tall buildings because of
wind, tuned dampers are placed near the top
of the building. These mechanisms include an
object of large mass that oscillates under
computer control at the same frequency as
the building, reducing the swaying. The large
sphere in the photograph on the left is part of
the tuned damper system of the building in
the photograph on the right, called Taipei 101,
in Taiwan. The building, also called the Taipei
Financial Center, was completed in 2004, at
which time it held the record for the world's
tallest building.

C H A P T E R  O U T L I N E
12.1 Motion of a Particle Attached to a Spring
12.2 Mathematical Representation of Simple

Harmonic Motion
12.3 Energy Considerations in Simple 

Harmonic Motion
12.4 The Simple Pendulum
12.5 The Physical Pendulum
12.6 Damped Oscillations
12.7 Forced Oscillations
12.8 Context Connection — Resonance 

in Structures
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equilibrium position. We shall study this special type of varying force in this chapter.
When this type of force acts on a particle, the particle exhibits simple harmonic motion,
which will serve as an analysis model for a large class of oscillation problems.

MOTION  OF  A  PARTICLE  ATTACHED  TO  A  SPRING
At this point in your study of physics, you have probably started to develop a set of
mental models associated with the analysis models we have developed. By mental
model, we mean a typical physical situation that comes to your mind each time you
identify the analysis model to be used in a problem. For example, a rock falling in
the absence of air resistance is a possible mental model for the analysis model of a
particle under constant acceleration. Collisions between two billiard balls represent
a mental model to help understand the momentum version of the isolated system
model. A bicycle wheel might offer a mental model for the rigid object under a net
torque model.

In the case of oscillatory motion, a useful mental model is an object of mass m at-
tached to a horizontal spring as in Active Figure 12.1. If the spring is unstretched, the
object is at rest on a frictionless surface at its equilibrium position, which is defined as
x � 0 (Active Fig. 12.1b). If the object is pulled to the side to position x and released,
it will oscillate back and forth as we discussed in Section 6.4. We will use the particle
model to ignore the object’s size and analyze a particle on a spring as our system.

Recall from Chapter 6 that when the particle attached to an idealized massless
spring is located at a position x, the spring exerts a force Fs on it given by Hooke’s law,

[12.1]

where k is the force constant or the spring constant of the spring. We call the force
in Equation 12.1 a linear restoring force because it is proportional to the position
of the particle relative to the equilibrium position and is always directed toward
the equilibrium position. That is, when the particle is displaced to the right in
Active Figure 12.1a, x is positive and the spring force is negative, to the left. When
the particle is displaced to the left of x � 0 (Active Fig. 12.1c), x is negative and the
spring force is positive, to the right. When a particle is under the effect of a linear
restoring force, the motion it follows is a special type of oscillatory motion called
simple harmonic motion. You can test whether or not a particle will undergo simple
harmonic motion by seeing if the force on the particle is linear in x. A system un-
dergoing simple harmonic motion is called a simple harmonic oscillator, and we
describe the motion of the particle with an analysis model called the particle in sim-
ple harmonic motion.

Let us imagine a particle subject to a linear restoring force such as that given by
Equation 12.1. Applying Newton’s second law in the x direction to the particle gives us

[12.2]

That is, the acceleration of a particle in simple harmonic motion is proportional to
the position of the particle relative to the equilibrium position and is in the oppo-
site direction. If the particle is released from rest at position x � A, its initial accel-
eration is � kA/m. When the particle passes through the equilibrium position 
x � 0, its acceleration is zero. At this instant, its speed is a maximum because the
acceleration changes sign. The particle then continues to travel to the left of the
equilibrium position with a positive acceleration and finally reaches x � � A,
at which time its acceleration is � kA/m and its speed is again zero. The particle
completes a full cycle of its motion by returning to the original position, again pass-
ing through x � 0 with maximum speed. Thus, we see that the particle oscillates

 a � � 
k
m

 x

 �F � Fs � ma : �kx � ma

Fs � � kx

12.1

Fs

Fs

m

(a)

x

x = 0
x

(b)

x

x = 0

Fs = 0

(c)

x

x = 0
x

m

m

A block attached to a spring on a
frictionless track moves in simple
harmonic motion. (a) When the
block is displaced to the right of equi-
librium, the position is positive and
the force and acceleration are nega-
tive. (b) At the equilibrium position
x � 0, the force and acceleration of
the block are zero but the speed is a
maximum. (c) When the position is
negative, the force and acceleration
of the block are positive.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 12.1 you can
choose the spring constant and the
initial position and velocities of the
block to see the resulting simple
harmonic motion.

ACTIVE FIGURE 12.1

THE ORIENTATION OF THE SPRING

Active Figure 12.1 shows the pictor-
ial representation we will use to
study the behavior of systems with
springs: a horizontal spring with an
attached block sliding on a friction-
less surface. Another possible
pictorial representation is a block
hanging from a vertical spring. All
the results that we discuss for the
horizontal spring will be the same
for the vertical spring, except for
one difference. When the block is
placed on the vertical spring, its
weight will cause the spring to
extend. If the position of the block
at which it hangs at rest on the
spring is defined as x � 0, the
results of this chapter will apply to
this system also.

� PITFALL PREVENTION 12.1

www.pop4e.com
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A block on the end of a spring is pulled to position x � A and re-
leased. In one full cycle of its motion, through what total distance does it travel? (a) A/2
(b) A (c) 2A (d) 4A

QUICK QUIZ 12.1

A NONCONSTANT ACCELERATION

Notice that the acceleration of the
particle in simple harmonic motion
is not constant; Equation 12.2
shows that it varies with position x.
Therefore, as pointed out in the
introduction to the chapter, we
cannot apply the kinematic equa-
tions of Chapter 2 in this situation.
We now explore the correct ap-
proach in Section 12.2.

� PITFALL PREVENTION 12.2

between the turning points x � � A. In the absence of friction, this motion will
continue forever because the force exerted by the spring is conservative. Real sys-
tems are generally subject to friction and so cannot oscillate forever. We explore the
details of the situation with friction in Section 12.6.

MATHEMATICAL  REPRESENTATION  
OF  SIMPLE  HARMONIC  MOTION

Let us now develop a mathematical representation of the motion we described in
the preceding section. Recall that, by definition, a � dv/dt � d2x/dt2, so we can ex-
press Equation 12.2 as

[12.3]

We denote the ratio k/m with the symbol �2 (we choose �2 rather than � to make
the solution simpler in form),

[12.4]

and Equation 12.3 can be written in the form

[12.5]

What we now require is a mathematical solution to Equation 12.5, that is, a func-
tion x(t) that satisfies this second-order differential equation. This function will be a
mathematical representation of the particle’s position as a function of time. We
seek a function x(t) such that the second derivative of the function is the same as
the original function with a negative sign and multiplied by �2. The trigonometric
functions sine and cosine exhibit this behavior, so we can build a solution around
one or both of them. The following cosine function is a solution to the differential
equation:

[12.6]

where A, �, and � are constants.1 To see explicitly that this expression is a solution
to Equation 12.5, note that

[12.7]

[12.8] 
d2x
dt2 �  ��A 

d
dt

 sin(�t � �) � ��2A cos(�t � �)

 
dx
dt

� A 
d
dt

 cos(�t � �) � ��A sin(�t � �)

x(t) � A cos(�t � �)

d2x
dt2 � ��2x

�2 �
k
m

d2x
dt2 � � 

k
m

 x

12.2

1In earlier chapters, we saw many examples in which we evaluated a trigonometric function of an angle.
The argument of a trigonometric function, such as sine or cosine, must be a pure number. The radian
is a pure number because it is a ratio of lengths. Degrees are pure simply because the degree is a com-
pletely artificial “unit”; it is not related to measurements of lengths. The notion of requiring a pure
number for a trigonometric function is important in Equation 12.6, where the angle is expressed in
terms of other measurements. Therefore, � must be expressed in radians per second (and not, for
example, in revolutions per second) if t is expressed in seconds. Furthermore, the argument of other
types of functions must also be pure numbers, including logarithms and exponential functions.

■ Position of a particle in simple
harmonic motion



Comparing Equations 12.6 and 12.8, we see that d2x/dt2 � � �2x and that Equa-
tion 12.5 is satisfied.

The parameters A, �, and � are constants of the motion. To give physical signifi-
cance to these constants, it is convenient to form a graphical representation of the
motion by plotting x as a function of t as in Active Figure 12.2a. First, we note that
A, called the amplitude of the motion, is simply the maximum value of the position
of the particle in either the positive or negative x direction. The constant � is called
the angular frequency and has units of radians per second (rad/s). From Equation
12.4, the angular frequency is

[12.9]

The constant angle � is called the phase constant (or phase angle) and, along
with the amplitude A, is determined uniquely by the position and velocity of the
particle at t � 0. If the particle is at its maximum position x � A at t � 0, the phase
constant is � � 0 and the graphical representation of the motion is shown in Active
Figure 12.2b. The quantity (�t � �) is called the phase of the motion. Note that
the function x(t) is periodic and that its value is the same each time �t increases by
2� rad.

Equations 12.1, 12.5, and 12.6 form the basis for the analysis model of the parti-
cle in simple harmonic motion. We can be assured that a particle is undergoing
simple harmonic motion if (1) we analyze the situation and find that the force on
the particle is of the mathematical form of Equation 12.1, (2) we analyze the situa-
tion and find that it is described by a differential equation of the form of Equation
12.5, or (3) we analyze the situation and find that the position of the particle is de-
scribed by Equation 12.6.

Let us investigate further the mathematical description of the motion. The
period T of the motion is the time interval required for the particle to go through
one full cycle of its motion (see Active Fig. 12.2a). That is, the values of x and v for
the particle at time t equal the values of x and v at time t � T. We can relate the
period to the angular frequency by noting that the phase increases by 2� rad in a
time interval of T :

Simplifying this expression, we see that �T � 2�, or

[12.10]

The inverse of the period is called the frequency f of the motion. Whereas the
period is the time interval per oscillation, the frequency represents the number of
oscillations the particle makes per unit time interval:

[12.11]

The units of f are cycles per second, or hertz (Hz). Rearranging Equation 12.11 gives

[12.12]

We can use Equations 12.9, 12.10, and 12.11 to express the period and fre-
quency of the motion for the particle–spring system in terms of the characteristics
m and k of the system as

� � 2�f �
2�

T

f �
1
T

�
�

2�

T �
2�

�

[�(t � T ) � �] � (�t � �) � 2�

� � √ k
m
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x
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(b)

x

A

–A

t

T

(a)

(a) A graphical representation
(position versus time) for the system
in Active Figure 12.1, a particle in sim-
ple harmonic motion. The amplitude
of the motion is A and the period is T.
(b) The x-t curve in the special case in
which x � A and v � 0 at t � 0.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 12.2 you can ad-
just the graphical representation and
see the resulting simple harmonic mo-
tion of the block in Active Figure 12.1.

ACTIVE FIGURE 12.2

TWO KINDS OF FREQUENCY We iden-
tify two kinds of frequency for a
simple harmonic oscillator: f, called
simply the frequency, is measured in
hertz, and �, the angular frequency, is
measured in radians per second. Be
sure you are clear about which fre-
quency is being discussed or
requested in a given problem.
Equations 12.11 and 12.12 show the
relationship between the two
frequencies.

� PITFALL PREVENTION 12.3

■ Relation of period to angular
frequency

www.pop4e.com
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[12.13]

[12.14]

That is, the period and frequency depend only on the mass of the particle and the
force constant of the spring and not on the parameters of the motion, such as A or
�. As we might expect, the frequency is larger for a stiffer spring (larger value of k)
and decreases with increasing mass of the particle.

We can obtain the velocity and acceleration2 of a particle undergoing simple
harmonic motion from Equations 12.7 and 12.8:

[12.15]

[12.16]

From Equation 12.15 we see that because the sine and cosine functions oscillate
between � 1, the extreme values of v are � �A. Likewise, Equation 12.16 tells us
that the extreme values of the acceleration are � �2A. Therefore, the maximum
values of the magnitudes of the speed and acceleration are

[12.17]

[12.18]

Figure 12.3a plots position versus time for an arbitrary value of the phase con-
stant. The associated velocity– time and acceleration–time curves are illustrated in
Figures 12.3b and 12.3c. They show that the phase of the velocity differs from the

 amax � �2A �
k
m

 A

 vmax � �A � √ k
m

 A

 a �
d2x
dt2 � ��2A cos(�t � �)

 v �
dx
dt

� ��A sin(�t � �)

 f �
1
T

�
1

2� √ k
m

 T �
2�

�
� 2�√ m

k

2Because the motion of a simple harmonic oscillator takes place in one dimension, we will denote
velocity as v and acceleration as a, with the direction indicated by a positive or negative sign, as in
Chapter 2.

■ Period in terms of system
parameters

■ Frequency in terms of system
parameters

■ Velocity of a particle in simple
harmonic motion

Graphical representation of
three variables in simple harmonic motion:
(a) position versus time, (b) velocity versus time,
and (c) acceleration versus time. Note that at any
specified time the velocity is 90° out of phase
with the position and the acceleration is 180° out
of phase with the position.
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ω
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FIGURE 12.3

■ Acceleration of a particle in
simple harmonic motion

■ Maximum values of speed and
acceleration of a particle in simple
harmonic motion



phase of the position by �/2 rad, or 90°. That is, when x is a maximum or a
minimum, the velocity is zero. Likewise, when x is zero, the speed is a maximum.
Furthermore, note that the phase of the acceleration differs from the phase of the
position by � rad, or 180°. For example, when x is a maximum, a has a maximum
magnitude in the opposite direction.

Equation 12.6 describes simple harmonic motion of a particle in general. Let us
now see how to evaluate the constants of the motion. The angular frequency � is
evaluated using Equation 12.9. The constants A and � are evaluated from the initial
conditions, that is, the state of the oscillator at t � 0.

Suppose we initiate the motion by pulling the particle from equilibrium by a
distance A and releasing it from rest at t � 0 as in Active Figure 12.4. We must then
require that our solutions for x(t) and v(t) (Eqs. 12.6 and 12.15) obey the initial
conditions that x(0) � A and v(0) � 0:

These conditions are met if we choose � � 0, giving x � A cos �t as our solution.
To check this solution, we note that it satisfies the condition that x(0) � A because
cos 0 � 1.

Position, velocity, and acceleration are plotted versus time in Figure 12.5a for
this special case. The acceleration reaches extreme values of � �2A when the posi-
tion has extreme values of � A. Furthermore, the velocity has extreme values

 v(0) � ��A sin � � 0

 x(0) � A cos � � A
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A
x = 0

t = 0
xi = A
vi = 0

m

A block–spring system that is
released from rest at xi � A. In this
case, � � 0, and therefore 
x � A cos �t.

By logging
into PhysicsNow at www.pop4e.com
and going to Active Figure 12.4
you can compare the oscillations
of two blocks starting from differ-
ent initial positions to see that the
frequency is independent of the
amplitude.

ACTIVE FIGURE 12.4
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(a) Position,
velocity, and acceleration versus time
for a block undergoing simple har-
monic motion under the initial
conditions that at t � 0, x(0) � A and
v(0) � 0. (b) Position, velocity, and
acceleration versus time for a block
undergoing simple harmonic motion
under the initial conditions that at 
t � 0, x(0) � 0 and v(0) � vi .

FIGURE 12.5
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of � �A, which both occur at x � 0. Hence, the quantitative solution agrees with
our qualitative description of this system.

Let us consider another possibility. Suppose the system is oscillating and we de-
fine t � 0 as the instant that the particle passes through the unstretched position of
the spring while moving to the right (Active Fig. 12.6) with speed vi . We must then
require that our solutions for x(t) and v(t) obey the initial conditions that x(0) � 0
and v(0) � vi :

The first of these conditions tells us that � � ��/2. With this value for �, the
second condition tells us that A � vi /�. Hence, the solution is given by

Figure 12.5b shows the graphs of position, velocity, and acceleration versus
time for this choice of t � 0. Note that these curves are the same as those in
Figure 12.5a, but shifted to the right by one fourth of a cycle. This shift is described
mathematically by the phase constant � � � �/2, which is one fourth of a full cycle
of 2�.

x �
vi

�
 cos ��t �

�

2 �

 v(0) � ��A sin � � vi

 x(0) � A cos � � 0

t = 0

v = vi

x = 0

vi
m

xi = 0

The block–spring system is undergo-
ing oscillation, and t � 0 is defined at
an instant when the block passes
through the equilibrium position 
x � 0 and is moving to the right with
speed vi .

By logging into
PhysicsNow at www.pop4e.com and go-
ing to Active Figure 12.6 you can com-
pare the oscillations of two blocks
with different velocities at t � 0 to see
that the frequency is independent of
the amplitude.

ACTIVE FIGURE 12.6

Consider a graphical representation (Fig. 12.7) of simple harmonic
motion as described mathematically in Equation 12.6. (i) When the object is at point
� on the graph, what are, respectively, its position and velocity? (a) both positive
(b) both negative (c) positive and zero (d) negative and zero (e) positive and
negative (f) negative and positive (ii) From the same list of choices, what are the
respective signs of the velocity and acceleration when the object is at position � on the
graph?

QUICK QUIZ 12.2

■ Thinking Physics 12.1
We know that the period of oscillation of an object attached to a spring is propor-
tional to the square root of the mass of the object (Eq. 12.13). Therefore, if we per-
form an experiment in which we place objects with a range of masses on the end of
a spring and measure the period of oscillation of each object–spring system, a
graph of the square of the period versus the mass will result in a straight line as sug-
gested in Figure 12.8. We find, however, that the line does not go through the ori-
gin. Why not?

Reasoning The line does not go through the origin because the spring itself has
mass. Therefore, the resistance to changes in motion of the system is a combination
of the mass of the object on the end of the spring and the mass of the oscillating
spring coils. The entire mass of the spring is not oscillating in the same way, how-
ever. The coil of the spring attached to the object is oscillating over the same ampli-
tude as the object, but the coil at the fixed end of the spring is not oscillating at all.
For a cylindrical spring, energy arguments can be used to show that the effective ad-
ditional mass representing the oscillations of the spring is one third of the mass of
the spring. The square of the period is proportional to the total oscillating mass,
but the graph in Figure 12.8 shows the square of the period versus only the mass of
the object on the spring. A graph of period squared versus total mass (mass of the
object on the spring plus the effective oscillating mass of the spring) would pass
through the origin. ■

(Quick Quiz 12.2)
An x-t graph for an object undergoing
simple harmonic motion. At a particu-
lar time, the object’s position is indi-
cated by � in the diagram.

t

x

�

FIGURE 12.7

(Thinking Physics
12.1) A graph of experimental data:
the square of the period versus mass
of a block in a block–spring system.

T 2

m0

FIGURE 12.8
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A Block – Spring SystemEXAMPLE 12.1INTERACTIVE

�

Express the position, velocity, and acceleration of
this object as functions of time, assuming that � � 0.

Solution From Equations 12.6, 12.15, and 12.16,

You can adjust the mass of the object, the

force constant of the spring, and the starting position by logging into

PhysicsNow at www.pop4e.com and going to Interactive 

Example 12.1.

�(1.25 m/s2) cos 5.00ta � ��2A cos �t �

�(0.250 m/s) sin 5.00tv � ��A sin �t �

(0.050 0 m) cos 5.00tx � A cos �t �

C

1.25 m/s2

amax � �2A � � 2�

T �
2
 A � � 2�

1.26 s �
2
(5.00 	 10�2 m)

A block with a mass of 200 g is connected to a light hor-
izontal spring of force constant 5.00 N/m and is free to
oscillate on a horizontal, frictionless surface.

If the block is displaced 5.00 cm from equilibrium
and released from rest as in Active Figure 12.4, find the
period of its motion.

Solution The situation (we assume an ideal spring)
tells us to use the simple harmonic motion model.
Using Equation 12.13,

Determine the maximum speed and maximum
acceleration of the block.

Solution Using Equations 12.17 and 12.18, with 
A � 5.00 	 10�2 m, we have

� 0.250 m/s

vmax � �A �
2�

T
 A � � 2�

1.26 s �(5.00 	 10�2 m)

B

1.26 sT � 2� √ m
k

� 2� √ 200 	 10�3 kg
5.00 N/m

�

A

What are the position and the velocity of the parti-
cle at time t � 0?

Solution The position function is given in the text of
the problem. Evaluating this expression at t � 0 gives us

x �

From part B, we evaluate the velocity function at t � 0:

� �8.89 m/s

v � �(4.00� m/s) sin � �

4 �

(4.00 m) cos � �

4 � � 2.83 m

C

�(4.00�2 m/s2) cos ��t �
�

4 �a �
dv
dt

�

�(4.00� m/s) sin ��t �
�

4 �v �
dx
dt

�

An Oscillating ParticleEXAMPLE 12.2
A particle oscillates with simple harmonic motion along
the x axis. Its position varies with time according to the
equation

where t is in seconds.

Determine the amplitude, frequency, and period
of the motion.

Solution By comparing this equation with the
general equation for simple harmonic motion, 
x � A cos(�t � �), we see that and 
� � � rad/s; therefore, we find that f � �/2� �
�/2� � and T � 1/f �

Calculate the velocity and acceleration of the 
particle at any time t.

Solution Using Equations 12.15 and 12.16,

B

2.00 s.0.500 Hz

A � 4.00 m

A

x � (4.00 m) cos ��t �
�

4 �
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ENERGY  CONSIDERATIONS  IN  SIMPLE  
HARMONIC  MOTION

If an object attached to a spring slides on a frictionless surface, we can consider the
combination of the spring and the attached object to be an isolated system. As a re-
sult, we can apply the energy version of the isolated system model to the system. Let
us examine the mechanical energy of the system described in Active Figure 12.1.
Because the surface is frictionless, the total mechanical energy of the system is con-
stant. We model the object as a particle. The kinetic energy, in the simplification
model in which the spring is massless, is associated only with the motion of the par-
ticle of mass m. We use Equation 12.15 to express the kinetic energy as

[12.19]

Elastic potential energy in this system is associated with the spring and for any posi-
tion x of the particle is, as we found in Chapter 7, . Using Equation 12.6,
we have

[12.20]

We see that K and U are always positive quantities and that each varies with time.
We can express the total energy of the simple harmonic oscillator as

Because �2 � k/m, we can write this expression as

Because sin2 
 � cos2 
 � 1 for any angle 
, this equation reduces to

[12.21]

That is, the total energy of an isolated simple harmonic oscillator is a constant of
the motion and proportional to the square of the amplitude. In fact, the total energy
is just equal to the maximum potential energy stored in the spring when x � � A. At
these points, v � 0 and there is no kinetic energy. At the equilibrium position, x � 0
and U � 0, so the total energy is all in the form of kinetic energy of the particle,

These results are appropriate for the simplification model in which we consider
the spring to be massless. In the real situation in which the spring has mass, addi-
tional kinetic energy is associated with the motion of the spring. In numerical prob-
lems in this book, we will consider only massless springs unless otherwise noted.

Kmax � 1
2mv 2

max � 1
2kA2

E � 1
2 kA2

E � 1
2kA2[sin2(�t � �) � cos2(�t � �)]

E � K � U � 1
2m�2A2 sin2(�t � �) � 1

2kA2 cos2(�t � �)

U � 1
2kx2 � 1

2 kA2 cos2(�t � �)

U � 1
2kx2

K � 1
2mv2 � 1

2m�2A2 sin2(�t � �)

12.3

Furthermore, if we take the sum xi
2 � (vi/�)2 �

A2 cos2 � � A2 sin2 � � A2 (where we have used 
Eqs. 12.6 and 12.15) and solve for A, we find that

√xi 

2 � � vi

� �
2

A �

� 
vi

�xi
tan � �

Initial ConditionsEXAMPLE 12.3
Suppose the initial position xi and initial velocity vi of a
harmonic oscillator of known angular frequency are
given; that is, x(0) � xi and v(0) � vi. Find general
expressions for the amplitude and the phase constant
in terms of these initial parameters.

Solution With these initial conditions, Equations 12.6
and 12.15 give us at t � 0

Dividing these two equations eliminates A, giving 
vi/xi � �� tan �, or

xi � A cos � and vi �  ��A sin �

■ Kinetic energy of a simple
harmonic oscillator

■ Potential energy of a simple
harmonic oscillator

■ Total energy of a simple
harmonic oscillator



Graphical representations of the kinetic and potential energies versus time for
the system of a particle on a massless spring are shown in Active Figure 12.9a, where
� � 0. In this situation, the sum of the kinetic and potential energies at all times is
a constant equal to , the total energy of the system. The variations of K and U
with position are plotted in Active Figure 12.9b. Energy in the system is continu-
ously being transformed between potential energy (in the spring) and kinetic
energy (of the object attached to the spring). Active Figure 12.10 illustrates the
position, velocity, acceleration, kinetic energy, and potential energy of the
particle–spring system for one full period of the motion. Most of the ideas dis-
cussed so far for simple harmonic motion are incorporated in this important
figure. We suggest that you study it carefully.

Finally, we can use conservation of mechanical energy for an isolated system to
obtain the velocity for an arbitrary position x of the particle, expressing the total
energy as

[12.22]

This expression confirms that the speed is a maximum at x � 0 and is zero at the
turning points x � � A.

■ Thinking Physics 12.2
An object oscillating on the end of a horizontal spring slides back and forth over a
frictionless surface. During one oscillation, you set an identical object at the maxi-
mum displacement point, with instant-acting glue on its surface. Just as the oscillat-
ing object reaches its largest displacement and is momentarily at rest, it adheres to
the new object by means of the glue and the two objects continue the oscillation
together. Does the period of the oscillation change? Does the amplitude of oscilla-
tion change? Does the energy of the oscillation change?

Reasoning The period of oscillation changes because the period depends on the
mass that is oscillating (Eq. 12.13). The amplitude does not change. Because the
new object was added under the special condition that the original object was at
rest, the combined objects are at rest at this point also, defining the amplitude as
the same as in the original oscillation. The energy does not change either. At the
maximum displacement point, the energy is all potential energy stored in the
spring, which depends only on the force constant and the amplitude, not on 

 v �  �  √ k
m

 (A2 � x 2) � � �√A2 � x2

E � K � U � 1
2mv2 � 1

2kx2 � 1
2kA2

1
2kA2
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K , U

1
2 kA2

U

K

U =    kx2

K =    mv2

1
2

1
2

φ = 0

(a)

T
t

T
2

K , U

(b)

A
x

–A O

φ

(a) Kinetic energy and potential
energy versus time for a simple
harmonic oscillator with � � 0. 
(b) Kinetic energy and potential
energy versus position for a simple
harmonic oscillator. In either plot,
note that K � U � constant.

By logging
into PhysicsNow at www.pop4e.com
and going to Active Figure 12.9
you can compare the physical os-
cillation of a block with energy
graphs in this figure as well as with
energy bar graphs.

ACTIVE FIGURE 12.9

■ Velocity as a function of position
for a particle in simple harmonic
motion
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the mass of the object. The object of increased mass will pass through the equilib-
rium point with lower speed than in the original oscillation but with the same ki-
netic energy. Another approach is to think about how energy could be transferred
into the oscillating system. No work was done on the system (nor did any other
form of energy transfer occur), so the energy in the system cannot change. ■

–A 0 A
x

amax

vmax

amax

vmax

amax

t x v a K U

0 A 0 –ω2A 0

0 –ωA 0 0

–A 0 ω2A 0

0 ωA 0 0

T A 0 –ω2A 0
1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

θmaxθ

θmaxθ

θmaxθ

ω

ω

ω

ω

ω

T
4

3T
4

T
2

Simple harmonic motion for a block–spring system and its analogy to the motion of a simple pendulum (Section
12.4). The parameters in the table at the right refer to the block–spring system, assuming that at t � 0, x � A so that 
x � A cos �t.

By logging into PhysicsNow at www.pop4e.com and going to Active Figure 12.10 you can set the initial position of the block and
see the block–spring system and the analogous pendulum in motion.

ACTIVE FIGURE 12.10

Solution Conceptualize the problem by studying the
block–spring system in Active Figure 12.10. Because
the object slides on a frictionless surface, we can catego-
rize the problem as one involving an isolated system of
the object and the spring. Because only conservative
forces are acting within the system, the mechanical

Oscillations on a Horizontal SurfaceEXAMPLE 12.4
A 0.500-kg object connected to a massless spring of
force constant 20.0 N/m oscillates on a horizontal,
frictionless track.

Calculate the total energy of the system and the
maximum velocity of the object if the amplitude of the
motion is 3.00 cm.

A

www.pop4e.com


THE  SIMPLE  PENDULUM
The simple pendulum is another mechanical system that exhibits periodic motion.
It consists of an object of mass m suspended by a light string (or rod) of length L,
where the upper end of the string is fixed, as in Active Figure 12.11. For a real ob-
ject, as long as the size of the object is small relative to the length of the string, the
pendulum can be modeled as a simple pendulum, so we adopt the particle model.
When the object is pulled to the side and released, it oscillates about the lowest
point, which is the equilibrium position. The motion occurs in a vertical plane and
is driven by the gravitational force.

The forces acting on the object are the force acting along the string and
the gravitational force . The tangential component of the gravitational force
mg sin 
 always acts toward 
 � 0, opposite the displacement. The gravitational
force is therefore a restoring force, and we can use Newton’s second law to write
the equation of motion in the tangential direction as

where s is the position measured along the circular arc in Active Figure 12.11 and
the negative sign indicates that Ft acts toward the equilibrium position. Because 
s � L
 (Eq. 10.1a) and L is constant, this equation reduces to

Compare this equation to Equation 12.5, which is of a similar, but not identical,
mathematical form. The right side is proportional to sin 
 rather than to 
 ; hence,
we conclude that the motion is not simple harmonic motion because the equation
describing the motion is not of the form of Equation 12.5. If we assume that 
 is
small (less than about 10° or 0.2 rad), however, we can use a simplification model
called the small angle approximation, in which sin 
 � 
, where 
 is measured in
radians. Table 12.1 shows angles, in degrees and radians, and the sines of these

d2


dt2 � � 
g
L

 sin 


Ft � mat : �mg sin 
 � m 
d2s
dt2

mg:
T
:

12.4
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Solution We apply Equation 12.22 directly:

v �  � √ k
m

 (A2 � x2)

� � √ 20.0 N/m
0.50 kg

 �(3.00 	 10�2 m)2 � (2.00 	 10�2 m)2�

� � 0.141 m/s

Compute the kinetic and potential energies of the 
system when the position equals 2.00 cm.

Solution Using the result to part B, we find

�

�

To finalize the problem, note that the sum of the
kinetic and potential energies in part C equals the total 
mechanical energy found in part A.

4.00 	 10�3 J

U � 1
2kx2 � 1

2(20.0 N/m)(2.00 	  10�2 m)2

5.00 	 10�3 JK � 1
2mv 2 � 1

2(0.500 kg)(0.141 m/s)2

C

energy of the system is conserved. To analyze the prob-
lem, we use Equation 12.21:

�

When the object is at x � 0, U � 0 and ;
therefore,

The positive and negative signs indicate that the object
could be moving to either the right or the left at this
instant.

What is the velocity of the object when the position
is equal to 2.00 cm?

B

� 0.190 m/s� √ 2(9.00 	 10�3 J)
0.500 kg

�

vmax � √ 2E
m

E � 1
2 
mv2

max

9.00 	 10�3 J

E � 1
2kA2 � 1

2(20.0 N/m)(3.00 	 10�2 m)2

θ

TL

s
m g sin

m

m g cos

m g

θ
θ

θ

When 
 is small, the oscillation of the
simple pendulum can be modeled as
simple harmonic motion about the
equilibrium position (
 � 0). The
restoring force is mg sin 
, the compo-
nent of the gravitational force tangent
to the arc.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 12.11 you can
adjust the mass of the bob, the length
of the string, and the initial angle and
see the resulting oscillation of the
pendulum.

ACTIVE FIGURE 12.11
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angles. As long as 
 is less than about 10°, the angle in radians and its sine are the
same, at least to within an accuracy of less than 1.0%.

Therefore, for small angles, the equation of motion becomes

[12.23]

Now we have an expression with exactly the same mathematical form as Equation
12.5, with �2 � g/L, and so we conclude that the motion is approximately simple
harmonic motion for small amplitudes. Modeling the solution after Equation 12.6,

 can therefore be written as 
 � 
max cos(�t � �), where 
max is the maximum
angular position and the angular frequency � is

[12.24]

The period of the motion is

[12.25]

In other words, the period and frequency of a simple pendulum oscillating at small
angles depend only on the length of the string and the free-fall acceleration. Be-
cause the period is independent of the mass, we conclude that all simple pendulums
of equal length at the same location oscillate with equal periods. Experiments show
that this conclusion is correct. The analogy between the motion of a simple pendu-
lum and the particle–spring system is illustrated in Active Figure 12.10.

T �
2�

�
� 2� √  L

g

� � √ g
L

d2


dt2 � � 
g
L




Angles and Sines of AnglesTABLE 12.1

Angle in Degrees Angle in Radians Sine of Angle Percent Difference

0° 0.000 0 0.000 0 0.0%
1° 0.017 5 0.017 5 0.0%
2° 0.034 9 0.034 9 0.0%
3° 0.052 4 0.052 3 0.0%
5° 0.087 3 0.087 2 0.1%

10° 0.174 5 0.173 6 0.5%
15° 0.261 8 0.258 8 1.2%
20° 0.349 1 0.342 0 2.1%
30° 0.523 6 0.500 0 4.7%

A grandfather clock depends on the period of a pendulum to keep
correct time. (i) Suppose a grandfather clock is calibrated correctly and then a mischie-
vous child slides the bob of the pendulum downward on the oscillating rod. Does the
grandfather clock run (a) slow, (b) fast, or (c) correctly? (ii) Suppose the grandfather
clock is calibrated correctly at sea level and is then taken to the top of a very tall moun-
tain. Does the grandfather clock run (a) slow, (b) fast, or (c) correctly?

QUICK QUIZ 12.3

NOT TRUE SIMPLE HARMONIC MOTION

Remember that the pendulum does
not exhibit true simple harmonic
motion for any angle. If the angle is
less than about 10°, the motion can
be modeled as simple harmonic.

� PITFALL PREVENTION 12.4

■ Angular frequency for a simple
pendulum

■ Period for a simple pendulum

■ Thinking Physics 12.3
You set up two oscillating systems: a simple pendulum and a block hanging from a
vertical spring. You carefully adjust the length of the pendulum so that both oscilla-
tors have the same period. You now take the two oscillators to the Moon. Will they
still have the same period as each other? What happens if you observe the two
oscillators in an orbiting spacecraft? (Assume that the spring is one with open space
between the coils when it is unstretched, so the spring can be both stretched and
compressed.)



Reasoning The block hanging from the spring will have the same period on
the Moon that it had on the Earth because the period depends on the mass of
the block and the force constant of the spring, neither of which have changed. The
pendulum’s period on the Moon will be different from its period on the Earth
because the period of the pendulum depends on the value of g. Because g is smaller
on the Moon than on the Earth, the pendulum will oscillate with a longer period.

In the orbiting spacecraft, the block–spring system will oscillate with the same
period as on the Earth when it is set into motion because the period does not de-
pend on gravity. The pendulum will not oscillate at all; if you pull it to the side from
a direction you define as “vertical” and release it, it stays there. Because the space-
craft is in free-fall while in orbit around the Earth, the effective gravity is zero and
there is no restoring force on the pendulum. ■
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THE  PHYSICAL  PENDULUM
If a hanging object that cannot be modeled as a particle oscillates about a fixed axis
that does not pass through its center of mass, it must be treated as a physical, or
compound, pendulum. For the simple pendulum we generated Equation 12.23
from the particle under a net force model. For the physical pendulum we will need
to use the rigid object under a net torque model from Chapter 10. Consider a rigid
object pivoted at a point O that is a distance d from the center of mass (Fig. 12.12).
The torque about O is provided by the gravitational force, and its magnitude is 
mgd sin 
. Using Newton’s second law for rotation, � � I� (Eq. 10.27), where I is
the moment of inertia of the object about the axis through O, we have

The negative sign on the left indicates that the torque about O tends to decrease 
.
That is, the gravitational force produces a restoring torque.

If we again assume that 
 is small, the small angle approximation sin 
 � 
 is
valid and the equation of motion reduces to

[12.26]

Note that this equation has the same mathematical form as Equation 12.5, 
with �2 � mgd/I, and so the motion of the object is approximately simple har-
monic motion for small amplitudes. That is, the solution of Equation 12.26 is 

 � 
max cos(�t � �), where 
max is the maximum angular position and

� � √ mgd
I

d 2


dt2 � �� mgd
I � 


�mgd sin 
 � I 
d2


dt 2

�

12.5

pendulum. If we use and solve for L, 
we have

35.7 mL �
gT 2

4�2 �
(9.80 m/s2)(12.0 s)2

4�2 �

T � 2� √L/g

A Measure of HeightEXAMPLE 12.5
A man enters a tall tower, needing to know its height.
He notes that a long pendulum extends from the ceil-
ing almost to the floor and that its period is 12.0 s. How
tall is the tower?

Solution We adopt a simplification model in which
the height of the tower is equal to the length of the

Pivot O

θ
d

d sin θ
CM

m g

The physical
pendulum consists of a rigid object
pivoted at the point O, which is not at
the center of mass.

FIGURE 12.12

■ Angular frequency for a physical
pendulum
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(Example 12.6) A circular sign oscillating about a
pivot as a physical pendulum.

The period is

[12.27]

One can use this result to measure the moment of inertia of a rigid object. If the
location of the center of mass and hence the distance d are known, the moment of
inertia can be obtained through a measurement of the period. Finally, note
that Equation 12.27 becomes the equation for the period of a simple pendulum
(Eq. 12.25) when I � md 2—that is, when all the mass is concentrated at a point—
and the physical pendulum reduces to the simple pendulum.

T �
2�

�
� 2� √ I

mgd

Two students, Alex and Brian, are in a museum watching the swing-
ing of a pendulum with a large bob. Alex says, “I’m going to sneak past the fence and
stick some chewing gum on the top of the pendulum bob to change its period of oscilla-
tion.” Brian says, “That won’t change the period. The period of a pendulum is indepen-
dent of mass.” Which student is correct? (a) Alex (b) Brian

QUICK QUIZ 12.4

After it is placed on the nail, the sign oscillates in a ver-
tical plane. Find the period of oscillation if the ampli-
tude of the motion is small.

Solution The moment of inertia of a disk about an axis
through the center is (see Table 10.2). The pivot
point for the sign is through a point on the rim, so we
use the parallel axis theorem (see Eq. 10.43) to find the
moment of inertia about the pivot:

The distance d from the pivot to the center of mass is
the radius R. Substituting these quantities into
Equation 12.27 gives

2� √ 3R
2g

T � 2� √
3
2MR2

MgR
�

Ip � 1
2MR2 � MR2 � 3

2MR2

1
2MR2

A Swinging SignEXAMPLE 12.6
A circular sign of mass M and radius R is hung on a nail
from a small loop located at one edge (Fig. 12.13).

R

M

FIGURE 12.13

■ Period for a physical pendulum

DAMPED  OSCILLATIONS
The oscillatory motions we have considered so far have occurred under the simpli-
fication model of an ideal frictionless system, that is, one that oscillates indefinitely
under the action of only a linear restoring force. In many realistic systems, resistive
forces, such as friction, are present and retard the motion of the system. Conse-
quently, the mechanical energy of the system diminishes in time, and the motion is
described as a damped oscillation.

Consider an object moving through a medium such as a liquid or a gas. One
common type of resistive force on the object, which we discussed in Chapter 5, is
proportional to the velocity of the object and acts in the direction opposite that of
the object’s velocity relative to the medium. This type of force is often observed

12.6
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when an object is oscillating slowly in air, for instance. Because the resistive force
can be expressed as , where b is a constant related to the strength of the
resistive force, and the restoring force exerted on the system is � kx, Newton’s sec-
ond law gives us

[12.28]

The solution of this differential equation requires mathematics that may not yet be
familiar to you, so it will simply be stated without proof. When the parameters
of the system are such that so that the resistive force is small, the solution
to Equation 12.28 is

[12.29]

where the angular frequency of the motion is

[12.30]

This result can be verified by substituting Equation 12.29 into Equation 12.28. No-
tice that Equation 12.29 is similar to Equation 12.6, with the new feature that the
amplitude (in the parentheses before the cosine function) depends on time. In
Active Figure 12.14a, we see one example of a damped system. The object sus-
pended from the spring experiences both a force from the spring and a resistive
force from the surrounding liquid. Active Figure 12.14b shows the position as a
function of time for such a damped oscillator. We see that when the resistive
force is relatively small, the oscillatory character of the motion is preserved but
the amplitude of vibration decreases in time and the motion ultimately ceases.
This system is known as an underdamped oscillator. The dashed blue lines in
Active Figure 12.14b, which form the envelope of the oscillatory curve, represent the
exponential factor that appears in Equation 12.29. The exponential factor shows
that the amplitude decays exponentially with time.

It is convenient to express the angular frequency of vibration of a damped sys-
tem (Eq. 12.30) in the form

where represents the angular frequency of oscillation in the absence of
a resistive force (the undamped oscillator). In other words, when b � 0, the resis-
tive force is zero and the system oscillates with angular frequency �0, called the nat-
ural frequency.3 As the magnitude of the resistive force increases, the oscillations
dampen more rapidly. When b reaches a critical value bc, so that bc/2m � �0, the
system does not oscillate and is said to be critically damped. In this case, it returns
to equilibrium in an exponential manner with time, as in Figure 12.15.

If the medium is highly viscous and the parameters meet the condition that
b/2m  �0, the system is overdamped. Again, the displaced system does not oscil-
late but simply returns to its equilibrium position. As the damping increases, the
time interval required for the particle to approach the equilibrium position also in-
creases, as indicated in Figure 12.15. In any case, when a resistive force is present,
the mechanical energy of the oscillator eventually falls to zero. The mechanical en-
ergy is transformed into internal energy in the oscillating system and the resistive
medium.

�0 � √k/m

� � √�0
2 � � b

2m �
2

� � √ k
m

� � b
2m �

2

x � (Ae �(b/2m)t) cos(�t � �)

b � √4mk

  �kx � b 
dx
dt

� m 
d2x
dt2

� Fx � �kx � bv � max

R
:

� � bv:

3In practice, both �0 and f0 � �0/2� are described as the natural frequency. The context of the discus-
sion will help you determine which frequency is being discussed.

m

(a)

A

x

0 t

Ae�(b/2m)t

(b)

(a) One example of a damped
oscillator is an object attached to a
spring and submerged in a viscous
liquid. (b) Graph of the position
versus time for a damped oscillator
with small damping. Note the
decrease in amplitude with time.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 12.14 you can
adjust the spring constant, the mass of
the object, and the damping constant
and see the resulting damped
oscillation of the object.

ACTIVE FIGURE 12.14

Plots of position
versus time for an underdamped
oscillator (a), a critically 
damped oscillator (b), and an 
overdamped oscillator (c).

x

a
b

c

t

FIGURE 12.15
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FORCED  OSCILLATIONS
We have seen that the mechanical energy of a damped oscillator decreases in time
as a result of the resistive force. It is possible to compensate for this energy decrease
by applying an external force that does positive work on the system. Such an oscilla-
tor then undergoes forced oscillations. At any instant, energy can be transferred
into the system by an applied force that acts in the direction of motion of the oscil-
lator. For example, a child on a swing can be kept in motion by appropriately timed
“pushes.” The amplitude of motion remains constant if the energy input per cycle
of motion exactly equals the decrease in mechanical energy in each cycle that re-
sults from resistive forces.

A common example of a forced oscillator is a damped oscillator driven by an
external force that varies periodically, such as F (t) � F0 sin �t, where � is the angu-
lar frequency of the driving force and F0 is a constant. In general, the frequency �
of the driving force is different from the natural frequency �0 of the oscillator.
Newton’s second law in this situation gives

[12.31]

Again, the solution of this equation is rather lengthy and will not be presented. Af-
ter the driving force on an initially stationary object begins to act, the amplitude of
the oscillation will increase. After a sufficiently long time interval, when the energy
input per cycle from the driving force equals the amount of mechanical energy
transformed to internal energy for each cycle, a steady-state condition is reached in
which the oscillations proceed with constant amplitude. In this case, Equation
12.31 has the solution

[12.32]

where

[12.33]

and where is the natural frequency of the undamped oscillator (b � 0).
Equation 12.33 shows that the amplitude of the forced oscillator is constant for

a given driving force because it is being driven in steady state by an external force.
For small damping the amplitude becomes large when the frequency of the driving
force is near the natural frequency of oscillation, or when � � �0 as can be seen in
Equation 12.33. The dramatic increase in amplitude near the natural frequency is
called resonance, and the natural frequency �0 is called the resonance frequency of
the system.

Figure 12.16 is a graph of amplitude as a function of frequency for the forced
oscillator, with varying resistive forces. Note that the amplitude increases with de-
creasing damping (b : 0) and that the resonance curve flattens as the damping in-
creases. In the absence of a damping force (b � 0), we see from Equation 12.33
that the steady-state amplitude approaches infinity as � : �0. In other words, if
there are no resistive forces in the system and we continue to drive an oscillator
with a sinusoidal force at the resonance frequency, the amplitude of motion will
build up without limit. This situation does not occur in practice because some
damping is always present in real oscillators.

Resonance appears in many areas of physics. For example, certain electric cir-
cuits have resonance frequencies. This fact is exploited in radio tuners, which allow
you to select the station you wish to hear. Vibrating strings and columns of air also

�0 � √k/m

A �
F0/m

√��2 � �0
2�

2
� � b�

m �
2

x � A cos(�t � �)

� Fx � max : F0 sin �t � b 
dx
dt

� kx � m 
d 2x
dt 2

12.7

Graph of ampli-
tude versus frequency for a damped
oscillator when a periodic driving
force is present. When the frequency
of the driving force equals the natural
frequency �0, resonance occurs. Note
that the shape of the resonance curve
depends on the size of the damping
coefficient b.

A
b = 0
Undamped

Small b

Large b

ω00
ω

ω

FIGURE 12.16



CONTEXT 
connection

have resonance frequencies, which allow them to be used for musical instruments,
which we shall discuss in Chapter 14.

RESONANCE  IN  STRUCTURES
In the preceding section, we investigated the phenomenon of resonance in which
an oscillating system exhibits its maximum response to a periodic driving force
when the frequency of the driving force matches the oscillator’s natural frequency.
We now apply this understanding to the interaction between the shaking of the
ground during an earthquake and structures attached to the ground. The structure
is the oscillator. It has a set of natural frequencies, determined by its stiffness, its
mass, and the details of its construction. The periodic driving force is supplied by
the shaking of the ground.

A disastrous result can occur if a natural frequency of the building matches a
frequency contained in the ground shaking. In this case, the resonance vibrations
of the building can build to a very large amplitude, large enough to damage or
destroy the building. This result can be avoided in two ways. The first involves de-
signing the structure so that natural frequencies of the building lie outside the
range of earthquake frequencies. (A typical range of earthquake frequencies is
0–15 Hz.) Such a building can be designed by varying its size or mass structure.
The second method involves incorporating sufficient damping in the building. This
method may not change the resonance frequency significantly, but it will lower the
response to the natural frequency as in Figure 12.16. It will also flatten the reso-
nance curve, so the building will respond to a wide range of frequencies but with
relatively small amplitude at any given frequency.

We now describe two examples involving resonance excitations in bridge struc-
tures. Soldiers are commanded to break step when marching across a bridge. This
command takes into account resonance; if the marching frequency of the soldiers
matches that of the bridge, the bridge could be set into resonance oscillation. If
the amplitude becomes large enough, the bridge could actually collapse. Just
such a situation occurred on April 14, 1831, when the Broughton suspension
bridge in England collapsed while troops marched over it. Investigations after the
accident showed that the bridge was near failure, and the resonance vibration
induced by the marching soldiers caused it to fail sooner than it otherwise
might have.

The second example of such a structural resonance occurred in 1940, when the
Tacoma Narrows Bridge in Washington State was destroyed by resonant vibrations
(Fig. 12.17). The winds were not particularly strong on that occasion, but the
bridge still collapsed because vortices (turbulences) generated by the wind blowing
through the bridge occurred at a frequency that matched a natural frequency of
the bridge. The flapping of this wind across the roadway (similar to the flapping of

12.8
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(a) In 1940, steady
winds set up vibrations in the Tacoma
Narrows Bridge, causing it to oscillate
at a frequency near one of the natural
frequencies of the bridge structure.
(b) Once established, this resonance
condition led to the bridge’s collapse.

(a) (b)

FIGURE 12.17
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a flag in a strong breeze) provided the periodic driving force that brought the
bridge down into the river.

Resonance gives us our first clue to responding to the central question for this
Context. Suppose a building is far from the epicenter of an earthquake so that the
ground shaking is small. If the shaking frequency matches a natural frequency of
the building, a very effective energy coupling occurs between the ground and the
building. Therefore, even for relatively small shaking, the ground, by resonance,
can feed energy into the building efficiently enough to cause the failure of the
structure. The structure must be carefully designed so as to reduce the resonance
response.

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The particle in simple harmonic motion model is used for a
particle experiencing a linear restoring force, expressed by
Hooke’s law,

[12.1]

where k is the force constant of the spring. The motion caused
by such a force is called simple harmonic motion, and the sys-
tem is called a simple harmonic oscillator. The position of a
particle in simple harmonic motion varies periodically in time
according to the relation

[12.6]

where A is the amplitude of the motion, � is the angular fre-
quency, and � is the phase constant. The values of A and �
depend on the initial position and velocity of the particle.

The time for one complete oscillation is called the period T
of the motion. The inverse of the period is the frequency f of
the motion, which equals the number of oscillations per second:

[12.11]

A particle–spring system oscillating without friction exhibits
simple harmonic motion with the period

[12.13]

where m is the mass of the particle attached to the spring of
force constant k .

The velocity and acceleration of a particle in simple har-
monic oscillation are

[12.15]

[12.16]

Therefore, the maximum speed of the particle is �A and its
maximum acceleration is of magnitude �2A. The speed is zero
when the particle is at its turning points, x � � A, and the
speed is a maximum at the equilibrium position, x � 0. The
magnitude of the acceleration is a maximum at the turning
points and is zero at the equilibrium position.

The kinetic energy and potential energy of a simple har-
monic oscillator vary with time and are given by

[12.19]

[12.20]

The total energy of a simple harmonic oscillator is a con-
stant of the motion and is

[12.21]

The potential energy of a simple harmonic oscillator is a
maximum when the particle is at its turning points (maximum
displacement from equilibrium) and is zero at the equilibrium
position. The kinetic energy is zero at the turning points and is
a maximum at the equilibrium position.

A simple pendulum of length L exhibits simple harmonic
motion for small angular displacements from the vertical, with
a period of

[12.25]

The period of a simple pendulum is independent of the mass
of the suspended object.

A physical pendulum exhibits simple harmonic motion for
small angular displacements from equilibrium about a pivot
that does not go through the center of mass. The period of this
motion is

[12.27]

where I is the moment of inertia about an axis through
the pivot and d is the distance from the pivot to the center of
mass.

Damped oscillations occur in a system in which a resistive
force opposes the motion of the oscillating object. If such a
system is set in motion and then left to itself, its mechanical
energy decreases in time because of the presence of the non-
conservative resistive force. It is possible to compensate for this
transformation of energy by driving the system with an exter-
nal periodic force. The oscillator in this case is undergoing
forced oscillations. When the frequency of the driving force
matches the natural frequency of the undamped oscillator,
energy is efficiently transferred to the oscillator and its steady-
state amplitude is a maximum. This situation is called
resonance.

T � 2� √ I
mgd

T � 2� √ L
g

E � 1
2kA2

 U � 1
2kx2 � 1

2kA2 cos2(�t � �)

 K � 1
2mv2 � 1

2m�2A2 sin2(�t � �)

 a �
d2x
dt2 � � �2A cos(�t � �)

 v �
dx
dt

� � �A sin(�t � �)

T �
2�

�
� 2� √ m

k

f �
1
T

�
�

2�

x(t) � A cos(�t � �)

Fs � � kx

SUMMARY
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. Is a bouncing ball an example of simple harmonic motion?
Is the daily movement of a student from home to school
and back simple harmonic motion? Why or why not?

2. Does the displacement of an oscillating particle between 
t � 0 and a later time t necessarily equal the position of the
particle at time t? Explain.

If the position of a particle varies as x � � A cos �t, what is
the phase constant in Equation 12.6? At what position is
the particle at t � 0?

4. Can the amplitude A and phase constant � be determined
for an oscillator if only the position is specified at t � 0?
Explain.

Determine whether or not the following quantities can
be in the same direction for a simple harmonic oscillator:
(a) position and velocity, (b) velocity and acceleration, 
(c) position and acceleration.

6. A block is hung on a spring and the frequency f of the os-
cillation of the system is measured. The block, a second
identical block, and the spring are carried into space in a
spacecraft. The two blocks are attached to opposite ends of
the spring, and the system is taken out into space on a
space walk. The spring is extended, and the system is re-
leased to oscillate while floating in space. What is the fre-
quency of oscillation for this system in terms of f ?

7. A block–spring system undergoes simple harmonic motion
with amplitude A. Does the total energy change if the mass
is doubled but the amplitude is not changed? Do the ki-
netic and potential energies depend on the mass? Explain.

8. The equations listed in Table 2.2 give position as a func-
tion of time, velocity as a function of time, and velocity as

5.

3.

function of position for an object moving in a straight line
with constant acceleration. The quantity vxi appears in
every equation. Do any of these equations apply to an ob-
ject moving in a straight line with simple harmonic mo-
tion? Using a similar format, make a table of equations
describing simple harmonic motion. Include equations giv-
ing acceleration as a function of time and acceleration as a
function of position. State the equations in such a form
that they apply equally to a block–spring system, to a
pendulum, and to other vibrating systems. What quantity
appears in every equation?

9. What happens to the period of a simple pendulum if the
pendulum’s length is doubled? What happens to the pe-
riod if the mass of the suspended bob is doubled?

10. If a grandfather clock were running slow, how could we ad-
just the pendulum’s length to correct the time?

11. Will damped oscillations occur for any values of b and k?
Explain.

12. You stand on the end of a diving board and bounce to set
it into oscillation. You find a maximum response, in terms
of the amplitude of oscillation of the end of the board,
when you bounce at frequency f. You now move to the mid-
dle of the board and repeat the experiment. Is the reso-
nance frequency for forced oscillations at this point
higher, lower, or the same as f ? Why?

Is it possible to have damped oscillations when a system is
at resonance? Explain.

14. You are looking at a small tree. You do not notice any
breeze, and most of the leaves on the tree are motionless.
One leaf, however, is fluttering back and forth wildly. After
you wait a while, that leaf stops moving and you notice a
different leaf moving much more than all the others.
Explain what could cause the large motion of one particu-
lar leaf.

13.

PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Note: Ignore the mass of every spring except in problems
12.54 and 12.56.

Section 12.1 ■ Motion of a Particle Attached to a Spring

Problems 6.13, 6.15, 6.17, 6.18, 6.30, and 6.56 in Chapter 6
can also be assigned with this section.

1. A ball dropped from a height of 4.00 m makes an elastic
collision with the ground. Assuming that no mechanical
energy is lost due to air resistance, (a) show that the
ensuing motion is periodic and (b) determine the period
of the motion. (c) Is the motion simple harmonic? Explain.

Section 12.2 ■ Mathematical Representation of Simple
Harmonic Motion

2. In an engine, a piston oscillates with simple harmonic mo-
tion so that its position varies according to the expression 

x � (5.00 cm) cos(2t � �/6)

where x is in centimeters and t is in seconds. At t � 0, find
(a) the position of the piston, (b) its velocity, and (c) its
acceleration. (d) Find the period and amplitude of the
motion.

The position of a particle is given by the expression x �
(4.00 m) cos(3.00�t � �), where x is in meters and t is in

3.
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seconds. Determine (a) the frequency and period of the
motion, (b) the amplitude of the motion, (c) the phase
constant, and (d) the position of the particle at t � 0.250 s. 

4. A particle moves in simple harmonic motion with a
frequency of 3.00 Hz and an amplitude of 5.00 cm.
(a) Through what total distance does the particle move
during one cycle of its motion? (b) What is its maximum
speed? Where does this maximum speed occur? (c) Find
the maximum acceleration of the particle. Where in the
motion does the maximum acceleration occur?

A particle moving along the x axis in
simple harmonic motion starts from its equilibrium posi-
tion, the origin, at t � 0 and moves to the right. The ampli-
tude of its motion is 2.00 cm and the frequency is 1.50 Hz.
(a) Show that the position of the particle is given by

x � (2.00 cm) sin(3.00�t)

Determine (b) the maximum speed and the earliest time
(t  0) at which the particle has this speed, (c) the maxi-
mum acceleration and the earliest time (t  0) at which
the particle has this acceleration, and (d) the total distance
traveled between t � 0 and t � 1.00 s.

6. Review problem. A particle moves along the x axis. It is
initially at the position 0.270 m, moving with velocity 
0.140 m/s and acceleration � 0.320 m/s2. First, assume
that it moves with constant acceleration for 4.50 s. Find
(a) its position and (b) its velocity at the end of this time
interval. Next, assume that it moves with simple harmonic
motion for 4.50 s and that x � 0 is its equilibrium position.
Find (c) its position and (d) its velocity at the end of this
time interval.

7. The initial position, velocity, and acceleration of an object
moving in simple harmonic motion are xi, vi, and ai; the
angular frequency of oscillation is �. (a) Show that the posi-
tion and velocity of the object for all time can be written as

(b) Using A to represent the amplitude of the motion,
show that

v2 � ax � vi
2 � aixi � �2A2

8. A simple harmonic oscillator takes 12.0 s to undergo
five complete vibrations. Find (a) the period of its motion,
(b) the frequency in hertz, and (c) the angular frequency
in radians per second.

A 7.00 kg object is hung from the bottom end of a vertical
spring fastened to an overhead beam. The object is set into
vertical oscillations having a period of 2.60 s. Find the
force constant of the spring.

10. A vibration sensor, used in testing a washing machine, con-
sists of a cube of aluminum 1.50 cm on edge mounted on
one end of a strip of spring steel (like a hacksaw blade)
that lies in a vertical plane. The strip’s mass is small com-
pared with that of the cube, but the strip’s length is large
compared with the size of the cube. The other end of the
strip is clamped to the frame of the washing machine that

9.

 v(t) � �xi� sin �t � vi cos �t

x(t) � xi cos �t � � vi

� � sin �t

5.

is not operating. A horizontal force of 1.43 N applied to
the cube is required to hold it 2.75 cm away from its equi-
librium position. If it is released, what is its frequency of vi-
bration?

A 0.500-kg object attached to a spring with a force constant
of 8.00 N/m vibrates in simple harmonic motion with an
amplitude of 10.0 cm. Calculate (a) the maximum value of
its speed and acceleration, (b) the speed and acceleration
when the object is 6.00 cm from the equilibrium position,
and (c) the time interval required for the object to move
from x � 0 to x � 8.00 cm.

12. A 1.00-kg glider attached to a spring with a force constant
of 25.0 N/m oscillates on a horizontal, frictionless air
track. At t � 0, the glider is released from rest at 
x � � 3.00 cm (that is, the spring is compressed by
3.00 cm). Find (a) the period of its motion, (b) the maxi-
mum values of its speed and acceleration, and (c) the posi-
tion, velocity, and acceleration as functions of time.

Section 12.3 ■ Energy Considerations in Simple 
Harmonic Motion

An automobile having a mass of 1 000 kg
is driven into a brick wall in a safety test. The bumper be-
haves like a spring of force constant 5.00 	 106 N/m and
compresses 3.16 cm as the car is brought to rest. What was
the speed of the car before impact, assuming that no me-
chanical energy is lost during impact with the wall?

14. A 200-g block is attached to a horizontal spring and exe-
cutes simple harmonic motion with a period of 0.250 s.
The total energy of the system is 2.00 J. Find (a) the force
constant of the spring and (b) the amplitude of the
motion.

15. A block of unknown mass is attached to a spring with a
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the
block is halfway between its equilibrium position and the
end point, its speed is measured to be 30.0 cm/s. Calculate
(a) the mass of the block, (b) the period of the motion,
and (c) the maximum acceleration of the block.

16. A block–spring system oscillates with an amplitude of 
3.50 cm. The spring constant is 250 N/m and the mass of
the block is 0.500 kg. Determine (a) the mechanical en-
ergy of the system, (b) the maximum speed of the block,
and (c) the maximum acceleration.

17. A 50.0-g object connected to a spring with a force constant
of 35.0 N/m oscillates on a horizontal, frictionless surface
with an amplitude of 4.00 cm. Find (a) the total energy of
the system and (b) the speed of the object when the posi-
tion is 1.00 cm. Find (c) the kinetic energy and (d) the po-
tential energy when the position is 3.00 cm.

18. A 2.00-kg object is attached to a spring and placed on a
horizontal, smooth surface. A horizontal force of 20.0 N
is required to hold the object at rest when it is pulled 
0.200 m from its equilibrium position (the origin of the 
x axis). The object is now released from rest with an initial
position of xi � 0.200 m, and it subsequently undergoes
simple harmonic oscillations. Find (a) the force constant
of the spring, (b) the frequency of the oscillations, and 
(c) the maximum speed of the object. Where does this

13.

11.
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maximum speed occur? (d) Find the maximum accelera-
tion of the object. Where does it occur? (e) Find the total
energy of the oscillating system. Find (f) the speed and 
(g) the acceleration of the object when its position is equal
to one third of the maximum value.

19. The amplitude of a system moving in simple harmonic
motion is doubled. Determine the change in (a) the total
energy, (b) the maximum speed, (c) the maximum accel-
eration, and (d) the period.

20. A 65.0-kg bungee jumper steps off a bridge with a light
bungee cord tied to her and to the bridge (Figure P12.20).
The unstretched length of the cord is 11.0 m. She reaches
the bottom of her motion 36.0 m below the bridge
before bouncing back. Her motion can be separated into
an 11.0-m free-fall and a 25.0-m section of simple har-
monic oscillation. (a) For what time interval is she in free-
fall? (b) Use the principle of conservation of energy to find
the spring constant of the bungee cord. (c) What is the lo-
cation of the equilibrium point where the spring force bal-
ances the gravitational force acting on the jumper? Note
that this point is taken as the origin in our mathematical
description of simple harmonic oscillation. (d) What is the
angular frequency of the oscillation? (e) What time inter-
val is required for the cord to stretch by 25.0 m? (f) What
is the total time interval for the entire 36.0-m drop?

pendulum is precisely 2 s.) The length of a seconds pen-
dulum is 0.992 7 m at Tokyo, Japan, and 0.994 2 m at
Cambridge, England. What is the ratio of the free-fall ac-
celerations at these two locations?

A simple pendulum has a mass of
0.250 kg and a length of 1.00 m. It is displaced through an
angle of 15.0° and then released. What are (a) the maxi-
mum speed, (b) the maximum angular acceleration, and
(c) the maximum restoring force? Solve this problem once
by using the simple harmonic motion model for the mo-
tion of the pendulum, and then solve the problem more
precisely by using more general principles.

24. The angular position of a pendulum is represented by the
equation 
 � (0.032 0 rad) cos �t, where 
 is in radians
and � � 4.43 rad/s. Determine the period and length of
the pendulum.

A particle of mass m slides without friction inside a hemi-
spherical bowl of radius R. Show that if it starts from rest
with a small displacement from equilibrium, the particle
moves in simple harmonic motion with an angular fre-
quency equal to that of a simple pendulum of length R
(that is, ).

26. A small object is attached to the end of a string to
form a simple pendulum. The period of its harmonic mo-
tion is measured for small angular displacements and
three lengths, each time by clocking the motion with a
stopwatch for 50 oscillations. For lengths of 1.000 m, 
0.750 m, and 0.500 m, total time intervals of 99.8 s, 86.6 s,
and 71.1 s are measured for 50 oscillations. (a) Determine
the period of motion for each length. (b) Determine the
mean value of g obtained from these three independent
measurements, and compare it with the accepted value.
(c) Plot T 2 versus L, and obtain a value for g from the
slope of your best-fit straight-line graph. Compare this
value with that obtained in part (b).

A physical pendulum in the form of a planar object moves
in simple harmonic motion with a frequency of 0.450 Hz.
The pendulum has a mass of 2.20 kg, and the pivot 
is located 0.350 m from the center of mass. Determine 
the moment of inertia of the pendulum about the pivot
point.

28. A very light rigid rod with a length of 0.500 m extends
straight out from one end of a meter stick. The stick is sus-
pended from a pivot at the far end of the rod and is set
into oscillation. (a) Determine the period of oscillation.
(Suggestion: Use the parallel-axis theorem from Section
10.11.) (b) By what percentage does the period differ from
the period of a simple pendulum 1.00 m long?

29. Consider the physical pendulum of Figure 12.12. (a) Rep-
resenting its moment of inertia about an axis passing
through its center of mass and parallel to the axis passing
through its pivot point as ICM, show that its period is

where d is the distance between the pivot point and center
of mass. (b) Show that the period has a minimum value
when d satisfies md2 � ICM.

T � 2� √ ICM � md2

mgd

27.

� � √g/R

25.

23.

FIGURE P12.20 Problems 12.20 and 12.44.

A particle executes simple harmonic motion with an ampli-
tude of 3.00 cm. At what position does its speed equal half
of its maximum speed?

Section 12.4 ■ The Simple Pendulum
Section 12.5 ■ The Physical Pendulum

Problem 1.62 in Chapter 1 can also be assigned with this
section.

22. A “seconds pendulum” is one that moves through its equi-
librium position once each second. (The period of the

21.
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Section 12.6 ■ Damped Oscillations
30. Show that the time rate of change of mechanical energy

for a damped, undriven oscillator is given by dE/dt � � bv2

and hence is always negative. (Suggestion: Differentiate the
expression for the mechanical energy of an oscillator,

, and use Equation 12.28.)

31. A pendulum with a length of 1.00 m is released from an
initial angle of 15.0°. After 1 000 s, its amplitude has been
reduced by friction to 5.50°. What is the value of b/2m?

32. Show that Equation 12.29 is a solution of Equation 12.28
provided that b2 � 4mk.

Section 12.7 ■ Forced Oscillations
33. A 2.00-kg object attached to a spring moves with-

out friction and is driven by an external force 
F � (3.00 N) sin(2�t ). Assuming that the force constant of
the spring is 20.0 N/m, determine (a) the period and
(b) the amplitude of the motion.

34. The front of her sleeper wet from teething, a baby rejoices
in the day by crowing and bouncing up and down in her
crib. Her mass is 12.5 kg, and the crib mattress can be
modeled as a light spring with force constant 4.30 kN/m.
(a) The baby soon learns to bounce with maximum ampli-
tude and minimum effort by bending her knees at what
frequency? (b) She learns to use the mattress as a trampo-
line—losing contact with it for part of each cycle—when
her amplitude exceeds what value?

35. Considering an undamped, forced oscillator (b � 0), show
that Equation 12.32 is a solution of Equation 12.31, with an
amplitude given by Equation 12.33.

36. Damping is negligible for a 0.150-kg object hanging from
a light 6.30-N/m spring. A sinusoidal force with an ampli-
tude of 1.70 N drives the system. At what frequency will
the force make the object vibrate with an amplitude of
0.440 m?

37. You are a research biologist. You take your emergency
pager along to a fine restaurant even though its batteries
are getting low. You switch the small pager to vibrate in-
stead of beep, and you put it into a side pocket of your suit
coat. The arm of your chair presses the light cloth against
your body at one spot. Fabric with a length of 8.21 cm
hangs freely below that spot, with the pager at the bottom.
A coworker urgently needs instructions and calls you from
your laboratory. The pager’s motion makes the hanging
part of your coat swing back and forth with remarkably
large amplitude. The waiter, maître d’, wine steward, and
nearby diners notice immediately and fall silent. Your
daughter pipes up and says, “Daddy, look! Your cock-
roaches must have gotten out again!” Find the frequency
at which your pager vibrates.

Section 12.8 ■ Context Connection — Resonance
in Structures

38. Four people, each with a mass of 72.4 kg, are in a car with a
mass of 1 130 kg. An earthquake strikes. The vertical oscilla-
tions of the ground surface make the car bounce up and
down on its suspension springs, but the driver manages to
pull off the road and stop. When the frequency of the shak-
ing is 1.80 Hz, the car exhibits a maximum amplitude of

E �  
1
2mv2

 �  
1
2kx2

vibration. The earthquake ends and the four people leave
the car as fast as they can. By what distance does the car’s un-
damaged suspension lift the car’s body as the people get out?

39. People who ride motorcycles and bicycles learn to look out
for bumps in the road and especially for washboarding, a
condition in which many equally spaced ridges are worn
into the road. What is so bad about washboarding? A mo-
torcycle has several springs and shock absorbers in its sus-
pension, but you can model it as a single spring supporting
a block. You can estimate the force constant by thinking
about how far the spring compresses when a large biker sits
down on the seat. A motorcyclist traveling at highway speed
must be particularly careful of washboard bumps that are a
certain distance apart. What is the order of magnitude of
their separation distance? State the quantities you take as
data and the values you measure or estimate for them.

Additional Problems
40. An object of mass m1 � 9.00 kg is in equilibrium while con-

nected to a light spring of constant k � 100 N/m that is
fastened to a wall as shown in Figure P12.40a. A second
object, m2 � 7.00 kg, is slowly pushed up against m1, com-
pressing the spring by the amount A � 0.200 m (see 
Fig. P12.40b). The system is then released and both
objects start moving to the right on the frictionless surface.
(a) When m1 reaches the equilibrium point, m2 loses con-
tact with m1 (see Fig. P12.40c) and moves to the right with
speed v. Determine the value of v. (b) How far apart are
the objects when the spring is fully stretched for the first
time (D in Fig. P12.40d)? (Suggestion: First determine the
period of oscillation and the amplitude of the m1–spring
system after m2 loses contact with m1.)

A

m1 m2

v

v

m1 m2

m1 m2

m1

(a)

(b)

(c)

(d)

k

k

k

k

D

FIGURE P12.40
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A large block P executes horizontal sim-
ple harmonic motion as it slides across a frictionless
surface with a frequency f � 1.50 Hz. Block B rests on it, as
shown in Figure P12.41, and the coefficient of static fric-
tion between the two is �s � 0.600. What maximum ampli-
tude of oscillation can the system have if block B is not to
slip?

41.

42. (a) A hanging spring stretches by 35.0 cm when an object
of mass 450 g is hung on it at rest. In this situation, we de-
fine its position as x � 0. The object is pulled down an ad-
ditional 18.0 cm and released from rest to oscillate without
friction. What is its position x at a time 84.4 s later? (b) A
hanging spring stretches by 35.5 cm when an object of
mass 440 g is hung on it at rest. We define this new posi-
tion as x � 0. This object is also pulled down an additional
18.0 cm and released from rest to oscillate without friction.
Find its position 84.4 s later. (c) Why are the answers to
parts (a) and (b) different by such a large percentage
when the data are so similar? Does this circumstance reveal
a fundamental difficulty in calculating the future? (d) Find
the distance traveled by the vibrating object in part (a). 
(e) Find the distance traveled by the object in part (b).

43. The mass of the deuterium molecule (D2) is twice that of
the hydrogen molecule (H2). If the vibrational frequency
of H2 is 1.30 	 1014 Hz, what is the vibrational frequency
of D2? Assume that the “spring constant” of attracting
forces is the same for the two molecules.

44. After a thrilling plunge, bungee jumpers bounce freely on
the bungee cord through many cycles (Fig. P12.20). After
the first few cycles, the cord does not go slack. Your little
brother can make a pest of himself by figuring out the
mass of each person, using a proportion that you set up by
solving the following problem. An object of mass m is oscil-
lating freely on a light vertical spring with a period T. An
object of unknown mass m� on the same spring oscillates
with a period T �. Determine (a) the spring constant
and (b) the unknown mass. 

45. To account for the walking speed of a bipedal or
quadrupedal animal, model a leg that is not contacting the
ground as a uniform rod of length �, swinging as a physical
pendulum through one half of a cycle, in resonance. Let

max represent its amplitude. (a) Show that the animal’s
speed is given by the expression

if 
max is sufficiently small that the motion is nearly simple
harmonic. An empirical relationship that is based on the

√6g� sin 
max

�

same model and applies over a wider range of angles is

(b) Evaluate the walking speed of a human with leg length
0.850 m and leg-swing amplitude 28.0°. (c) What leg
length would give twice the speed for the same angular
amplitude?

46. Review problem. The problem extends the reasoning of
Problem 8.46 in Chapter 8. Two gliders are set in motion
on an air track. Glider 1 has mass m1 � 0.240 kg and veloc-
ity . It will have a rear-end collision with glider
2, of mass m2 � 0.360 kg, which has original velocity

. A light spring of force constant 45.0 N/m is
attached to the back end of glider 2 as shown in
Figure P8.46. When glider 1 touches the spring, superglue
instantly and permanently makes it stick to its end of the
spring. (a) Find the common velocity the two gliders have
when the spring compression is a maximum. (b) Find the
maximum spring compression distance. (c) Argue that
the motion after the gliders become attached consists
of the center of mass of the two-glider system moving with
the constant velocity found in part (a) while both gliders
oscillate in simple harmonic motion relative to the center
of mass. (d) Find the energy of the center-of-mass motion.
(e) Find the energy of the oscillation.

A pendulum of length L and mass M has a spring of force
constant k connected to it at a distance h below its point of
suspension (Fig. P12.47). Find the frequency of vibration
of the system for small values of the amplitude (small 
).
Assume that the vertical suspension of length L is rigid, but
ignore its mass.

47.

0.120 î  m/s

0.740 î  m/s

√6g� cos (
max /2) sin 
max

�

B

P

µsµ

FIGURE P12.41

h
θ

L

k

M

FIGURE P12.47

48. A particle with a mass of 0.500 kg is attached to a spring
with a force constant of 50.0 N/m. At time t � 0 the parti-
cle has its maximum speed of 20.0 m/s and is moving to
the left. (a) Determine the particle’s equation of motion,
specifying its position as a function of time. (b) Where in
the motion is the potential energy three times the kinetic
energy? (c) Find the length of a simple pendulum with the
same period. (d) Find the minimum time interval required
for the particle to move from x � 0 to x � 1.00 m.
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49. A horizontal plank of mass m and length L is pivoted at
one end. The plank’s other end is supported by a spring of
force constant k (Fig. P12.49). The moment of inertia of
the plank about the pivot is . The plank is displaced
by a small angle 
 from its horizontal equilibrium po-
sition and released. (a) Show that it moves with simple har-
monic motion with an angular frequency . 
(b) Evaluate the frequency, assuming that the mass is 
5.00 kg and that the spring has a force constant of
100 N/m.

� � √3k/m

1
3 
mL2

54. A block of mass M is connected to a spring of mass m and
oscillates in simple harmonic motion on a horizontal, fric-
tionless track (Fig. P12.54). The force constant of the
spring is k and the equilibrium length is �. Assume that all
portions of the spring oscillate in phase and that the veloc-
ity of a segment dx is proportional to the distance x from
the fixed end; that is, vx � (x/�)v. Also, note that the mass
of a segment of the spring is dm � (m/�)dx, Find (a) the
kinetic energy of the system when the block has a speed v
and (b) the period of oscillation.

55. A smaller disk of radius r and mass m is attached rigidly to
the face of a second larger disk of radius R and mass M as
shown in Figure P12.55. The center of the small disk is lo-
cated at the edge of the large disk. The large disk is
mounted at its center on a frictionless axle. The assembly
is rotated through a small angle 
 from its equilibrium
position and released. (a) Show that the speed of the cen-
ter of the small disk as it passes through the equilibrium
position is

(b) Show that the period of the motion is

T � 2� �(M � 2m)R2 � mr 2

2mgR �
1/2

v � 2 � Rg(1 � cos 
)
(M/m) � (r/R)2 � 2 �

1/2

Pivot

θ

k

FIGURE P12.49

56. When a block of mass M, connected to the end of a
spring of mass ms � 7.40 g and force constant k, is set into
simple harmonic motion, the period of its motion is

A two-part experiment is conducted with the use of blocks
of various masses suspended vertically from the spring as
shown in Figure P12.56. (a) Static extensions of 17.0, 29.3,
35.3, 41.3, 47.1, and 49.3 cm are measured for M values of

T �  2� √ M �  (ms /3)
ky

L L

FIGURE P12.53

x

dx

M

v

FIGURE P12.54

R

M

θθ

mv

FIGURE P12.55

50. Review problem. A particle of mass 4.00 kg is attached to a
spring with a force constant of 100 N/m. It is oscillating
on a horizontal, frictionless surface with an amplitude of 
2.00 m. A 6.00-kg object is dropped vertically on top of the
4.00-kg object as it passes through its equilibrium point.
The two objects stick together. (a) By how much does the
amplitude of the vibrating system change as a result of
the collision? (b) By how much does the period change?
(c) By how much does the mechanical energy of the
system change? (d) Account for the change in energy.

51. A simple pendulum with a length of 2.23 m and a mass of
6.74 kg is given an initial speed of 2.06 m/s at its equilib-
rium position. Assume that it undergoes simple harmonic
motion and determine its (a) period, (b) total energy, and
(c) maximum angular displacement.

52. Review problem. One end of a light spring with force con-
stant 100 N/m is attached to a vertical wall. A light string is
tied to the other end of the horizontal spring. The string
changes from horizontal to vertical as it passes over a solid
pulley of diameter 4.00 cm. The pulley is free to turn on a
fixed, smooth axle. The vertical section of the string sup-
ports a 200-g object. The string does not slip at its contact
with the pulley. Find the frequency at which the object os-
cillates if the mass of the pulley is (a) negligible, (b) 250 g,
and (c) 750 g.

A ball of mass m is connected to two
rubber bands of length L, each under tension T, as shown
in Figure P12.53. The ball is displaced by a small distance
y perpendicular to the length of the rubber bands. Assum-
ing that the tension does not change, show that (a) the
restoring force is � (2T/L)y and (b) the system exhibits
simple harmonic motion with an angular frequency

.� � √2T/mL

53.
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20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Con-
struct a graph of Mg versus x and perform a linear least-
squares fit to the data. From the slope of your graph, deter-
mine a value for k for this spring. (b) The system is now set
into simple harmonic motion, and periods are measured
with a stopwatch. With M � 80.0 g, the total time interval
for ten oscillations is measured to be 13.41 s. The experi-
ment is repeated with M values of 70.0, 60.0, 50.0, 40.0,
and 20.0 g, with corresponding time intervals for ten oscil-
lations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Compute
the experimental value for T from each of these measure-
ments. Plot a graph of T 2 versus M and determine a value
for k from the slope of the linear least-squares fit through
the data points. Compare this value of k with that obtained
in part (a). (c) Obtain a value for ms from your graph and
compare it with the given value of 7.40 g.

�s and a smaller coefficient of kinetic friction �k. The
board moves to the right at constant speed v. Assume that
the block spends most of its time sticking to the board and
moving to the right, so the speed v is small in comparison
to the average speed the block has as it slips back toward
the left. (a) Show that the maximum extension of
the spring from its unstressed position is very nearly given
by �smg/k. (b) Show that the block oscillates around an
equilibrium position at which the spring is stretched
by �kmg/k. (c) Graph the block’s position versus time.
(d) Show that the amplitude of the block’s motion is 

(e) Show that the period of the block’s motion is 

(f) Evaluate the frequency of the motion assuming that 
�s � 0.400, �k � 0.250, m � 0.300 kg, k � 12.0 N/m, and
v � 2.40 cm/s. (g) What happens to the frequency if the
mass increases? (h) What happens if the spring constant
increases? (i) What happens if the speed of the board in-
creases? ( j) What happens if the coefficient of static fric-
tion increases relative to the coefficient of kinetic friction?
Note that it is the excess of static over kinetic friction that
is important for the vibration. “The squeaky wheel gets the
grease” because even a viscous fluid cannot exert a force of
static friction.

T �
2(�s � �k)mg

vk
� � √ m

k

A �
(�s � �k)mg

k

59. A block of mass m is connected to two springs of force con-
stants k1 and k2 in two ways as shown in Figure P12.59. In
both cases, the block moves on a frictionless table after it is
displaced from equilibrium and released. Show that in the
two cases the block exhibits simple harmonic motion with
periods

(b) T � 2�√ m
k1 � k2

(a) T � 2�√ m(k1 � k2)
k1k2

     

m

FIGURE P12.56

57. An object is hung from a spring, set into vertical vibration,
and immersed in a beaker of oil. Its motion is graphed in
Active Figure 12.14b. The object has mass 375 g, the spring
has force constant 100 N/m, and the damping coefficient
is b � 0.100 N � s/m. (a) How long does it take for the am-
plitude to drop to half its initial value? (b) How long does
it take for the mechanical energy to drop to half its initial
value? (c) Show that, in general, the fractional rate at
which the amplitude decreases in a damped harmonic os-
cillator is one-half the fractional rate at which the mechani-
cal energy decreases.

58. Your thumb squeaks on a plate you have just washed. Your
sneakers squeak on the gym floor. Car tires squeal when
you start or stop abruptly. Mortise joints groan in an old
barn. The concertmaster’s violin sings out over a full or-
chestra. You can make a goblet sing by wiping your moist-
ened finger around its rim. As you slide it across the table,
a Styrofoam cup may not make much sound, but it makes
the surface of some water inside it dance in a complicated
resonance vibration. When chalk squeaks on a blackboard,
you can see that it makes a row of regularly spaced dashes.
As these examples suggest, vibration commonly results
when friction acts on a moving elastic object. The oscilla-
tion is not simple harmonic motion, but is called stick-and-
slip. This problem models stick-and-slip motion. 

A block of mass m is attached to a fixed support by a
horizontal spring with force constant k and negligible mass
(Fig. P12.58). Hooke’s law describes the spring both in ex-
tension and in compression. The block sits on a long hori-
zontal board with which it has coefficient of static friction

FIGURE P12.58
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60. Review problem. Imagine that a hole is drilled through
the center of the Earth to the other side. An object of mass
m at a distance r from the center of the Earth is pulled
toward the center of the Earth only by the mass within
the sphere of radius r (the reddish region in Fig. P12.60).
(a) Write Newton’s law of gravitation for an object at the
distance r from the center of the Earth and show that
the force on it is of Hooke’s law form, F � � kr, where the

effective force constant is . Here � is the density
of the Earth, assumed uniform, and G is the gravitational
constant. (b) Show that a sack of mail dropped into the
hole will execute simple harmonic motion if it moves
without friction. How long does it take to arrive at the
other side of the Earth? (c) At the same time as the sack of
mail is dropped in the hole, a golf ball is struck so that
it becomes a treetop satellite. (See Problem 11.27 in
Chapter 11.) Which object, sack of mail or golf ball, arrives
first at the end of the hole halfway around the Earth?

k � 4
3��Gm

m

(a)

k1 k2

(b)

k1 k2

m

FIGURE P12.59

12.1 (d). From its maximum positive position to the equilib-
rium position, the block travels a distance A. It then goes
an equal distance past the equilibrium position to its
maximum negative position. It then repeats these two
motions in the reverse direction to return to its original
position and complete one cycle.

12.2 (i), (f). The object is in the region x � 0, so the position
is negative. Because the object is moving back toward the
origin in this region, the velocity is positive. (ii), (a). The
velocity is positive, as in (i). Because the spring is pulling
the object toward equilibrium from the negative x re-
gion, the acceleration is also positive.

12.3 (i), (a). With a longer length, the period of the pendu-
lum will increase. Therefore, it will take slightly longer to

execute each swing, so each second according to the
clock will take longer than an actual second and the
clock will run slow. (ii), (a). At the top of the mountain,
the value of g is less than that at sea level. As a result, the
period of the pendulum will increase slightly and the
clock will run slow.

12.4 (a). Although changing the mass of a simple pendulum
does not change the frequency, because the bob is large
means that we must model the pendulum as a physical
pendulum rather than a simple pendulum. When the
gum is placed on top of the bob, the moment of inertia
and the center of mass of the physical pendulum are
altered slightly. According to Equation 12.27, these
changes alter the period of the pendulum. 

Earth

m
r

FIGURE P12.60



Most of us experienced waves as children when we
dropped pebbles into a pond. The disturbance created
by a pebble manifests itself as ripples that move outward

from the point at which the pebble lands in the water, like the
ripples from the falling water drops in the opening photograph.
If you were to carefully examine the motion of a leaf floating
near the point where the pebble enters the water, you would see
that the leaf moves up and down and back and forth about its
original position but does not undergo any net displacement
away from or toward the source of the disturbance. The distur-
bance in the water moves over a long distance, but a given small
element of the water oscillates only over a very small distance. This
behavior is the essence of wave motion.

The world is full of other kinds of waves, including sound
waves, waves on strings, seismic waves, radio waves, and x-rays.
Most waves can be placed in one of two categories. Mechanical

Mechanical Waves

C H A P T E R 13

Drops of water fall from a leaf into a pond.
The disturbance caused by the falling water
moves away from the drop point as circular
ripples on the water surface.

C H A P T E R  O U T L I N E
13.1 Propagation of a Disturbance
13.2 The Wave Model
13.3 The Traveling Wave
13.4 The Speed of Transverse Waves on Strings
13.5 Reflection and Transmission of Waves
13.6 Rate of Energy Transfer by Sinusoidal Waves

on Strings
13.7 Sound Waves
13.8 The Doppler Effect
13.9 Context Connection — Seismic Waves
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A longitudinal pulse along a stretched spring. The displacement of the coils is in the di-
rection of the wave motion. The compressed region moves to the right along the spring.

waves are waves that disturb and propagate through a medium; the ripple in the
water because of the pebble and a sound wave, for which air is the medium, are ex-
amples of mechanical waves. Electromagnetic waves are a special class of waves that
do not require a medium to propagate, as discussed with regard to the absence of
the ether in Section 9.2; light waves and radio waves are two familiar examples. In
this chapter, we shall confine our attention to the study of mechanical waves, defer-
ring our study of electromagnetic waves to Chapter 24.

PROPAGATION  OF  A  DISTURBANCE
In the introduction, we alluded to the essence of wave motion: the transfer of a
disturbance through space without the accompanying transfer of matter. The propaga-
tion of the disturbance also represents a transfer of energy; thus, we can view waves as
a means of energy transfer. In the list of energy transfer mechanisms in Section 6.6,
we see two entries that depend on waves: mechanical waves and electromagnetic radi-
ation. These entries are to be contrasted with another entry—matter transfer—in
which the energy transfer is accompanied by a movement of matter through space.

All waves carry energy, but the amount of energy transmitted through a medium
and the mechanism responsible for the energy transport differ from case to case.
For instance, the power of ocean waves during a storm is much greater than that of
sound waves generated by a musical instrument.

All mechanical waves require (1) some source of disturbance, (2) a medium that
can be disturbed, and (3) some physical mechanism through which elements of the
medium can influence one another. This final requirement assures that a distur-
bance to one element will cause a disturbance to the next so that the disturbance
will indeed propagate through the medium.

One way to demonstrate wave motion is to flip the free end of a long rope that is
under tension and has its opposite end fixed as in Figure 13.1. In this manner, a
single pulse is formed and travels (to the right in Fig. 13.1) with a definite speed.
The rope is the medium through which the pulse travels. Figure 13.1 represents
consecutive “snapshots” of the traveling pulse. The shape of the pulse changes very
little as it travels along the rope.

As the pulse travels, each rope element that is disturbed moves in a direction
perpendicular to the direction of propagation. Figure 13.2 illustrates this point for
a particular element, labeled P. Note that there is no motion of any part of the rope
that is in the direction of the wave. A disturbance such as this one in which the
elements of the disturbed medium move perpendicularly to the direction of propa-
gation is called a transverse wave.

In another class of waves, called longitudinal waves, the elements of the medium
undergo displacements parallel to the direction of propagation. Sound waves in air,
for instance, are longitudinal. Their disturbance corresponds to a series of high-
and low-pressure regions that may travel through air or through any material
medium with a certain speed. A longitudinal pulse can be easily produced in a
stretched spring as in Figure 13.3. A group of coils at the free end is pushed for-
ward and pulled back. This action produces a pulse in the form of a compressed re-
gion of coils that travels along the spring.

So far, we have provided pictorial representations of a traveling pulse and hope
you have begun to develop a mental representation of such a pulse. Let us now

13.1

Compressed

FIGURE 13.3

A pulse traveling
on a stretched rope is a transverse
disturbance. That is, any element of
the rope, such as that at P, moves
(blue arrows) in a direction perpendic-
ular to the propagation of the pulse
(red arrows).

A pulse traveling
down a stretched rope. The shape of
the pulse is approximately unchanged
as it travels along the rope.

FIGURE 13.1

P

P

P

P

FIGURE 13.2
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A one-dimensional
pulse traveling to the right with a
speed v. (a) At t � 0, the shape of the
pulse is given by y � f(x). (b) At some
later time t, the shape remains un-
changed and the vertical position of
any element of the medium is given
by y � f(x � vt).

develop a mathematical representation for the propagation of this pulse. Consider
a pulse traveling to the right with constant speed v on a long, stretched string as in
Figure 13.4. The pulse moves along the x axis (the axis of the string), and the trans-
verse (up-and-down) displacement of the elements of the string is described by
means of the position y.

Figure 13.4a represents the shape and position of the pulse at time t � 0. At this
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) � f(x). This function describes the
vertical position y of the element of the string located at each value of x at time 
t � 0. Because the speed of the pulse is v, the pulse has traveled to the right a dis-
tance vt at time t (Fig. 13.4b). We adopt a simplification model in which the shape
of the pulse does not change with time.1 Therefore, at time t, the shape of the pulse
is the same as it was at time t � 0, as in Figure 13.4a. Consequently, an element of
the string at x at this time has the same y position as an element located at x � vt
had at time t � 0:

In general, then, we can represent the position y for all values of x and t, measured
in a stationary frame with the origin at O, as

[13.1a]

If the pulse travels to the left, the position of an element of the string is described by

[13.1b]

The function y, sometimes called the wave function, depends on the two variables
x and t. For this reason, it is often written y(x, t), which is read “y as a function of x
and t.”

It is important to understand the meaning of y. Consider a point P on the string,
identified by a particular value of its x coordinate as in Figure 13.4. As the pulse
passes through P, the y coordinate of this point increases, reaches a maximum, and
then decreases to zero. The wave function y(x, t) represents the y position of any el-
ement of string located at position x at any time t. Furthermore, if t is fixed (e.g., in
the case of taking a snapshot of the pulse), the wave function y as a function of x,
sometimes called the waveform, defines a curve representing the actual geometric
shape of the pulse at that time.

y(x, t) � f (x � vt)

y(x, t) � f(x � vt)

y(x, t) � y(x � vt, 0)

FIGURE 13.4

A

y

(a) Pulse at t = 0

O

vt

x

v

O

y

x

v

P

(b) Pulse at time t

P

In a long line of people waiting to buy tickets, the first person leaves
and a pulse of motion occurs as people step forward to fill the gap. As each person steps
forward, the gap moves through the line. Is the propagation of this gap (a) transverse or
(b) longitudinal? Consider “the wave” at a baseball game when people stand up and shout
as the wave arrives at their location and the resultant pulse moves around the stadium. Is
this wave (c) transverse or (d) longitudinal?

QUICK QUIZ 13.1

1In reality, the pulse changes its shape and gradually spreads out during the motion. This effect, called dis-
persion, is common to many mechanical waves, but we adopt a simplification model that ignores this effect.

■ Pulse traveling to the right

■ Pulse traveling to the left
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(Example 13.1) Graphs of the function 
y(x, t) � 2.0/[(x � 3.0t)2 � 1] at (a) t � 0, 
(b) t � 1.0 s, and (c) t � 2.0 s.

without changing its shape and has a constant speed of
3.0 cm/s.

A Pulse Moving to the RightEXAMPLE 13.1
A pulse moving to the right along the x axis is repre-
sented by the wave function

where x and y are measured in centimeters and t is in
seconds. Let us plot the waveform at t � 0, t � 1.0 s,
and t � 2.0 s.

Solution First, note that this function is of the form 
y � f(x � vt). By inspection, we see that the speed of
the wave is v � 3.0 cm/s. The location of the peak of
the pulse occurs at the value of x for which the denomi-
nator is a minimum, that is, where (x � 3.0t) � 0.
Therefore, the peaks occur at x � 0.0 cm at t � 0, at
x � 3.0 cm at t � 1.0 s, and x � 6.0 cm at t � 2.0 s.

At times t � 0, t � 1.0 s, and t � 2.0 s, the wave
function expressions are

We can now use these expressions to plot the wave
function versus x at these times. For example, let us
evaluate y(x, 0) at x � 0.50 cm:

Likewise, y(1.0, 0) � 1.0 cm, y(2.0, 0) � 0.40 cm, and
so on. A continuation of this procedure for other values
of x yields the waveform shown in Figure 13.5a. In a
similar manner, one obtains the graphs of y(x, 1.0) and
y(x, 2.0), shown in Figures 13.5b and 13.5c, respectively.
These snapshots show that the pulse moves to the right

y(0.50, 0) �
2.0

(0.50)2 � 1
� 1.6 cm

 y(x, 2.0) �
2.0

(x � 6.0)2 � 1
   at t � 2.0 s

 y(x, 1.0) �
2.0

(x � 3.0)2 � 1
   at t � 1.0 s

y(x, 0) �
2.0

x 2 � 1
  at t � 0

y(x, t) �
2.0

(x � 3.0t)2 � 1

FIGURE 13.5
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THE  WAVE  MODEL
We have discussed creating a disturbance moving through a medium such as a
stretched string by a simple up-and-down displacement of the end of the string.
This action results in a pulse moving along the medium. A continuous wave is cre-
ated by shaking the end of the string in simple harmonic motion, which we studied
in Chapter 12. If we do that, the string will take on the shape shown by the curve in
the graph in Active Figure 13.6a, with this shape remaining the same but moving
toward the right. This shape is what we call a sinusoidal wave because the waveform
in Active Figure 13.6a is that of a sine wave. The point with the largest positive dis-
placement of the string is called the crest of the wave. The lowest point is called the
trough. The crest and trough move along with the wave, and a particular point on

13.2
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the string alternates between locations on a crest and a trough. In idealized wave
motion in an idealized medium, each element of the medium undergoes simple
harmonic motion around its equilibrium position.

Three physical characteristics are important in describing a sinusoidal wave:
wavelength, frequency, and wave speed. One wavelength is the minimum distance
between any two identical points on a wave such as adjacent crests or adjacent
troughs as in Active Figure 13.6a, which is a graph of y position of elements of the
medium versus x position for a sinusoidal wave at a specific time. The symbol � is
used to denote wavelength.

Active Figure 13.6b shows y position versus time for a single element of the
medium as a sinusoidal wave is passing through its position x. The period T of the
wave is the time interval required for an element of the medium to undergo one
complete oscillation. The frequency f of sinusoidal waves is the same as the fre-
quency of simple harmonic motion of an element of the medium. The period is
equal to the inverse of the frequency:

[13.2]

Waves travel through the medium with a specific wave speed, which depends on
the properties of the medium being disturbed. For instance, sound waves travel
through air at 20°C with a speed of about 343 m/s, whereas the speed of sound in
most solids is higher than 343 m/s. We will learn more about wavelength, fre-
quency, and wave speed in the next section.

Another important parameter for the wave in Active Figure 13.6 is the ampli-
tude of the wave. Amplitude is the maximum position of an element of the medium
relative to the equilibrium position. It is denoted by A and is the same as the ampli-
tude of the simple harmonic motion of the elements of the medium.

One method of producing a traveling sinusoidal wave on a very long string is
shown in Active Figure 13.7. One end of the string is connected to a blade that is
set vibrating. As the blade oscillates vertically with simple harmonic motion, a trav-
eling wave moving to the right is set up on the string. Active Figure 13.7 represents
snapshots of the wave at intervals of one quarter of a period. Each element of the
string, such as that at P, oscillates vertically in the y direction with simple harmonic
motion. Every element of the string can therefore be treated as a simple harmonic
oscillator vibrating with a frequency equal to the frequency of vibration of the blade
that drives the string. Although each element oscillates in the y direction, the wave
(or disturbance) travels in the x direction with a speed v. Of course, this situation is
the definition of a transverse wave. In this case, the energy carried by the traveling
wave is supplied by the vibrating blade.

T �
1
f

�

y

�

x

(a)

T

y

t

(b)

A

A

T

(a) A graph of the y position of
elements of a medium versus x
position, measured along the length
of the medium. The wavelength � of a
wave is the distance between adjacent
crests or adjacent troughs. (b) A graph
of the y position of one element of the
medium as a function of time. The
period T of the wave is the same as the
time interval required for the element
to complete one oscillation.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 13.6 you can
change the parameters to see the
effect on the wave function.

ACTIVE FIGURE 13.6

P

(a)

A

y

Vibrating
blade

(c)

P

P

P

(b)

(d)

�
One method for producing a
sinusoidal wave on a continuous
string. The left end of the string is
connected to a blade that is set
into vibration. Every element of
the string, such as the one at point
P, oscillates with simple harmonic
motion in the vertical direction.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 13.7 to 
adjust the frequency of the 
blade.

ACTIVE FIGURE 13.7

www.pop4e.com
www.pop4e.com


THE TRAVELING WAVE ❚ 405

y p g p pp

In the early chapters of this book, we developed several analysis models based on
the particle model. With our introduction to waves, we can develop a new simplifica-
tion model, the wave model, which will allow us to explore more analysis models for
solving problems. An ideal particle has zero size. We can build physical objects with
nonzero size as combinations of particles. Thus, the particle can be considered a ba-
sic building block. An ideal wave has a single frequency and is infinitely long; that is,
the wave exists throughout the Universe. (It is beyond the mathematical scope of
this text at this point to prove this fact, but a wave of finite length must necessarily
have a mixture of frequencies.) We will find that we can combine ideal waves, just as
we combined particles, and thus the ideal wave can be considered as a basic building
block. We will explore this concept in Section 14.7.

The wave model starts with an ideal wave having a single frequency, wavelength,
wave speed, and amplitude. From this beginning, we describe waves in a variety of
situations that serve as analysis models to help us solve problems. In the next sec-
tion, we further develop our mathematical representation for the wave model.

THE  TRAVELING  WAVE
Let us investigate further the mathematics of a sinusoidal wave (Active Fig. 13.8).
The brown curve represents a snapshot of a sinusoidal wave at t � 0, and the blue
curve represents a snapshot of the wave at some later time t. In what follows, we will
develop the principal features and mathematical representations of the model of a
traveling wave. This analysis model is used in situations in which a wave moves
through space without interacting with any other waves or particles.

At t � 0, the brown curve in Active Figure 13.8 can be described mathematically
as

[13.3]

where the amplitude A, as usual, represents the maximum value of the position of
an element relative to the equilibrium position and � is the wavelength as defined
in Active Figure 13.6a. Therefore, we see that the value of y is the same when x is in-
creased by an integral multiple of �. If the wave moves to the right with a speed of
v, the wave function at some later time t is

[13.4]

That is, the sinusoidal wave has moved to the right a distance of vt at time t as in
Active Figure 13.8. Note that the wave function has the form f(x � vt) and repre-
sents a wave traveling to the right. If the wave were traveling to the left, the quantity
x � vt would be replaced by x � vt, just as in the case of the traveling pulse de-
scribed by Equations 13.1a and 13.1b.

Because the period T is the time interval required for the wave to travel a dis-
tance of one wavelength, the speed, wavelength, and period are related by

[13.5]

Substituting Equation 13.5 into Equation 13.4, we find that

[13.6]

This form of the wave function shows the periodic nature of y in both space and
time. That is, at any given time t (a snapshot of the wave), y has the same value at
the positions x, x � �, x � 2�, and so on. Furthermore, at any given position x (at

y � A sin �2�  �  x
�

�
t
T ��

v �
�

T

y � A sin � 2�

�
 (x � vt)�

y � A sin � 2�

�
 x�

13.3

t = 0 t

y

x

v
vt

A one-dimensional sinusoidal wave
traveling to the right with a speed v.
The brown curve represents a snap-
shot of the wave at t � 0, and the blue
curve represents a snapshot at some
later time t.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 13.8 you can
watch the wave move and take
snapshots of it at various times.

ACTIVE FIGURE 13.8

WHAT’S THE DIFFERENCE BETWEEN

ACTIVE FIGURES 13.6a AND 13.6b?
The curves in both parts of the fig-
ure are the same, but (a) is a graph
of vertical position versus horizontal 
position and (b) is vertical position 
versus time. Part (a) can also be 
interpreted as a pictorial representa-
tion of the wave for a series of elements
of the medium, which is what you
would see at an instant of time. Part
(b) is a graphical representation of
the position of one element of the
medium as a function of time.

� PITFALL PREVENTION 13.1

www.pop4e.com
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which a single element of the medium is undergoing simple harmonic motion),
the values of y at times t, t � T, t � 2T, and so on are the same.

We can express the sinusoidal wave function in a compact form by defining two
other quantities: angular wave number k (often called simply the wave number) and
angular frequency �:

[13.7]

[13.8]

Note that in Equation 13.8 we use the definition of frequency, f � 1/T. Using
these definitions, Equation 13.6 can be written in the more compact form

[13.9]

We shall use this form most frequently.
Using Equations 13.7 and 13.8, we can express the wave speed v (Eq. 13.5) in

the alternative forms

[13.10]

[13.11]

The wave function given by Equation 13.9 assumes that the position y is zero at 
x � 0 and t � 0, but that need not be the case. If the transverse position of an
element is not zero at x � 0 and t � 0, we generally express the wave function in
the form

[13.12]

where � is called the phase constant and can be determined from the initial
conditions.

y � A sin(kx � �t � �)

v � �f

v �
�

k

y � A sin(kx � �t)

 � � 
2�

T
� 2�f

 k � 
2�

�
■ Angular wave number

■ Angular frequency

■ Wave function for a sinusoidal
wave

■ Speed of a traveling sinusoidal
wave

A sinusoidal wave of frequency f is traveling along a stretched string.
The string is brought to rest and a second traveling wave of frequency 2f is established
on the same string. (i) What is the wave speed of the second wave? (a) twice that of the
first wave (b) half that of the first wave (c) the same as that of the first wave
(d) impossible to determine (ii) What is the wavelength of the second wave?
(a) twice that of the first wave (b) half that of the first wave (c) the same as that of the
first wave (d) impossible to determine (iii) What is the amplitude of the second
wave? (a) twice that of the first wave (b) half that of the first wave (c) the same as that
of the first wave (d) impossible to determine

QUICK QUIZ 13.2

Find the angular wave number, period, angular
frequency, and speed of the wave.

Solution This problem is a simple one in which we
apply the traveling wave model. Using Equations 13.7,

A

A Traveling Sinusoidal WaveEXAMPLE 13.2
A sinusoidal wave traveling in the positive x direction
has an amplitude of 15.0 cm, a wavelength of 40.0 cm,
and a frequency of 8.00 Hz. The vertical position of an
element of the medium at t � 0 and x � 0 is also 
15.0 cm as shown in Figure 13.9.
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(Example 13.2) A sinusoidal wave of wavelength
� � 40.0 cm and amplitude A � 15.0 cm. The
wave function can be written in the form 
y � A cos(kx � �t).

y (cm)

40.0 cm

15.0 cm
x (cm)

FIGURE 13.9

Determine the phase constant � and write a gen-
eral expression for the wave function.

Solution Because A � 15.0 cm and because it is given
that y � 15.0 cm at x � 0 and t � 0, substitution into
Equation 13.12 gives

or

We see that � � (or 90°). Hence, the wave
function is of the form

As we can see by inspection, the wave function must
have this form because the cosine argument is dis-
placed by 90° from the sine function. Substituting the
values for A, k, and � into this expression gives

(15.0 cm) cos(0.157x � 50.3t)y �

y � A sin�kx � �t �
�

2
� � A cos(kx � �t)

�/2 rad

sin � � 115.0 � 15.0 sin �

B

13.8, and 13.11, we find the following:

320 cm/s v � f� � (8.00 s�1)(40.0 cm) �

50.3 rad/s� � 2�f � 2�(8.00 s�1) �

0.125 s T �
1
f

�
1

8.00 s�1 �

0.157 rad/cmk �
2�

�
�

2� rad
40.0 cm

�

The Linear Wave Equation
If the waveform at t � 0 is as described in Active Figure 13.7b, the wave function
can be written

We can use this expression to describe the motion of any element of the string. The
element at point P (or any other point on the string) moves only vertically, so its x
coordinate remains constant. The transverse velocity vy of the element and its trans-
verse acceleration ay are therefore

[13.13]

[13.14]

The maximum values of these quantities are simply the absolute values of the coef-
ficients of the cosine and sine functions:

[13.15]

[13.16]

You should recognize from Equations 13.13 and 13.14 that the transverse
velocity and transverse acceleration of any element of the string do not reach their
maximum values simultaneously. In fact, the transverse velocity reaches its maxi-
mum value (�A) when position y � 0, whereas the transverse acceleration reaches
its maximum magnitude (�2A) when y � � A. These relationships are due to the
sine and cosine functions differing by a phase constant of �/2. Finally, note that
Equations 13.15 and 13.16 are identical to the corresponding equations for simple
harmonic motion (Eq. 12.17 and Eq. 12.18).

Let us take derivatives of our wave function with respect to position at a fixed
time, similar to the process by which we took derivatives with respect to time in

ay, max � �2A

vy, max � �A

ay �
dvy

dt �
x�constant

�
	vy

	t
�

	2y
	t2 �  � �2A sin(kx � �t)

vy �
dy
dt �

x�constant
�

	y
	t

�  � �A cos(kx � �t)

y � A sin(kx � �t)

TWO KINDS OF SPEED/VELOCITY

Be sure to differentiate between v,
the speed of the wave as it propa-
gates through the medium, and vy ,
the transverse velocity of an ele-
ment of the string. The speed v is
constant for a uniform medium,
whereas vy varies sinusoidally.

� PITFALL PREVENTION 13.2
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■ Linear wave equation

Comparing these two expressions, we see that

Comparing this result with Equation 13.19, we see that
the wave function is a solution to the linear wave equa-
tion if the speed at which the pulse moves is 3.0 cm/s.
We have already determined in Example 13.1 that this
speed is indeed the speed of the pulse, so we have
proven what we set out to do.

	2y
	x2 �

1
9.0

 
	2y
	t2

A Solution to the Linear Wave EquationEXAMPLE 13.3
Verify that the wave function presented in Example
13.1 is a solution to the linear wave equation.

Solution The wave function is

By taking partial derivatives of this function with
respect to x and to t, we find that

� 9.0 
[12(x � 3.0t)2 � 4.0]

[(x � 3.0t)2 � 1]3

	2y
	t2 �

108(x � 3.0t)2 � 36
[(x � 3.0t)2 � 1]3

 
	2y
	x 2 �

12(x � 3.0t)2 � 4.0
[(x � 3.0t)2 � 1]3

y(x, t) �
2.0

(x � 3.0t)2 � 1

Equations 13.13 and 13.14:

[13.17]

[13.18]

Comparing Equations 13.14 and 13.18, we see that 

Using Equation 13.10, we can rewrite this expression as

[13.19]

which is known as the linear wave equation. If we analyze a situation and find this
kind of relationship between derivatives of a function describing the situation, wave
motion is occurring. Equation 13.19 is a differential equation representation of the
traveling wave model. The solutions to the equation describe linear mechanical
waves. We have developed the linear wave equation from a sinusoidal mechanical
wave traveling through a medium, but it is much more general. The linear wave
equation successfully describes waves on strings, sound waves, and also electromag-
netic waves.2 What’s more, although the sinusoidal wave that we have studied is a
solution to Equation 13.19, the general solution to the equation is any function of
the form y(x, t) � f(x � vt) as discussed in Section 13.1.

Nonlinear waves are more difficult to analyze, but they are an important area of
current research, especially in optics. An example of a nonlinear mechanical wave
is one for which the amplitude is not small compared with the wavelength.

	2y
	x2 �

1
v2  

	2y
	t2

A sin(kx � �t) �  � 
1
k 2  

	2y
	x 2 �  � 

1
�2  

	2y
	t 2  : 	2y

	x 2 �
k 2

�2  
	2y
	t 2

d 2y
dx2 �

t�constant
�

	2y
	x 2 � � k2A sin(kx � �t)

dy
dx �

t�constant
�

	y
	x

� � kA cos(kx � �t)

2In the case of electromagnetic waves, y is interpreted to represent an electric field, which we will study
in Chapter 24.

THE  SPEED  OF  TRANSVERSE  WAVES  ON  STRINGS
An aspect of the behavior of linear mechanical waves is that the wave speed de-
pends only on the properties of the medium through which the wave travels. Waves
for which the amplitude A is small relative to the wavelength � are well represented

13.4
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(a) To obtain the
speed v of a wave on a stretched
string, it is convenient to describe the
motion of a small element of the
string in a moving frame of reference.
(b) The horizontal components of
the force on a small element of
length 
s cancel. The radial compo-
nents add, so there is a net force in
the radial direction.

T
:

∆s

R

O

(a)

(b)

O

v

θ
∆s

θ

R

θ

T T

FIGURE 13.10

as linear waves. In this section, we determine the speed of a transverse wave travel-
ing on a stretched string.

Let us use a mechanical analysis to derive the expression for the speed of a pulse
traveling on a stretched string under tension T. Consider a pulse moving to the
right with a uniform speed v, measured relative to a stationary (with respect to the
Earth) inertial reference frame. Recall from Chapter 9 that Newton’s laws are valid
in any inertial reference frame. Therefore, let us view this pulse from a different in-
ertial reference frame, one that moves along with the pulse at the same speed so
that the pulse appears to be at rest in the frame as in Figure 13.10a. In this refer-
ence frame, the pulse remains fixed and each element of the string moves to the
left through the pulse shape.

A short element of the string, of length 
s, forms an arc with a radius of curvature
R as shown in Figure 13.10a and magnified in Figure 13.10b. We use a simplification
model in which this arc is an arc of a perfect circle. In our moving frame of reference,
the element of the string moves to the left with speed v through the arc. As it travels
through the arc, we can model the element as a particle in uniform circular motion.
This element has a centripetal acceleration of v2/R, which is supplied by components
of the force in the string at each end of the element. The force acts on each side
of the element, tangent to the arc, as in Figure 13.10b. The horizontal components of

cancel, and each vertical component T sin � acts radially inward toward the center
of the arc. Hence, the magnitude of the total radial force on the element is 2T sin �.
Because the element is small, � is small and we can use the small-angle approximation
sin � � �. Therefore, the magnitude of the total radial force can be expressed as

The element has mass m � �
s, where � is the mass per unit length of the
string. Because the element forms part of a circle and subtends an angle of 2� at
the center, 
s � R(2�), and hence

The radial component of Newton’s second law applied to the element gives

where Fr is the force that supplies the centripetal acceleration of the element. Solv-
ing for v gives

[13.20]

Notice that this derivation is based on the linear wave assumption that the pulse
height is small relative to the length of the pulse. Using this assumption, we were
able to use the approximation sin � � �. Furthermore, the model assumes that the
tension T is not affected by the presence of the pulse, so T is the same at all points
on the string. Finally, this proof does not assume any particular shape for the pulse.
We therefore conclude that a pulse of any shape will travel on the string with speed

without changing its shape.v � √T/�,

v � √ T
�

Fr �
mv 2

R
 :  2T� �

2�R�v 2

R
 :  T � �v 2

m � � 
s � 2�R�

Fr � 2T sin � � 2T�

T
:

T
:

T
:

MULTIPLE T’S Be careful not to con-
fuse the T for the magnitude of the
tension in this discussion with the T
we are using in this chapter for the
period of a wave. The context of
the equation should help you to
identify which one it is. The alpha-
bet simply doesn’t have enough let-
ters to allow us to assign a unique
letter to each variable!

� PITFALL PREVENTION 13.3

■ Speed of a wave on a stretched
string

Suppose you create a pulse by moving the free end of a taut string up
and down once with your hand. The string is attached at its other end to a distant wall.
The pulse reaches the wall in a time interval 
t. Which of the following actions, taken by
itself, decreases the time interval required for the pulse to reach the wall? More than one
choice may be correct. (a) Moving your hand more quickly, but still only up and down
once by the same amount. (b) Moving your hand more slowly, but still only up and down

QUICK QUIZ 13.3
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once by the same amount. (c) Moving your hand a greater distance up and down in the
same amount of time. (d) Moving your hand a smaller distance up and down in the same
amount of time. (e) Using a heavier string of the same length and under the same ten-
sion. (f) Using a lighter string of the same length and under the same tension. (g) Using
a string of the same linear mass density but under decreased tension. (h) Using a string of
the same linear mass density but under increased tension.

■ Thinking Physics 13.1
A secret agent is trapped in a building on top of an elevator car at a lower floor. He
attempts to signal a fellow agent on the roof by tapping a message in Morse code
on the elevator cable so that transverse pulses move upward on the cable. As the
pulses move up the cable toward the accomplice, does the speed with which they
move stay the same, increase, or decrease? If the pulses are sent 1 s apart, are they
received 1 s apart by the agent on the roof ?

Reasoning The elevator cable can be modeled as a vertical string. The speed of
waves on the cable is a function of the tension in the cable. As the waves move higher
on the cable, they encounter increased tension because each higher point on the ca-
ble must support the weight of all the cable below it (and the elevator). Therefore,
the speed of the pulses increases as they move higher on the cable. The frequency of
the pulses will not be affected because each pulse takes the same time interval to
reach the top. They will still arrive at the top of the cable at intervals of 1 s. ■

(Example 13.4) The tension T in the cord is
maintained by the suspended object. The wave
speed is given by the expression v � √T/�.

as a particle in equilibrium, the tension T in the cord is
equal to the weight of the suspended 2.00-kg object:

(This calculation of the tension neglects the small mass
of the cord. Strictly speaking, the horizontal portion of
the cord can never be exactly straight—it will sag
slightly—and therefore the tension is not uniform.)

The mass per unit length � is

Therefore, the wave speed is

19.8 m/sv � √ T
�

� √ 19.6 N
0.050 0 kg/m

�

� �
m
�

�
0.300 kg
6.00 m

� 0.050 0 kg/m

T � mg � (2.00 kg)(9.80 m/s2) � 19.6 N

The Speed of a Pulse on a CordEXAMPLE 13.4
A uniform cord has a mass of 0.300 kg and a total
length of 6.00 m. Tension is maintained in the cord by
suspending an object of mass 2.00 kg from one end
(Fig. 13.11). Find the speed of a pulse on this cord.

Solution Because the suspended object can be modeled

FIGURE 13.11

5.00 m

2.00 kg

1.00 m

Rescuing the HikerEXAMPLE 13.5INTERACTIVE

then accelerates upward. Terrified by hanging from
the cable in midair, the hiker tries to signal the pilot
by sending transverse pulses up the cable. A pulse
takes 0.250 s to travel the length of the cable. What is
the acceleration of the helicopter?

An 80.0-kg hiker is trapped on a mountain ledge follow-
ing a storm. A helicopter rescues the hiker by hovering
above him and lowering a cable to him. The mass of
the cable is 8.00 kg and its length is 15.0 m. A chair of
mass 70.0 kg is attached to the end of the cable. The
hiker attaches himself to the chair and the helicopter
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�

To finalize this problem, note that a real cable has
stiffness in addition to tension. Stiffness tends to re-
turn a cable or a wire to its original straight-line
shape even when it is not under tension. For exam-
ple, a piano wire, which has stiffness, will straighten if
released from a curved shape, whereas normal pack-
age wrapping string will not.

Stiffness represents a restoring force in addition
to tension, which tends to increase the speed of
waves on the cable over that due to tension alone.
Consequently, for a real cable, the speed of 60.0 m/s
that we determined is most likely associated with a
tension lower than 1.92  103 N and a correspond-
ingly smaller acceleration of the helicopter.

Investigate the rescue situation by
logging into PhysicsNow at www.pop4e.com and going to
Interactive Example 13.5.

3.00  m/s2

a �
T
m

 � g �
1.92  103 N

150.0 kg
� 9.80 m/s2

� F � ma : T � mg � maSolution To conceptualize this problem, imagine the
effect of the helicopter’s acceleration on the cable. The
higher the upward acceleration, the larger the tension
in the cable. In turn, the larger the tension, the higher
the speed of pulses on the cable. Therefore, we catego-
rize this problem as a combination of one involving
Newton’s laws and one involving the speed of pulses on
a string. To analyze the problem, we use the time inter-
val for the pulse to travel from the hiker to the
helicopter to find the speed of the pulses on the cable:

The speed of pulses on the cable is given by Equation
13.20, which allows us to find the tension in the cable:

Newton’s second law relates the tension in the cable to
the acceleration of the hiker and the chair, which is the
same as the acceleration of the helicopter (we ignore
the mass of the cable relative to that of the hiker and
the chair):

� 1.92  103
 
 N

v � √ T
�
 : T � �v2 � � 8.00  kg

15.0  m �(60.0  m/s)2

v �  

x

t

 �  
15.0  m
0.250  s

 �  60.0  m/s

REFLECTION  AND  TRANSMISSION  OF  WAVES
So far, we have only considered a wave traveling through a medium with no
changes in the medium and no interactions with anything other than the elements
of the medium. This model is the traveling wave model. This situation is similar to a
particle traveling through empty space and obeying Newton’s first law. Although
these situations demonstrate important physics, things become more interesting
when particles and waves interact with something. Let us see what happens when a
wave encounters a boundary between two media.

For simplicity, consider a single pulse once again. When a traveling pulse
reaches a boundary, part or all of the pulse is reflected. Any part not reflected is said
to be transmitted through the boundary. Suppose a pulse travels on a string that is
fixed at one end (Fig. 13.12). When the pulse reaches the fixed boundary, it is re-
flected. In the simplification model in which the support attaching the string to the
wall is rigid, none of the pulse is transmitted through the fixed end.

Note that the reflected pulse (Figs. 13.12d and 13.12e) has exactly the same am-
plitude as the incoming pulse but is inverted. The inversion can be explained as fol-
lows. The pulse is created initially with an upward and then downward force on the
free end of the string. As the pulse arrives at the fixed end of the string, the string
first produces an upward force on the support. By Newton’s third law, the support
exerts a reaction force in the opposite direction on the string. Therefore, the posi-
tive shape of the pulse results in a downward and then upward force on the string
as the entirety of the pulse encounters the rigid end. This situation is equivalent to
a person replacing the fixed support and applying a downward and then an upward
force to the string. Therefore, reflection at a rigid end causes the pulse to invert on
reflection.

13.5

The reflection of a
traveling pulse at the fixed end of a
stretched string. The reflected pulse is
inverted, but its shape remains the
same.

(a)

(b)

(c)

(d)

(e) Reflected
pulse

Incident
pulse

FIGURE 13.12

www.pop4e.com
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Now consider a second idealized situation in which reflection is total and trans-
mission is zero. In this simplification model, the pulse arrives at the end of a string
that is perfectly free to move vertically, as in Figure 13.13. The tension at the free
end is maintained by tying the string to a ring of negligible mass that is free to slide
vertically on a frictionless post. Again, the pulse is reflected, but this time it is not
inverted. As the pulse reaches the post, it exerts a force on the free end, causing the
ring to accelerate upward. In the process, the ring reaches the top of its motion and
is then returned to its original position by the downward component of the tension
force. Therefore, the ring experiences the same motion as if it were raised and low-
ered by hand. This motion produces a reflected pulse that is not inverted and
whose amplitude is the same as that of the incoming pulse.

Finally, in some situations the boundary is intermediate between these two ex-
treme cases; that is, it is neither completely rigid nor completely free. In that case,
part of the wave is transmitted and part is reflected. For instance, suppose a string is
attached to a denser string as in Active Figure 13.14. When a pulse traveling on the
first string reaches the boundary between the two strings, part of the pulse is re-
flected and inverted and part is transmitted to the denser string. Both the reflected
and transmitted pulses have smaller amplitude than the incident pulse. The inver-
sion in the reflected pulse is similar to the behavior of a pulse meeting a rigid
boundary. As the pulse travels from the initial string to the denser string, the
junction acts more like a rigid end than a free end. Therefore, the reflected pulse is
inverted.

When a pulse traveling on a dense string strikes the boundary of a less dense
string, as in Active Figure 13.15, again part is reflected and part transmitted. This
time, however, the reflected pulse is not inverted. As the pulse travels from the
dense string to the less dense one, the junction acts more like a free end than a
rigid end.

The reflection of a
traveling pulse at the free end of a
stretched string. In this case, the
reflected pulse is not inverted.

Incident
pulse

(a)

(b)

(c)

Reflected
pulse

(d)

FIGURE 13.13

Incident
pulse

Transmitted
pulse

Reflected
pulse

(a)

(b)

(a) A pulse traveling to the right
on a light string attached to a
heavier string. (b) Part of the
incident pulse is reflected 
(and inverted), and part is
transmitted to the heavier string.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 13.14/
13.15 to adjust the linear mass 
densities of the strings and the
transverse direction of the initial
pulse.

ACTIVE FIGURE 13.14

Incident
pulse

Reflected
pulse

Transmitted
pulse

(a)

(b)

(a) A pulse traveling to the right
on a heavy string attached to a
lighter string. (b) The incident
pulse is partially reflected and par-
tially transmitted. In this case, the
reflected pulse is not inverted.

ACTIVE FIGURE 13.15

www.pop4e.com
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The limiting value between the two cases in Figures 13.14 and 13.15 would
be that in which both strings have the same linear mass density. In this case, no
boundary exists between the two media. Both strings are identical. As a result, no
reflection occurs and transmission is total.

In the preceding section, we found that the speed of a wave on a string increases
as the mass per unit length of the string decreases. In other words, a pulse travels
more slowly on a dense string than on a less dense one if both are under the same
tension. This comparison is illustrated by the lengths of the red velocity vectors in
Figures 13.14 and 13.15.

This discussion has focused on pulses arriving at a boundary. If a sinusoidal wave
on a string arrives at a rigid end, the inversion of the waveform is equivalent to
shifting the entire wave by half a wavelength. This equivalence can be seen by look-
ing back at Active Figure 13.7. The wave in Active Figure 13.7d is the inversion of
the wave in Active Figure 13.7b. Notice, however, that Active Figure 13.7b would
look like Active Figure 13.7d if the wave were shifted to the right or left by half a
wavelength. Therefore, because a full wavelength can be associated with an angle of
360°, we describe the inversion of a wave at a rigid end as a 180° phase shift. We will
see this effect again in Chapter 27 when we discuss reflection of light waves from
materials.

RATE  OF  ENERGY  TRANSFER  BY  SINUSOIDAL
WAVES ON  STRINGS

As waves propagate through a medium, they transport energy. This fact is easily
demonstrated by hanging an object on a stretched string and sending a pulse down
the string as in Figure 13.16. When the pulse meets the suspended object, the ob-
ject is momentarily displaced as in Figure 13.16b. In the process, energy is trans-
ferred to the object because work must be done in moving it upward. This section
examines the rate at which energy is transferred along a string. We shall assume a
one-dimensional sinusoidal wave in the calculation of the energy transferred.

Consider a sinusoidal wave traveling on a string (Fig. 13.17). The source of the
energy is some external agent at the left end of the string, which does work in
producing the oscillations. We can consider the string to be a nonisolated system. As
the external agent performs work on the end of the string, moving it up and down,
energy enters the system of the string and propagates along its length. Let us focus
our attention on an element of the string of length 
x and mass 
m. Each such
element moves vertically with simple harmonic motion. Therefore, we can model
each element of the string as a simple harmonic oscillator, with the oscillation in the
y direction. All elements have the same angular frequency � and the same ampli-
tude A. The kinetic energy K associated with a particle in simple harmonic motion is

, where v varies sinusoidally during the oscillation. If we apply this equation
to an element of length 
x, we see that the kinetic energy 
K of this element is


K � 1
2(
m)vy 

2

K � 1
2mv2

13.6

A sinusoidal wave traveling along the x axis on a stretched string. Every element, such
as the one labeled with its mass 
m, moves vertically, and each element has the same
total energy. The average power transmitted by the wave equals the energy contained
in one wavelength divided by the period of the wave.

∆m

FIGURE 13.17

(a) A pulse
traveling to the right on a stretched
string on which an object has been
suspended. (b) Energy is transmitted
to the suspended object when the
pulse arrives.

m

m

(a)

(b)

FIGURE 13.16
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If � is the mass per unit length of the string, the element of length 
x has a mass

m that is equal to � 
x. Hence, we can express the kinetic energy of an element of
the string as

[13.21]

As the length of the element of the string shrinks to zero, this expression becomes
a differential relationship:

We substitute for the general velocity of an element of the string using Equation
13.13:

If we take a snapshot of the wave at time t � 0, the kinetic energy of a given
element is

Let us integrate this expression over all the string elements in a wavelength of the
wave, which will give us the kinetic energy in one wavelength:

In addition to this kinetic energy, there is potential energy associated with each ele-
ment of the string due to its displacement from the equilibrium position. A similar
analysis as that above for the total potential energy in a wavelength gives the same
result:

The total energy in one wavelength of the wave is the sum of the kinetic and poten-
tial energies:

[13.22]

As the wave moves along the string, this amount of energy passes by a given
point on the string during one period of the oscillation. Therefore, the power, or
rate of energy transfer, associated with the wave is

[13.23]

This result shows that the rate of energy transfer by a sinusoidal wave on a string is
proportional to (a) the square of the angular frequency, (b) the square of the am-
plitude, and (c) the wave speed. In fact, all sinusoidal waves have the following gen-
eral property: The rate of energy transfer in any sinusoidal wave is proportional to
the square of the angular frequency and to the square of the amplitude.
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■ Rate of energy transfer for a
wave
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Which of the following, taken by itself, would be most effective in
increasing the rate at which energy is transferred by a wave traveling along a string?
(a) reducing the linear mass density of the string by one half (b) doubling the wave-
length of the wave (c) doubling the tension in the string (d) doubling the amplitude
of the wave

QUICK QUIZ 13.4

Because f � 60.0 Hz, the angular frequency � of the
sinusoidal waves on the string has the value

Using these values in Equation 13.23 for the power,
with A � 6.00  10�2 m, gives

512 W� (6.00  10�2 m)2(40.0 m/s)

� 1
2 
(5.00  10�2 kg/m)(377 s�1)2

 � � 1
2 

��2A2v

� � 2�f � 2�(60.0 Hz) � 377 s�1

Power Supplied to a Vibrating StringEXAMPLE 13.6
A string having a linear mass density of � �
5.00  10�2 kg/m is under a tension of 80.0 N. How
much power must be supplied to the string to generate
sinusoidal waves at a frequency of 60.0 Hz and an
amplitude of 6.00 cm?

Solution The wave speed on the string is

v � √ T
�

� � 80.0 N
5.00  10�2 kg/m �

1/2
� 40.0 m/s

SOUND  WAVES
Let us turn our attention from transverse waves to longitudinal waves. As stated in
Section 13.2, for longitudinal waves the elements of the medium undergo displace-
ments parallel to the direction of wave motion. Sound waves in air are the most
important examples of longitudinal waves. Sound waves can travel through any
material medium, however, and their speed depends on the properties of that
medium. Table 13.1 provides examples of the speed of sound in different media.

The displacements accompanying a sound wave in air are longitudinal displace-
ments of small elements of air from their equilibrium positions. Such displace-
ments result if the source of the waves, such as the diaphragm of a loudspeaker, os-
cillates in air. If the oscillation of the diaphragm is described by simple harmonic
motion, a sinusoidal sound wave propagates away from the loudspeaker. For in-
stance, a one-dimensional sound wave can be produced in a long, narrow tube con-
taining a gas by means of a vibrating piston at one end, as in Figure 13.18.

It is difficult to draw a pictorial representation of longitudinal waves because the
displacements of the elements of the medium are in the same direction as that of
the propagation of the wave. Figure 13.18 is one way to represent these types of
waves. The darker color in the figure represents a region where the gas is com-
pressed; consequently, the density and pressure are above their equilibrium values.
Such a compressed region of gas, called a compression, is formed when the piston
is being pushed into the tube. The compression moves along the tube, continu-
ously compressing the layers in front of it. When the piston is withdrawn from the
tube, the gas in front of it expands, and consequently the pressure and density in
this region fall below their equilibrium values. These low-pressure regions, called
rarefactions, are represented by the lighter areas in Figure 13.18. The rarefactions
also propagate along the tube, following the compressions. Both regions move with
a speed equal to the speed of sound in that medium.

As the piston oscillates back and forth in a sinusoidal fashion, regions of
compression and rarefaction are continuously set up. The distance between two
successive compressions (or two successive rarefactions) equals the wavelength �.
As these regions travel along the tube, any small element of the medium moves
with simple harmonic motion parallel to the direction of the wave (in other words,

13.7
Speed of Sound in 
Various Media

TABLE 13.1

Medium v (m/s)

Gases
Hydrogen (0°C) 1 286
Helium (0°C) 972
Air (20°C) 343
Air (0°C) 331
Oxygen (0°C) 317

Liquids at 25°C
Glycerol 1 904
Sea water 1 533
Water 1 493
Mercury 1 450
Kerosene 1 324
Methyl alcohol 1 143
Carbon tetrachloride 926

Solidsa

Pyrex glass 5 640
Iron 5 950
Aluminum 6 420
Brass 4 700
Copper 5 010
Gold 3 240
Lucite 2 680
Lead 1 960
Rubber 1 600

aValues given are for propagation of
longitudinal waves in bulk media.
Speeds for longitudinal waves in thin
rods are smaller, and speeds of trans-
verse waves in bulk are smaller yet.
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longitudinally). If s(x, t) is the position of a small element measured relative to its
equilibrium position, we can express this position function as

[13.24]

where smax is the maximum position relative to equilibrium, often called the dis-
placement amplitude. Equation 13.24 represents the displacement wave, where k is
the wave number and � is the angular frequency of the piston. The variation �P in
the pressure3 of the gas measured from its equilibrium value is also sinusoidal; it is
given by

[13.25]

The pressure amplitude �Pmax is the maximum change in pressure from the
equilibrium value, and Equation 13.25 represents the pressure wave. The pressure
amplitude is proportional to the displacement amplitude smax:

[13.26]

where � is the density of the medium, v is the wave speed, and �smax is the maxi-
mum longitudinal speed of an element of the medium. It is these pressure varia-
tions in a sound wave that result in an oscillating force on the eardrum, leading to
the sensation of hearing.

Therefore, we see that a sound wave may be considered as either a displacement
wave or a pressure wave. A comparison of Equations 13.24 and 13.25 shows that the
pressure wave is 90° out of phase with the displacement wave. Graphs of these
functions are shown in Figure 13.19. Note that the change in pressure from equilib-
rium is a maximum when the displacement is zero, whereas the displacement is a
maximum when the pressure change is zero.

Note that Figure 13.19 presents two graphical representations of the longitudi-
nal wave: one for position of the elements of the medium and the other for
pressure variation. They are not pictorial representations for longitudinal waves,
however. For transverse waves, the element displacement is perpendicular to the di-
rection of propagation and the pictorial and graphical representations look the
same because the perpendicularity of the oscillations and propagation is matched
by the perpendicularity of x and y axes. For longitudinal waves, the oscillations and
propagation exhibit no perpendicularity, so those pictorial representations look
like Figure 13.18.

The speed of a sound wave in air depends only on the temperature of the air.
For a small range of temperatures around room temperature, the speed of sound is
described by

[13.27]

where TC is the temperature in degrees Celsius and the speed of sound at 0°C is
331 m/s.

■ Thinking Physics 13.2
Why does thunder produce an extended “rolling” sound when its source, a light-
ning strike, occurs in a fraction of a second? How does lightning produce thunder
in the first place?

Reasoning Let us assume that we are at ground level and ignore ground reflec-
tions. When cloud-to-ground lightning strikes, a channel of ionized air carries a
very large electric current from the cloud to the ground. (We will study electric

v � 331 m/s � (0.6 m/s ��C)TC

�Pmax � �v�smax

�P � �Pmax cos(kx � �t)

s(x, t) � smax sin(kx � �t)

An ultrasound image showing a young
human fetus and umbilical cord.
Ultrasound refers to sound waves that
are higher in frequency than those
audible to humans. The sound waves
transmit through the body of the
mother and reflect from the skin of
the fetus. The reflected sound waves
are organized by the electronics of
the ultrasonic imaging system into a
visual image of the fetus. ■
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A longitudinal wave
propagating along a tube filled with a
compressible gas. The source of the
wave is a vibrating piston at the left.
The high- and low-pressure regions are
dark and light, respectively.

(d)

v

(c)

v

(b)

Compressed region

(a)

Undisturbed gas

FIGURE 13.18

3We will formally introduce pressure in Chapter 15. In the case of longitudinal waves in a gas, each
compressed area is a region of higher-than-average pressure and density, and each stretched region is a
region of lower-than-average pressure and density.
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current in Chapter 21.) The result is a very rapid temperature increase of this
channel of air as it carries the current. The temperature increase causes a sudden
expansion of the air. This expansion is so sudden and so intense that a tremendous
disturbance is produced in the air: thunder. The thunder rolls because the light-
ning channel is a long, extended source; the entire length of the channel produces
the sound at essentially the same instant of time. Sound produced at the end of the
channel nearest you reaches you first, but sounds from progressively farther por-
tions of the channel reach you shortly thereafter. If the lightning channel were a
perfectly straight line, the resulting sound might be a steady roar, but the zigzagged
shape of the path results in the rolling variation in loudness. ■

THE  DOPPLER  EFFECT
When someone honks the horn of a vehicle as it travels along a highway, the
frequency of the sound you hear is higher as the vehicle approaches you than it is
as the vehicle moves away from you. This change is one example of the Doppler
effect, named after Christian Johann Doppler (1803–1853), an Austrian physicist.

The Doppler effect for sound is experienced whenever there is relative motion be-
tween the source of sound and the observer. Motion of the source or observer toward
the other results in the observer’s hearing a frequency that is higher than the true fre-
quency of the source. Motion of the source or observer away from the other results in
the observer hearing a frequency that is lower than the true frequency of the source.

Although we shall restrict our attention to the Doppler effect for sound waves, it
is associated with waves of all types. The Doppler effect for electromagnetic waves is
used in police radar systems to measure the speeds of motor vehicles. Likewise,
astronomers use the effect to determine the relative motions of stars, galaxies, and
other celestial objects. In 1842, Doppler first reported the frequency shift in
connection with light emitted by two stars revolving about each other in double-star
systems. In the early 20th century, the Doppler effect for light from galaxies was
used to argue for the expansion of the Universe, which led to the Big Bang theory,
discussed in Chapter 31.

To see what causes this apparent frequency change, imagine you are in a boat
lying at anchor on a gentle sea where the waves have a period of T � 2.0 s. Thus,
every 2.0 s a crest hits your boat. Figure 13.20a shows this situation with the water
waves moving toward the left. If you start a stopwatch at t � 0 just as one crest hits,
the stopwatch reads 2.0 s when the next crest hits, 4.0 s when the third crest hits,
and so on. From these observations you conclude that the wave frequency is 
f � 1/T � 0.50 Hz. Now suppose you start your motor and head directly into the
oncoming waves as shown in Figure 13.20b. Again you set your stopwatch to 
t � 0 as a crest hits the bow of your boat. This time, however, because you are mov-
ing toward the next wave crest as it moves toward you, it hits you less than 2.0 s after
the first hit. In other words, the period you observe is shorter than the 2.0-s period
you observed when you were stationary. Because f � 1/T, you observe a higher
wave frequency than when you were at rest.

If you turn around and move in the same direction as the waves (Fig. 13.20c),
you observe the opposite effect. You set your watch to t � 0 as a crest hits the stern
of the boat. Because you are now moving away from the next crest, more than 2.0 s
has elapsed on your watch by the time that crest catches you. Therefore, you
observe a lower frequency than when you were at rest.

These effects occur because the relative speed between your boat and the crest
of a wave depends on the direction of travel and on the speed of your boat. When
you are moving toward the right in Figure 13.20b, this relative speed is higher than
that of the wave speed, which leads to the observation of an increased frequency.
When you turn around and move to the left, the relative speed is lower, as is the ob-
served frequency of the water waves.

13.8

(a) Displacement
versus position and (b) pressure
versus position for a sinusoidal longi-
tudinal wave. The displacement wave
is 90° out of phase with the pressure
wave.
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(a) Waves moving
toward a stationary boat. The waves
travel to the left and their source is far
to the right of the boat, out of the
frame of the drawing. (b) The boat
moving toward the wave source. 
(c) The boat moving away from the
wave source.
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Let us now examine an analogous situation with sound waves in which we re-
place the water waves with sound waves, the water surface becomes the air, and the
person on the boat becomes an observer listening to the sound. In this case, an
observer O is moving with a speed of vO and a sound source S is stationary. For sim-
plicity, we assume that the air is also stationary and that the observer moves directly
toward the source.

The red lines in Active Figure 13.21 represent circles connecting the crests of
sound waves moving away from the source. Therefore, the radial distance between
adjacent red lines is one wavelength. We shall take the frequency of the source to
be f, the wavelength to be �, and the speed of sound to be v. A stationary observer
would detect a frequency f, where f � v/� (i.e., when the source and observer are
both at rest, the observed frequency must equal the true frequency of the source).
If the observer moves toward the source with the speed vO, however, the relative
speed of sound experienced by the observer is higher than the speed of sound in
air. Using our relative speed discussion of Section 3.6, if the sound is coming
toward the observer at v and the observer is moving toward the sound at vO , the
relative speed of sound as measured by the observer is

The frequency of sound heard by the observer is based on this apparent speed of
sound:

(observer moving toward source) [13.28]

Now consider the situation in which the source moves with a speed of vS relative
to the medium and the observer is at rest. Active Figure 13.22a shows this situation.
Because the source is moving, the crest of each new wave is emitted from the source
to the right of the position of the emission of the previous crest a distance vST,
where T is the period of the wave being generated by the source. Therefore, the
center of each colored circle (indicated by the identically colored dot) in Active
Figure 13.22a is shifted to the right by this distance relative to the circle represent-
ing the previous crest. If the source moves directly toward observer A in Active
Figure 13.22a, the crests detected by the observer along a line between the source
and observer are closer to one another than they would be if the source were at
rest. As a result, the wavelength �� measured by observer A is shorter than the true
wavelength � of the source. The wavelength is shortened by the distance vST, and the
observed wavelength has the value �� � � � vS/f. Because � � v/f, the frequency
heard by observer A is

[13.29]f � �
v
��

� f  � v
v � vS

�  (source moving toward observer) 

f � �
vrel

�
�

v � vO

�
� f  � v � vO

v �

vrel � v � vO

×

O

O

S

v

An observer O (the cyclist) moving
with a speed vO toward a stationary
point source S, the horn of a
parked car. The observer hears a
frequency f � that is greater than
the source frequency.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 13.21 to
adjust the speed of the observer.

ACTIVE FIGURE 13.21

DOPPLER EFFECT DOES NOT DEPEND

ON DISTANCE A common miscon-
ception about the Doppler effect is
that it depends on the distance be-
tween the source and the observer.
Although the intensity of a sound
will vary as the distance changes,
the apparent frequency will not; the
frequency depends only on the
speed. As you listen to an approach-
ing source, you will detect
increasing intensity but constant
frequency. As the source passes, you
will hear the frequency suddenly
drop to a new constant value and
the intensity begin to decrease.

� PITFALL PREVENTION 13.4
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That is, the frequency is increased when the source moves toward the observer. In a
similar manner, if the source moves away from observer B at rest, the sign of vS is re-
versed in Equation 13.29 and the frequency is lower.

In Equation 13.29, notice that the denominator approaches zero when the speed
of the source approaches the speed of sound, resulting in the frequency f � approach-
ing infinity. Such a situation results in waves that cannot escape from the source in
the direction of motion of the source. This concentration of energy in front of the
source results in a shock wave. Such a disturbance is noted when a jet aircraft flying at
a speed equal to or greater than the speed of sound produces a sonic boom.

Finally, if both the source and the observer are in motion, the following general
equation for the observed frequency is found:

[13.30]

In this expression, the signs for the values substituted for vO and vS depend on the
direction of the velocity. A positive value is used for motion of the observer or
the source toward the other, and a negative sign is used for motion of one away from
the other.

When working with any Doppler effect problem, remember the following rule
concerning signs: The word toward is associated with an increase in the observed
frequency, and the words away from are associated with a decrease in the observed
frequency.

The Doppler effect is used in medicine to measure the speed of blood flow. In ul-
trasound Doppler procedures, an ultrasonic sound wave is sent into the skin from a
transducer. The sound waves reflect from moving blood cells, undergoing a
frequency shift based on the speed of the cells. The instrumentation detects the
reflected sound waves and converts the frequency information to a speed of flow of
the blood. It is also possible to use the Doppler shift of light to measure the speed of
blood flow. That can be done for blood vessels just under the skin by shining light
from a low power laser onto the skin surface and monitoring the reflected light. The
procedure can be performed on internal blood vessels by means of optical fibers
(see Section 25.8) entering the body through natural openings or small incisions.

f � � f  � v � vO

v � vS
�

(a) A source S moving with a speed vS toward a station-
ary observer A and away from a stationary observer B. Observer A hears an in-
creased frequency, and observer B hears a decreased frequency. (b) The Doppler
effect in water observed in a ripple tank. The vibrating source is moving to the
right. Letters shown in the photo refer to Quick Quiz 13.5.

By logging into PhysicsNow at www.pop4e.com and going to 
Active Figure 13.22 you can adjust the speed of the source.

ACTIVE FIGURE 13.22
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A shock wave due to a jet traveling at
the speed of sound is made visible as a
fog of water vapor. The large pressure
variation in the shock wave causes the
water in the air to condense into water
droplets. ■

Doppler measurements of blood
flow
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Consider detectors of water waves at three locations A, B, and C in
Active Figure 13.22b. Which of the following statements is true? (a) The wave speed is
highest at location A. (b) The wave speed is highest at location C. (c) The detected
wavelength is largest at location B. (d) The detected wavelength is largest at location C.
(e) The detected frequency is highest at location C. (f) The detected frequency is highest
at location A.

QUICK QUIZ 13.5

You stand on a platform at a train station and listen to a train
approaching the station at a constant velocity. While the train approaches, but before it
arrives, you hear (a) the intensity and the frequency of the sound both increasing, (b) the
intensity and the frequency of the sound both decreasing, (c) the intensity increasing and
the frequency decreasing, (d) the intensity decreasing and the frequency increasing, 
(e) the intensity increasing and the frequency remaining the same, or (f ) the intensity
decreasing and the frequency remaining the same.

QUICK QUIZ 13.6

Doppler SubmarinesEXAMPLE 13.7INTERACTIVE

While the subs are approaching each other, some
of the sound from sub A will reflect from sub B and
return to sub A. If this sound were to be detected by an
observer on sub A, what is its frequency?

Solution The sound of apparent frequency 1 416 Hz
found in part A will be reflected from a moving
source (sub B) and then detected by a moving
observer (sub A). Therefore, the frequency detected
by sub A is

�

This technique is used by police officers to measure the
speed of a moving car, using the Doppler effect for
electromagnetic radiation (see Section 24.3).
Microwaves are emitted from the police car and 
reflected by the moving vehicle. By detecting the
Doppler-shifted frequency of the reflected microwaves,
the police officer can determine the speed of the 
vehicle.

By Logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 13.7 you
can alter the relative speeds of the submarines and observe
the Doppler-shifted frequency.

1  432 Hz

 � � 1  533 m/s �  (�8.00 m/s)
1  533 m/s �  (�9.00 m/s) �(1  416 Hz)

 f � � � v � vO

v � vS
� f �

CSubmarines A and B are traveling toward each other
under water. Sub A travels through the water at a speed
of 8.00 m/s, emitting a sonar wave at a frequency of
1 400 Hz. Sub B travels through the water at a speed of
9.00 m/s. The speed of sound in the water is 1 533 m/s.

What frequency is detected by an observer riding
on sub B as the subs approach each other?

Solution We use Equation 13.30 to find the Doppler-
shifted frequency. As the two submarines approach
each other, the observer in sub B hears the frequency

�

The subs barely miss each other and pass. What
frequency is detected by an observer riding on sub B as
the subs recede from each other?

Solution As the two submarines recede from each
other, the observer in sub B hears the frequency

� 1  385 Hz

 � � 1  533 m/s �  (� 9.00 m/s)
1  533 m/s �  (� 8.00 m/s) �(1  400 Hz)

 f � � � v � vO

v � vS
�  f

B

1  416 Hz

 � � 1  533 m/s �  (� 9.00 m/s)
1  533 m/s �  (� 8.00 m/s) �(1  400 Hz)

 f � � � v � vO

v � vS
�  f

A
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4For details on various elastic moduli for materials see R. A. Serway and J. W. Jewett Jr., Physics for Scien-
tists and Engineers, 6th ed. (Brooks-Cole, Belmont, CA: 2004), Section 12.4.

CONTEXT 
connectionSEISMIC  WAVES

When an earthquake occurs, a sudden release of energy takes place at a location
called the focus or hypocenter of the earthquake. The epicenter is the point on the
Earth’s surface radially above the hypocenter. The released energy will propagate
away from the focus of the earthquake by means of seismic waves. Seismic waves are
like the sound waves that we have studied in the later sections of this chapter in that
they are mechanical disturbances moving through a medium.

In discussing mechanical waves in this chapter, we identified two types: trans-
verse and longitudinal. In the case of mechanical waves moving through air, we
have only a longitudinal possibility. For mechanical waves moving through a solid,
however, both possibilities are available because of the strong interatomic forces be-
tween elements of the solid. Therefore, in the case of seismic waves, energy propa-
gates away from the focus both by longitudinal and transverse waves.

In the language used in earthquake studies, these two types of waves are named
according to the order of their arrival at a seismograph. The longitudinal wave travels
at a higher speed than the transverse wave. As a result, the longitudinal wave arrives at
a seismograph first and is thus called the P wave, where P stands for primary. The
slower moving transverse wave arrives next, so it is called the S wave, or secondary wave.

Let us see why longitudinal waves travel faster than transverse waves. The speed
of all mechanical waves follows an expression of the general form

[13.31]

For a wave traveling on a string, we have seen the speed given by Equation 13.20:

where the elastic property is the tension in the string. It is the tension in the string
that returns a displaced element of the string to equilibrium. The appropriate iner-
tial property is the linear mass density of the string.

For a transverse wave moving in a bulk solid, the elastic property is the shear
modulus S of the material.4 The shear modulus is a parameter that measures the de-
formation of a solid to a shear force, a force in the sideways direction. For example,
lay your textbook down on a table and place your hand flat on the cover. Now,
move your hand in a direction away from the book spine. The book will deform so
that its cross-section changes from a rectangle to a parallelogram. The amount by
which the book deforms under a given force from your hand is related to the shear
modulus of the book. The speed of a transverse wave (an S wave) in a bulk solid is

[13.32]

where � is the density and S is the shear modulus of the material.
For a longitudinal wave moving in a gas or liquid, the elastic property in Equa-

tion 13.31 is the bulk modulus B of the material. The bulk modulus is a parameter
that measures the change in volume of a sample of material due to a force compress-
ing it that is uniform over a surface area. The speed of sound in a gas is given by

[13.33]

where B is the bulk modulus of the gas and � is the gas density.

v � √ B
�

vS � √ S
�

v � √ T
�

v � √ elastic property
inertial property

13.9
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Now we consider longitudinal waves moving through a bulk solid. As a wave passes
through a sample of the material, the material is compressed, so the wave speed
should depend on the bulk modulus. As the material is compressed along the direc-
tion of travel of the wave, however, it is also distorted in the perpendicular direction.
(Imagine a partially inflated balloon that is pressed downward against a table. It
spreads out in the direction parallel to the table.) The result is a shear distortion of
the sample of material. Therefore, the wave speed should depend on both the bulk
modulus and the shear modulus! Careful analysis shows that this wave speed is

[13.34]

Notice that this equation for the speed of a P wave gives a value that is larger than
that for the S wave in Equation 13.32.

The wave speed for a seismic wave depends on the medium through which it
travels. Typical values are 8 km/s for a P wave and 5 km/s for an S wave. Figure 13.23
shows a typical seismograph trace of a distant earthquake, with the S wave clearly
arriving after the P wave.

The P and S waves move through the body of the Earth and can be detected by
seismographs at various locations around the planet. Once these waves reach the
surface, the energy can propagate by additional types of waves along the surface.
In a Rayleigh wave, the motion of the elements of the medium at the surface is a
combination of longitudinal and transverse displacements so that the net motion
of a point on the surface is circular or elliptical. This motion is similar to the path
followed by elements of water on the ocean surface as a wave passes by, as in Active
Figure 13.24. The Love wave is a transverse surface wave in which the transverse
oscillations are parallel to the surface. Therefore, no vertical displacement of the
surface occurs in a Love wave.

It is possible to use the P and S waves traveling through the body of the Earth to
gain information about the structure of the Earth’s interior. Measurements of a
given earthquake by seismographs at various locations on the surface indicate that
the Earth has an interior region that allows the passage of P waves but not S waves.
This fact can be understood if this particular region is modeled as having liquid

vP � √ B �  
4
3S

�

A seismograph
trace, showing the arrival of P and
S waves from the Northridge, 
California, earthquake at San Pablo,
Spain (top trace) and Albuquerque,
New Mexico (bottom trace). The P wave
arrives first because it travels the
fastest, followed by the slower moving
S wave. The farther the seismograph
station is from the epicenter, the
longer the time interval between the
arrivals of the P and S waves.
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characteristics. Similar to a gas, a liquid cannot sustain a transverse force. There-
fore, the transverse S waves cannot pass through this region. This information leads
us to a structural model in which the Earth has a liquid core between radii of ap-
proximately 1.2  103 km and 3.5  103 km.

Other measurements of seismic waves allow additional interpretations of layers
within the interior of the Earth, including a solid core at the center, a rocky region
called the mantle, and a relatively thin outer layer called the crust. Figure 13.25
shows this structure. Using x-rays or ultrasound in medicine to provide information
about the interior of the human body is somewhat similar to using seismic waves to
provide information about the interior of the Earth.

As P and S waves propagate in the interior of the Earth, they will encounter vari-
ations in the medium. At each boundary at which the properties of the medium
change, reflection and transmission occur. When the seismic wave arrives at the

Trough

Wave motion

Crest

The motion of water elements on the surface of deep water in which a wave is
propagating is a combination of transverse and longitudinal displacements, with
the result that the elements at the surface move in nearly circular paths. Each el-
ement is displaced both horizontally and vertically from its equilibrium position.
This motion is similar to the motion of the Earth’s surface for a Rayleigh wave.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 13.24 to see the
motion of the elements of the water surface as this wave propagates.

ACTIVE FIGURE 13.24
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Cross-section of
the Earth showing paths of waves pro-
duced by an earthquake. Only P waves
(yellow) can propagate in the liquid
core. The S waves (blue) do not enter
the liquid core. When the P waves
transmit from one region to another,
such as from the mantle to the liquid
core, they experience refraction, a
change in the direction of propaga-
tion. We will study refraction for light
in Chapter 25. Because of the refrac-
tion for seismic waves, there is a
“shadow” zone between 105° and 140°
from the epicenter in which no waves
following a direct path (i.e., a path
with no reflections) arrive.

FIGURE 13.25
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surface of the Earth, a small amount of the energy is transmitted into the air as low-
frequency sound waves. Some of the energy spreads out along the surface in the
form of Rayleigh and Love waves. The remaining wave energy is reflected back into
the interior. As a result, seismic waves can travel over long distances within the
Earth and can be detected at seismographs at many locations around the globe. In
addition, because a relatively large fraction of the wave energy continues to be re-
flected at each encounter with the surface, the wave can propagate for a long time.
Data are available showing seismograph activity for several hours after an earth-
quake, a result of the repeated reflections of seismic waves from the surface.

Another example of the reflection of seismic waves is available in the technology
of oil exploration. A “thumper truck” applies large impulsive forces to the ground,
resulting in low-energy seismic waves propagating into the Earth. Specialized micro-
phones are used to detect the waves reflected from various boundaries between lay-
ers under the surface. By using computers to map out the underground structure
corresponding to these layers, it is possible to detect layers likely to contain oil.

SUMMARY

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

A transverse wave is a wave in which the elements of the
medium move in a direction perpendicular to the direction of
the wave velocity. An example is a wave moving along a
stretched string.

Longitudinal waves are waves in which the elements of the
medium move back and forth parallel to the direction of the
wave velocity. Sound waves in air are longitudinal.

Any one-dimensional wave traveling with a speed of v in the
positive x direction can be represented by a wave function of
the form y � f (x � vt). Likewise, the wave function for a wave
traveling in the negative x direction has the form y � f(x � vt).

The wave function for a one-dimensional sinusoidal wave
traveling to the right can be expressed as

[13.4, 13.9]

where A is the amplitude, � is the wavelength, k is the angular
wave number, and � is the angular frequency. If T is the period
and f is the frequency, v, k, and � can be written as

[13.5, 13.11]

[13.7] k � 
2�

�

v �
�

T
� �f

y � A sin � 2�

�
 (x � vt)� � A sin(kx � �t)

[13.8]

The speed of a transverse wave traveling on a stretched
string of mass per unit length � and tension T is

[13.20]

When a pulse traveling on a string meets a fixed end, the
pulse is reflected and inverted. If the pulse reaches a free end,
it is reflected but not inverted.

The power transmitted by a sinusoidal wave on a stretched
string is

[13.23]

The change in frequency of a sound wave heard by an ob-
server whenever there is relative motion between a wave source
and the observer is called the Doppler effect. When the source
and observer are moving toward each other, the observer hears
a higher frequency than the true frequency of the source.
When the source and observer are moving away from each
other, the observer hears a lower frequency than the true fre-
quency of the source. The following general equation provides
the observed frequency:

[13.30]

A positive value is used for vO or vS for motion of the observer
or source toward the other, and a negative sign is used for mo-
tion away from the other.

f � � f  � v � vO

v � vS
�

� � 1
2��2A2v

v � √ T
�

 � � 
2�

T
� 2�f

� answer available in the Student Solutions Manual and
Study Guide

How would you create a longitudinal wave in a stretched
spring? Would it be possible to create a transverse wave in a
spring?

1.

QUESTIONS
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PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

2. Ocean waves with a crest-to-crest distance of 10.0 m can be
described by the wave function

y(x, t) � (0.800 m) sin[0.628(x � vt)]

where v � 1.20 m/s. (a) Sketch y(x, t) at t � 0. (b) Sketch
y(x, t) at t � 2.00 s. Note that the entire wave form has
shifted 2.40 m in the positive x direction in this time interval.

Section 13.2 ■ The Wave Model

Section 13.3 ■ The Traveling Wave
A sinusoidal wave is traveling along a rope. The oscillator
that generates the wave completes 40.0 vibrations in 30.0 s.
Also, a given maximum travels 425 cm along the rope in
10.0 s. What is the wavelength?

4. For a certain transverse wave, the distance between two
successive crests is 1.20 m and eight crests pass a given
point along the direction of travel every 12.0 s. Calculate
the wave speed.

3.

Section 13.1 ■ Propagation of a Disturbance
At t � 0, a transverse pulse in a wire is described by the
function

where x and y are in meters. Write the function y(x, t) that
describes this pulse if it is traveling in the positive x direc-
tion with a speed of 4.50 m/s.

y �
6

x2 � 3

1.

2. By what factor would you have to multiply the tension in a
stretched string so as to double the wave speed?

3. When a pulse travels on a taut string, does it always invert
upon reflection? Explain.

4. Consider a wave traveling on a taut rope. What is the dif-
ference, if any, between the speed of the wave and the
speed of a small element of the rope?

5. What happens to the wavelength of a wave on a string
when the frequency is doubled? Assume that the tension in
the string remains constant.

6. What happens to the speed of a wave on a taut string when
the frequency is doubled? Assume that the tension in the
string remains constant.

If you stretch a rubber hose and pluck it, you can observe
a pulse traveling up and down the hose. What happens
to the speed of the pulse if you stretch the hose more
tightly? What happens to the speed if you fill the hose with
water?

8. If one end of a heavy rope is attached to one end of a light
rope, the speed of a wave will change as the wave goes
from the heavy rope to the light one. Will it increase or
decrease? What happens to the frequency? What happens
to the wavelength?

A vibrating source generates a sinusoidal wave on a string
under constant tension. If the power delivered to the
string is doubled, by what factor does the amplitude
change? Does the wave speed change under these circum-
stances?

10. Why are sound waves characterized as longitudinal?

If an alarm clock is placed in a good vacuum and then acti-
vated, no sound is heard. Explain.

11.

9.

7.

12. If the wavelength of sound is reduced by a factor of 2, what
happens to its frequency? What happens to its speed?

13. By listening to a band or orchestra, how can you determine
that the speed of sound is the same for all frequencies?

14. The Tunguska event. On June 30, 1908, a meteor burned up
and exploded in the atmosphere above the Tunguska River
valley in Siberia. It knocked down trees over thousands of
square kilometers and started a forest fire, but apparently
caused no human casualties. A witness sitting on his
doorstep outside the zone of falling trees recalled events in
the following sequence. He saw a moving light in the sky,
brighter than the sun and descending at a low angle to the
horizon. He felt his face become warm. He felt the ground
shake. An invisible agent picked him up and immediately
dropped him about a meter farther away from where the
light had been. He heard a very loud protracted rumbling.
Suggest an explanation for these observations and for the
order in which they happened.

How can an object move with respect to an observer so
that the sound from it is not shifted in frequency?

16. Suppose the wind blows. Does that cause a Doppler effect
for sound propagating through the air? Is it like a moving
source or a moving observer?

17. In an earthquake, both S (transverse) and P (longitudinal)
waves propagate from the focus of the earthquake. The fo-
cus is in the ground below the epicenter on the surface. As-
sume that the waves move in straight lines through uniform
material. The S waves travel through the Earth more slowly
than the P waves (at about 5 km/s versus 8 km/s). By detect-
ing the time of arrival of the waves, how can one determine
the distance to the focus of the quake? How many detection
stations are necessary to locate the focus unambiguously?

15.
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A 30.0-m steel wire and a 20.0-m copper
wire, both with 1.00-mm diameters, are connected end to
end and stretched to a tension of 150 N. How long does it
take a transvers e wave to travel the entire length of the two
wires?

Section 13.5 ■ Reflection and Transmission of Waves
18. A series of pulses, each of amplitude 0.150 m, are sent

down a string that is attached to a post at one end. The
pulses are reflected at the post and travel back along
the string without loss of amplitude. When two waves are
present on the same string, the net displacement of a par-
ticular element of the string is the sum of the displace-
ments of the individual waves at that point. What is the net
displacement of an element at a point on the string where
two pulses are crossing (a) if the string is rigidly attached
to the post and (b) if the end at which reflection occurs is
free to slide up and down?

Section 13.6 ■ Rate of Energy Transfer by Sinusoidal
Waves on Strings

19. A taut rope has a mass of 0.180 kg and a length of 3.60 m.
What power must be supplied to the rope so as to generate
sinusoidal waves having an amplitude of 0.100 m and

17.

The wave function for a traveling wave on a taut string is
(in SI units)

y(x, t) � (0.350 m) sin(10�t � 3�x � �/4)

(a) What are the speed and direction of travel of the wave?
(b) What is the vertical position of an element of the string
at t � 0, x � 0.100 m? (c) What are the wavelength and
frequency of the wave? (d) What is the maximum trans-
verse speed of an element of the string?

6. A wave is described by y � (2.00 cm) sin(kx � �t), where 
k � 2.11 rad/m, � � 3.62 rad/s, x is in meters, and t is in
seconds. Determine the amplitude, wavelength, frequency,
and speed of the wave.

7. The string shown in Active Figure 13.8 is driven at a fre-
quency of 5.00 Hz. The amplitude of the motion is 12.0 cm
and the wave speed is 20.0 m/s. Furthermore, the wave is
such that y � 0 at x � 0 and t � 0. Determine (a) the an-
gular frequency and (b) wave number for this wave. 
(c) Write an expression for the wave function. Calculate
(d) the maximum transverse speed and (e) the maximum
transverse acceleration of an element of the string. 

8. Consider the sinusoidal wave of Example 13.2, with the
wave function

y � (15.0 cm) cos(0.157x � 50.3t)

At a certain instant, let point A be at the origin and point B
be the first point along the x axis where the wave is 60.0° out
of phase with point A. What is the coordinate of point B ?

(a) Write the expression for y as a func-
tion of x and t for a sinusoidal wave traveling along a rope
in the negative x direction with the following characteristics:
A � 8.00 cm, � � 80.0 cm, f � 3.00 Hz, and y(0, t) � 0 at
t � 0. (b) Write the expression for y as a function of x
and t for the wave in part (a) assuming that y(x, 0) � 0 at
the point x � 10.0 cm.

10. A transverse wave on a string is described by the wave 
function

y � (0.120 m) 

(a) Determine the transverse speed and acceleration of an
element of the string at t � 0.200 s for the point on the
string located at x � 1.60 m. (b) What are the wavelength,
period, and speed of propagation of this wave?

11. A transverse sinusoidal wave on a string has a period 
T � 25.0 ms and travels in the negative x direction with a
speed of 30.0 m/s. At t � 0, an element of the string at 
x � 0 has a transverse position of 2.00 cm and is traveling
downward with a speed of 2.00 m/s. (a) What is the ampli-
tude of the wave? (b) What is the initial phase angle? 
(c) What is the maximum transverse speed of an element
of the string? (d) Write the wave function for the wave.

12. Show that the wave function y � eb(x�vt) is a solution of the
linear wave equation (Eq. 13.19), where b is a constant.

Section 13.4 ■ The Speed of Transverse Waves on Strings
13. A telephone cord is 4.00 m long and has a mass of 0.200 kg.

A transverse pulse is produced by plucking one end of the

sin� �

8
 x � 4�t�

9.

5. taut cord. The pulse makes four trips down and back along
the cord in 0.800 s. What is the tension in the cord?

14. An astronaut on the Moon wishes to measure the local
value of the free-fall acceleration by timing pulses traveling
down a wire that has an object of large mass suspended
from it. Assume that a wire has a mass of 4.00 g and a
length of 1.60 m and that a 3.00-kg object is suspended
from it. A pulse requires 36.1 ms to traverse the length of
the wire. Calculate gMoon from these data. (You may ignore
the mass of the wire when calculating the tension in it.)

15. Transverse waves travel with a speed of 20.0 m/s in a string
under a tension of 6.00 N. What tension is required for a
wave speed of 30.0 m/s in the same string?

16. Review problem. A light string with a mass per unit length
of 8.00 g/m has its ends tied to two walls separated by a dis-
tance equal to three-fourths the length of the string
(Fig. P13.16). An object of mass m is suspended from
the center of the string, putting a tension in the string. 
(a) Find an expression for the transverse wave speed in the
string as a function of the mass of the hanging object. 
(b) What should be the mass of the object suspended
from the string so as to produce a wave speed of 60.0 m/s?

3L/4

L/2L/2

m

FIGURE P13.16
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a wavelength of 0.500 m and traveling with a speed of 
30.0 m/s?

20. It is found that a 6.00-m segment of a long string contains
four complete waves and has a mass of 180 g. The string is
vibrating sinusoidally with a frequency of 50.0 Hz and a
peak-to-valley displacement of 15.0 cm. (The peak-to-valley
distance is the vertical distance from the farthest positive
position to the farthest negative position.) (a) Write the
function that describes this wave traveling in the positive x
direction. (b) Determine the power being supplied to the
string.

Sinusoidal waves 5.00 cm in amplitude
are to be transmitted along a string that has a linear mass
density of 4.00  10�2 kg/m. If the source can deliver a
maximum power of 300 W and the string is under a ten-
sion of 100 N, what is the highest frequency at which the
source can operate?

22. A horizontal string can transmit a maximum power �0
(without breaking) if a wave with amplitude A and angular
frequency � is traveling along it. To increase this maxi-
mum power, a student folds the string and uses this “dou-
ble string” as a medium. Determine the maximum power
that can be transmitted along the “double string,” assum-
ing that the tension is constant.

Section 13.7 ■ Sound Waves

Note: Use the following values as needed unless otherwise
specified. The equilibrium density of air at 20°C is 
� � 1.20 kg/m3. The speed of sound in air is v � 343 m/s at
20°C. Pressure variations 
P are measured relative to atmos-
pheric pressure, 1.013  105 N/m2.

Problem 2.55 in Chapter 2 can also be assigned with this
section.

Suppose you hear a clap of thunder 16.2 s after seeing
the associated lightning stroke. The speed of sound
waves in air is 343 m/s and the speed of light in air is 
3.00  108 m/s. How far are you from the lightning stroke?

24. A dolphin in sea water at a temperature of 25°C emits
sound directed toward the bottom of the ocean 150 m be-
low. How much time passes before it hears an echo?

25. Many artists sing very high notes in ad lib ornaments and
cadenzas. The highest note written for a singer in a pub-
lished score was F-sharp above high C, 1.480 kHz, for Zer-
binetta in the original version of Richard Strauss’s opera
Ariadne auf Naxos. (a) Find the wavelength of this sound in
air. (b) In response to complaints, Strauss later transposed
the note down to F above high C, 1.397 kHz. By what incre-
ment did the wavelength change?

26. A bat (Fig. P13.26) can detect very small objects, such
as an insect whose length is approximately equal to one
wavelength of the sound the bat makes. If a bat emits
chirps at a frequency of 60.0 kHz and the speed of sound
in air is 340 m/s, what is the smallest insect the bat can
detect?

27. An ultrasonic tape measure uses frequencies above 20 MHz
to determine dimensions of structures such as buildings. It
does so by emitting a pulse of ultrasound into air and then

23.

21.

FIGURE P13.26 Problems 13.26 and 13.59.
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measuring the time interval for an echo to return from a
reflecting surface whose distance away is to be measured.
The distance is displayed as a digital readout. For a tape
measure that emits a pulse of ultrasound with a frequency
of 22.0 MHz, (a) what is the distance to an object from
which the echo pulse returns after 24.0 ms when the air
temperature is 26°C? (b) What should be the duration of
the emitted pulse if it is to include ten cycles of the ultra-
sonic wave? (c) What is the spatial length of such a pulse?

28. Ultrasound is used in medicine both for diagnostic
imaging and for therapy. For diagnosis, short pulses of ul-
trasound are passed through the patient’s body. An echo
reflected from a structure of interest is recorded, and from
the time interval for the return of the echo the distance to
the structure can be determined. A single transducer emits
and detects the ultrasound. An image of the structure is
obtained by reducing the data with a computer. With
sound of low intensity, this technique is noninvasive and
harmless. It is used to examine fetuses, tumors, aneurysms,
gallstones, hearts, and many other structures. To reveal
detail, the wavelength of the reflected ultrasound must be
small compared with the size of the object reflecting the
wave. (a) What is the wavelength of ultrasound with a
frequency of 2.40 MHz, used in echo cardiography to map
the beating heart? (b) In the whole set of imaging tech-
niques, frequencies in the range 1.00 to 20.0 MHz are
used. What is the range of wavelengths corresponding to
this range of frequencies? The speed of ultrasound in
human tissue is about 1 500 m/s (nearly the same as the
speed of sound in water).

An experimenter wishes to generate
in air a sound wave that has a displacement amplitude of
5.50  10�6 m. The pressure amplitude is to be limited to
0.840 N/m2. What is the minimum wavelength the sound
wave can have?

30. A sinusoidal sound wave is described by the displacement
wave function

s(x, t) � (2.00 �m) cos[(15.7 m�1)x � (858 s�1)t]

(a) Find the amplitude, wavelength, and speed of this wave.
(b) Determine the instantaneous displacement from equi-
librium of the elements of the medium at the position 
x � 0.050 0 m at t � 3.00 ms. (c) Determine the maximum
speed of the element’s oscillatory motion.

29.
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Write an expression that describes the pressure variation as
a function of position and time for a sinusoidal sound wave
in air, taking � � 0.100 m and 
Pmax � 0.200 N/m2.

32. Calculate the pressure amplitude of a 2.00-kHz sound wave
in air, assuming that the displacement amplitude is equal
to 2.00  10�8 m.

Section 13.8 ■ The Doppler Effect
33. A driver travels northbound on a highway at a speed of

25.0 m/s. A police car, traveling southbound at a speed of
40.0 m/s, approaches with its siren producing sound at a
frequency of 2 500 Hz. (a) What frequency does the driver
observe as the police car approaches? (b) What frequency
does the driver detect after the police car passes him?
(c) Repeat parts (a) and (b) for the case when the police
car is traveling northbound.

34. Expectant parents are thrilled to hear their unborn
baby’s heartbeat, revealed by an ultrasonic motion detec-
tor. Suppose the fetus’s ventricular wall moves in simple
harmonic motion with an amplitude of 1.80 mm and a fre-
quency of 115 per minute. (a) Find the maximum linear
speed of the heart wall. Suppose the motion detector in
contact with the mother’s abdomen produces sound at
2 000 000.0 Hz that travels through tissue at 1.50 km/s.
(b) Find the maximum frequency at which sound arrives at
the wall of the baby’s heart. (c) Find the maximum fre-
quency at which reflected sound is received by the motion
detector. By electronically “listening” for echoes at a fre-
quency different from the broadcast frequency, the motion
detector can produce beeps of audible sound in synchro-
nization with the fetal heartbeat.

Standing at a crosswalk, you hear a fre-
quency of 560 Hz from the siren of an approaching ambu-
lance. After the ambulance passes, the observed frequency
of the siren is 480 Hz. Determine the ambulance’s speed
from these observations.

36. A block with a speaker bolted to it is connected to a spring
having spring constant k � 20.0 N/m as shown in Figure
P13.36. The total mass of the block and speaker is 5.00 kg,
and the amplitude of this unit’s motion is 0.500 m. The
speaker emits sound waves of frequency 440 Hz. Deter-
mine the highest and lowest frequencies heard by the per-
son to the right of the speaker. Assume that the speed of
sound is 343 m/s.

35.

31. the tuning fork when waves of frequency 485 Hz reach
the release point? Take the speed of sound in air to be
340 m/s.

38. At the Winter Olympics, an athlete rides her luge down the
track while a bell just above the wall of the chute rings
continuously. When her sled passes the bell, she hears the
frequency of the bell fall by the musical interval called a
minor third. That is, the frequency she hears drops to five
sixths of its original value. (a) Find the speed of sound in
air at the ambient temperature �10.0°C. (b) Find the
speed of the athlete.

39. A siren mounted on the roof of a firehouse emits sound at
a frequency of 900 Hz. A steady wind is blowing with a
speed of 15.0 m/s. Taking the speed of sound in calm air
to be 343 m/s, find the wavelength of the sound (a) up-
wind of the siren and (b) downwind of the siren. Firefight-
ers are approaching the siren from various directions at
15.0 m/s. What frequency does a firefighter hear (c) if she
is approaching from an upwind position so that she is
moving in the direction in which the wind is blowing and
(d) if she is approaching from a downwind position and
moving against the wind?

Section 13.9 ■ Context Connection — Seismic Waves
40. Two points A and B on the surface of the Earth are at the

same longitude and 60.0° apart in latitude. Suppose an
earthquake at point A creates a P wave that reaches point B
by traveling straight through the body of the Earth at a
constant speed of 7.80 km/s. The earthquake also radiates
a Rayleigh wave, which travels along the surface of the
Earth at 4.50 km/s. (a) Which of these two seismic waves
arrives at B first? (b) What is the time difference between
the arrivals of the two waves at B? Take the radius of the
Earth to be 6 370 km.

41. A seismographic station receives S and P waves from an
earthquake, 17.3 s apart. Assume that the waves have
traveled over the same path at speeds of 4.50 km/s and
7.80 km/s. Find the distance from the seismograph to the
hypocenter of the quake.

Additional Problems
42. “The wave” is a particular type of pulse that can prop-

agate through a large crowd gathered at a sports arena
(Fig. P13.42). The elements of the medium are the specta-
tors, with zero position corresponding to their being
seated and maximum position corresponding to their
standing and raising their arms. When a large fraction of
the spectators participate in the wave motion, a somewhat
stable pulse shape can develop. The wave speed depends
on people’s reaction time, which is typically on the order
of 0.1 s. Estimate the order of magnitude, in minutes, of
the time interval required for such a pulse to make one cir-
cuit around a large sports stadium. State the quantities you
measure or estimate and their values.

43. Review problem. A block of mass M, supported by a string,
rests on a frictionless incline making an angle � with the
horizontal (Fig. P13.43). The length of the string is L and
its mass is m �� M. Derive an expression for the time inter-
val required for a transverse wave to travel from one end of
the string to the other.

x

mk

FIGURE P13.36

A tuning fork vibrating at 512 Hz falls from rest and accel-
erates at 9.80 m/s2. How far below the point of release is

37.
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44. Review problem. A block of mass M hangs from a rubber
cord. The block is supported so that the cord is not
stretched. The unstretched length of the cord is L0 and its
mass is m, much less than M. The “spring constant” for the
cord is k. The block is released and stops at the lowest
point. (a) Determine the tension in the cord when the
block is at this lowest point. (b) What is the length of the
cord in this “stretched” position? (c) Find the speed of a
transverse wave in the cord, assuming that the block is held
in this lowest position.

45. Review problem. A block of mass 0.450 kg is attached to
one end of a cord of mass 0.003 20 kg; the other end of the
cord is attached to a fixed point. The block rotates
with constant angular speed in a circle on a horizontal,
frictionless table. Through what angle does the block
rotate in the time interval required for a transverse wave to
travel along the string from the center of the circle to the
block?

46. (a) Show that the speed of longitudinal waves along a
spring of force constant k is , where L is thev � √kL/�

unstretched length of the spring and � is the mass per unit
length. (b) A spring with a mass of 0.400 kg has an
unstretched length of 2.00 m and a force constant of
100 N/m. Using the result you obtained in part (a), deter-
mine the speed of longitudinal waves along this spring.

A rope of total mass m and length L is suspended vertically.
Show that a transverse pulse travels the length of the rope
in a time interval . (Suggestion: First find an
expression for the wave speed at any point a distance x
from the lower end by considering the tension in the rope
as resulting from the weight of the segment below that
point.)

48. Assume that an object of mass M is suspended from the
bottom of the rope in Problem 13.47. (a) Show that the
time interval for a transverse pulse to travel the length of
the rope is

(b) Show that this expression reduces to the result of
Problem 13.47 when M � 0. (c) Show that for m �� M, the
expression in part (a) reduces to

49. A pulse traveling along a string of linear mass density � is
described by the wave function

y � [A0e�bx] sin(kx � �t)

where the factor in brackets is said to be the amplitude.
(a) What is the power �(x) carried by this wave at a
point x? (b) What is the power carried by this wave at the
origin? (c) Compute the ratio �(x)/�(0).

50. An earthquake on the ocean floor in the Gulf of Alaska
produces a tsunami (sometimes incorrectly called a “tidal
wave”) that reaches Hilo, Hawaii, 4 450 km away, in a time
interval of 9 h 30 min. Tsunamis have enormous wave-
lengths (100 to 200 km), and the propagation speed for
these waves is , where is the average depth of the
water. From the information given, find the average wave
speed and the average ocean depth between Alaska and
Hawaii. (This method was used in 1856 to estimate the av-
erage depth of the Pacific Ocean long before soundings
were made to give a direct determination.)

51. A string on a musical instrument is held under tension T
and extends from the point x � 0 to the point x � L. The
string is overwound with wire in such a way that its mass
per unit length �(x) increases uniformly from �0 at x � 0
to �L at x � L. (a) Find an expression for �(x) as a func-
tion of x over the range 0 � x � L. (b) Show that the time
interval required for a transverse pulse to travel the length
of the string is given by

52. A flowerpot is knocked off a balcony 20.0 m above the
sidewalk and falls toward an unsuspecting 1.75-m-tall man
who is standing below. How close to the sidewalk can the


t �
2L ��L � � 0 � √�L � 0 �

3√T �√�L � √� 0 �

dv � √gd


t � √ mL
Mg


t � 2√ L
mg

 �√M � m � √M�


t �  2√L/g

47.
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flowerpot fall before it is too late for a warning shouted
from the balcony to reach the man in time? Assume that
the man below requires 0.300 s to respond to the warning.

53. A sound wave in a cylinder is described by Equations 13.24
through 13.26. Show that .

54. On a Saturday morning, pickup trucks and sport utility ve-
hicles carrying garbage to the town landfill form a nearly
steady procession on a country road, all traveling at
19.7 m/s. From one direction, two trucks arrive at the
dump every 3 min. A bicyclist is also traveling toward the
landfill, at 4.47 m/s. (a) With what frequency do the trucks
pass him? (b) A hill does not slow down the trucks, but
makes the out-of-shape cyclist’s speed drop to 1.56 m/s.
How often do noisy, smelly, inefficient, garbage-dripping,
roadhogging trucks whiz past him now?

55. The ocean floor is underlain by a layer of basalt that consti-
tutes the crust, or uppermost layer, of the Earth in that re-
gion. Below this crust is found denser periodotite rock that
forms the Earth’s mantle. The boundary between these two
layers is called the Mohorovicic discontinuity (“Moho” for
short). If an explosive charge is set off at the surface of the
basalt, it generates a seismic wave that is reflected back out
at the Moho. If the speed of this wave in basalt is 6.50 km/s
and the two-way travel time is 1.85 s, what is the thickness
of this oceanic crust?

56. A train whistle ( f � 400 Hz) sounds higher or lower in fre-
quency depending on whether it approaches or recedes.
(a) Prove that the difference in frequency between the
approaching and receding train whistle is 

where u is the speed of the train and v is the speed of
sound. (b) Calculate this difference for a train moving at a
speed of 130 km/h. Take the speed of sound in air to be
340 m/s.

57. To permit measurement of her speed, a sky diver carries a
buzzer emitting a steady tone at 1 800 Hz. A friend on the
ground at the landing site directly below listens to the am-
plified sound he receives. Assume that the air is calm and
that the sound speed is 343 m/s, independent of altitude.
While the sky diver is falling at terminal speed, her friend
on the ground receives waves of frequency 2 150 Hz. 
(a) What is the sky diver’s speed of descent? (b) Suppose
the sky diver can hear the sound of the buzzer reflected
from the ground. What frequency does she receive?

58. A police car is traveling east at 40.0 m/s along a straight
road, overtaking a car ahead of it moving east at 30.0 m/s.


f �
2u/v

1 � u2/v2  f


P � � �v�√s2
max � s2

The police car has a malfunctioning siren that is stuck at
1 000 Hz. (a) Sketch the appearance of the wave fronts of
the sound produced by the siren. Show the wave fronts
both to the east and to the west of the police car. (b) What
would be the wavelength in air of the siren sound if the po-
lice car were at rest? (c) What is the wavelength in front of
the car? (d) What is it behind the police car? (e) What is
the frequency heard by the driver being chased?

59. A bat, moving at 5.00 m/s, is chasing a flying insect 
(Fig. P13.26). If the bat emits a 40.0-kHz chirp and receives
back an echo at 40.4 kHz, at what speed is the insect mov-
ing toward or away from the bat? Take the speed of sound
in air to be v � 340 m/s.

60. The Doppler Equation 13.30 is valid when the motion be-
tween the observer and the source occurs on a straight line
so that the source and observer are moving either directly
toward or directly away from each other. If this restriction is
relaxed, one must use the more general Doppler equation

where �O and �S are defined in Figure P13.60a. (a) Show
that if the observer and source are moving away from each
other, the preceding equation reduces to Equation 13.30
with negative values for both vO and vS . (b) Use the pre-
ceding equation to solve the following problem. A train
moves at a constant speed of 25.0 m/s toward the intersec-
tion shown in Figure P13.60b. A car is stopped near the in-
tersection, 30.0 m from the tracks. If the train’s horn emits
sound with a frequency of 500 Hz, what is the frequency
heard by the passengers in the car when the train is 40.0 m
from the intersection? Take the speed of sound to be
343 m/s.

f � � � v � vO  cos �O

v � vS  cos �S
� f

S
vS

O
vO

(a)

θOθ

Sθθ

(b)

25.0 m/s

FIGURE P13.60

ANSWERS TO QUICK QUIZZES
13.1 (b), (c). The movement of the people in the line is paral-

lel to the direction of propagation of the gap. The fans
participating in the “wave” stand up vertically as the wave
sweeps past them horizontally.

13.2 (i), (c). The wave speed is determined by the medium,
so it is unaffected by changing the frequency. 
(ii), (b). Because the wave speed remains the same, the
result of doubling the frequency is that the wavelength is
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half as large. (iii), (d). The amplitude of a wave is unre-
lated to the frequency, so we cannot determine the new
amplitude without further information.

13.3 Only choices (f) and (h) are correct. Choices (a) and
(b) affect the transverse speed of an element of the
string but not the wave speed along the string. Choices
(c) and (d) change the amplitude. Choices (e) and (g)
increase the time interval by decreasing the wave speed.

13.4 (d). Doubling the amplitude of the wave causes the power
to be larger by a factor of 4. In (a), halving the linear mass
density of the string causes the power to change by a fac-
tor of 0.71; the rate decreases. In (b), doubling the wave-
length of the wave halves the frequency and causes the
power to change by a factor of 0.25; the rate decreases. In

(c), doubling the tension in the string changes the wave
speed and causes the power to change by a factor of 1.4,
which is not as large as in part (d).

13.5 (e). The wave speed cannot be changed by moving the
source, so (a) and (b) are incorrect. The detected wave-
length is largest at A, so (c) and (d) are incorrect.
Choice (f) is incorrect because the detected frequency is
lowest at location A. Choice (e) is correct because at lo-
cation C the wavelength is the smallest, so the frequency
must be the largest.

13.6 (e). The intensity of the sound increases because the
train is moving closer to you. Because the train moves at
a constant velocity, the Doppler-shifted frequency re-
mains fixed.



Superposition and Standing Waves

C H A P T E R 14

The rich sound of a piano is due to standing
waves on strings under tension. Many such
strings can be seen in this photograph. Waves
also travel on the soundboard, which is visible
below the strings.

C H A P T E R  O U T L I N E
14.1 The Principle of Superposition
14.2 Interference of Waves
14.3 Standing Waves
14.4 Standing Waves in Strings
14.5 Standing Waves in Air Columns
14.6 Beats: Interference in Time
14.7 Nonsinusoidal Wave Patterns
14.8 Context Connection — Building 
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In Chapter 13, we introduced the wave model. We have seen
that waves are very different from particles. An ideal particle
is of zero size, but an ideal wave is of infinite length. Another

important difference between waves and particles is that we can
explore the possibility of two or more waves combining at one
point in the same medium. We can combine particles to form
extended objects, but the particles must be at different locations.
In contrast, two waves can both be present at a given location,
and the ramifications of this possibility are explored in this
chapter.

One ramification of the combination of waves is that only
certain allowed frequencies can exist on systems with boundary
conditions; that is, the frequencies are quantized. In Chapter 11,
we learned about quantized energies of the hydrogen atom.
Quantization is at the heart of quantum mechanics, a subject that
is introduced formally in Chapter 28. We shall see that waves
under boundary conditions explain many of the quantum
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phenomena. For our present purposes in this chapter, quantization enables us to
understand the behavior of the wide array of musical instruments that are based on
strings and air columns.

THE  PRINCIPLE  OF  SUPERPOSITION
Many interesting wave phenomena in nature cannot be described by a single wave.
Instead, one must analyze complex waveforms in terms of a combination of travel-
ing waves. To analyze such wave combinations, we make use of the principle of
superposition:

If two or more traveling waves are moving through a medium and combine
at a given point, the resultant position of the element of the medium at that
point is the sum of the positions due to the individual waves.

This rather striking property is exhibited by many waves in nature, including waves
on strings, sound waves, and surface water waves. It is also exhibited by electromag-
netic waves, for which the electric fields of the combined waves are added. Waves
that obey this principle are called linear waves. In general, linear waves have an am-
plitude that is small relative to their wavelength. Waves that violate the superposi-
tion principle are called nonlinear waves and, as mentioned in Chapter 13, are often
characterized by large amplitudes. In this book, we shall deal only with linear waves.

A simple pictorial representation of the superposition principle is obtained by
considering two pulses traveling in opposite directions on a stretched string as in
Active Figure 14.1. The wave function for the pulse moving to the right is y1, and
the wave function for the pulse moving to the left is y2. The pulses have the same
speed but different shapes. Each pulse is assumed to be symmetric (although that is
not a necessary condition), and in both cases displacements of the elements of the
string in the vertical direction are taken to be positive. When the waves overlap, the
resulting waveform is given by y1 � y2. After the time interval during which the
pulses combine, they separate and continue moving in their original directions
(Active Fig. 14.1d). Note that the final waveforms remain unchanged as if the two

14.1

(c)

(d)

(b)

(a)

y2 y 1

y 1+ y2

y 1+ y2

y2y 1

(Left) Two
pulses traveling on a stretched string in
opposite directions pass through each
other. When the pulses overlap, as in
(b) and (c), the net displacement of
each element of the string equals the
sum of the displacements produced by
each pulse. Because each pulse pro-
duces positive displacements of the
string, we refer to their superposition
as constructive interference. (Right) Photo-
graph of the superposition of two equal
and symmetric pulses traveling in op-
posite directions on a stretched spring.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 14.1 you can
choose the amplitude and orientation
of each of the pulses and observe the
interference as they pass each other.

ACTIVE FIGURE 14.1

(E
du

ca
tio

n 
De

ve
lo

pm
en

t C
en

te
r, 

N
ew

to
n,

 M
A)

(e)

� Principle of superposition
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pulses had never met! The combination of separate waves in the same region of
space to produce a resultant wave is called interference. Notice that the interfer-
ence exists only while the waves are in the same region of space, and there is no
permanent effect on the pulses after they separate.

For the two pulses shown in Active Figure 14.1, the vertical displacements are in
the same direction and so the resultant waveform (when the pulses overlap) ex-
hibits an amplitude greater than those of the individual pulses. Now consider two
identical pulses, again traveling in opposite directions on a stretched string, but this
time one pulse is inverted relative to the other as in Active Figure 14.2. In this case,
when the pulses begin to overlap, the resultant waveform is the sum of the two sepa-
rate waveforms again, but one of the displacements is negative. Again, the two
pulses pass through each other. When they exactly overlap, they partially cancel each
other. At this time (Active Fig. 14.2c), the resultant amplitude is small.

Two pulses move in opposite directions on a string and are identical
in shape except that one has positive displacements of the elements of the string and the
other has negative displacements. What happens at the moment that the two pulses com-
pletely overlap on the string? (a) The energy associated with the pulses has disappeared.
(b) The string is not moving. (c) The string forms a straight line. (d) The pulses have van-
ished and will not reappear.

QUICK QUIZ 14.1

INTERFERENCE  OF  WAVES
In this section, we shall investigate the mathematics of the waves in interference
analysis model. Additional applications of this model applied to light waves are pre-
sented in Chapter 27.

Let us apply the superposition principle to two sinusoidal waves traveling in the
same direction in a medium. If the two waves are traveling to the right and have the
same frequency, wavelength, and amplitude but differ in phase, we can express
their individual wave functions as

y1 � A sin(kx � �t)  and  y2 � A sin(kx � �t � �)

14.2

(a)

(b)

(d)

y 1

y 2

y 1

y 2

y 2

y 1

(c)
y 1+ y 2

(Left) Two
pulses traveling in opposite directions
with displacements that are inverted
relative to each other. When the two
overlap as in (c), their displacements
subtract from each other. (Right) Pho-
tograph of the superposition of two
symmetric pulses traveling in opposite
directions, where one is inverted rela-
tive to the other.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 14.2 you can
choose the amplitude and orientation
of each of the pulses and observe the
interference as they pass each other.

ACTIVE FIGURE 14.2
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DO WAVES REALLY INTERFERE? In pop-
ular usage, the term interfere implies
that an agent affects a situation in
some way so as to preclude some-
thing from happening. For 
example, in American football, pass
interference means that a defending
player has affected the receiver so
that he is unable to catch the ball.
This usage is very different from
that in physics, in which waves pass
through one another and interfere
but do not affect one another in
any way. In physics, we will 
consider interference to be similar
to the notion of combination, as 
described in this chapter, as 
opposed to the popular usage.

� PITFALL PREVENTION 14.1

(e)

www.pop4e.com
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where � is the phase difference between the two waves. Let us imagine that these
two waves coincide in the medium. For example, these expressions might represent
two waves traveling along the same string. In this situation, the resultant wave func-
tion y is, according to the principle of superposition,

To simplify this expression, it is convenient to use the trigonometric identity

If we let a � kx � �t and b � kx � �t � �, the resultant wave function y reduces to

[14.1]

This mathematical representation of the resultant wave has several important
features. The resultant wave function y is also a sinusoidal wave and has the same fre-
quency and wavelength as the individual waves. The amplitude of the resultant
wave is 2A cos(�/2) and the phase angle is �/2. If the phase angle � equals 0,
cos(�/2) � cos 0 � 1 and the amplitude of the resultant wave is 2A. In other
words, the amplitude of the resultant wave is twice the amplitude of either individ-
ual wave. In this case, the waves are said to be everywhere in phase (� � 0) and to
interfere constructively. That is, the crests of the individual waves occur at the same
positions, as is shown by the blue line in Active Figure 14.3a. In general, construc-
tive interference occurs when cos(�/2) � � 1 or when � � 0, 2�, 4�, . . . .

On the other hand, if � is equal to � radians or to any odd multiple of �,
cos(�/2) � cos(�/2) � 0 and the resultant wave has zero amplitude everywhere. In
this case, the two waves interfere destructively. That is, the crest of one wave coin-
cides with the trough of the second (Active Fig. 14.3b) and their displacements can-
cel at every point. Finally, when the phase constant has a value between 0 and �, as
in Active Figure 14.3c, the resultant wave has an amplitude whose value is some-
where between 0 and 2A.

y � �2A cos 
�

2 � sin �kx � �t �
�

2 �

sin a � sin b � 2 cos � a � b
2 � sin � a � b

2 �

y � y1 � y2 � A[sin(kx � �t) � sin(kx � �t � �)]

y

= 0°

y1 and y2 are identical

x

y
y1 y2 y

x

x

y

(a)

(b)

(c)

φ

y
y1

y2

= 180°φ

= 60°φ

y

The superposition of two identical
waves y1 and y2. (a) When the two
waves are in phase, the result is
constructive interference. 
(b) When the two waves are � rad
out of phase, the result is destruc-
tive interference. (c) When the
phase angle has a value other than
0 or � rad, the resultant wave y
falls somewhere between the ex-
tremes shown in (a) and (b).

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 14.3 to
change the phase relationship 
between the waves and observe 
the wave representing the 
superposition.

ACTIVE FIGURE 14.3

� Destructive interference

� Constructive interference

www.pop4e.com
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An acoustical
system for demonstrating interference
of sound waves. Sound waves from the
speaker propagate into the tube and
the energy splits into two parts at
point P. The waves from the two
paths, which combine at the opposite
side, are detected at the receiver R.
The upper path length r 2 can be
varied by sliding the upper section.

Although we have used waves having the same amplitude in the preceding dis-
cussion, waves of differing amplitudes will interfere in a similar way. If the waves are
in phase, the combined amplitude is the sum of the individual amplitudes. If they
are 180° out of phase, the combined amplitude is the difference between the indi-
vidual amplitudes.

Figure 14.4 shows a simple device for demonstrating interference of sound
waves. Sound from speaker S is sent into a tube at P, where there is a T-shaped junc-
tion. Half the sound energy travels in one direction and half in the opposite direc-
tion. Therefore, the sound waves that reach receiver R at the other side can travel
along either of two paths. The total distance from speaker to receiver is called the
path length r. The length of the lower path is fixed at r 1. The upper path length r 2
can be varied by sliding the U-shaped tube (similar to that on a slide trombone).
When the difference in the path lengths 	r � is either zero or some inte-
gral multiple of the wavelength 
, the two waves reaching the receiver are in phase
and interfere constructively as in Active Figure 14.3a. In this case, a maximum in
the sound intensity is detected at the receiver. If path length r 2 is adjusted so that
	r is 
/2, 3
/2, . . . , n
/2 (for n odd), the two waves are exactly 180° out of phase
at the receiver and hence cancel each other. In this case of completely destructive
interference, no sound is detected at the receiver. This simple experiment is a strik-
ing illustration of interference. In addition, it demonstrates that a phase difference
may arise between two waves generated by the same source when they travel along
paths of unequal lengths.

It is often useful to express a path difference in terms of the phase angle � be-
tween the two waves. Because a path difference of one wavelength corresponds to a
phase angle of 2� rad, we obtain the ratio �/2� � 	r/
 or

[14.2]

Therefore, for example, a phase difference of 180° or � rad corresponds to a shift
of 
/2. Conversely, a one-quarter-wavelength shift corresponds to a 90° phase
difference.

Nature provides many examples of interference phenomena. Later in the text
we shall describe several interesting interference effects involving light waves.

� Thinking Physics 14.1
If stereo speakers are connected to the amplifier “out of phase,” one speaker is
moving outward when the other is moving inward. The result is a weakness in the
bass notes, which can be corrected by reversing the wires on one of the speaker
connections. Why are only the bass notes affected in this case and not the treble
notes? For help in answering this question, note that the range of wavelengths of
sound from a standard piano is from 0.082 m for the highest C to 13 m for the
lowest A.

Reasoning Imagine that you are sitting in front of the speakers, midway between
them. Then, the sound from each speaker travels the same distance to you, so there
is no phase difference in the sound due to a path difference. Because the speakers
are connected out of phase, the sound waves are half a wavelength out of phase on
leaving the speaker and, consequently, on arriving at your ear. As a result, the
sound for all frequencies cancels in the simplification model of a zero-size head
located exactly on the midpoint between the speakers. If the ideal head were
moved off the centerline, an additional phase difference is introduced by the path
length difference for the sound from the two speakers. In the case of low-frequency,
long-wavelength bass notes, the path length differences are a small fraction of a
wavelength, so significant cancellation still occurs. For the high-frequency, short-
wavelength treble notes, a small movement of the ideal head results in a much

	r �
�

2�
 


� r 2 � r 1 �
FIGURE 14.4

r 1

r 2

R

Speaker

S

P
Receiver

� Relationship between path
difference and phase angle
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Two speakers emit
sound waves toward each other. 
Between the speakers, identical waves
traveling in opposite directions 
combine to form standing waves.

larger fraction of a wavelength in path length difference or even multiple wave-
lengths. Therefore, the treble notes could be in phase with this head movement. If
we now add that the head is not of zero size and that it has two ears, we can see that
complete cancellation is not possible and, with even small movements of the head,
one or both ears will be at or near maxima for the treble notes. The size of the
head is much smaller than bass wavelengths, however, so the bass notes are signifi-
cantly weakened over much of the region in front of the speakers. �

Two Speakers Driven by the Same SourceEXAMPLE 14.1INTERACTIVE

or, in other words, when their path difference equals

/2. To calculate the path difference, we must first find
the path lengths r 1 and r 2. Consider the two geometric
model triangles shaded in Figure 14.5. Making use of
these triangles, we find the path lengths to be

Hence, the path difference is .
Because we require that this path difference be equal to

for the first minimum, we find that 
 � 0.26 m.
To obtain the oscillator frequency, we use v � 
f,

where v is the speed of sound in air, 343 m/s:

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 14.1 you 
can vary the point P at which the first minimum occurs to
determine the frequency of the sound waves.

1.3 kHzf �
v



�
343 m/s
0.26 m

�


/2

r 2 � r 1 � 0.13 m

r 2 � √(8.00 m)2 � (1.85 m)2 � 8.21 m

r 1 � √(8.00 m)2 � (1.15 m)2 � 8.08 m

Two speakers placed 3.00 m apart are driven in phase
by the same oscillator (Fig. 14.5). A listener is originally
at point O, which is located 8.00 m from the center of
the line connecting the two speakers. The listener then
moves to point P, which is a perpendicular distance
0.350 m from O, at which the first cancellation of waves
occurs, resulting in a minimum in sound intensity.
What is the frequency of the oscillator?

Solution The first cancellation occurs when the two
waves reaching the listener at P are 180° out of phase

STANDING  WAVES
The sound waves from the speakers in Interactive Example 14.1 leave the speakers
in the forward direction, and we considered interference at a point in front of the
speakers. Suppose we turn the speakers so that they face each other as in Figure
14.6 and then have them emit sound of the same frequency and amplitude. In this
situation, two identical waves travel in opposite directions in the same medium.
These waves combine in accordance with the superposition principle.

We can analyze such a situation by considering wave functions for two transverse
sinusoidal waves having the same amplitude, frequency, and wavelength but travel-
ing in opposite directions in the same medium:

where y1 represents a wave traveling in the �x direction and y2 represents a wave
traveling in the �x direction. According to the principle of superposition, adding
these two functions gives the resultant wave function y :

y � y1 � y 2 � A sin(kx � �t) � A sin(kx � �t)

y1 � A sin(kx � �t)  and  y 2 � A sin(kx � �t)

14.3
v

v

FIGURE 14.6

(Interactive Example 14.1) Two speakers create a
minimum in the sound intensity at point P.

3.00 m

8.00 m

r 2

8.00 m

r 1

O

0.350 m

1.85 m

P
1.15 m

FIGURE 14.5
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Multiflash 
photograph of a standing wave on a
string. The vertical displacement
from equilibrium of an individual 
element of the string is proportional
to cos �t. That is, each element 
vibrates at an angular frequency �.
The amplitude of the vertical 
oscillation of any element on the
string depends on the horizontal 
position of the element. Each 
element vibrates within the confines
of the envelope function 2A sin kx.

Using the trigonometric identity sin(a � b) � sin a cos b � cos a sin b, this expres-
sion reduces to

[14.3]

Notice that this function does not look mathematically like a traveling wave because
there is no function of kx � �t. Equation 14.3 represents the wave function of a
standing wave such as that shown in Figure 14.7. A standing wave is an oscillation
pattern that results from two waves traveling in opposite directions. Mathematically,
this equation looks more like simple harmonic motion than wave motion for travel-
ing waves. Every element of the medium vibrates in simple harmonic motion with
the same angular frequency � (according to the factor cos �t). The amplitude of
motion of a given element (the factor 2A sin kx), however, depends on its position
along the medium, described by the variable x. From this result, we see that the sim-
ple harmonic motion of every element has an angular frequency of � and a posi-
tion-dependent amplitude of 2A sin kx.

Because the amplitude of the simple harmonic motion of an element at any
value of x is equal to 2A sin kx, we see that the maximum amplitude of the simple
harmonic motion has the value 2A. This maximum amplitude is described as the
amplitude of the standing wave. It occurs when the coordinate x for an element
satisfies the condition sin kx � 1, or when

Because k � 2�/
, the positions of maximum amplitude, called antinodes, are

[14.4]

where n � 1, 3, 5, . . . . Note that adjacent antinodes are separated by a distance
�/2.

Similarly, the simple harmonic motion has a minimum amplitude of zero when x
satisfies the condition sin kx � 0, or when kx � �, 2�, 3�, . . . , giving

[14.5]

where n � 1, 2, 3, . . . . These points of zero amplitude, called nodes, are also
spaced by �/2. The distance between a node and an adjacent antinode is 
/4. The
standing wave patterns produced at various times by two waves traveling in opposite
directions are represented graphically in Active Figure 14.8. The upper part of each
figure represents the individual traveling waves and the lower part represents the
standing wave patterns. The nodes of the standing wave are labeled N and the

x �



2
, 
, 

3


2
, . . . �

n


2

x �



4
, 

3


4
, 

5


4
, . . . �

n


4

kx �
�

2
, 

3�

2
, 

5�

2
, . . .

y � (2A sin kx) cos �t

Antinode Antinode

Node

2A sin kx

Node

FIGURE 14.7

(©
 1

99
1 

Ri
ch

ar
d 

M
eg

na
/F

un
da

m
en

ta
l P

ho
to

gr
ap

hs
)

THREE TYPES OF AMPLITUDE We need
to distinguish carefully here be-
tween the amplitude of the individ-
ual waves, which is A, and the am-
plitude of the simple harmonic
motion of the elements of the
medium, which is 2A sin kx. A given
element in a standing wave vibrates
within the constraints of the enve-
lope function 2A sin kx, where x is
that element’s position in the
medium. That vibration is in con-
trast to traveling sinusoidal waves,
in which all elements oscillate with
the same amplitude and the same
frequency and the amplitude A of
the wave is the same as the ampli-
tude A of the simple harmonic mo-
tion of the elements. Furthermore,
we can identify the amplitude of
the standing wave as 2A.

� PITFALL PREVENTION 14.2

� Positions of antinodes

� Positions of nodes
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(a) t = 0

y1

y2

y
N N N N N

AA

(b) t = T/4

y2

y1

y

(c) t = T/2

y1

A A

y2

y
N N N N N

A A

A A

Standing wave patterns at various
times produced by two waves of
equal amplitude traveling in oppo-
site directions. For the resultant
wave y, the nodes (N) are points of
zero displacement and the anti-
nodes (A) are points of maximum
displacement.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 14.8 to
choose the wavelength of the
waves and see the standing wave
that results.

ACTIVE FIGURE 14.8

antinodes are labeled A. At t � 0 (Active Fig. 14.8a), the two waves are in phase,
giving a wave pattern with amplitude 2A. One quarter of a period later, at t � T/4
(Active Fig. 14.8b), the individual waves have moved one quarter of a wavelength
(one to the right and the other to the left). At this time, the waves are 180° out of
phase. The individual displacements of the elements of the medium from their
equilibrium positions are of equal magnitude and opposite direction for all values
of x ; hence, the resultant wave has zero displacement everywhere. At t � T/2
(Active Fig. 14.8c), the individual waves are again in phase, producing a wave
pattern that is inverted relative to the t � 0 pattern.

Consider Active Figure 14.8 as representing a standing wave on a
string. Define the velocity of elements of the string as positive if they are moving upward
in the figure. (i) At the moment the string has the shape shown at the bottom of Active
Figure 14.8a, the instantaneous velocity of elements along the string (a) is zero for all 
elements, (b) is positive for all elements, (c) is negative for all elements, or (d) varies with
the position of the element. (ii) From the same set of choices, choose the best answer at
the moment the string has the shape shown at the bottom of Active Figure 14.8b.

QUICK QUIZ 14.2

given by Equation 14.3, with A � 4.0 cm and 
k � 3.0 rad/cm:

Therefore, the maximum transverse position of an
element at the position x � 2.3 cm is

Find the positions of the nodes and antinodes.B

4.6 cm � (8.0 cm) sin(6.9 rad) �

ymax � [(8.0 cm) sin 3.0x]x �2.3 cm

y � (2A sin kx) cos �t � [(8.0 cm) sin 3.0x] cos 2.0t

Formation of a Standing WaveEXAMPLE 14.2
Two transverse waves traveling in opposite directions
produce a standing wave. The individual wave functions
are

where x and y are in centimeters.

Find the maximum transverse position of an 
element of the medium at x � 2.3 cm.

Solution When the two waves are summed, the result is
a standing wave whose mathematical representation is

A

y 2 � (4.0 cm) sin(3.0x � 2.0t)

y1 � (4.0 cm) sin(3.0x � 2.0t)

www.pop4e.com
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STANDING  WAVES  IN  STRINGS
In the preceding section, we discussed standing waves formed by identical waves
moving in opposite directions in the same medium. One way to establish a standing
wave on a string is to combine incoming and reflected waves from a rigid end. If a
string is stretched between two rigid supports (Active Fig. 14.9a) and waves are es-
tablished on the string, standing waves will be set up in the string by the continuous
superposition of the waves incident on and reflected from the ends. This physical
system is a model for the source of sound in any stringed instrument, such as the
guitar, the violin, and the piano. The string has a number of natural patterns of vi-
bration, called normal modes, and each mode has a characteristic frequency.

This discussion is our first introduction to an important analysis model, the
wave under boundary conditions. When boundary conditions are applied to a wave,
we find very interesting behavior that has no analog in the physics of particles. The
most prominent aspect of this behavior is quantization. We shall find that only cer-
tain waves— those that satisfy the boundary conditions—are allowed. The notion
of quantization was introduced in Chapter 11 when we discussed the Bohr model of
the atom. In that model, angular momentum was quantized. As we shall see in
Chapter 29, this quantization is just an application of the wave under boundary
conditions model.

In the standing wave pattern on a stretched string, the ends of the string must
be nodes because these points are fixed, establishing the boundary condition on
the waves. The rest of the pattern can be built from this boundary condition along
with the requirement that nodes and antinodes are equally spaced and separated
by one fourth of a wavelength. The simplest pattern that satisfies these conditions

14.4

and from Equation 14.5 we find that the nodes are lo-
cated at

n � �

3.0 � cm  (n � 1, 2, 3, . . .)x � n 



2
�

Solution Because , we see that
. Therefore, from Equation 14.4 we find

that the antinodes are located at

n � �

6.0 � cm  (n � 1, 3, 5, . . .)x �


 � 2�/3 cm
k � 2�/
 � 3.0 rad/cm

L

(a) (c)

(b) (d)

n = 2

n = 3

L = λ2

L = – λ3
3
2

n = 1 L = – λ1
1
2

f1 f3

f2

N

N

N N N N

N

A

A

A A A

A

N

N









(a) A
string of length L fixed at both ends.
The normal modes of vibration form
a harmonic series. In each case, the
shape of the string is shown at 
several instants within one period: 
(b) the fundamental frequency, or
first harmonic; (c) the second har-
monic; and (d) the third harmonic.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 14.9 you can
choose the mode number and ob-
serve the corresponding standing
wave.

ACTIVE FIGURE 14.9

www.pop4e.com
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has the required nodes at the ends of the string and an antinode at the center
point (Active Fig. 14.9b). For this normal mode, the length of the string equals 
/2
(the distance between adjacent nodes):

or

The next normal mode, of wavelength 
2 (Active Fig. 14.9c), occurs when the
length of the string equals one wavelength, that is, when 
2 � L . In this mode, the
two halves of the string are moving in opposite directions at a given instant, and we
sometimes say that two loops occur. The third normal mode (Active Fig. 14.9d) cor-
responds to the case when the length equals 3
/2; therefore, 
3 � 2L/3. In gen-
eral, the wavelengths of the various normal modes can be conveniently expressed as

[14.6]

where the index n refers to the nth mode of vibration. The natural frequencies as-
sociated with these modes are obtained from the relationship f � v/
, where the
wave speed v is determined by the tension T and linear mass density � of the string
and therefore is the same for all frequencies. Using Equation 14.6, we find that the
frequencies of the normal modes are

[14.7]

Because (Equation 13.20), we can express the natural frequencies of a
stretched string as

[14.8]

Equation 14.8 demonstrates the quantization that we mentioned as a feature of the
wave under boundary conditions model. The frequencies are quantized because
only certain frequencies of waves satisfy the boundary conditions and can exist on
the string. The lowest frequency, corresponding to n � 1, is called the fundamental
frequency f1 and is

[14.9]

Equation 14.8 shows that the frequencies of the higher modes are integral mul-
tiples of the fundamental frequency, that is, 2f 1, 3f 1, 4f 1, and so on. These higher
natural frequencies, together with the fundamental frequency, form a harmonic
series and the various frequencies are called harmonics. The fundamental f 1 is the
first harmonic; the frequency f 2 � 2f 1 is the second harmonic; and the frequency
fn is the nth harmonic.

If a stretched string is distorted to a shape that corresponds to any one of its
harmonics, after being released it will vibrate at the frequency of that harmonic. If
the string is plucked, bowed, or struck, however, as occurs when playing a stringed
instrument, the resulting vibration will include frequencies of many modes, includ-
ing the fundamental. In effect, the string “selects” a mixture of normal-mode
frequencies when disturbed by a finger or a bow. The frequency of the combination
is that of the fundamental because that is the rate at which the waveform repeats;
the frequency associated with the string by a listener is that of the fundamental.

f 1 �
1

2L
 √ T

�

fn �
n

2L
 √ T

�
  (n � 1, 2, 3, . . .)

v � √T/�

fn �
v

n

�
n

2L
 v  (n � 1, 2, 3, . . .)


n �
2L
n

  (n � 1, 2, 3, . . .)


1 � 2LL �

1

2

� Wavelengths of normal modes

� Frequencies of normal modes as
functions of wave speed and
length of string

� Frequencies of normal modes as
functions of string tension and
linear mass density

� Fundamental frequency of a
stretched string
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The frequency of a given string on a stringed instrument can be changed either by
varying the string’s tension T or by changing the length L of the vibrating portion of
the string. For example, the tension in the strings of guitars and violins is adjusted by a
screw mechanism or by tuning pegs on the neck of the instrument. As the tension in-
creases, the frequencies of the normal modes increase according to Equation 14.8.
Once the instrument is “tuned,” the player varies the frequency by moving his or her
fingers along the neck, thereby changing the length of the vibrating portion of the
string. As this length is reduced, the frequency increases because the normal-mode fre-
quencies are inversely proportional to the length of the vibrating portion of the string.

Imagine that we have several strings of the same length under the same tension
but varying linear mass density �. The strings will have different wave speeds and
therefore different fundamental frequencies. The linear mass density can be
changed either by varying the diameter of the string or by wrapping extra mass
around the string. Both of these possibilities can be seen on the guitar, on which
the higher-frequency strings vary in diameter and the lower-frequency strings have
additional wire wrapped around them.

Which of the following is true when a standing wave is set up on a
string fixed at both ends? (a) The number of nodes is equal to the number of antinodes.
(b) The wavelength is equal to the length of the string divided by an integer. (c) The fre-
quency is equal to the number of nodes times the fundamental frequency. (d) The center
of the string is either a node or an antinode.

QUICK QUIZ 14.3

Give Me a C NoteEXAMPLE 14.3INTERACTIVE

In a real piano, the assumption we made in part B
is only partially true. The string densities are equal, but
the A string is 64% as long as the C string. What is the
ratio of their tensions?

Solution We start from the same point as in part B, but
the string lengths do not cancel in the ratio:

� 

Investigate this situation for 
different combinations of notes by logging into 
PhysicsNow at www.pop4e.com and going to Interactive 
Example 14.3.

1.16

TA

TC
� � LA

LC
�

2

� f 1A

f 1C
�

2
� (0.64)2 � 440 Hz

262 Hz �
2

f 1A �
1

2LA

f 1C �
1

2LC

√ TA

�

√ TC

�
� : f 1A

f 1C
�

LC

LA
 √ TA

TC

CA middle C string on a piano has a fundamental 
frequency of 262 Hz, and the A note has a fundamental
frequency of 440 Hz.

Calculate the frequencies of the next two harmon-
ics of the C string.

Solution Because the higher frequencies are integer
multiples of the fundamental frequency,

If the strings for the A and C notes are assumed to
have the same mass per unit length and the same
length, determine the ratio of tensions in the two
strings.

Solution Using Equation 14.9 for the two strings vibrat-
ing at their fundamental frequencies gives

2.82
TA

TC
� � f 1A

f 1C
�

2
� � 440 Hz

262 Hz �
2

�

f 1A �
1

2L

f 1C �
1

2L

√ TA

�

√ TC

�
�  :  

f 1A

f 1C
� √ TA

TC

B

786 Hzf 3 � 3f 1 �

524 Hzf 2 � 2f 1 �

A

www.pop4e.com
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STANDING  WAVES  IN  AIR  COLUMNS
We have discussed musical instruments that use strings, which include guitars,
violins, and pianos. What about instruments classified as brasses or woodwinds?
These instruments produce music using a column of air. Standing longitudinal
waves can be set up in an air column, such as an organ pipe or a clarinet, as the
result of interference between longitudinal sound waves traveling in opposite direc-
tions. Whether a node or an antinode occurs at the end of an air column depends
on whether that end is open or closed. The closed end of an air column is a dis-
placement node, just as the fixed end of a vibrating string is a displacement node.
Furthermore, because the pressure wave is 90° out of phase with the displacement
wave (Section 13.7), the closed end of an air column corresponds to a pressure an-
tinode (i.e., a point of maximum pressure variation). On the other hand, the open
end of an air column is approximately a displacement antinode and a pressure
node.

You may wonder how a sound wave can reflect from an open end because there
may not appear to be a change in the medium at this point. It is indeed true that
the medium through which the sound wave moves is air both inside and outside
the pipe. Sound is a pressure wave, however, and a compression region of
the sound wave is constrained by the sides of the pipe as long as the region is inside
the pipe. As the compression region exits at the open end of the pipe, the con-
straint of the pipe is removed and the compressed air is free to expand into the
atmosphere. Therefore, there is a change in the character of the medium between
the inside of the pipe and the outside even though there is no change in the mater-
ial of the medium. This change in character is sufficient to allow some reflection.

Strictly speaking, the open end of an air column is not exactly an antinode. A
compression in the sound wave does not reach full expansion until it passes some-
what beyond the open end. Therefore, to calculate frequencies of the normal
modes accurately, an end correction must be added to the length of the air column
at each open end. For a thin-walled tube of circular cross-section, this end correc-
tion is about 0.6R , where R is the tube’s radius. Hence, the effective acoustical
length of the tube is somewhat greater than the physical length L.

We can determine the modes of vibration of an air column by applying the ap-
propriate boundary condition at the end of the column, along with the require-
ment that nodes and antinodes be separated by one fourth of a wavelength. We
shall find that the frequency for sound waves in air columns is quantized, similar to
the results found for waves on strings under boundary conditions.

The first three modes of vibration of an air column that is open at both ends
are shown in Figure 14.10a. Note that the ends are displacement antinodes (ap-
proximately). In the fundamental mode, the wavelength is twice the length of the
air column; hence, the frequency of the fundamental f 1 is v/2L. Similarly, the fre-
quencies of the higher harmonics are 2f 1, 3f 1, . . . . Therefore, in an air column
that is open at both ends, the natural frequencies of vibration form a harmonic se-
ries; that is, the higher harmonics are integral multiples of the fundamental fre-
quency. Because all harmonics are present, we can express the natural frequencies
of vibration as

[14.10]

where v is the speed of sound in air.
If an air column is closed at one end and open at the other, the closed end is a

displacement node and the open end is a displacement antinode (Fig. 14.10b). In
this case, the wavelength for the fundamental mode is four times the length of the
column. Hence, the fundamental frequency f 1 is equal to v/4L, and the frequencies

fn � n 
v

2L
  (n � 1, 2, 3, . . .)

14.5

� Natural frequencies of an air
column open at both ends
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Motion of ele-

ments of air in standing longitudinal
waves in an air column, along with
graphical representations of the
displacements of the elements. (a) In
an air column open at both ends, the
harmonic series created consists of all
integer multiples of the fundamental
frequency: f 1, 2f 1, 3f 1, . . . . (b) In an
air column closed at one end and
open at the other, the harmonic 
series consists of only odd-integer
multiples of the fundamental
frequency: f 1, 3f 1, 5f 1, . . . .

of the higher harmonics are equal to 3f1, 5f1, . . . . That is, in an air column that is
closed at one end, only odd harmonics are present, and the frequencies are

[14.11]

Standing waves in air columns are the primary sources of the sounds produced
by wind instruments. In a woodwind instrument, a key is pressed, which opens a
hole in the side of the column. This hole defines the end of the vibrating column
of air (because the hole acts as an open end at which pressure can be released), so
that the column is effectively shortened and the fundamental frequency rises. In a
brass instrument, the length of the air column is changed by an adjustable section,
as in a trombone, or by adding segments of tubing, as is done in a trumpet when a
valve is pressed.

fn � n 
v

4L
  (n � 1, 3, 5, . . .)

L

λλ1 = 2L

f1 = — = —v
λ1

v
2L

λ2 = L

f2 = — = 2f1
v
L

λ3 = — L

f3 = — = 3f1
3v
2L

2
3

(a) Open at both ends

λ1 = 4L

f1 = — = —v
λ1

v
4L

λ3 = — L

f3 = — = 3f1
3v
4L

λ5 = — L

f5 = — = 5f1
5v
4L

4
5

4
3

First harmonic

Second harmonic

Third harmonic

First harmonic

Third harmonic

Fifth harmonic

(b) Closed at one end, open at the other
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A A

A

AN N

AA A ANN N

N

A NAN

AA NNAN

























FIGURE 14.10

Standing waves in a pipe open at both ends are excited at a
fundamental frequency fopen. When one end is closed and the pipe is again excited, the
fundamental frequency is fclosed. Which of the following expressions describes how these
two frequencies that are heard compare? (a) fclosed � fopen (b)
(c) fclosed � 2 fopen (d) fclosed � 3

2 fopen

fclosed � 1
2 fopen

QUICK QUIZ 14.4

Balboa Park in San Diego has an outdoor organ. When the air
temperature increases, what happens to the fundamental frequency of one of the organ
pipes? (a) It stays the same. (b) It goes down. (c) It goes up. (d) It is impossible to
determine.

QUICK QUIZ 14.5

SOUND WAVES IN AIR ARE NOT

TRANSVERSE Note that the standing
longitudinal waves are drawn as
transverse waves in Figure 14.10. 
It is difficult to draw longitudinal
displacements because they are in
the same direction as the propaga-
tion. Therefore, it is best to inter-
pret the curves in Figure 14.10 as a
graphical representation of the
waves (our diagrams of string waves
are pictorial representations), with
the vertical axis representing hori-
zontal position of the elements of
the medium.

� PITFALL PREVENTION 14.3

� Natural frequencies of an air
column closed at one end and
open at the other
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� Thinking Physics 14.2
A bugle has no valves, keys, slides, or finger holes. How can it play a song?

Reasoning Songs for the bugle are limited to harmonics of the fundamental fre-
quency because the bugle has no control over frequencies by means of valves,
keys, slides, or finger holes. The player obtains different notes by changing the
tension in the lips as the bugle is played to excite different harmonics. The nor-
mal playing range of a bugle is among the third, fourth, fifth, and sixth harmon-
ics of the fundamental. As examples, “Reveille” is played with just the three notes
D (294 Hz), G (392 Hz), and B (490 Hz), and “Taps” is played with these same
three notes and the D one octave above the lower D (588 Hz). Note that the
frequencies of these four notes are, respectively, three, four, five, and six times
the fundamental of 98 Hz. �

� Thinking Physics 14.3
If an orchestra doesn’t warm up before a performance, the strings go flat and the
wind instruments go sharp during the performance. Why?

Reasoning Without warming up, all the instruments will be at room temperature at
the beginning of the concert. As the wind instruments are played, they fill with
warm air from the player’s exhalation. The increase in temperature of the air in the
instrument causes an increase in the speed of sound, which raises the fundamental
frequencies of the air columns. As a result, the wind instruments go sharp. The
strings on the stringed instruments also increase in temperature due to the friction
of rubbing with the bow. This increase in temperature results in thermal expansion,
which causes a decrease in the tension in the strings. (We will study thermal expan-
sion in Chapter 16.) With a decrease in tension, the wave speed on the strings
drops and the fundamental frequencies decrease. Therefore, the stringed instru-
ments go flat. �

Solution The fundamental frequency of a pipe closed
at one end is

In this case, only odd harmonics are present, 
so the next two harmonics have frequencies 
f 3 � 3f 1 � and f 5 � 5f 1 � .

For the pipe open at both ends, how many har-
monics are present in the normal human hearing
range (20–20 000 Hz)?

Solution Because all harmonics are present, fn � nf 1.
For fn � 20 000 Hz, we have n � 20 000/139 � 144, so

harmonics are present in the audible range. Actu-
ally, only the first few harmonics have sufficient ampli-
tude to be heard.

144

C

349 Hz209 Hz

69.7 Hzf 1 �
v

4L
�

343 m/s
4(1.23 m)

�

Harmonics in a PipeEXAMPLE 14.4
A pipe has a length of 1.23 m.

Determine the frequencies of the first three
harmonics if the pipe is open at each end. Take 
v � 343 m/s as the speed of sound in air.

Solution The first harmonic of a pipe open at both
ends is

Because all harmonics are possible for a pipe open 
at both ends, the second and third harmonics are 
f 2 � 2f 1 � and f 3 � 3f 1 � .

What are the three frequencies requested in part A
if the pipe is closed at one end?

B

417 Hz278 Hz

139 Hzf 1 �
v

2L
�

343 m/s
2(1.23 m)

�

A
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(Example 14.5) (a) Apparatus for demonstrating
the resonance of sound waves in a tube closed at
one end. The length L of the air column is varied
by moving the tube vertically while it is partially
submerged in water. (b) The first three normal
modes of the system shown in (a).

L

Water

f = ?

First
resonance

Second
resonance

(third
harmonic) Third

resonance
(fifth

harmonic)

(b)

(a)

λ/4 3λ/4

5λ/4

� �

�

For a certain tube, the smallest value of L for which a
peak occurs in the sound intensity is 9.00 cm. From this
measurement, determine the frequency of the tuning
fork and the value of L for the next two resonant modes.

Solution To conceptualize the problem, we realize that
although the tube is open at the bottom end to allow
the water in, the water surface acts like a rigid barrier at
that end. This setup can therefore be categorized as an
air column closed at one end, and the fundamental has
frequency v/4L, where L is the length of the tube from
the open end to the water surface (Fig. 14.11b). To ana-
lyze the problem, we take v � 343 m/s for the speed of
sound in air and L � 0.090 0 m. Then, from Equation
14.11, we have

From the information about the fundamental mode, we
see that the wavelength is � � 4L � 0.360 m. Because
the frequency of the source is constant, the next two
natural modes (Fig. 14.11b) correspond to lengths of
3�/4 � and 5�/4 �

To finalize the problem, note in Figure 14.11 that
the wavelength of the sound remains fixed because it is
determined by the tuning fork. A resonance response
occurs whenever the level of the water coincides with a
node of the standing wave. In this condition, the dri-
ving frequency of the tuning fork matches the natural
frequency of the air column, and the amplitude of the
sound increases.

0.450 m.0.270 m

953 Hzf 1 �
v

4L
�

343 m/s
4(0.090 0 m)

�

Measuring the Frequency of a Tuning ForkEXAMPLE 14.5
A simple apparatus for demonstrating standing waves
in a tube is described in Figure 14.11a. A long, vertical
tube open at both ends is partially submerged in a
beaker of water, and a vibrating tuning fork of un-
known frequency is placed near the top. The length L
of the air column is adjusted by moving the tube verti-
cally. The sound waves generated by the fork excite a
resonance response in the air column when its length
equals that associated with one of the harmonic fre-
quencies of the tube.

FIGURE 14.11

BEATS: INTERFERENCE  IN  TIME
The interference phenomena that we have discussed so far involve the superposi-
tion of two or more waves with the same frequency. Because the resultant displace-
ment of an element in the medium in this case depends on the position of the ele-
ment, we can refer to the phenomenon as spatial interference. Standing waves in
strings and air columns are common examples of spatial interference.

We now consider another type of interference effect, one that results from the
superposition of two waves with slightly different frequencies. In this case, when the
two waves of amplitudes A1 and A2 are observed at a given point, they are alter-
nately in and out of phase. We refer to this phenomenon as interference in time or
temporal interference. When the waves are in phase, the combined amplitude is
A1 � A2. When they are out of phase, the combined amplitude is The
combination therefore varies between small and large amplitudes, resulting in what
we call beats.

Although beats occur for all types of waves, they are particularly noticeable for
sound waves. For example, if two tuning forks of slightly different frequencies are
struck, you hear a sound of pulsating intensity.

The number of beats you hear per second, the beat frequency, equals the differ-
ence in frequency between the two sources. The maximum beat frequency that the

�A1 � A2 �.

14.6
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human ear can detect is about 20 beats/s. When the beat frequency exceeds this
value, it blends with the sounds producing the beats.

One can use beats to tune a stringed instrument, such as a piano, by beating a
note against a reference tone of known frequency. The frequency of the string can
then be adjusted to equal the frequency of the reference by changing the string’s
tension until the beats disappear; the two frequencies are then the same.

Let us look at the mathematical representation of beats. Consider two waves
with equal amplitudes traveling through a medium with slightly different frequen-
cies f1 and f2. We can represent the position of an element of the medium associ-
ated with each wave at a fixed point, which we choose as x � 0, as

Using the superposition principle, we find that the resultant position at that point
is given by

It is convenient to write this expression in a form that uses the trigonometric identity

Letting a � 2�f1t and b � 2�f 2t, we find that

[14.12]

Graphs demonstrating the individual waves as well as the resultant wave are shown
in Active Figure 14.12. From the factors in Equation 14.12, we see that the resultant
wave has an effective frequency equal to the average frequency ( f 1 � f 2)/2 and an
amplitude of

[14.13]

That is, the amplitude varies in time with a frequency of ( f 1 � f 2)/2. When f 1 is close
to f2, this amplitude variation is slow compared with the frequency of the individual
waves, as illustrated by the envelope (broken line) of the resultant wave in Active
Figure 14.12b.

Note that a maximum in amplitude will be detected whenever

cos 2� � f1 � f2

2 � t � � 1

Ax�0 � 2A cos 2� � f 1 � f 2

2 � t

y � �2A cos 2� � f1 � f2

2 � t� cos 2� � f1 � f2

2 � t

cos a � cos b � 2 cos � a � b
2 � cos � a � b

2 �

y � y1 � y2 � A(cos 2�f1t � cos 2�f2t)

y1 � A cos 2�f 1t  and  y 2 � A cos 2�f 2t

y

(a)

(b)

y

t

t

Beats are
formed by the combination of two
waves of slightly different frequencies.
(a) The blue and black curves 
represent the individual waves. 
(b) The combined wave has an ampli-
tude (broken line) that oscillates in
time.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 14.12 you can
choose the two frequencies and 
observe the corresponding beats.

ACTIVE FIGURE 14.12

www.pop4e.com
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Waveforms of
sound produced by (a) a tuning fork,
(b) a flute, and (c) a clarinet, each at
approximately the same frequency.

That is, the amplitude maximizes twice in each cycle of the function on the left in
the preceding expression. Therefore, the number of beats per second, or the beat
frequency f b, is twice the frequency of this function:

[14.14]

For instance, if two tuning forks vibrate individually at frequencies of 438 Hz
and 442 Hz, respectively, the resultant sound wave of the combination has a fre-
quency of ( f 1 � f2)/2 � 440 Hz (the musical note A) and a beat frequency of

4 Hz. That is, the listener hears the 440-Hz sound wave go through an
intensity maximum four times every second.
� f1 � f2 � �

f b � � f 1 � f 2 �

You are tuning a guitar by comparing the sound of the string with
that of a standard tuning fork. You notice a beat frequency of 5 Hz when both sounds are
present. You tighten the guitar string and the beat frequency rises to 8 Hz. To tune the
string exactly to the tuning fork, what should you do? (a) Continue to tighten the string.
(b) Loosen the string. (c) It is impossible to determine.

QUICK QUIZ 14.6

NONSINUSOIDAL  WAVE  PATTERNS
The sound wave patterns produced by most instruments are not sinusoidal. Some
characteristic waveforms produced by a tuning fork, a flute, and a clarinet are shown
in Figure 14.13. Although each instrument has its own characteristic pattern, Figure
14.13 shows that all three waveforms are periodic. A struck tuning fork produces pri-
marily one harmonic (the fundamental), whereas the flute and clarinet produce
many frequencies, which include the fundamental and various harmonics. The non-
sinusoidal waveforms produced by a violin or clarinet, and the corresponding rich-
ness of musical tones, are the result of the superposition of various harmonics.

This phenomenon is in contrast to a percussive musical instrument, such as the
drum, in which the combination of frequencies does not form a harmonic series.
When frequencies that are integer multiples of a fundamental frequency are com-
bined, the result is a musical sound. A listener can assign a pitch to the sound based
on the fundamental frequency. Pitch is a psychological reaction to a sound that al-
lows the listener to place the sound on a scale of low to high (bass to treble). Com-
binations of frequencies that are not integer multiples of a fundamental result in a
noise rather than a musical sound. It is much harder for a listener to assign a pitch
to a noise than to a musical sound.

Analysis of nonsinusoidal waveforms appears at first sight to be a formidable
task. If the waveform is periodic, however, it can be represented with arbitrary preci-
sion by the combination of a sufficiently large number of sinusoidal waves that form
a harmonic series. In fact, one can represent any periodic function or any function
over a finite interval as a series of sine and cosine terms by using a mathematical
technique based on Fourier’s theorem. The corresponding sum of terms that repre-
sents the periodic waveform is called a Fourier series.

Let y(t ) be any function that is periodic in time, with a period of T, so that
y(t � T ) � y(t ). Fourier’s theorem states that this function can be written

[14.15]

where the lowest frequency is f 1 � 1/T. The higher frequencies are integral multi-
ples of the fundamental, so fn � nf 1. The coefficients An and Bn represent the am-
plitudes of the various harmonics.

Figure 14.14 represents a harmonic analysis of the waveforms shown in Figure
14.13. Note the variation of relative intensity with harmonic content for the flute
and the clarinet. In general, any musical sound contains components that are mem-
bers of a harmonic series with varying relative intensities.

y(t ) � �
n

(An sin 2�fnt � Bn cos 2�fnt)

14.7

Tuning fork

Flute

Clarinet

(a)

(b)

(c)

t

t

t

FIGURE 14.13

� Beat frequency

� Fourier’s theorem

PITCH VERSUS FREQUENCY A very
common mistake made in speech
when talking about sound is to use
the term pitch when one means
frequency. Frequency is the physical
measurement of the number of
oscillations per second, as we have
defined. Pitch is a psychological
reaction of humans to sound that
enables a human to place the sound
on a scale from high to low or from
treble to bass. Therefore, frequency
is the stimulus and pitch is the
response. Although pitch is related
mostly (but not completely) to
frequency, they are not the same. A
phrase such as “the pitch of the
sound” is incorrect because pitch is
not a physical property of the sound.

� PITFALL PREVENTION 14.4
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Harmonics of the
waveforms shown in Figure 14.13.
Note the variations in intensity of the
various harmonics.

We have discussed the analysis of a wave pattern using Fourier’s theorem. The
analysis involves determining the coefficients of the trigonometric functions in
Equation 14.15 from a knowledge of the wave pattern. We can also perform the re-
verse process, Fourier synthesis. In this process, the various harmonics are added to-
gether to form a resultant wave pattern. As an example of Fourier synthesis, con-
sider the building of a square wave as shown in Active Figure 14.15. The symmetry
of the square wave results in only odd multiples of the fundamental combining in
the synthesis. In Active Figure 14.15a, the brown curve shows the combination of f
and 3f. In Active Figure 14.15b, we have added 5f to the combination and obtained
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FIGURE 14.14

(c)

f + 3f + 5f + 7f + 9f

Square wave
f + 3f + 5f + 7f + 9f + ...

(b)

f + 3f + 5f

5f

f

3f

(a)

f
f + 3f

3f

Fourier synthesis of a square wave rep-
resented by the sum of odd multiples
of the first harmonic, which has fre-
quency f. (a) Waves of frequency f and
3f are added. (b) One more odd fre-
quency of 5f is added. (c) The synthe-
sis curve approaches the square wave
when odd frequencies up to 9f are
combined.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 14.15 you can
add in harmonics with frequencies
higher than 9f to try to synthesize a
square wave.

ACTIVE FIGURE 14.15
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the green curve. Notice how the general shape of the square wave is approximated,
even though the upper and lower portions are not as flat as they should be.

Active Figure 14.15c shows the result of adding odd frequencies up to 9f, the pur-
ple curve. This approximation to the square wave (black curve) is better than in parts
(a) and (b). To approximate the square wave as closely as possible, we would need to
add all odd multiples of the fundamental frequency up to infinite frequency.

The physical mixture of harmonics can be described as the spectrum of
the sound, with the spectrum displayed in a graphical representation such as
Figure 14.14. The psychological reaction to changes in the spectrum of a sound is
the detection of a change in the timbre or the quality of the sound. If a clarinet and
a trumpet are both playing the same note, you will assign the same pitch to the two
notes. Yet if only one of the instruments then plays the note, you will likely be able
to tell which instrument is playing. The sounds you hear from the two instruments
differ in timbre because of a different physical mixture of harmonics. For example,
the timbre due to the sound of a trumpet is different from that of a clarinet. You
have probably developed words to describe timbres of various instruments, such as
“brassy,” “mellow,” and “tinny.”

Fourier’s theorem allows us to understand the excitation process of musical in-
struments. In a stringed instrument that is plucked, such as a guitar, the string is
pulled aside and released. After release, the string oscillates almost freely; a small
damping causes the amplitude to decay to zero eventually. The mixture of har-
monic frequencies depends on the length of the string, its linear mass density, and
the plucking point.

On the other hand, a bowed stringed instrument, such as a violin, or a wind in-
strument is a forced oscillator. In the case of the violin, the alternate sticking and
slipping of the bow on the string provides the periodic driving force. In the case of
a wind instrument, the vibration of a reed (in a woodwind), of the lips of the player
(in a brass), or the blowing of air across an edge (as in a flute) provides the peri-
odic driving force. According to Fourier’s theorem, these periodic driving forces
contain a mixture of harmonic frequencies. The violin string or the air column in a
wind instrument is therefore driven with a wide variety of frequencies. The fre-
quency actually played is determined by resonance, which we studied in Chapter 12.
The maximum response of the instrument will be to those frequencies that match
or are very close to the harmonic frequencies of the instrument. The spectrum of
the instrument therefore depends heavily on the strengths of the various harmon-
ics in the initial periodic driving force.

BUILDING  ON  ANTINODES
As an example of the application of standing waves to earthquakes, we consider the
effects of standing waves in sedimentary basins. Many of the world’s major cities are
built on sedimentary basins, which are topographic depressions that over geologic
time have filled with sediment. These areas provide large expanses of flat land,
often surrounded by attractive mountains, as in the Los Angeles basin. Flat land for
building and attractive scenery attracted early settlers and led to today’s cities.

Destruction from an earthquake can increase dramatically if the natural fre-
quencies of buildings or other structures coincide with the resonant frequencies of
the underlying basin. These resonant frequencies are associated with three-dimen-
sional standing waves, formed from seismic waves reflecting from the boundaries of
the basin.

To understand these standing waves, let us assume a simple model of a basin
shaped like a half-ellipsoid, similar to an egg sliced in half along its long diameter.
Four possible patterns of ground motion in such a basin are shown in the pictorial
representation in Active Figure 14.16. The long axis of the ellipsoid is designated x
and the short axis is y. In Active Figure 14.16a, the entire surface of the ground
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Each musical instrument has its own
characteristic sound and mixture of
harmonics. Instruments shown are
(a) the violin, (b) the saxophone, and
(c) the trumpet. �
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(a)

y y

x

x

(b)

(c)

(d)

Overhead views of
standing waves in a basin shaped like a half-
ellipsoid. In each case, if the blue element is
above the plane of the page at an instant of time,
the yellow element is below the plane of the page.
(a) In the fundamental mode of oscillation, the
only nodal line is the rim of the basin and the 
entire surface moves up and down together. 
(b) The surface oscillates in two halves, with a
nodal line along the y axis. (c) The surface oscil-
lates in two halves, with a nodal line along the x
axis. (d) The surface oscillates in four quarters,
with nodal lines along both the x and y axes.

By logging into PhysicsNow
at www.pop4e.com and going to Active Figure
14.16 you can observe a three-dimensional view
of the oscillations for the four modes shown in
the figure.

ACTIVE FIGURE 14.16

moves up and down (that is, in and out of the page) except at a nodal curve run-
ning around the edge of the basin.

In Figures 14.16b and 14.16c, half the ground surface lies above and half lies be-
low the equilibrium position, and each half oscillates up and down on either side of
a nodal line. The nodal line is along the y axis in Active Figure 14.16b and along
the x axis in Active Figure 14.16c. In Active Figure 14.16d, nodal lines occur along
both the x and y axes and the surface oscillates in four segments, with two above the
equilibrium position at any time and the other two below.

The standing wave patterns in a basin arise from seismic waves traveling horizon-
tally between the boundaries of the basin. For structures built on sedimentary
basins, the degree of seismic risk will depend on the standing wave modes excited
by the interference of seismic waves trapped in the basin. It is clear that structures
built on regions of maximum ground motion (i.e., the antinodes) will suffer maxi-
mum shaking, whereas structures residing near nodes will experience relatively
mild ground motion. These considerations appear to have played an important
role in the selective destruction that occurred in Mexico City in the Michoacán
earthquake in 1985 and in the 1989 Loma Prieta earthquake, which caused the col-
lapse of a section of the Nimitz Freeway in Oakland, California.

A similar effect occurs in bounded bodies of water, such as harbors and bays. A
standing wave pattern established in such a body of water is called a seiche. This
wave pattern can result in variations in the water level that exhibit a period of
several minutes, superposed on the longer-period tidal variations. Seiches can be
caused by earthquakes, tsunamis, winds, or weather disturbances. You can create a
seiche in your bathtub by sliding back and forth at just the right frequency such
that the water sloshes back and forth at such a large amplitude that much of it spills
out onto the floor.

During the Northridge earthquake of 1994, swimming pools throughout south-
ern California overflowed as a result of seiches set up by the shaking of the ground.
In a more dramatic example, seismic waves from the 1964 Alaska earthquake
caused severe seiches in the bays and bayous of Louisiana, some causing the water
level to shift by 2 m.

We have now considered the role of standing waves in the damage caused by an
earthquake. In the Context Conclusion, we will gather together the principles of
vibrations and waves that we have learned to respond more fully to the central
question of this Context. �
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Take a practice test by logging into
PhysicsNow at www.pop4e.com and clicking
on the Pre-Test link for this chapter.

The principle of superposition states that if two or more travel-
ing waves are moving through a medium and combine at a
given point, the resultant position of the element of the
medium at that point is the sum of the positions due to the in-
dividual waves.

When two waves with equal amplitudes and frequencies su-
perpose, the resultant wave has an amplitude that depends on
the phase angle � between the two waves. Constructive inter-
ference occurs when the two waves are in phase everywhere, cor-
responding to � � 0, 2�, 4�, . . . . Destructive interference
occurs when the two waves are 180° out of phase everywhere,
corresponding to � � �, 3�, 5�, . . . .

Standing waves are formed from the superposition of two si-
nusoidal waves that have the same frequency, amplitude, and
wavelength but are traveling in opposite directions. The resul-
tant standing wave is described by the wave function

[14.3]

The maximum amplitude points (called antinodes) are sepa-
rated by a distance 
/2. Halfway between antinodes are points
of zero amplitude (called nodes).

The wave under boundary conditions model tells us that
when boundary conditions are applied to a wave, we find that

y � (2A sin kx) cos �t

SUMMARY

only certain waves— those that satisfy the boundary condi-
tions—are allowed. This restriction leads to quantization of the
frequencies of the system.

One can set up standing waves with quantized frequencies
in such systems as stretched strings and air columns. The nat-
ural frequencies of vibration of a stretched string of length L,
fixed at both ends, are

[14.8]

where T is the tension in the string and � is its mass per unit
length. The natural frequencies of vibration form a harmonic
series, that is, f1, 2f1, 3f 1, . . . .

The standing wave patterns for longitudinal waves in an air
column depend on whether the ends of the column are open
or closed. If the column is open at both ends, the natural fre-
quencies of vibration form a harmonic series. If one end is
closed, only odd harmonics of the fundamental are present.

The phenomenon of beats occurs as a result of the superpo-
sition of two traveling waves of slightly different frequencies.
For sound waves at a given point, one hears an alternation in
sound intensity with time.

Any periodic waveform can be represented by the combina-
tion of sinusoidal waves that form a harmonic series. The
process is based on Fourier’s theorem.

fn �
n

2L
 √ T

�
  (n � 1, 2, 3, . . .)

� answer available in the Student Solutions Manual and
Study Guide

Does the phenomenon of wave interference apply only to
sinusoidal waves?

2. Can two pulses traveling in opposite directions on the
same string reflect from each other? Explain.

When two waves interfere, can the amplitude of the resul-
tant wave be greater than either of the two original waves?
If so, under what conditions can that happen?

4. For certain positions of the movable section shown in Fig-
ure 14.4, no sound is detected at the receiver, a situation
corresponding to destructive interference. This situation
suggests that energy is somehow lost. What happens to the
energy transmitted by the speaker?

When two waves interfere constructively or destructively, is
there any gain or loss in energy? Explain.

6. What limits the amplitude of motion of a real vibrat-
ing system that is driven at one of its resonant fre-
quencies?

7. Explain why your voice seems to sound better than usual
when you sing in the shower.

8. What is the purpose of the slide on a trombone or of the
valves on a trumpet?

5.

3.

1.

Why does a vibrating guitar string sound louder when
placed on the instrument than it would if allowed to vi-
brate in air while off the instrument?

10. Explain why all harmonics are present in an organ pipe
open at both ends, but only the odd harmonics are present
in a pipe closed at one end.

11. An archer shoots an arrow from a bow. Does the string of
the bow exhibit standing waves after the arrow leaves? If so,
and if the bow is perfectly symmetric so that the arrow leaves
from the center of the string, what harmonics are excited?

12. Explain how a musical instrument such as a piano may be
tuned by using the phenomenon of beats.

An airplane mechanic notices that the sound from a twin-
engine aircraft rapidly varies in loudness when both en-
gines are running. What could be causing this variation
from loud to soft?

14. Despite a reasonably steady hand, a person often spills his
coffee when carrying it to his seat. Discuss resonance as a
possible cause of this difficulty and devise a means for solv-
ing the problem.

15. You have a standard tuning fork whose frequency is 262 Hz
and a second tuning fork with an unknown frequency.
When you tap both of them on the heel of one of your
sneakers, you hear beats with a frequency of 4 per second.

13.

9.

QUESTIONS
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Thoughtfully chewing your gum, you wonder whether the
unknown frequency is 258 Hz or 266 Hz. How can you
decide?

16. When the base of a vibrating tuning fork is placed against a
chalkboard, the sound that it emits becomes louder be-
cause the vibrations of the tuning fork are transmitted to

the chalkboard. Because it has a larger area than the tun-
ing fork, the vibrating chalkboard sets more air into vibra-
tion. Therefore, the chalkboard is a better radiator of
sound than the tuning fork. How does that affect the time
interval during which the fork vibrates? Does that agree
with the principle of conservation of energy?

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem
� paired numerical and symbolic problems
� biomedical application

Section 14.1 � The Principle of Superposition
1. Two waves in one string are described by the wave functions

y1 � 3.0 cos(4.0x � 1.6t) and y2 � 4.0 sin(5.0x � 2.0t)

where y and x are in centimeters and t is in seconds. Find
the superposition of the waves y1 � y2 at the points 
(a) x � 1.00, t � 1.00; (b) x � 1.00, t � 0.500; and 
(c) x � 0.500, t � 0. (Remember that the arguments of the
trigonometric functions are in radians.)

2. Two pulses A and B are moving in opposite directions
along a taut string with a speed of 2.00 cm/s. The ampli-
tude of A is twice the amplitude of B. The pulses are shown
in Figure P14.2 at t � 0. Sketch the shape of the string at 
t � 1, 1.5, 2, 2.5, and 3 s.

wave has an amplitude of 4.00 cm. Find the amplitude of
the resultant wave.

Two traveling sinusoidal waves are de-
scribed by the wave functions

y1 � (5.00 m) sin[�(4.00x � 1 200t)]

and

y 2 � (5.00 m) sin[�(4.00x � 1 200t � 0.250)]

where x, y1, and y2 are in meters and t is in seconds. 
(a) What is the amplitude of the resultant wave? (b) What
is the frequency of the resultant wave?

6. Two identical sinusoidal waves with wavelengths of 3.00 m
travel in the same direction at a speed of 2.00 m/s. The
second wave originates from the same point as the first,
but at a later time. The amplitude of the resultant wave is
the same as that of each of the two initial waves. Determine
the minimum possible time interval between the starting
moments of the two waves.

7. A tuning fork generates sound waves with a frequency of
246 Hz. The waves travel in opposite directions along a
hallway, are reflected by end walls, and return. The hallway
is 47.0 m long and the tuning fork is located 14.0 m from
one end. What is the phase difference between the re-
flected waves when they meet at the tuning fork? The
speed of sound in air is 343 m/s.

8. Two loudspeakers are placed on a wall 2.00 m apart. A lis-
tener stands 3.00 m from the wall directly in front of one
of the speakers. A single oscillator is driving the speakers at
a frequency of 300 Hz. (a) What is the phase difference 
between the two waves when they reach the observer?
(b) What is the frequency closest to 300 Hz to which the
oscillator may be adjusted such that the observer hears
minimal sound?

9. Two sinusoidal waves in a string are defined by the functions

y1 � (2.00 cm) sin(20.0x � 32.0t)

and

y2 � (2.00 cm) sin(25.0x � 40.0t)

where y and x are in centimeters and t is in seconds.
(a) What is the phase difference between these two waves
at the point x � 5.00 cm at t � 2.00 s? (b) What is the posi-
tive x value closest to the origin for which the two phases
differ by � � at t � 2.00 s? (This location is where the two
waves add to zero.)

10. Two speakers are driven by the same oscillator of
frequency f. They are located a distance d from each other
on a vertical pole. A man walks straight toward the lower

5.

4

y (cm)

2.00 cm/s

–2.00 cm/s

x (cm)

2

2 4 6 8 10 12 14 16 18 20

A
B

FIGURE P14.2

3. Two pulses traveling on the same string are described by

and 

(a) In which direction does each pulse travel? (b) At what
time do the two cancel everywhere? (c) At what point do
the two pulses always cancel?

Section 14.2 � Interference of Waves
4. Two waves are traveling in the same direction along a

stretched string. The waves are 90.0° out of phase. Each

y2 �
�5

(3x � 4t � 6)2 � 2
y1 �

5
(3x � 4t)2 � 2
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speaker in a direction perpendicular to the pole as shown
in Figure P14.10. (a) How many times will he hear a mini-
mum in sound intensity? (b) How far is he from the pole
at these moments? Let v represent the speed of sound and
assume that the ground does not reflect sound.

is a solution of the general linear wave equation, Equation
13.19:

Two sinusoidal waves combining in a medium are de-
scribed by the wave functions

y1 � (3.0 cm) sin �(x � 0.60t)

and

y2 � (3.0 cm) sin �(x � 0.60t)

where x is in centimeters and t is in seconds. Determine
the maximum transverse position of an element of
the medium at (a) x � 0.250 cm, (b) x � 0.500 cm, and
(c) x � 1.50 cm. (d) Find the three smallest values of x cor-
responding to antinodes.

16. Two waves simultaneously present in a long string are given
by the wave functions

y1 � A sin(kx � �t � �) and y2 � A sin(kx � �t)

In the case � � 0, the chapter text shows that they add to a
standing wave. Demonstrate (a) that the addition of the ar-
bitrary phase constant � changes only the position of the
nodes and, in particular, (b) that the distance between
nodes is still one half the wavelength.

Section 14.4 � Standing Waves in Strings
Find the fundamental frequency and the next three
frequencies that could cause standing wave patterns 
on a string that is 30.0 m long, has a mass per length of
9.00 � 10�3 kg/m, and is stretched to a tension of 20.0 N.

18. A standing wave is established in a 120-cm-long string fixed
at both ends. The string vibrates in four segments when
driven at 120 Hz. (a) Determine the wavelength. (b) What
is the fundamental frequency of the string?

19. A string with a mass of 8.00 g and a length of 5.00 m has one
end attached to a wall; the other end is draped over a pulley
and attached to a hanging object with a mass of 4.00 kg. If
the string is plucked, what is the fundamental frequency of
vibration?

20. In the arrangement shown in Figure P14.20, an object
can be hung from a string (with linear mass density 
� � 0.002 00 kg/m) that passes over a light pulley. The
string is connected to a vibrator (of constant frequency f ),
and the length of the string between point P and the pul-
ley is L � 2.00 m. When the mass m of the object is either
16.0 kg or 25.0 kg, standing waves are observed, but no
standing waves are observed with any mass between these

17.

15.
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FIGURE P14.10
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FIGURE P14.11

11. Two identical speakers 10.0 m apart are driven by the same
oscillator with a frequency of f � 21.5 Hz (Fig. P14.11). 
(a) Explain why a receiver at point A records a minimum
in sound intensity from the two speakers. (b) If the re-
ceiver is moved in the plane of the speakers, what path
should it take so that the intensity remains at a minimum?
That is, determine the relationship between x and y (the
coordinates of the receiver) that causes the receiver to
record a minimum in sound intensity. Take the speed of
sound to be 344 m/s.

Section 14.3 � Standing Waves
12. Two sinusoidal waves traveling in opposite directions inter-

fere to produce a standing wave with the wave function

y � (1.50 m) sin(0.400x) cos(200t)

where x is in meters and t is in seconds. Determine the
wavelength, frequency, and speed of the interfering waves.

Two speakers are driven in phase by a
common oscillator at 800 Hz and face each other at a dis-
tance of 1.25 m. Locate the points along a line joining the
two speakers where relative minima of sound pressure am-
plitude would be expected. (Use v � 343 m/s.)

14. Verify by direct substitution that the wave function for a
standing wave given in Equation 14.3,

y � (2A sin kx) cos �t

13.

µ

L

P

Vibrator

m

FIGURE P14.20
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values. (a) What is the frequency of the vibrator? (Note:
The greater the tension in the string, the smaller the num-
ber of nodes in the standing wave.) (b) What is the largest
object mass for which standing waves could be observed?

21. A string of length L, mass per unit length �, and tension T
is vibrating at its fundamental frequency. What effect will
the following have on the fundamental frequency? (a) The
length of the string is doubled, with all other factors held
constant. (b) The mass per unit length is doubled, with all
other factors held constant. (c) The tension is doubled,
with all other factors held constant.

22. The top string of a guitar has a fundamental frequency of
330 Hz when it is allowed to vibrate as a whole, along all its
64.0-cm length from the neck to the bridge. A fret is pro-
vided for limiting vibration to just the lower two thirds of
the string. (a) If the string is pressed down at this fret and
plucked, what is the new fundamental frequency? (b) The
guitarist can play a “natural harmonic” by gently touching
the string at the location of this fret and plucking the
string at about one sixth of the way along its length from
the bridge. What frequency will be heard then?

The A string on a cello vibrates in its first normal mode with
a frequency of 220 Hz. The vibrating segment is 70.0 cm
long and has a mass of 1.20 g. (a) Find the tension in the
string. (b) Determine the frequency of vibration when the
string vibrates in three segments.

24. A violin string has a length of 0.350 m and is tuned to con-
cert G, with fG � 392 Hz. Where must the violinist place
her finger to play concert A, with fA � 440 Hz? If this
position is to remain correct to one-half the width of a fin-
ger (that is, to within 0.600 cm), what is the maximum al-
lowable percentage change in the string tension?

25. Review problem. A sphere of mass M is supported by a
string that passes over a light horizontal rod of length L
(Fig. P14.25). Given that the angle is � and that f repre-
sents the fundamental frequency of standing waves in the
portion of the string above the rod, determine the mass of
this portion of the string.

23.

26. A standing wave pattern is observed in a thin wire with a
length of 3.00 m. The equation of the wave is

y � (0.002 m) sin(�x) cos(100�t)

where x is in meters and t is in seconds. (a) How many
loops does this pattern exhibit? (b) What is the fundamen-
tal frequency of vibration of the wire? (c) If the original

frequency is held constant and the tension in the wire is in-
creased by a factor of nine, how many loops are present in
the new pattern?

Section 14.5 � Standing Waves in Air Columns

Note: Unless otherwise specified, assume that the speed of
sound in air is 343 m/s at 20°C and is described by

at any Celsius temperature TC.

Calculate the length of a pipe that has a fundamental
frequency of 240 Hz if the pipe is (a) closed at one end
and (b) open at both ends.

28. The overall length of a piccolo is 32.0 cm. The resonating
air column vibrates as in a pipe open at both ends. 
(a) Find the frequency of the lowest note that a piccolo can
play, assuming that the speed of sound in air is 340 m/s.
(b) Opening holes in the side effectively shortens the
length of the resonant column. Assuming that the highest
note a piccolo can sound is 4 000 Hz, find the distance
between adjacent antinodes for this mode of vibration.

29. The windpipe of one typical whooping crane is
5.00 feet long. What is the fundamental resonant fre-
quency of the bird’s trachea, modeled as a narrow pipe
closed at one end? Assume a temperature of 37°C.

30. The fundamental frequency of an open organ pipe corre-
sponds to middle C (261.6 Hz on the chromatic musical
scale). The third resonance of a closed organ pipe has the
same frequency. What is the length of each of the two pipes?

A shower stall has dimensions 86.0 cm �
86.0 cm � 210 cm. If you were singing in this shower, which
frequencies would sound the richest (because of reso-
nance)? Assume that the shower stall acts as a pipe closed at
both ends, with nodes at opposite sides, and that the voices
of various singers range from 130 Hz to 2 000 Hz. Let
the speed of sound in the hot air be 355 m/s.

32. Do not stick anything into your ear! Estimate the
length of your ear canal, from its opening at the external
ear to the eardrum. If you regard the canal as a narrow
tube that is open at one end and closed at the other, at
approximately what fundamental frequency would you
expect your hearing to be most sensitive? Explain why
you can hear especially soft sounds just around this
frequency.

Two adjacent natural frequencies of an
organ pipe are determined to be 550 Hz and 650 Hz.
Calculate the fundamental frequency and length of this
pipe. (Use v � 340 m/s.)

34. As shown in Figure P14.34, water is pumped into a tall ver-
tical cylinder at a volume flow rate R. The radius of the
cylinder is r, and at the open top of the cylinder a tuning
fork is vibrating with a frequency f. As the water rises, how
much time elapses between successive resonances?

35. A glass tube (open at both ends) of length L is positioned
near an audio speaker of frequency f � 680 Hz. For what
values of L will the tube resonate with the speaker?

33.

31.

27.

v � 331 m/s � (0.6 m/s ��C) TC

FIGURE P14.25
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36. A tuning fork with a frequency of 512 Hz is placed near the
top of the tube shown in Figure 14.11a. The water level is
lowered so that the length L slowly increases from an ini-
tial value of 20.0 cm. Determine the next two values of L
that correspond to resonant modes.

An air column in a glass tube is open at one end and
closed at the other by a movable piston. The air in the tube
is warmed above room temperature and a 384-Hz tuning
fork is held at the open end. Resonance is heard when the
piston is 22.8 cm from the open end and again when it is
68.3 cm from the open end. (a) What speed of sound is
implied by these data? (b) How far from the open end will
the piston be when the next resonance is heard?

38. With a particular fingering, a flute plays a note with fre-
quency 880 Hz at 20.0°C. The flute is open at both ends.
(a) Find the air column length. (b) Find the frequency it
produces at the beginning of the halftime performance at
a late-season American football game, when the ambient
temperature is � 5.00°C and the player has not had a
chance to warm up the flute.

Section 14.6 � Beats: Interference in Time
In certain ranges of a piano keyboard,

more than one string is tuned to the same note to provide
extra loudness. For example, the note at 110 Hz has two
strings at this frequency. If one string slips from its normal
tension of 600 N to 540 N, what beat frequency is heard
when the hammer strikes the two strings simultaneously?

40. While attempting to tune the note C at 523 Hz, a piano
tuner hears 2.00 beats/s between a reference oscillator and
the string. (a) What are the possible frequencies of the
string? (b) When she tightens the string slightly, she hears
3.00 beats/s. What is the frequency of the string now?
(c) By what percentage should the piano tuner now
change the tension in the string to bring it into tune?

A student holds a tuning fork oscillating at 256 Hz. He
walks toward a wall at a constant speed of 1.33 m/s.
(a) What beat frequency does he observe between the tun-
ing fork and its echo? (b) How fast must he walk away from
the wall to observe a beat frequency of 5.00 Hz?

Section 14.7 Nonsinusoidal Wave Patterns
42. Suppose a flutist plays a 523-Hz C note with first

harmonic displacement amplitude A1 � 100 nm. From
Figure 14.14b read, by proportion, the displacement am-
plitudes of harmonics 2 through 7. Take these values as
the coefficients A2 through A7 in the Fourier analysis of

41.

39.

37.

the sound and assume that B1 � B2 � � � � � B7 � 0.
Construct a graph of the waveform of the sound. Your
waveform will not look exactly like the flute waveform in
Figure 14.13b because you simplify by ignoring cosine
terms; nevertheless, it produces the same sensation to
human hearing.

43. An A-major chord consists of the notes called A, C#, and
E. It can be played on a piano by simultaneously striking
strings with fundamental frequencies of 440.00 Hz,
554.37 Hz, and 659.26 Hz. The rich consonance of the
chord is associated with near equality of the frequencies of
some of the higher harmonics of the three tones. Con-
sider the first five harmonics of each string and determine
which harmonics show near equality.

Section 14.8 � Context Connection — Building 
on Antinodes

44. An earthquake can produce a seiche in a lake in which the
water sloshes back and forth from end to end with remark-
ably large amplitude and long period. Consider a seiche
produced in a rectangular farm pond as shown in the
cross-sectional view of Figure P14.44. (The figure is not
drawn to scale.) Suppose the pond is 9.15 m long and of
uniform width and depth. You measure that a pulse pro-
duced at one end reaches the other end in 2.50 s. (a) What
is the wave speed? (b) To produce the seiche, several peo-
ple stand on the bank at one end and paddle together with
snow shovels, moving them in simple harmonic motion.
What should be the frequency of this motion?

FIGURE P14.34

R

f

FIGURE P14.44

45. The Bay of Fundy, Nova Scotia, has the highest tides in
the world. Assume that in midocean and at the mouth of
the bay, the Moon’s gravity gradient and the Earth’s rota-
tion make the water surface oscillate with an amplitude
of a few centimeters and a period of 12 h 24 min. At the
head of the bay, the amplitude is several meters. Argue
for or against the proposition that the tide is magnified
by standing wave resonance. Assume that the bay has a
length of 210 km and a uniform depth of 36.1 m. The
speed of long-wavelength water waves is given by ,
where d is the water’s depth.

Additional Problems
46. Figure P14.46a is a photograph of a vibrating wine glass.

A special technique makes black and white stripes appear
where the glass is moving, with closer spacing where the
amplitude is larger. Six nodes and six antinodes alternate

√gd
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around the rim of the glass in the vibration photographed,
but consider instead the case of a standing wave vibration
with four nodes and four antinodes equally spaced around
the 20.0-cm circumference of the rim of a goblet. If trans-
verse waves move around the glass at 900 m/s, an opera
singer would have to produce a high harmonic with what
frequency to shatter the glass with a resonant vibration as
shown in Figure P14.46b?

standing wave states, each with a node at the fixed bottom
end and an antinode at the free top end. Find the node–
antinode distances for each one of the three simplest states.
(c) Find the frequency of each of these states.

49. Two train whistles have identical frequencies of 180 Hz.
When one train is at rest in the station and the other is
moving nearby, a commuter standing on the station plat-
form hears beats with a frequency of 2.00 beats/s when the
whistles sound at the same time. What are the two possible
speeds and directions that the moving train can have?

50. A loudspeaker at the front of a room and an identical
loudspeaker at the rear of the room are being driven by
the same oscillator at 456 Hz. A student walks at a uniform
rate of 1.50 m/s along the length of the room. She hears a
single tone repeatedly becoming louder and softer. 
(a) Model these variations as beats between the Doppler-
shifted sounds the student receives. Calculate the number
of beats the student hears each second. (b) Model the two
speakers as producing a standing wave in the room and the
student as walking between antinodes. Calculate the num-
ber of intensity maxima the student hears each second.

51. A student uses an audio oscillator of adjustable frequency
to measure the depth of a water well. The student hears
two successive resonances at 51.5 Hz and 60.0 Hz. How
deep is the well?

52. A string fixed at both ends and having a mass of 4.80 g, a
length of 2.00 m, and a tension of 48.0 N vibrates in its sec-
ond (n � 2) normal mode. What is the wavelength in air
of the sound emitted by this vibrating string?

53. Two wires are welded together end to end. The wires are
made of the same material, but the diameter of one is twice
that of the other. They are subjected to a tension of 4.60 N.
The thin wire has a length of 40.0 cm and a linear mass den-
sity of 2.00 g/m. The combination is fixed at both ends and
vibrated in such a way that two antinodes are present, with
the node between them being right at the weld. (a) What is
the frequency of vibration? (b) How long is the thick wire?

54. A string is 0.400 m long and has a mass per unit length of
9.00 � 10�3 kg/m. What must be the tension in the string if
its second harmonic has the same frequency as the second
resonance mode of a 1.75-m-long pipe open at one end?

A standing wave is set up in a string of variable length and
tension by a vibrator of variable frequency. Both ends of
the string are fixed. When the vibrator has a frequency f, in
a string of length L and under tension T, n antinodes are
set up in the string. (a) If the length of the string is dou-
bled, by what factor should the frequency be changed so
that the same number of antinodes is produced? (b) If the
frequency and length are held constant, what tension will
produce n � 1 antinodes? (c) If the frequency is tripled
and the length of the string is halved, by what factor
should the tension be changed so that twice as many antin-
odes are produced?

56. Review problem. For the arrangement shown in Figure
P14.56, � � 30.0°, the inclined plane and the small pulley
are frictionless, the string supports the object of mass M at
the bottom of the plane, and the string has mass m that is
small compared with M. The system is in equilibrium and
the vertical part of the string has a length h. Standing

55.

FIGURE P14.46 (a) Nodes (in white) and antinodes (where the
stripes converge to black) alternate around the rim of a vibrating
wine glass. (b) A glass shatters when vibrating with large
amplitude.

47. On a marimba (Fig. P14.47), the wooden bar that sounds a
tone when struck vibrates in a transverse standing wave
having three antinodes and two nodes. The lowest-
frequency note is 87.0 Hz, produced by a bar 40.0 cm long.
(a) Find the speed of transverse waves on the bar. (b) A
resonant pipe suspended vertically below the center of the
bar enhances the loudness of the emitted sound. If the
pipe is open at the top end only and the speed of sound in
air is 340 m/s, what is the length of the pipe required to
resonate with the bar in part (a)?
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48. A nylon string has mass 5.50 g and length 86.0 cm. One end
is tied to the floor and the other end to a small magnet, with
a mass negligible compared with the string. A magnetic field
(which we will study in Chapter 22) exerts an upward force
of 1.30 N on the magnet, wherever the magnet is located. At
equilibrium, the string is vertical and motionless, with the
magnet at the top. When it is carrying a small-amplitude
wave, you may assume the string is always under uniform
tension 1.30 N. (a) Find the speed of transverse waves on
the string. (b) The string’s vibration possibilities are a set of
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FIGURE P14.56
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FIGURE P14.59

waves are set up in the vertical section of the string.
(a) Find the tension in the string. (b) Model the shape of
the string as one leg and the hypotenuse of a right trian-
gle. Find the whole length of the string. (c) Find the mass
per unit length of the string. (d) Find the speed of waves
on the string. (e) Find the lowest frequency for a standing
wave. (f) Find the period of the standing wave having
three nodes. (g) Find the wavelength of the standing wave
having three nodes. (h) Find the frequency of the beats re-
sulting from the interference of the sound wave of lowest
frequency generated by the string with another sound wave
having a frequency that is 2.00% greater.

beat frequency of 5.00 Hz is heard. (a) What could be the
frequency of the tuning fork? (b) What should the tension
in the wire be if the beats are to disappear?

59. Review problem. A 12.0-kg object hangs in equilibrium
from a string with a total length of L � 5.00 m and a linear
mass density of � � 0.001 00 kg/m. The string is wrapped
around two light, frictionless pulleys that are separated by
a distance of d � 2.00 m (Fig. P14.59a). (a) Determine the
tension in the string. (b) At what frequency must the string
between the pulleys vibrate to form the standing wave pat-
tern shown in Figure P14.59b?

M
θ

h

ANSWERS TO QUICK QUIZZES

14.1 (c). The pulses completely cancel each other in terms of
displacement of elements of the string from equilibrium,
but the string is still moving. A short time later, the string
will be displaced again and the pulses will have passed
each other.

14.2 (i), (a). The pattern shown at the bottom of Active Fig-
ure 14.8a corresponds to the extreme position of the
string. All elements of the string have momentarily come
to rest. Notice that the time derivative of Equation 14.3
gives the transverse velocity of each element of the string:

. Whenever �t �
n�, the velocity of every element of the string is equal to
zero. (ii), (d). Near a nodal point, elements on one side
of the point are moving upward at this instant and ele-
ments on the other side are moving downward.

14.3 (d). Choice (a) is incorrect because the number of
nodes is one greater than the number of antinodes.

v(t) � dy/dt � � (2�A sin kx) sin �t

Choice (b) is only true for half of the modes; it is not
true for any odd-numbered mode. Choice (c) would be
correct if we replace the word nodes with antinodes.

14.4 (b). With both ends open, the pipe has a fundamental
frequency given by Equation 14.10: fopen � v/2L. With
one end closed, the pipe has a fundamental frequency
given by Equation 14.11:

14.5 (c). The increase in temperature causes the speed of
sound to go up. According to Equation 14.10, this effect
will result in an increase in the fundamental frequency of
a given organ pipe.

14.6 (b). Tightening the string has caused the frequencies to
be farther apart based on the increase in the beat fre-
quency, so you want to loosen the string.

fclosed �
v

4L
� 1

2 � v
2L � � 1

2 fopen

57. Two waves are described by the wave functions

y1(x, t) � 5.0 sin(2.0x � 10t)

y 2(x, t) � 10 cos(2.0x � 10t)

where y1, y 2, and x are in meters and t is in seconds. Show
that the wave resulting from their superposition is sinu-
soidal. Determine the amplitude and phase of this sinu-
soidal wave.

58. A 0.010 0-kg wire, 2.00 m long, is fixed at both ends and vi-
brates in its simplest mode under a tension of 200 N.
When a vibrating tuning fork is placed near the wire, a

60. A quartz watch contains a crystal oscillator in the form of a
block of quartz that vibrates by contracting and expanding.
Two opposite faces of the block, 7.05 mm apart, are
antinodes, moving alternately toward each other and away
from each other. The plane halfway between these two
faces is a node of the vibration. The speed of sound in
quartz is 3.70 km/s. Find the frequency of the vibration.
An oscillating electric voltage accompanies the mechanical
oscillation; the quartz is described as piezoelectric. An elec-
tric circuit feeds in energy to maintain the oscillation and
also counts the voltage pulses to keep time.
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Minimizing the Risk
We have explored the physics of vibrations and waves. Let us now return to our cen-
tral question for this Earthquakes Context:

How can we choose locations and build structures to minimize the risk of damage in an
earthquake?

To answer this question, we shall use the physical principles that we now understand
more clearly and apply them to our choices of locations and structural design.

In our discussion of simple harmonic oscillation, we learned about resonance.
Designers of structures in earthquake-prone areas need to pay careful attention to
resonance vibrations from shaking of the ground. The design features to be consid-
ered include ensuring that the resonance frequencies of the building do not match
typical earthquake frequencies. In addition, the structural details should include
sufficient damping to ensure that the amplitude of resonance vibration does not
destroy the structure.

In Chapter 13, we discussed the role of the medium in the propagation of a
wave. For seismic waves moving across the surface of the Earth, the soil on the sur-
face is the medium. Because soil varies from one location to another, the speed of
seismic waves will vary at different locations. A particularly dangerous situation ex-
ists for structures built on loose soil or mudfill. In these types of media, the inter-
particle forces are much weaker than in a more solid foundation such as granite
bedrock. As a result, the wave speed is less in loose soil than in bedrock.

Consider Equation 13.23, which provides an expression for the rate of energy
transfer by waves. This equation was derived for waves on strings, but the proportion-
ality to the square of the amplitude and the speed is general. Because of conservation
of energy, the rate of energy transfer for a wave must remain constant regardless of
the medium. Thus, according to
Equation 13.23, if the wave speed de-
creases, as it does for seismic waves
moving from rock into loose soil, the
amplitude must increase. As a result,
the shaking of structures built on
loose soil is of larger magnitude than
for those built on solid bedrock.

This factor contributed to the
collapse of the Nimitz Freeway
during the Loma Prieta earthquake,
near San Francisco, in 1989.
Figure 1 shows the results of the
earthquake on the freeway. The por-
tion of the freeway that collapsed
was built on mudfill, but the surviv-
ing portion was built on bedrock.
The amplitude of oscillation in the
portion built on mudfill was more
than five times as large as the ampli-
tude of other portions.

Another danger for structures
on loose soil is the possibility of

C O N T E X T CONCLUSION3

Portions of the double-decked Nimitz Freeway in Oakland, California, collapsed
during the Loma Prieta earthquake of 1989.

FIGURE 1
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liquefaction of the soil. When
soil is shaken, the elements of
soil can move with respect to one
another and the soil tends to act
like a liquid rather than a solid.
It is possible for the structure to
sink into the soil during an earth-
quake. If the liquefaction is not
uniform over the foundation of
the structure, the structure can
tip over, as seen in Figure 2. As a
result, even if the earthquake is
not sufficient to damage the
structure, it will be unusable in
its tipped-over orientation.

As discussed in Chapter 14,
building structures where stand-
ing seismic waves can be estab-
lished is dangerous. Such con-
struction was a factor in the
Michoacán earthquake of 1985.
The shape of the bedrock under
Mexico City resulted in standing
waves, with severe damage to
buildings located at antinodes.

In summary, to minimize risk of damage in an earthquake, architects and engi-
neers must design structures to prevent destructive resonances, avoid building on
loose soil, and pay attention to the underground rock formations so as to be aware
of possible standing wave patterns. Other precautions can also be taken. For exam-
ple, buildings can be constructed with seismic isolation from the ground. This
method involves mounting the structure on isolation dampers, heavy-duty bearings
that dampen the oscillations of the building, resulting in reduced amplitude of vi-
bration.

We have not addressed many other considerations for earthquake safety in struc-
tures, but we have been able to apply many of our concepts from oscillations and
waves so as to understand some aspects of logical choices in locating and designing
structures.

Problems
1. For seismic waves spreading out from a point (the epicenter) on the surface of

the Earth, the intensity of the waves decreases with distance according to an in-
verse proportionality to distance. That is, the wave intensity is proportional to
1/r, where r is the distance from the epicenter to the observation point. This
rule applies if the medium is uniform. The intensity of the wave is proportional
to the rate of energy transfer for the wave. Furthermore, we have shown that the
energy of vibration of an oscillator is proportional to the square of the ampli-
tude of the vibration. Assume that a particular earthquake causes ground shak-
ing with an amplitude of 5.0 cm at a distance of 10 km from the epicenter. If the
medium is uniform, what is the amplitude of the ground shaking at a point
20 km from the epicenter?

2. As mentioned in the text, the amplitude of oscillation during the Loma Prieta
earthquake of 1989 was five times greater in areas of mudfill than in areas of
bedrock. From this information, find the factor by which the seismic wave speed
changed as the waves moved from the bedrock to the mudfill. Ignore any reflec-
tion of wave energy and any change in density between the two media.

The collapse of this crane during the Kobe, Japan, earthquake of 1995 was caused by
liquefaction of the underlying soil.

FIGURE 2
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epicenter for P and S waves.

FIGURE 3

3. Figure 3 is a graphical representation of the travel time for P and S waves from
the epicenter of an earthquake to a seismograph as a function of the distance of
travel. The following table shows the measured times of day for arrival of P waves
from a particular earthquake at three seismograph locations. In the last column,
fill in the times of day for the arrival of the S waves at the three seismograph
locations.

Seismograph Distance from P Wave S Wave
Station Epicenter (km) Arrival Time Arrival Time

#1 200 15:46:06
#2 160 15:46:01
#3 105 15:45:54



y p g p pp

C O N T E X T 4

Search for the Titanic
The Titanic and its sister ships, the
Olympic and the Britannic, were de-
signed to be the largest and most luxu-
rious liners sailing the ocean at the
time. The Titanic was lost in the North
Atlantic on its maiden voyage from
Southampton, England, to New York,
on April 15, 1912. It was claimed by
many (although not by the White Star
Line, which operated the Titanic) that
the ship was unsinkable. This claim was
proven to be untrue when the Titanic
struck an iceberg at 11:40 P.M. on April
14 and sank less than 3 h later. This
event was one of the worst maritime
disasters of all time, with more than
1 500 lives lost because of a severe
shortage of lifeboats. Amazingly, British
ships of the time were not required to
carry enough lifeboats for all passen-
gers on board. It is fortunate that the
Titanic was not completely full on its
maiden voyage, as there would have
been only enough lifeboats for a third
of its passengers. As it was, there were
enough lifeboats for a little more than
half of the 2 200 passengers on board,
but only 705 were saved due to the
partial filling of the boats, which oc-
curred for a number of reasons.

The mass of the Titanic was over
4.2 � 107 kg and it was 269 m long. It
was designed to be able to travel at 24 to
25 knots (about 12–13 m/s), and the
safety of the ship was ensured by lateral
bulkheads at several places across
the ship with electrically operated

watertight doors. It is ironic to note that
the design of the bulkheads actually
worked against the safety of the ship,
and the closing of the watertight doors,
according to some experts after the dis-
aster, caused the ship to sink more
rapidly than if they had been left open.

The accidental sinking of the Titanic
resulted from a remarkable confluence
of bad luck, complacency, and poor
policy. Several events occurred during
the last day of its voyage that would not
have led to the foundering of the ship
if they had happened in just a slightly
different way.

The Titanic has captured the interest
of the public for many years. Many the-
atrical movies related to the ship have

The Titanic on its way from
Southampton to New York.

FIGURE 1
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During the sinking process in the
early morning of April 15, 1912,
the bow of the Titanic is under
water and the stern is lifted out
of the water. The huge forces
necessary to hold the stern aloft
caused the Titanic to split in the
middle before sinking.

FIGURE 2
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How can we safely visit the wreck of the Titanic?

been produced, including Titanic
(1953), A Night to Remember (1958),
Raise the Titanic (1980), Titanic (1997),
and Ghosts of the Abyss (2003). A musical
play, Titanic (1997), has been pro-
duced, and the Titanic plays a role in
the Broadway and movie musical The
Unsinkable Molly Brown (1964). A large
number of books have been written on
the disaster, many of which were reis-
sued when the Titanic became wildly
popular in response to the 1997 film.

Finding the Titanic on the ocean
floor was a dream of many individuals

In 1998, a 20-ton section of the
Titanic’s hull was raised to the surface
and is now part of a touring exhibit
of Titanic artifacts. Called the “Big
Piece,” the hull section contains four
portholes, three of which still contain
the original glass.

FIGURE 4
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The bow of the Titanic as it rests on the ocean floor 80 years after it
sank in the North Atlantic.
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Matter is normally classified as being in one of three
states: solid, liquid, or gas. Everyday experience tells us
that a solid has a definite volume and shape. A brick

maintains its familiar shape and size over a long time. We also
know that a liquid has a definite volume but no definite shape.
For example, a cup of liquid water has a fixed volume but as-
sumes the shape of its container. Finally, an unconfined gas has
neither definite volume nor definite shape. For example, if there
is a leak in the natural gas supply in your home, the escaping gas
continues to expand into the surrounding atmosphere. These de-
finitions help us picture the states of matter, but they are some-
what artificial. For example, asphalt, glass, and plastics are nor-
mally considered solids, but over a long time interval they tend to
flow like liquids. Likewise, most substances can be a solid, liquid,
or gas (or combinations of these states), depending on the tem-
perature and pressure. In general, the time interval required for
a particular substance to change its shape in response to an exter-
nal force determines whether we treat the substance as a solid,
liquid, or gas.

A fluid is a collection of molecules that are randomly
arranged and held together by weak cohesive forces between

Fluid Mechanics

C H A P T E R 15

Icebergs float in the cold waters of the North
Atlantic. Although the visible portion of an
iceberg may tower over a passing ship, only
about 11% of the iceberg is above water.

C H A P T E R  O U T L I N E
15.1 Pressure
15.2 Variation of Pressure with Depth
15.3 Pressure Measurements
15.4 Buoyant Forces and Archimedes’s Principle
15.5 Fluid Dynamics
15.6 Streamlines and the Continuity Equation

for Fluids
15.7 Bernoulli’s Equation
15.8 Other Applications of Fluid Dynamics
15.9 Context Connection — A Near Miss Even

Before Leaving Southampton
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molecules and forces exerted by the walls of a container. Both liquids and gases are
fluids. In our treatment of the mechanics of fluids, we shall see that no new physical
principles are needed to explain such effects as the buoyant force on a submerged
object and vascular flutter in an artery. In this chapter, we shall apply a number of
familiar analysis models to the physics of fluids.

PRESSURE
Our first task in understanding the physics of fluids is to define a new quantity to
describe fluids. Imagine applying a force to the surface of an object, with the force
having components both parallel to and perpendicular to the surface. If the object
is a solid at rest on a table, the force component perpendicular to the surface may
cause the object to flatten, depending on how hard the object is. Assuming that the
object does not slide on the table, the component of the force parallel to the sur-
face of the object will cause the object to distort. As an example, suppose you place
your physics book flat on a table and apply a force with your hand parallel to
the front cover and perpendicular to the spine. The book will distort, with the
bottom pages staying fixed at their original location and the top pages shifting
horizontally by some distance. The cross-section of the book changes from a
rectangle to a parallelogram. This kind of force parallel to the surface is called a
shearing force.

We shall adopt a simplification model in which the fluids we study will be nonvis-
cous; that is, no friction exists between adjacent layers of the fluid. Nonviscous flu-
ids and static fluids do not sustain shearing forces. If you imagine placing your
hand on a water surface and pushing parallel to the surface, your hand simply
slides over the water; you cannot distort the water as you did the book. This phe-
nomenon occurs because the interatomic forces in a fluid are not strong enough to
lock atoms in place with respect to one another. The fluid cannot be modeled as a
rigid object as in Chapter 10. If we try to apply a shearing force, the molecules of
the fluid simply slide past one another.

Therefore, the only type of force that can exist in a fluid is one that is perpen-
dicular to a surface. For example, the forces exerted by the fluid on the object in
Figure 15.1 are everywhere perpendicular to the surfaces of the object.

The force that a fluid exerts on a surface originates in the collisions of mole-
cules of the fluid with the surface. Each collision results in the reversal of the com-
ponent of the velocity vector of the molecule perpendicular to the surface. By the
impulse–momentum theorem and Newton’s third law, each collision results in a
force on the surface. A huge number of these impulsive forces occur every second,
resulting in a constant macroscopic force on the surface. This force is spread out
over the area of the surface and is related to a new quantity called pressure.

The pressure at a specific point in a fluid can be measured with the device pic-
tured in Figure 15.2. The device consists of an evacuated cylinder enclosing a light
piston connected to a spring. As the device is submerged in a fluid, the fluid
presses in on the top of the piston and compresses the spring until the inward force
of the fluid is balanced by the outward force of the spring. The force exerted on
the piston by the fluid can be measured if the spring is calibrated in advance.

If F is the magnitude of the force exerted by the fluid on the piston and A is the
surface area of the piston, the pressure P of the fluid at the level to which the
device has been submerged is defined as the ratio of force to area:

[15.1]

Although we have defined pressure in terms of our device in Figure 15.2, the de-
finition is general. Because pressure is force per unit area, it has units of newtons

P � 
F
A

15.1

The force exerted
by the fluid on a submerged object at
any point is perpendicular to the sur-
face of the object. The force exerted
by the fluid on the walls of the con-
tainer is perpendicular to the walls at
all points.

FIGURE 15.1

A simple device for
measuring pressure in a fluid.

FIGURE 15.2

F

Vacuum

A

FORCE AND PRESSURE Equation 15.1
makes a clear distinction between
force and pressure. Another impor-
tant distinction is that force is a vector
and pressure is a scalar. No direction
is associated with pressure, but the
direction of the force associated
with the pressure is perpendicular
to the surface of interest.

� PITFALL PREVENTION 15.1

■ Definition of pressure



per square meter in the SI system. Another name for the SI unit of pressure is the
pascal (Pa):

[15.2]

Notice that pressure and force are different quantities. We can have a very large
pressure from a relatively small force by making the area over which the force is ap-
plied small. Such is the case with hypodermic needles. The area of the tip of the
needle is very small, so a small force pushing on the needle is sufficient to cause a
pressure large enough to puncture the skin. We can also create a small pressure
from a large force by enlarging the area over which the force acts. Such is the prin-
ciple behind the design of snowshoes. If a person were to walk on deep snow with
regular shoes, it is possible for his or her feet to break through the snow and sink.
Snowshoes, however, allow the force on the snow due to the weight of the person to
spread out over a larger area, reducing the pressure enough so that the snow sur-
face is not broken (Fig. 15.3).

The atmosphere exerts a pressure on the surface of the Earth and all objects at
the surface. This pressure is responsible for the action of suction cups, drinking
straws, vacuum cleaners, and many other devices. In our calculations and end-of-
chapter problems, we usually take atmospheric pressure to be

[15.3]P0 � 1.00 atm � 1.013 � 105 Pa

1 Pa � 1 N/m2
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■ The pascal

Snowshoes keep
you from sinking into soft snow 
because they spread the downward
force you exert on the snow over a
large area, reducing the pressure on
the snow surface. 

FIGURE 15.3
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Suppose you are standing directly behind someone who steps back
and accidentally stomps on your foot with the heel of one shoe. Would you be better off if
that person were (a) a large male professional basketball player wearing sneakers or (b) a
petite woman wearing spike-heeled shoes?

QUICK QUIZ 15.1

■ Thinking Physics 15.1
Suction cups can be used to hold objects onto surfaces. Why don’t astronauts use
suction cups to hold onto the outside surface of an orbiting spacecraft?

Reasoning A suction cup works because air is pushed out from under the cup
when it is pressed against a surface. When the cup is released, it tends to spring
back a bit, causing the trapped air under the cup to expand. This expansion causes
a reduced pressure inside the cup. Thus, the difference between the atmospheric
pressure on the outside of the cup and the reduced pressure inside provides a net
force pushing the cup against the surface. For astronauts in orbit around the Earth,
almost no air exists outside the surface of the spacecraft. Therefore, if a suction cup
were to be pressed against the outside surface of the spacecraft, the pressure differ-
ential needed to press the cup to the surface is not present. ■

VARIATION  OF  PRESSURE  WITH  DEPTH
The study of fluid mechanics involves the density of a substance, defined in Equa-
tion 1.1 as the mass per unit volume for the substance. Table 15.1 lists the densities
of various substances. These values vary slightly with temperature because the vol-
ume of a substance is temperature-dependent (as we shall see in Chapter 16). Note
that under standard conditions (0°C and atmospheric pressure) the densities of
gases are on the order of 1/1 000 the densities of solids and liquids. This difference
implies that the average molecular spacing in a gas under these conditions is about
ten times greater in each dimension than in a solid or liquid.

As divers know well, the pressure in the sea or a lake increases as they dive to
greater depths. Likewise, atmospheric pressure decreases with increasing altitude.

15.2

Hypodermic needles
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Substance � (kg/m3) Substance � (kg/m3)

Air 1.29 Ice 0.917 � 103

Aluminum 2.70 � 103 Iron 7.86 � 103

Benzene 0.879 � 103 Lead 11.3 � 103

Copper 8.92 � 103 Mercury 13.6 � 103

Ethyl alcohol 0.806 � 103 Oak 0.710 � 103

Fresh water 1.00 � 103 Oxygen gas 1.43
Glycerin 1.26 � 103 Pine 0.373 � 103

Gold 19.3 � 103 Platinum 21.4 � 103

Helium gas 1.79 � 10�1 Sea water 1.03 � 103

Hydrogen gas 8.99 � 10�2 Silver 10.5 � 103

For this reason, aircraft flying at high altitudes must have pressurized cabins to pro-
vide sufficient oxygen for the passengers.

We now show mathematically how the pressure in a liquid increases with depth.
Consider a liquid of density � at rest as in Figure 15.4. Let us select a sample of the
liquid contained within an imaginary cylinder of cross-sectional area A extending
from depth d to depth d � h. This sample of liquid is in equilibrium and at rest.
Therefore, according to Newton’s second law, the net force on the sample must be
equal to zero. We will investigate the forces on the sample related to the pressure
on it.

The liquid external to our sample exerts forces at all points on the sample’s sur-
face, perpendicular to it. On the sides of the sample of liquid in Figure 15.4, forces
due to the pressure act horizontally and cancel in pairs on opposite sides of the sam-
ple for a net horizontal force of zero. The pressure exerted by the liquid on the sam-
ple’s bottom face is P and the pressure on the top face is P0. Therefore, from Equa-
tion 15.1, the magnitude of the upward force exerted by the liquid on the bottom of
the sample is PA, and the magnitude of the downward force exerted by the liquid on
the top is P0A. In addition, a gravitational force is exerted on the sample. Because
the sample is in equilibrium, the net force in the vertical direction must be zero:

Because the mass of liquid in the sample is M � �V � �Ah, the gravitational force
on the liquid in the sample is Mg � �gAh. Therefore,

or

[15.4]

If the top surface of our sample is at d � 0 so that it is open to the atmosphere,
P0 is atmospheric pressure. Equation 15.4 indicates that the pressure in a liquid de-
pends only on the depth h within the liquid. The pressure is therefore the same at
all points having the same depth, independent of the shape of the container.

In view of Equation 15.4, any increase in pressure at the surface must be
transmitted to every point in the liquid. This behavior was first recognized by
French scientist Blaise Pascal (1623–1662) and is called Pascal’s law: A change in
the pressure applied to an enclosed fluid is transmitted undiminished to every
point of the fluid and to the walls of the container. You use Pascal’s law when you
squeeze the sides of your toothpaste tube. The increase in pressure on the sides of
the tube increases the pressure everywhere, which pushes a stream of toothpaste
out of the opening.

P � P0 � �gh

PA � P0A � �g Ah

�  Fy � 0  :   PA � P0A � Mg � 0

Densities of Some Common Substances at Standard Temperature
(0°C) and Pressure (Atmospheric)

TABLE 15.1

Mg

PA j

–P0A j

d

d + h

ˆ

ˆ

The net force on
the sample of liquid within the darker
region must be zero because the sam-
ple is in equilibrium.

FIGURE 15.4

■ Variation of pressure with depth
in a liquid

■ Pascal’s law



An important application of Pascal’s law is the hydraulic press illustrated by Figure
15.5. A force is applied to a small piston of area A1. The pressure is transmitted
through a liquid to a larger piston of area A2, and force is exerted by the liquid
on this piston. Because the pressure is the same at both pistons, we see that
P � F1/A1 � F2/A2. The force magnitude F2 is therefore larger than F1 by the mul-
tiplying factor A2/A1. Hydraulic brakes, car lifts, hydraulic jacks, and forklifts all
make use of this principle.

F
:

2

F
:

1
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F1

F2

A2A1
∆x1

∆x2

(a) (b)

FIGURE 15.5 (a) Diagram of a hydraulic press. Because the increase in pressure is the same at the left
and right sides, a small force at the left produces a much larger force at the right.
(b) A vehicle under repair is supported by a hydraulic lift in a garage. 
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The pressure at the bottom of a filled glass of water 
(� � 1 000 kg/m3) is P. The water is poured out and the glass is filled with ethyl alcohol
(� � 806 kg/m3). What is the pressure at the bottom of the glass? (a) smaller than P
(b) equal to P (c) larger than P (d) indeterminate

QUICK QUIZ 15.2

■ Thinking Physics 15.2
Blood pressure is normally measured with the cuff of the sphygmomanometer
around the arm. Suppose the blood pressure were measured with the cuff around
the calf of the leg of a standing person. Would the reading of the blood pressure be
the same here as it is for the arm?

Reasoning The blood pressure measured at the calf would be larger than that mea-
sured at the arm. If we imagine the vascular system of the body to be a vessel contain-
ing a liquid (blood), the pressure in the liquid will increase with depth. The blood at
the calf is deeper in the liquid than that at the arm and is at a higher pressure.

Blood pressures are normally taken at the arm because it is at approximately
the same height as the heart. If blood pressures at the calf were used as a standard,
adjustments would need to be made for the height of the person and the blood
pressure would be different if the person were lying down. ■

Measuring blood pressure
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Consider the lift as a nonisolated system and show
that the input energy transfer is equal in magnitude to
the output energy transfer.

Solution The energy input and output are by means of
work done by the forces as the pistons move. To deter-
mine the work done, we must find the magnitude of
the displacement through which each force acts. Be-
cause the liquid is modeled to be incompressible, the
volume of the cylinder through which the input piston
moves must equal that through which the output piston
moves. The lengths of these cylinders are the magni-
tudes �x1 and �x2 of the displacements of the forces
(see Fig. 15.5a). Setting the volumes equal, we have

Evaluating the ratio of the input work to the output
work, we find that

which verifies that the work input and output are the
same, as they must be to conserve energy.

W1

W2
�

F1 �x1

F2 �x2
� � F1

F2
� � �x1

�x2
� � � A1

A2
� � A2

A1
� � 1

 
A1

A2
�

�x 2

�x 1

 V1 � V2 : A1�x 1 � A2�x 2

C

The Car LiftEXAMPLE 15.1
In a car lift used in a service station, compressed air ex-
erts a force on a small piston of circular cross-section
having a radius of 5.00 cm. This pressure is transmitted
by an incompressible liquid to a second piston of radius
15.0 cm.

What force must the compressed air exert to lift a
car weighing 13 300 N?

Solution Because the pressure exerted by the com-
pressed air is transmitted undiminished throughout the
liquid, we have

� 

What air pressure will produce this force? 

Solution The air pressure that will produce this force is

This pressure is approximately twice atmospheric pres-
sure.

1.88 � 105 PaP �
F1

A1
�

1.48 � 103 N
�(5.00 � 10�2  m)2 �

B

1.48 � 103   N

F1 � � A1

A2
� F2 �

�(5.00 � 10�2 m)2

�(15.0 � 10�2 m)2  (1.33 � 104 N)

A

by finding the force dF on a narrow horizontal strip at
depth h and then integrating the expression over the
height of the dam to find the total force.

The pressure at the depth h beneath the surface at
the red strip in Figure 15.6 is

(We have not included atmospheric pressure in our calcu-
lation because it acts on both sides of the dam, resulting
in a net contribution of zero to the total force.) From
Equation 15.1, we find the force on the red strip of 
area dA:

Because dA � w dy, we have

Therefore, the total force on the dam is

Note that because the pressure increases with depth,
the dam is designed such that its thickness increases
with depth as in Figure 15.6.

1
2 �g wH 2F � �H

0
�g (H � y)w dy � 

dF � P dA � �g (H � y)w dy

F � PA : dF � PdA

P � �gh � �g(H � y)

The Force on a DamEXAMPLE 15.2
Water is filled to a height H behind a dam of width w
(Fig. 15.6). Determine the resultant force on the dam.

Solution We cannot calculate the force on the dam by
simply multiplying the area by the pressure because the
pressure varies with depth. The problem can be solved

H

dy

O

h

y
w

FIGURE 15.6 (Example 15.2) The total force on a dam is ob-
tained from the expression where dA is
the area of the red strip.

F � �PdA,



PRESSURE  MEASUREMENTS
During the weather report on a television news program, the barometric pressure is of-
ten provided. Barometric pressure is the current pressure of the atmosphere, which
varies over a small range from the standard value provided in Equation 15.3. How is
this pressure measured?

One instrument used to measure atmospheric pressure is the common barome-
ter, invented by Evangelista Torricelli (1608–1647). A long tube closed at one end
is filled with mercury and then inverted into a dish of mercury (Fig. 15.7a). The
closed end of the tube is nearly a vacuum, so the pressure at the top of the mercury
column can be taken as zero. In Figure 15.7a, the pressure at point A due to the
column of mercury must equal the pressure at point B due to the atmosphere. If
that were not the case, a net force would move mercury from one point to the
other until equilibrium was established. It therefore follows that P0 � �Hggh, where
�Hg is the density of the mercury and h is the height of the mercury column. As at-
mospheric pressure varies, the height of the mercury column varies, so the height
can be calibrated to measure atmospheric pressure. Let us determine the height of
a mercury column for one atmosphere of pressure, P0 � 1 atm � 1.013 � 105 Pa:

Based on a calculation such as this one, one atmosphere of pressure is defined
as the pressure equivalent of a column of mercury that is exactly 0.760 0 m in
height at 0°C.

The open-tube manometer illustrated in Figure 15.7b is a device for measuring
the pressure of a gas contained in a vessel. One end of a U-shaped tube containing
a liquid is open to the atmosphere, and the other end is connected to a system of
unknown pressure P. The pressures at points A and B must be the same (otherwise,
the curved portion of the liquid would experience a net force and would acceler-
ate), and the pressure at A is the unknown pressure of the gas. Therefore, equating
the unknown pressure P to the pressure at point B, we see that P � P0 � �gh. The
difference in pressure P � P0 is equal to �gh. Pressure P is called the absolute pres-
sure, and the difference P � P0 is called the gauge pressure. For example, the pres-
sure you measure in your bicycle tire is gauge pressure.

BUOYANT  FORCES  AND  ARCHIMEDES’S  PRINCIPLE
In this section, we investigate the origin of a buoyant force, which is an upward
force exerted on an object by the surrounding fluid. Buoyant forces are evident in
many situations. Anyone who has ridden in a boat, for example, has experienced a
buoyant force. Another common example is the relative ease with which you can
lift someone in a swimming pool compared with lifting that same individual on dry
land. According to Archimedes’s principle:

Any object completely or partially submerged in a fluid experiences an up-
ward buoyant force whose magnitude is equal to the weight of the fluid dis-
placed by the object.

Archimedes’s principle can be verified in the following manner. Suppose we fo-
cus our attention on a small parcel of a larger fluid such as the indicated cube of
fluid in the container of Figure 15.8. This cube of fluid is in equilibrium under the
action of the forces exerted on it by the fluid surrounding it. One of these forces in
the vertical direction is the gravitational force. Because the cube is in equilibrium,
the net force on it in the vertical direction must be zero. What cancels the down-
ward gravitational force so that the cube remains in equilibrium? Apparently, the
rest of the fluid inside the container is applying an upward force, the buoyant

15.4

P0 � �Hggh : h �
P0

�Hgg
�

1.013 � 105 Pa
(13.6 � 103 kg/m3)(9.80 m/s2)

� 0.760 m

15.3
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P = 0

P0

h

(a)

P0

(b)

P

A B

h

A B

Two devices for
measuring pressure: (a) a mercury
barometer and (b) an open-tube
manometer.

FIGURE 15.7

Archimedes (ca. 287 – 212 B.C.)
Archimedes, a Greek mathemati-
cian, physicist, and engineer, was
perhaps the greatest scientist of an-
tiquity. He was the first to compute
accurately the ratio of a circle’s cir-
cumference to its diameter, and he
showed how to calculate the vol-
ume and surface area of spheres,
cylinders, and other geometric
shapes. He is well known for discov-
ering the nature of the buoyant
force.
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force. Therefore, the magnitude B of the buoyant force must be exactly equal to
the weight of the fluid inside the cube:

where M is the mass of the fluid in the cube.
Now imagine that the cube of fluid is replaced by a cube of steel of the same di-

mensions. What is the buoyant force on the steel? The fluid surrounding a cube be-
haves in the same way whether it is exerting pressure on a cube of fluid or a cube of
steel; therefore, the buoyant force acting on the steel is the same as the buoyant
force acting on a cube of fluid of the same dimensions. This result applies for a sub-
merged object of any shape, size, or density.

Let us now show more explicitly that the magnitude of the buoyant force is
equal to the weight of the displaced fluid. Although that is true for both liquids and
gases, we will perform the derivation for a liquid. On the sides of the cube of liquid
in Figure 15.8, forces due to the pressure act horizontally and cancel in pairs on op-
posite sides of the cube for a net horizontal force of zero. In a liquid, the pressure
at the bottom of the cube is greater than the pressure at the top by an amount �f gh,
where �f is the density of the liquid and h is the height of the cube. Therefore, the
upward force Fbot on the bottom is greater than the downward force Ftop on the top
of the cube. The net vertical force exerted by the liquid (we are ignoring the gravita-
tional force for now) is

Expressing the forces in terms of pressure gives us

[15.5]

where V � hA is the volume of the cube. Because the mass of the liquid in the cube
is M � �fV, we see that

B � Mg

which is the weight of the displaced liquid.
Before proceeding with a few examples, it is instructive to compare two com-

mon cases: the buoyant force acting on a totally submerged object and that acting
on a floating object.

Case I: A Totally Submerged Object
When an object is totally submerged in a liquid of density �f , the magnitude of the
upward buoyant force is B � �f gV, where V is the volume of the liquid displaced by
the object. Because the object is totally submerged, the volume VO of the object and
the volume V of liquid displaced by the object are the same, V � VO . If the object
has a density �O , its weight is Mg � �OVO g. Therefore, the net force on it is 

F � B � Mg � (�f � �O)VO g. We see that if the density of the object is less than
the density of the liquid as in Active Figure 15.9a, the net force is positive and the
unsupported object accelerates upward. If the density of the object is greater than
the density of the liquid as in Active Figure 15.9b, the net force is negative and the
unsupported object sinks.

The same behavior is exhibited by an object immersed in a gas, such as the air
in the atmosphere.1 If the object is less dense than air, like a helium-filled balloon,
the object floats upward. If it is denser, like a rock, it falls downward.

�

B � �f gV

B � PbotA � Ptop A � �PA � �f ghA

 � F liquid � B � Fbot � F top

 � Fy � 0   :    B � Fg � 0   :    B � Mg

The external
forces on the cube of liquid are the
gravitational force and the buoyant
force . Under equilibrium condi-
tions, B � Fg.

B
:

F
:

g

FIGURE 15.8

Fg

B

h

■ Archimedes’s principle

BUOYANT FORCE IS EXERTED BY THE

FLUID Notice the important point
in this discussion of the buoyant
force: it is exerted by the fluid. It is
not determined by properties of the
object except for the amount of
fluid displaced by the object. There-
fore, if several objects of different
densities but the same volume are
immersed in a fluid, they will all ex-
perience the same buoyant force.
Whether they sink or float will be
determined by the relationship be-
tween the buoyant force and the
weight.

� PITFALL PREVENTION 15.2

1The general behavior is the same, but the buoyant force varies with height in the atmosphere due to
the variation in density of the air.



Case II: A Floating Object
Now consider an object in static equilibrium floating on the surface of a liquid, that
is, an object that is only partially submerged such as the ice cube floating in water
in Active Figure 15.10. Because it is only partially submerged, the volume V of liq-
uid displaced by the object is only a fraction of the total volume VO of the object.
The volume of the liquid displaced by the object corresponds to that volume of the
object beneath the liquid surface. Because the object is in equilibrium, the upward
buoyant force is balanced by the downward gravitational force exerted on the ob-
ject. The buoyant force has a magnitude B � �f gV. Because the weight of the object
is Mg � �OVOg and because Newton’s second law tells us that F � 0 in the vertical
direction, Mg � B. We see that � f gV � �OVOg, or

[15.6]

Therefore, the fraction of the volume of the object under the liquid surface is
equal to the ratio of the object density to the liquid density.

Let us consider examples of both cases. Under normal conditions, the average
density of a fish is slightly greater than the density of water. That being the case, a
fish would sink if it did not have some mechanism to counteract the net downward
force. The fish does so by internally regulating the size of its swim bladder, a gas-
filled cavity within the fish’s body. Increasing its size increases the amount of water
displaced, which increases the buoyant force. In this manner, fish are able to swim
to various depths. Because the fish is totally submerged in the water, this example
illustrates Case I.

As an example of Case II, imagine a large cargo ship. When the ship is at rest,
the upward buoyant force from the water balances the weight so that the ship is in
equilibrium. Only part of the volume of the ship is under water. If the ship is
loaded with heavy cargo, it sinks deeper into the water. The increased weight of the
ship due to the cargo is balanced by the extra buoyant force related to the extra vol-
ume of the ship that is now beneath the water surface.

�O

�f
�

V
VO

�
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(a) A totally submerged object
that is less dense than the fluid
in which it is submerged experi-
ences a net upward force. (b) A
totally submerged object that is
denser than the fluid sinks.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 15.9 to
move the object to new positions
as well as change the density of
the object to see the results.

ACTIVE FIGURE 15.9

B

Fg

An object
floating on the surface of a liquid 
experiences two forces, the gravita-
tional force and the buoyant 
force . Because the object floats in
equilibrium, B � Fg.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 15.10 you can
change the densities of the object and
the liquid.

B
:

F
:

g

ACTIVE FIGURE 15.10

These hot-air balloons float on air
because they are filled with air at high
temperature. The buoyant force on a
balloon due to the surrounding air is
equal to the weight of the balloon,
resulting in a net force of zero. ■
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An apple is held completely submerged just below the surface of a
container of water. The apple is then moved to a deeper point in the water. Compared
with the force needed to hold the apple just below the surface, what is the force needed
to hold it at a deeper point? (a) larger (b) the same (c) smaller (d) impossible to
determine

QUICK QUIZ 15.3

B

g

(a)

B

(b)

Fg

aFa

www.pop4e.com
www.pop4e.com
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■ Thinking Physics 15.3
A florist delivery person is delivering a flower basket to a home. The basket in-
cludes an attached helium-filled balloon, which suddenly comes loose from the bas-
ket and begins to accelerate upward toward the sky. Startled by the release of the
balloon, the delivery person drops the flower basket. As the basket falls, the
basket–Earth system experiences an increase in kinetic energy and a decrease in
gravitational potential energy, consistent with conservation of mechanical energy.
The balloon–Earth system, however, experiences an increase in both gravitational
potential energy and kinetic energy. Is that consistent with the principle of conser-
vation of mechanical energy? If not, from where is the extra energy coming?

Reasoning In the case of the system of the flower basket and the Earth, a good ap-
proximation to the motion of the basket can be made by ignoring the effects of the
air. Therefore, the basket–Earth system can be analyzed with the isolated system
model and mechanical energy is conserved. For the balloon–Earth system, we can-
not ignore the effects of the air because it is the buoyant force of the air that causes
the balloon to rise. Therefore, the balloon–Earth system is analyzed with the non-
isolated system model. The buoyant force of the air does work across the boundary
of the system, and that work results in an increase in both the kinetic and gravita-
tional potential energies of the system. ■

You are shipwrecked and floating in the middle of the ocean on a
raft. Your cargo on the raft includes a treasure chest full of gold that you found before
your ship sank and the raft is just barely afloat. To keep you floating as high as possible in
the water, should you (a) leave the treasure chest on top of the raft, (b) secure the trea-
sure chest to the underside of the raft, or (c) hang the treasure chest in the water with a
rope attached to the raft? (Assume that throwing the treasure chest overboard is not an
option you wish to consider!)

QUICK QUIZ 15.4

Archimedes supposedly was asked to determine
whether a crown made for the king consisted of pure
gold. Legend has it that Archimedes solved this prob-
lem by weighing the crown first in air and then in water
as shown in Figure 15.11. Suppose the scale reads
7.84 N in air and 6.84 N in water. What should
Archimedes have told the king?

Solution Our strategy will be based on determining the
density of the crown and comparing it with the density
of gold. Figure 15.11 helps us conceptualize the prob-
lem. Because of our understanding of the buoyant
force, we realize that the scale reading will be smaller in
Figure 15.11b than in Figure 15.11a. The scale reading
is a measure of one of the forces on the crown and we
recognize that the crown is stationary. Therefore, we
can categorize this problem as one in which we model
the crown as a particle in equilibrium. To analyze the
problem, note that when the crown is suspended in air,
the scale reads the true weight T1 � Fg (neglecting the
buoyancy of air). When it is immersed in water, the buoy-
ant force reduces the scale reading to an apparentB

:

Eureka!EXAMPLE 15.3

1
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(b)(a)
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FIGURE 15.11 (Example 15.3) (a) When the crown is suspended
in air, the scale reads its true weight because T1 � Fg

(the buoyancy due to air is negligible). (b) When
the crown is immersed in water, the buoyant force

reduces the scale reading to .T2 � Fg � BB
:
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weight of T2 � Fg � B. Because the crown is in equilib-
rium, the net force on it is zero. When the crown is in
water, then,

F � B � T2 � Fg � 0

so that

B � Fg � T2 � 7.84 N � 6.84 N � 1.00 N

Because this buoyant force is equal in magnitude to the
weight of the displaced water, we have �w gVw � 1.00 N,
where Vw is the volume of the displaced water and �w is
its density. Also, the volume of the crown Vc is equal to
the volume of the displaced water because the crown is
completely submerged. Therefore,

� Finally, the density of the crown is

To finalize the problem, from Table 15.1 we see that
the density of gold is 19.3 � 103 kg/m3. Therefore,
Archimedes should have told the king that he had been
cheated. Either the crown was hollow or it was not
made of pure gold.

� 7.84 � 103  kg/m3

�c �
mc

Vc
�

mcg
Vcg

�
7.84 N

(1.02 � 10�4 m3)(9.80 m/s2)

� 1.02 � 10�4 m3

Vc � Vw �
1.00 N

�wg
�

1.00 N
(1 000 kg/m3)(9.80 m/s2)

Changing String Vibration with WaterEXAMPLE 15.4INTERACTIVE

Solution In Figure 15.12a, Newton’s second law ap-
plied to the sphere tells us that the initial tension Ti in
the string is equal to the weight of the sphere:

where the subscript i is used to indicate initial variables
before we immerse the sphere in water. Once the
sphere is immersed in water, the tension in the string
will decrease to Tf . Applying Newton’s second law to
the sphere again in this situation, we have

(1)

The desired quantity, the radius of the sphere, will
appear in the expression for the buoyant force B. 
Before we can proceed in this direction, however, 
we need to evaluate Tf . We do so from the standing
wave information. We write the equation for the 
frequency of a standing wave on a string 
(Equation 14.8) twice: once before we immerse 
the sphere and once after, and divide the 
equations:

(2)

f �
ni

2L

f �
nf

2L

√ Ti

�

√ Tf

�
�  :   1 �

ni

nf
 √ Ti

Tf

Tf � B � mg � 0  :   B � mg � Tf

 Ti � (2.00 kg)(9.80 m/s2) � 19.6 N

Ti � mg � 0  :   Ti � mg

One end of a horizontal string is attached to a vibrating
blade and the other end passes over a pulley as in
Figure 15.12a. A sphere of mass 2.00 kg hangs on the
end of the string. The string is vibrating in its second
harmonic. A container of water is raised under the
sphere so that the sphere is completely submerged.
After that is done, the string vibrates in its fifth
harmonic as shown in Figure 15.12b. What is the radius
of the sphere?

(b)

(a)

(Interactive Example 15.4) (a) When the sphere
hangs in air, the string vibrates in its second har-
monic. (b) When the sphere is immersed in water,
the string vibrates in its fifth harmonic.

FIGURE 15.12
where the frequency f is the same in both cases because
it is determined by the vibrating blade. In addition, the
linear mass density � and the length L of the vibrating 
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FLUID  DYNAMICS
Thus far, our study of fluids has been restricted to fluids at rest, or fluid statics. We
now turn our attention to fluid dynamics, the study of fluids in motion. Instead of
trying to study the motion of each particle of the fluid as a function of time, we de-
scribe the properties of the fluid as a whole.

Flow Characteristics
When fluid is in motion, its flow is of one of two main types. The flow is said to be
steady, or laminar, if each particle of the fluid follows a smooth path so that the
paths of different particles never cross each other as in Figure 15.13. Therefore, in
steady flow, the velocity of the fluid at any point remains constant in time.

Above a certain critical speed, fluid flow becomes turbulent. Turbulent flow
is an irregular flow characterized by small, whirlpool-like regions as in Figure 15.14.
As an example, the flow of water in a river becomes turbulent in regions where
rocks and other obstructions are encountered, often forming “white-water” rapids.

15.5

You can adjust the mass of the sphere by
logging into PhysicsNow at www.pop4e.com and going to Inter-
active Example 15.4.

7.38 cm� 7.38 � 10�2 m �

� � 3(16.5 N)
4�(1 000 kg/m3)(9.80 m/s2) �

1/3

r � � 3B
4��waterg

�
1/3

B � �watergVsphere � �waterg (4
3�r 3)portion of the string are the same in both cases. Solving

(2) for Tf gives

Substituting this value into equation (1), we can evalu-
ate the buoyant force on the sphere:

Finally, expressing the buoyant force in terms of the
radius of the sphere, we solve for the radius,

B � mg � Tf � 19.6 N � 3.14 N � 16.5 N

Tf � � ni

nf
�

2
 Ti � � 2

5 �
2
 (19.6 N) � 3.14 N

An illustration of
steady flow around an automobile in a
test wind tunnel. The streamlines in
the airflow are made visible by smoke
particles.

FIGURE 15.13
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The term viscosity is commonly used in fluid flow to characterize the degree of
internal friction in the fluid. This internal friction, or viscous force, is associated
with the resistance of two adjacent layers of the fluid against moving relative to each
other. Because viscosity represents a nonconservative force, part of a fluid’s kinetic
energy is converted to internal energy when layers of fluid slide past one another.
This conversion is similar to the mechanism by which an object sliding on a rough
horizontal surface experiences a transformation of kinetic energy to internal
energy.

Because the motion of a real fluid is very complex and not yet fully understood,
we adopt a simplification model. As we shall see, many features of real fluids in mo-
tion can be understood by considering the behavior of an ideal fluid. In our simpli-
fication model, we make the following four assumptions:

1. Nonviscous fluid. In a nonviscous fluid, internal friction is ignored. An object
moving through the fluid experiences no viscous force.

2. Incompressible fluid. The density of the fluid is assumed to remain constant 
regardless of the pressure in the fluid.

3. Steady flow. In steady flow, we assume that the velocity of the fluid at each point
remains constant in time.

4. Irrotational flow. Fluid flow is irrotational if the fluid has no angular momentum
about any point. If a small paddle wheel placed anywhere in the fluid does not
rotate about the wheel’s center of mass, the flow is irrotational. (If the wheel
were to rotate, as it would if turbulence were present, the flow would be
rotational.)

The first two assumptions in our simplification model are properties of our ideal
fluid. The last two are descriptions of the way that the fluid flows.

STREAMLINES  AND  THE  CONTINUITY  
EQUATION  FOR  FLUIDS

If you are watering your garden and your garden hose is too short, you might do
one of two things to help you reach the garden with the water (before you look for
a longer hose!). You might attach a nozzle to the end of the hose, or, in the absence
of a nozzle, you might place your thumb over the end of the hose, allowing the wa-
ter to come out of a narrower opening. Why does either of these techniques cause
the water to come out faster so that it can be projected over a longer range? We
shall see the answer to this question in this section.

The path taken by a particle of the fluid under steady flow is called a streamline.
The velocity of the particle is always tangent to the streamline as shown in Figure
15.15. No two streamlines can cross each other; if they did, a particle could move ei-
ther way at the crossover point and then the flow would not be steady.

Consider an ideal fluid flowing through a pipe of nonuniform size as in Figure
15.16. The particles in the fluid move along the streamlines in steady flow. Let us
analyze this situation using the nonisolated system in steady-state model. We have
seen this model used for energy in Chapter 7, but we mentioned at that time that
the model can be used for any conserved quantity. The volume of an incompress-
ible fluid is a conserved quantity. Assuming no leaks in our pipe, we can neither
create nor destroy fluid, just as we could not create nor destroy energy in Chapters
6 and 7.

We choose as our system the region of space in the pipe from point 1 to point 2
in Figure 15.16. Let us assume that this region is filled with fluid at all times. As the
fluid flows in the pipe, fluid enters the system at point 1 and leaves the system at
point 2. Imagine that the fluid moves through a displacement �x1 at point 1 and
moves through a displacement �x 2 at point 2 as it leaves the system. The volume of

15.6
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Hot gases from a
cigarette made visible by smoke parti-
cles. The smoke first moves in laminar
flow at the bottom and then in turbu-
lent flow above.

FIGURE 15.14
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This diagram rep-
resents a set of streamlines (blue lines).
A particle at P follows one of these
streamlines, and its velocity is tangent
to the streamline at each point along
its path.

FIGURE 15.15

v1
∆x1

∆x2

Point 2

Point 1

A1

A2

v2

A fluid moving
with steady flow through a pipe of
varying cross-sectional area. The vol-
ume of fluid flowing through A1 in a
time interval �t must equal the vol-
ume flowing through A2 in the same
time interval.

FIGURE 15.16
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fluid entering the system at point 1 is A1 �x1 and the volume leaving at point 2 is 
A2 �x2. Because the volume of an incompressible fluid is a conserved quantity,
these two volumes must be equal for the system to be in steady state. If that were
not true, the volume of fluid in the system would be changing. Therefore,

Let us divide this equation by the time interval during which the fluid moves:

In the limit as the time interval shrinks to zero, the ratio of the displacement of
the fluid to the time interval is the instantaneous speed of the fluid, so we can write
this expression as

[15.7]

The product Av, which has the dimensions of volume per time, is called the volume
flow rate. Equation 15.7, called the continuity equation for fluids, says that the prod-
uct of the area and the fluid speed at all points along the pipe is a constant. There-
fore, the speed is high where the tube is constricted and low where the tube is wide.
Hence, a nozzle or your thumb over the garden hose allows you to project the water
farther. By reducing the area through which the water flows, you increase its speed.
Therefore, you project the water from the hose with a high initial velocity, resulting
in a large value of the range, as discussed for projectiles in Chapter 3.

A1v1 � A2v2

A1 �x1

�t
�

A2 �x2

�t

A1 �x1 � A2 �x2

■ Continuity equation for fluids

You tape two different sodas straws together end to end to make a
longer straw with no leaks. The two straws have radii of 3 mm and 5 mm. You drink a soda
through your combination straw. In which straw is the speed of the liquid higher? (a) It is
higher in whichever one is nearest your mouth. (b) It is higher in the one of radius 3 mm.
(c) It is higher in the one of radius 5 mm. (d) Neither, because the speed is the same in
both straws.

QUICK QUIZ 15.5

Now we use the continuity equation for fluids to
find the speed v2 � vxi with which the water exits the
nozzle. The subscript i anticipates that this speed will
be the initial velocity component of the water pro-
jected from the hose, and the subscript x indicates that
the initial velocity vector of the projected water is in
the horizontal direction. So,

We now shift our thinking away from fluids and to
projectile motion because the water is in free-fall once
it exits the nozzle. An element of the water is modeled
as a particle under constant acceleration as it falls
through a vertical distance of 1.00 m starting from rest
at t � 0. We find the time at which the water strikes the
ground. From Equation 3.13,

 t � √ 2(1.00 m)
9.80 m/s2 � 0.452 s

 �1.00 m � 0 � 0� 12 (9.80 m/s2)t 2

 yf � yi � vyit � 1
2 
gt 2 

 vxi �
A1

A2
 v1 �

4.91 cm2

0.500 cm2  (1.02 m/s) � 10.0 m/s

A1v1 � A2v2 � A2vxi 

Watering a GardenEXAMPLE 15.5
A water hose 2.50 cm in diameter is used by a gardener
to fill a 30.0-L bucket. The gardener notes that it takes
1.00 min to fill the bucket. A nozzle with an opening 
of cross-sectional area 0.500 cm2 is then attached to
the hose. The nozzle is held so that water is projected
horizontally from a point 1.00 m above the ground.
Over what horizontal distance can the water be
projected?

Solution We identify point 1 within the hose and point
2 at the exit of the nozzle. We first find the speed of the
water in the hose from the bucket-filling information.
The cross-sectional area of the hose is

According to the data given, the volume flow rate is
equal to 30.0 L/min:

 v1 �
500 cm3/s
4.91 cm2 � 102 cm/s � 1.02 m/s

A1v1 � 30.0  L/min �
30.0 � 103 cm3

60.0 s
� 500 cm3/s

A1 � �r 2 � � 
d 2

4
� � � (2.50 cm)2

4 	 � 4.91 cm2



BERNOULLI’S  EQUATION
You have probably had the experience of driving on a highway and having a large
truck pass by you at high speed. In that situation, you may have had the frightening
feeling that your car was being pulled in toward the truck as it passed. We will see
the origin for this effect in this section.

As a fluid moves through a region where its speed, elevation above the Earth’s
surface, or both change, the pressure in the fluid varies with these changes. The
relationship between fluid speed, pressure, and elevation was first derived in 1738
by Swiss physicist Daniel Bernoulli. Consider the flow of a segment of an ideal
fluid through a nonuniform pipe in a time interval �t as illustrated in Figure 15.17.
At the beginning of the time interval, the segment of fluid consists of the
blue shaded portion (portion 1) at the left and the unshaded portion. During
the time interval, the left end of the segment moves to the right through a
displacement �x1, which is the length of the blue shaded portion at the left.
Meanwhile, the right end of the segment moves to the right through a
displacement �x2, which is the length of the blue shaded portion (portion 2) at the
upper right of Figure 15.17. Therefore, at the end of the time interval, the segment
of fluid consists of the unshaded portion and the blue shaded portion at the upper
right.

Now consider forces exerted on this segment by fluid to the left and the right of
the segment. The force exerted by the fluid on the left end has a magnitude
P1A1. The work done by this force on the segment in a time interval �t is W1 �
F1 �x1 � P1A1 �x1 � P1V, where V is the volume of portion 1. In a similar manner,
the work done by the fluid to the right of the segment in the same time interval �t
is W2 � � P2A2 �x2 � � P2V. (The volume of portion 1 equals the volume of por-
tion 2.) This work is negative because the force on the segment of fluid is to the left
and the displacement of the point of application of the force is to the right. There-
fore, the net work done on the segment by these forces in the time interval �t is

W � (P1 � P2)V [15.8]

Part of this work goes into changing the kinetic energy of the segment of fluid and
part goes into changing the gravitational potential energy of the segment–Earth
system. Because we are assuming streamline flow, the kinetic energy of the un-
shaded portion of the segment in Figure 15.17 is unchanged during the time inter-
val. The only change is that before the time interval we have portion 1 traveling at
v1, whereas after the time interval we have portion 2 traveling at v2. Therefore, the
change in the kinetic energy of the segment of fluid is

[15.9]

where m is the mass of either portion 1 or portion 2. Because the volumes of both
portions are the same, they also have the same mass.

Considering the gravitational potential energy of the segment–Earth system,
once again there is no change during the time interval for the unshaded portion of
the fluid. The net change is that the mass of the fluid in portion 1 has effectively
been moved to the location of portion 2. Consequently, the change in gravitational
potential energy of the system is

�U � mgy2 � mgy1 [15.10]

�K � 1
2 
mv 2

2 � 1
2 mv 2

1

15.7
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water strikes the ground:

4.52 mxf � x i � vxit � 0 � (10.0 m/s)(0.452 s) �

In the horizontal direction, the element of water is
modeled as a particle under constant velocity. We apply
Equation 3.12 to find the horizontal position as the

Daniel Bernoulli (1700 – 1782)
Bernoulli, a Swiss physicist and
mathematician, made important
discoveries in fluid dynamics. His
most famous work, Hydrodynamica,
published in 1738, is both a theoreti-
cal and a practical study of equilib-
rium, pressure, and speed in fluids.
In this publication, Bernoulli also at-
tempted the first explanation of the
behavior of gases with changing
pressure and temperature; this ef-
fort was the beginning of the ki-
netic theory of gases, which we will
study in Chapter 16.
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y2

y1

P1A1i

v1

–P2A2i

Point 2

Point 1

ˆ

ˆ

A fluid in laminar
flow through a constricted pipe. The
volume of the shaded portion on the
left is equal to the volume of the
shaded portion on the right.

FIGURE 15.17
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The total work done on the segment–Earth system by the fluid outside the segment
is equal to the change in mechanical energy of the system: W � �K � �U. Substi-
tuting for each of these terms gives

[15.11]

If we divide each term by the portion volume V and recall that � � m/V, this ex-
pression reduces to

Rearranging terms, we obtain

[15.12]

which is Bernoulli’s equation applied to an ideal fluid. It is often expressed as

[15.13]

Bernoulli’s equation says that the sum of the pressure P, the kinetic energy per
unit volume and gravitational potential energy per unit volume �gy has the
same value at all points along a streamline.

When the fluid is at rest, v1 � v2 � 0 and Equation 15.12 becomes

which agrees with Equation 15.4.
Although Equation 15.13 was derived for an incompressible fluid, the general

behavior of pressure with speed is true even for gases: as the speed increases, the
pressure decreases. This Bernoulli effect explains the experience with the truck
on the highway at the opening of this section. As air passes between your car and
the truck, it must pass through a relatively narrow channel. According to the
continuity equation, the speed of the air is higher. According to the Bernoulli
effect, this higher-speed air exerts less pressure on your car than the slower-moving
air on the other side of your car. Thus, there is a net force pushing you toward
the truck.

P1 � P2 � �g (y2 � y1) � �gh

1
2 �v2,

P � 1
2 �v2 � �gy � constant

P1 � 1
2 �v1

2 � �g y1 � P2 � 1
2 �v 2

2 � �g y2

P1 � P2 � 1
2 

�v 2
2 � 1

2 �v 2
1 � �g y2 � �gy1

(P1 � P2)V � 1
2 mv 2

2 � 1
2 mv 2

1 � mgy2 � mgy1

■ Bernoulli’s equation

You observe two helium balloons floating next to each other at the
ends of strings secured to a table. The facing surfaces of the balloons are separated by 1
to 2 cm. You blow through the opening between the balloons. What happens to the bal-
loons? (a) They move toward each other. (b) They move away from each other. (c) They
are unaffected.

QUICK QUIZ 15.6

that is the point at which we wish to evaluate the speed of
the water. This point is at a depth y � � h � � 10.0 m
below the water surface. We use Bernoulli’s equation to
compare these two points. At both points, the water is
open to atmospheric pressure, so P1 � P 2 � P 0.

Based on this argument, Bernoulli’s equation becomes

14 m/sv2 � √2gh � √2(9.80 m/s2)(10.0 m) �

P0 � 1
2 �(0)2 � �g(0) � P0 � 1

2 �v 2
2 � �g (� h) :

Sinking the Cruise ShipEXAMPLE 15.6
A scuba diver is hunting for fish with a spear gun. He
accidentally fires the gun so that a spear punctures the
side of a cruise ship. The hole is located at a depth of
10.0 m below the water surface. With what speed does
the water enter the cruise ship through the hole?

Solution We identify point 1 as the water surface outside
the ship, which we will assign as y � 0. At this point, the
water is static, so v1 � 0. We identify point 2 as a point
just inside the hole in the interior of the ship because
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Torricelli’s LawEXAMPLE 15.7INTERACTIVE

hole would cause the water to land on the table at the
farthest distance from the tank? 

Solution Because the tank is open to the atmosphere,
the pressure at both points 1 and 2 is atmospheric pres-
sure. Therefore, Bernoulli’s equation becomes

We model a parcel of water exiting the hole as a projec-
tile. We find the time at which the parcel strikes the
table from a hole at an arbitrary position:

Therefore, the horizontal position of the parcel at the
time it strikes the table is

Now we maximize the horizontal position by taking the
derivative of xf with respect to y1 (because y1, the
height of the hole, is the variable that can be adjusted)
and setting it equal to zero:

This expression is satisfied if

Therefore, the hole should be halfway between the
bottom of the tank and the upper surface of the
water to maximize the horizontal distance. Below this
location, the water is projected at a higher speed but
falls for a short time interval, reducing the horizontal
range. Above this point, the water spends more time
in the air but is projected with a smaller horizontal
speed.

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 15.7 you
can move the hole vertically to see where the water lands.

y1 � 1
2 y2

dxf

dy1
� 1

2 (2)[(y2y1 � y 2
1 )]�1/2(y2 � 2y1) � 0

xf � xi � vxit � 0 � √2g(y2 �y1)√ 2y1

g
�2√(y2y1�y 2

1 )

 t � √ 2y1

g

 0 � y1 � 0 � 1
2 gt 2

yf � yi � vyi t � 1
2 gt 2

P0 � 1
2 �v 1

2 � �g y1 � P0 � �g y2 :  v1� √2g(y2 � y1)

An enclosed tank containing a liquid of density � has a
hole in its side at a distance y1 from the tank’s bottom
(Fig. 15.18). The hole is open to the atmosphere, and
its diameter is much smaller than the diameter of the
tank. The air above the liquid is maintained at a
pressure P.

Determine the speed of the liquid as it leaves the
hole when the liquid’s level is a distance h above the hole.

Solution Because A2 		 A1, the liquid is approximately
at rest at the top of the tank, where the pressure is P.
Applying Bernoulli’s equation to points 1 and 2 and
noting that at the hole P1 is equal to atmospheric pres-
sure P0, we find that

In this case, y2 � y1 � h ; therefore, this expression
reduces to

When P is much greater than P0 and P/� 		 2gh (so
that the term 2gh can be neglected), the exit speed of
the water is mainly a function of P. If the tank is open to
the atmosphere, P � P0 and . In other words,
for an open tank the speed of liquid coming out through
a hole a distance h below the surface is equal to that ac-
quired by an object falling freely through a vertical dis-
tance h. This phenomenon is known as Torricelli’s law.

Suppose the position of the hole in Figure 15.18
could be adjusted vertically. If the tank is open to the
atmosphere and sitting on a table, what position of the

B

v1 � √2gh

v1 � √ 2(P � P0)
�

� 2gh

P0 � 1
2 �v1

2 � �g y1 � P � �g y2

A

A2

A1

v 1
P0

h

P

y2

y1

�

�

(Interactive Example 15.7) A liquid leaves a hole
in a tank at speed v1.

FIGURE 15.18

OTHER  APPLICATIONS  OF  FLUID  DYNAMICS
Consider the streamlines that flow around an airplane wing as shown in Figure
15.19. Let us assume that the airstream approaches the wing horizontally from the
right. The tilt of the wing causes the airstream to be deflected downward. Because

15.8
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the airstream is deflected by the wing, the wing must exert a force on the airstream.
According to Newton’s third law, the airstream must exert an equal and opposite
force on the wing. This force has a vertical component called the lift (or aerody-
namic lift) and a horizontal component called drag. The lift depends on several
factors, such as the speed of the airplane, the area of the wing, its curvature, and
the angle between the wing and the horizontal. As this angle increases, turbulent
flow can set in above the wing to reduce the lift.

In general, an object experiences lift by any effect that causes the fluid to
change its direction as it flows past the object. Some factors that influence lift are
the shape of the object, its orientation with respect to the fluid flow, spinning mo-
tion (for example, a curve ball thrown in a baseball game due to the spinning of
the baseball), and the texture of the object’s surface.

A number of devices operate in a manner similar to the atomizer in Figure 15.20.
A stream of air passing over an open tube reduces the pressure above the tube. This
reduction in pressure causes the liquid to rise into the air stream. The liquid is then
dispersed into a fine spray of droplets. This type of system is used in perfume bot-
tles and paint sprayers.

Bernoulli’s principle explains one symptom of advanced arteriosclerosis called
vascular flutter. The artery is constricted as a result of an accumulation of plaque
on its inner walls (Fig. 15.21). Plaque is a combination of fat, cell debris, connec-
tive tissue, and sometimes calcium that forms a flat patch inside a blood vessel.
The blood speed through the constriction is higher than elsewhere according to
the continuity equation for fluids. According to Bernoulli’s principle, the pres-
sure in the constriction is lower than elsewhere. If the blood speed is sufficiently
high in the constricted region, the artery may collapse under the larger external
pressure, causing a momentary interruption in blood flow. At this point, the
speed of the blood goes to zero, its pressure rises again, and the vessel reopens.
As the blood rushes through the constricted artery, the internal pressure drops
and again the artery closes. Such variations in blood flow can be heard with a
stethoscope.

A  NEAR  MISS  EVEN  BEFORE  LEAVING
SOUTHAMPTON

As the Titanic began its maiden voyage, it experienced a potentially disastrous inci-
dent before it left Southampton harbor. (If this disaster had occurred, however, it
is highly likely that it would have been much less disastrous in terms of lives lost
than the incident that actually occurred later in the voyage.) The Titanic passed
closely by the New York, which was tied securely next to the Oceanic at the dock,
with the keels of the two ships parallel. As the Titanic passed by, the New York was
forced toward it, the New York’s mooring ropes snapped, and its stern swung out to-
ward the Titanic. It was only quick thinking by the harbor pilot on the Titanic, who
reversed the engines, causing the Titanic to slow and allow the New York to pass by
safely, that saved the two ships from a collision. As it was, a collision was averted by
only a few feet, and the Titanic was delayed by over an hour in her departure.
Figure 15.22 is a photograph taken from the Titanic, showing how close the ships
came to colliding.

It is ironic that the captain of the Titanic, E. J. Smith, who watched the near
miss from the bridge, was captain on one of the Titanic’s sister ships, the Olympic,
when a similar incident occurred seven months before the New York incident. In
this case, the cruiser Hawke was pulled toward the Olympic and a collision was not
averted. The Hawke’s bow was seriously damaged in the collision, and the hull of
the Olympic was punctured above and below the waterline. Both ships were able
to return to port but needed extensive repairs.

15.9
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A stream of air
passing over a tube dipped into a liq-
uid will cause the liquid to rise in the
tube.
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Vascular flutter



Why did these events occur? The answer lies in Bernoulli’s principle. As ships
move through the water, they push water out of the way and the water moves
around the sides of the ship. Imagine now that a ship such as the Titanic passes near
another ship, such as the New York, with their keels parallel. The water moving
around the side of the Titanic toward the New York is forced into a narrow channel
between the ships. Because water is incompressible, its volume remains constant
when it is squeezed into a narrow channel. The initial tendency is for the com-
pressed water to rise into the air between the ships because the air above the water
offers little resistance to being compressed. As soon as the water level between the
ships rises, however, the water will begin to flow in a direction parallel to the keels
toward the lower-level water near the bow and stern of the ships. Therefore, the wa-
ter between the ships is moving at a higher speed than the water on the opposite sides of the
ships. According to Bernoulli’s principle, this rapidly moving water exerts less pres-
sure on the sides of the ships than the slower moving water on the outer sides. The
result is a net force pushing the two ships toward each other.

Therefore, captains of boats and ships are advised not to pass too close by other
boats moving in a parallel direction. If that does occur, the boats could be pushed
into each other. This effect occurs for air, explaining the effect of the passing truck
in Section 15.7.

In this Context Connection section, we investigated an application of
Bernoulli’s principle. In the Context Conclusion, we shall explore the difficulties in
visiting the Titanic because of its great depth under the ocean surface. ■
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NewNew
YorkYork

TitanicTitanic

While leaving
Southampton harbor, the Titanic (left)
experienced a near miss with the New
York (right) due to Bernoulli’s princi-
ple. If this accident had actually 
occurred, it may have changed the
timing enough that the Titanic, once
under way, might not have been sunk
by an iceberg.

FIGURE 15.22

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

Two drinking glasses having equal weights but different
shapes and different cross-sectional areas are filled to
the same level with water. According to the expression 

1.

SUMMARY

Take a practice test by logging into
PhysicsNow at www.pop4e.com and clicking
on the Pre-Test link for this chapter.

The pressure P in a fluid is the force per unit area that the
fluid exerts on a surface:

[15.1]

In the SI system, pressure has units of newtons per square
meter, and 1 N/m2 � 1 pascal (Pa).

The pressure in a liquid varies with depth h according to the
expression

[15.4]

where P0 is the pressure at the surface of the liquid and � is the
density of the liquid, assumed uniform.

Pascal’s law states that when a change in pressure is applied
to a fluid, the change in pressure is transmitted undiminished
to every point in the fluid and to every point on the walls of the
container.

When an object is partially or fully submerged in a
fluid, the fluid exerts an upward force on the object called the

P � P0 � �gh

P � 
F
A

buoyant force. According to Archimedes’s principle, the buoy-
ant force is equal to the weight of the fluid displaced by the
object.

Various aspects of fluid dynamics can be understood by
adopting a simplification model in which the fluid is nonvis-
cous and incompressible and the fluid motion is a steady flow
with no turbulence.

Using this model, two important results regarding fluid flow
through a pipe of nonuniform size can be obtained:

1. The flow rate through the pipe is a constant, which is
equivalent to stating that the product of the cross-
sectional area A and the speed v at any point is a constant.
This behavior is described by the continuity equation for
fluids:

[15.7]

2. The sum of the pressure, kinetic energy per unit volume,
and gravitational potential energy per unit volume has the
same value at all points along a streamline. This behavior is
described by Bernoulli’s equation:

[15.12]P1 � 1
2 �v1

2 � �g y1 � P2 � 1
2 �v2

2 � �g y2

A1v1 � A2v2 � constant
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DamDam

FIGURE Q15.2

P � P0 � �gh , the pressure is the same at the bottom of both
glasses. In view of this fact, why does one weigh more than
the other?

2. Figure Q15.2 shows aerial views from directly above two
dams. Both dams are equally wide (the vertical dimension
in the diagram) and equally high (into the page in the dia-
gram). The dam on the left holds back a very large lake,
whereas the dam on the right holds back a narrow river.
Which dam has to be built stronger?

3. Some physics students attach a long tube to the opening of
a hot water bottle made of strong rubber. Leaving the hot
water bottle on the ground, they hoist the other end of the
tube to the roof of a multistory campus building. Students
at the top of the building pour water into the tube. The
students on the ground watch the bottle fill with water. On
the roof, the students are surprised to see that the tube
never seems to fill up: they can continue to pour more and
more water down the tube. On the ground, the hot water
bottle swells up like a balloon and bursts, drenching the
students. Explain these observations.

4. Suppose a damaged ship can just barely keep afloat in the
ocean. It is towed toward shore and into a river, heading
toward a dry dock for repair. As it is pulled up the river, it
sinks. Why?

A fish rests on the bottom of a bucket of water while the
bucket is being weighed on a scale. When the fish begins
to swim around, does the scale reading change?

6. Lead has a greater density than iron, and both are denser
than water. Is the buoyant force on a lead object greater
than, less than, or equal to the buoyant force on an iron
object of the same volume?

7. Is the buoyant force a conservative force? Is a potential en-
ergy associated with it? Explain your answers.

8. If the air stream from a hair dryer is directed over a Ping-
Pong ball, the ball can be levitated. Explain.

The water supply for a city is often provided from reser-
voirs built on high ground. Water flows from the reservoir,
through pipes, and into your home when you turn the tap
on your faucet. Why is the water flow more rapid out of a
faucet on the first floor of a building than in an apartment
on a higher floor?

10. When ski jumpers are airborne (Fig. Q15.10), why do they
bend their bodies forward and keep their hands at their
sides?

9.

5.

11. Explain why a sealed bottle partially filled with a liquid can
float in a basin of the same liquid.

12. When is the buoyant force on a swimmer greater, after
exhaling or after inhaling?

A barge is carrying a load of gravel along a river. As it
approaches a low bridge the captain realizes that the top
of the pile of gravel is not going to make it under the
bridge. The captain orders the crew to shovel gravel
quickly from the pile into the water. Is that a good deci-
sion?

14. A person in a boat floating in a small pond throws an an-
chor overboard. Does the level of the pond rise, fall, or re-
main the same?

15. An empty metal soap dish barely floats in water. A bar of
Ivory soap floats in water. When the soap is stuck in the
soap dish, the combination sinks. Explain why.

16. A piece of unpainted porous wood barely floats in a con-
tainer partly filled with water. If the container is sealed and
pressurized above atmospheric pressure, does the wood
rise, fall, or remain at the same level?

17. Because atmospheric pressure is about 105 N/m2 and
the area of a person’s chest is about 0.13 m2, the force of
the atmosphere on one’s chest is around 13 000 N. In view
of this enormous force, why don’t our bodies collapse?

18. A small piece of steel is tied to a block of wood. When the
wood is placed in a tub of water with the steel on top, half
of the block is submerged. If the block is inverted so that
the steel is under water, does the amount of the block sub-
merged increase, decrease, or remain the same? What hap-
pens to the water level in the tub when the block is in-
verted?

An unopened can of diet cola floats when placed in a tank
of water, whereas a can of regular cola of the same brand
sinks in the tank. What do you suppose could explain this
behavior?

20. Prairie dogs (Fig. Q15.20) ventilate their burrows by
building a mound around one entrance, which is open to
a stream of air when wind blows from any direction. A
second entrance at ground level is open to almost stagnant
air. How does this construction create an airflow through
the burrow?

19.

13.

FIGURE Q15.10
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That is, a bulk fluid exerts a normal force but cannot exert a
force of static friction. In contrast, a moving fluid can have
the effect of exerting kinetic friction if it possesses viscosity;
for example, think of the force that molasses exerts on a stir-
ring spoon. In Chapter 5, we modeled this drag force as pos-
sibly proportional to the first or to the second power of the
speed of an object moving through the fluid. Now we are say-
ing that the drag force must go to zero when the speed ap-
proaches zero. A thin film, as opposed to a bulk fluid, can ex-
ert a force parallel to a solid surface. For example, a droplet
or a thin film of water can temporarily support its weight by
adhering to a vertical surface that it wets. These facts about
moving fluids and thin films, however, do not invalidate the
theorem, which we state again: A bulk fluid cannot exert a force
of static friction. Apply this theorem to answer the following
questions. (a) As we will study in Chapter 22, a compass nee-
dle on a frictionless pivot would oscillate forever around the
direction of an applied magnetic field. Explain how adding
friction to the pivot would generally make the final orienta-
tion of the needle inaccurate, but with fluid damping the
needle will approach rest pointing in the correct direction.
(b) A carpenter’s level can consist of a bubble of air in water
within a tube forming an arc of a circle. Explain how, after a
quick calibration, it can be a very accurate level. (c) Assume
that just after you step out of a shower the whole bathtub and
also the bar of soap are thoroughly wet, covered with more
than a thin film of water. If you drop the soap into the tub,
will it come to rest? If so, where? Explain.

FIGURE Q15.20

21. You are a passenger on a spacecraft. For your survival and
comfort, the interior contains air just like that at the sur-
face of the Earth. The craft is coasting through a very
empty region of space. That is, a nearly perfect vacuum ex-
ists just outside the wall. Suddenly, a meteoroid pokes a
hole, about the size of a large coin, right through the wall
next to your seat. What will happen? Is there anything you
can or should do about it?

22. Consider a stationary fluid in contact with a solid surface. If
the force exerted by the fluid is entirely characterized by a
pressure, the force must be perpendicular to the surface.
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1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions Man-

ual and Study Guide
� coached problem with hints available at

www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 15.1 ■ Pressure
Calculate the mass of a solid iron sphere that has a diame-
ter of 3.00 cm.

2. The four tires of an automobile are inflated to a gauge
pressure of 200 kPa. Each tire has an area of 0.024 0 m2 in
contact with the ground. Determine the weight of the au-
tomobile.

A 50.0-kg woman balances on one heel of a pair of high-
heeled shoes. If the heel is circular and has a radius of
0.500 cm, what pressure does she exert on the floor?

4. What is the total mass of the Earth’s atmosphere? (The ra-
dius of the Earth is 6.37 � 106 m, and atmospheric pres-
sure at the surface is 1.013 � 105 N/m2.)

3.

1.

Section 15.2 ■ Variation of Pressure with Depth
The spring of the pressure gauge shown in Figure 15.2 has
a force constant of 1 000 N/m and the piston has a
diameter of 2.00 cm. As the gauge is lowered into water,
what change in depth causes the piston to move in by
0.500 cm?

6. (a) Calculate the absolute pressure at an ocean depth of 
1 000 m. Assume that the density of sea water is 1 024 kg/m3

and that the air above exerts a pressure of 101.3 kPa. (b) At
this depth, what force must the frame around a circular sub-
marine porthole having a diameter of 30.0 cm exert to
counterbalance the force exerted by the water?

What must be the contact area between
a suction cup (completely exhausted) and a ceiling if the
cup is to support the weight of an 80.0-kg student?

8. (a) A very powerful vacuum cleaner has a hose 2.86 cm
in diameter (Fig. P15.8a). With no nozzle on the hose, what
is the weight of the heaviest brick that the cleaner can lift?
(b) A very powerful octopus uses one sucker of diameter
2.86 cm on each of the two shells of a clam in an attempt to
pull the shells apart (Fig. P15.8b). Find the greatest force
the octopus can exert in salt water 32.3 m deep. (Caution:
Experimental verification can be interesting, but do not
drop a brick on your foot. Do not overheat the motor of a
vacuum cleaner. Do not get an octopus mad at you.)

7.

5.

PROBLEMS
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(a) (b)

FIGURE P15.8

9. For the cellar of a new house, a hole is dug in the ground,
with vertical sides going down 2.40 m. A concrete founda-
tion wall is built all the way across the 9.60-m width of the
excavation. This foundation wall is 0.183 m away from the
front of the cellar hole. During a rainstorm, drainage from
the street fills up the space in front of the concrete wall,
but not the cellar behind the wall. The water does not soak
into the clay soil. Find the force the water causes on the
foundation wall. For comparison, the weight of the water 
is given by 2.40 m � 9.60 m � 0.183 m � 1 000 kg/m3 �
9.80 m/s2 � 41.3 kN.

10. A swimming pool has dimensions 30.0 m � 10.0 m and a
flat bottom. When the pool is filled to a depth of 2.00 m
with fresh water, what is the force caused by the water on
the bottom? On each end? On each side?

11. Review problem. Piston � in Figure P15.11 has a diameter
of 0.250 in. Piston � has a diameter of 1.50 in. Determine
the magnitude F of the force necessary to support the
500 lb load in the absence of friction.

height through which he can lift the water. (b) Still thirsty,
the Man of Steel repeats his attempt on the Moon, which
has no atmosphere. Find the difference between the water
levels inside and outside the straw.

Blaise Pascal duplicated Torricelli’s
barometer using a red Bordeaux wine, of density
984 kg/m3, as the working liquid (Fig. P15.13). What was
the height h of the wine column for normal atmospheric
pressure?  Would you expect the vacuum above the col-
umn to be as good as for mercury?

13.

500 lb

2.00 in.
10.0 in.

�

�

F

FIGURE P15.11

Section 15.3 ■ Pressure Measurements
12. Figure P15.12 shows Superman attempting to drink

water through a very long straw. With his great strength
he achieves maximum possible suction. The walls of the
tubular straw do not collapse. (a) Find the maximum

FIGURE P15.12

h

P0

FIGURE P15.13
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14. Mercury is poured into a U-tube as shown in Figure P15.14a.
The left arm of the tube has cross-sectional area A1 of
10.0 cm2 and the right arm has a cross-sectional area A2 of
5.00 cm2. One hundred grams of water are then poured
into the right arm as shown in Figure P15.14b. (a) Deter-
mine the length of the water column in the right arm of the
U-tube. (b) Given that the density of mercury is 13.6 g/cm3,
what distance h does the mercury rise in the left arm?

by means of Queckenstedt’s test. In this procedure, the veins
in the patient’s neck are compressed so as to make the
blood pressure rise in the brain. The increase in pressure
in the blood vessels is transmitted to the cerebrospinal
fluid. What should be the normal effect on the height of
the fluid in the spinal tap? (c) Suppose compressing the
veins had no effect on the fluid level. What might account
for that?

17. Mercury is a poison. The liquid and mercury vapor can en-
ter the body through the skin and mucous membranes. Do
not carry out the procedure described here without appro-
priate safety precautions. Assume that a barometer is con-
structed as follows. A rigid, thin-walled plastic tube, closed
at one end, has mass 480 g, inner diameter 2.10 cm, and
height 160 cm. Mercury is poured into it to fill the tube.
(a) Find the mass of the metal. With the open end cov-
ered, the tube is inverted and held just above the flat bot-
tom of an originally empty pan (mass 320 g) on a table.
The tube is hung from a cord attached between its closed
end and the ceiling. Next, the bottom end of the tube is
uncovered. It is found that more than half, but not all, of
the mercury runs out of the tube into the pan. The flow
stops when the open end of the tube is below the level of
the mercury in the pan and the level of mercury in the
tube is 76.0 cm higher than the level in the pan. We say
that the barometer reading is 76.0 cm. (b) Find the
tension in the cord. (c) Find the normal force exerted by
the table on the pan. (d) If another barometer were
placed into the space within the tube above the mercury,
what would it read? (This question was discussed by town
philosophical societies in colonial America.) (e) A slow
leak at the closed end of the tube allows air to enter over a
period of days. What happens to the tension in the cord?
What happens to the normal force exerted by the table? 

Section 15.4 ■ Buoyant Forces and Archimedes’s Principle
18. A Styrofoam slab has thickness h and density �s. When a

swimmer of mass m is resting on it, the slab floats in fresh
water with its top at the same level as the water surface.
Find the area of the slab.

A Ping-Pong ball has a diameter of 3.80 cm and average
density of 0.084 0 g/cm3. What force is required to hold it
completely submerged under water?

20. The weight of a rectangular block of low-density material is
15.0 N. With a thin string, the center of the horizontal
bottom face of the block is tied to the bottom of a beaker
partly filled with water. When 25.0% of the block’s volume
is submerged, the tension in the string is 10.0 N.
(a) Sketch a free-body diagram for the block, showing all
forces acting on it. (b) Find the buoyant force on the
block. (c) Oil of density 800 kg/m3 is now steadily added
to the beaker, forming a layer above the water and sur-
rounding the block. The oil exerts forces on each of the
four side walls of the block that the oil touches. What are
the directions of these forces? (d) What happens to the
string tension as the oil is added? Explain how the oil has
this effect on the string tension. (e) The string breaks
when its tension reaches 60.0 N. At this moment, 25.0% of
the block’s volume is still below the waterline. What addi-

19.

A1 A2 A1 A2

Mercury

h

Water

(a) (b)

FIGURE P15.14

FIGURE P15.16

15. Normal atmospheric pressure is 1.013 � 105 Pa. The ap-
proach of a storm causes the height of a mercury barome-
ter to drop by 20.0 mm from the normal height. What is
the atmospheric pressure? (The density of mercury is
13.59 g/cm3.)

16. The human brain and spinal cord are immersed in the
cerebrospinal fluid. The fluid is normally continuous be-
tween the cranial and spinal cavities. It normally exerts a
pressure of 100 to 200 mm of H2O above the prevailing at-
mospheric pressure. In medical work, pressures are often
measured in millimeters of H2O because body fluids, in-
cluding the cerebrospinal fluid, typically have the same
density as water. The pressure of the cerebrospinal fluid
can be measured by means of a spinal tap as illustrated in
Figure P15.16. A hollow tube is inserted into the spinal col-
umn, and the height to which the fluid rises is observed. If
the fluid rises to a height of 160 mm, we write its gauge
pressure as 160 mm H2O. (a) Express this pressure in
pascals, in atmospheres, and in millimeters of mercury.
(b) Sometimes it is necessary to determine whether an ac-
cident victim has suffered a crushed vertebra that is block-
ing flow of the cerebrospinal fluid in the spinal column. In
other cases, a physician may suspect that a tumor or other
growth is blocking the spinal column and inhibiting flow
of cerebrospinal fluid. Such conditions can be investigated
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tional fraction of the block’s volume is below the top sur-
face of the oil? (f) After the string breaks, the block comes
to a new equilibrium position in the beaker. It is now in
contact only with the oil. What fraction of the block’s vol-
ume is submerged?

21. A 10.0-kg block of metal measuring 12.0 cm � 10.0 cm �
10.0 cm is suspended from a scale and immersed in water
as shown in Figure P15.21. The 12.0-cm dimension is verti-
cal and the top of the block is 5.00 cm below the surface of
the water. (a) What are the forces acting on the top and on
the bottom of the block? (Use P0 � 1.013 0 � 105 N/m2.)
(b) What is the reading of the spring scale? (c) Show that
the buoyant force equals the difference between the forces
at the top and the bottom of the block.

How many cubic meters of helium are required to lift a
balloon with a 400-kg payload to a height of 8 000 m?
(Take �He � 0.180 kg/m3.) Assume that the balloon main-
tains a constant volume and that the density of air
decreases with the altitude z according to the expression
�air � �0e�z/8 000, where z is in meters and the density of
air at sea level is �0 � 1.25 kg/m3.

26. A bathysphere used for deep-sea exploration has a radius
of 1.50 m and a mass of 1.20 � 104 kg. To dive, this subma-
rine takes on mass in the form of sea water. Determine the
amount of mass the submarine must take on if it is to de-
scend at a constant speed of 1.20 m/s, when the resistive
force on it is 1 100 N in the upward direction. The density
of sea water is 1.03 � 103 kg/m3.

A plastic sphere floats in water with 50.0% of its volume
submerged. This same sphere floats in glycerin with 40.0%
of its volume submerged. Determine the densities of the
glycerin and the sphere.

28. Review problem. A long, cylindrical rod of radius r is
weighted on one end so that it floats upright in a fluid hav-
ing a density �. It is pushed down a distance x from its
equilibrium position and released. Show that the rod will
execute simple harmonic motion if the resistive effects of
the fluid are negligible and determine the period of the
oscillations.

29. Decades ago, it was thought that huge herbivorous di-
nosaurs such as Apatosaurus and Brachiosaurus habitually
walked on the bottom of lakes, extending their long necks
up to the surface to breathe. Brachiosaurus had its nostrils
on the top of its head. In 1977, Knut Schmidt-Nielsen
pointed out that breathing would be too much work for
such a creature. For a simple model, consider a sample
consisting of 10.0 L of air at absolute pressure 2.00 atm,

27.

25.

22. To an order of magnitude, how many helium-filled toy bal-
loons would be required to lift you? Because helium is an
irreplaceable resource, develop a theoretical answer rather
than an experimental answer. In your solution, state what
physical quantities you take as data and the values you
measure or estimate for them.

A cube of wood having an edge dimen-
sion of 20.0 cm and a density of 650 kg/m3 floats on water.
(a) What is the distance from the horizontal top surface of
the cube to the water level? (b) What mass of lead should
be placed on top of the cube so that its top will be just level
with the water?

24. Determination of the density of a fluid has many impor-
tant applications. A car battery contains sulfuric acid, for
which density is a measure of concentration. For the bat-
tery to function properly, the density must be within a
range specified by the manufacturer. Similarly, the effec-
tiveness of antifreeze in your car’s engine coolant de-
pends on the density of the mixture (usually ethylene
glycol and water). When you donate blood to a blood
bank, its screening includes determination of the density
of your blood because higher density correlates with
higher hemoglobin content. A hydrometer is an instru-
ment used to determine liquid density. A simple one is
sketched in Figure P15.24. The bulb of a syringe is
squeezed and released to let the atmosphere lift a sam-
ple of the liquid of interest into a tube containing a cali-
brated rod of known density. The rod, of length L and
average density �0, floats partially immersed in the liquid
of density �. A length h of the rod protrudes above the

23.

FIGURE P15.21
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surface of the liquid. Show that the density of the liq-
uid is given by

� �
� 0L

L � h



with density 2.40 kg/m3, located at the surface of a fresh-
water lake. Find the work required to transport it to a
depth of 10.3 m, with its temperature, volume, and pres-
sure remaining constant. This energy investment is greater
than the energy that can be obtained by metabolism of
food with the oxygen in that quantity of air.

Section 15.5 ■ Fluid Dynamics
Section 15.6 ■ Streamlines and the Continuity Equation

for Fluids
Section 15.7 ■ Bernoulli’s Equation

30. (a) A water hose 2.00 cm in diameter is used to fill a 20.0-L
bucket. If it takes 1.00 min to fill the bucket, what is the
speed v at which water moves through the hose? (Note:
1 L � 1 000 cm3.) (b) The hose has a nozzle 1.00 cm in di-
ameter. Find the speed of the water at the nozzle.

31. A horizontal pipe 10.0 cm in diameter has a smooth reduc-
tion to a pipe 5.00 cm in diameter. If the pressure of the
water in the larger pipe is 8.00 � 104 Pa and the pressure
in the smaller pipe is 6.00 � 104 Pa, at what rate does
water flow through the pipes?

32. Water flows through a fire hose of diameter 6.35 cm at a
rate of 0.012 0 m3/s. The fire hose ends in a nozzle of in-
ner diameter 2.20 cm. What is the speed with which the
water exits the nozzle?

A large storage tank with an open top is
filled to a height h0. The tank is punctured at a height h
above the bottom of the tank (Fig. P15.33). Find an ex-
pression for how far from the tank the exiting stream
lands.

33.
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36. Water falls over a dam of height h with a mass flow rate of
R, in kilograms per second. (a) Show that the power avail-
able from the water is

� � Rgh

where g is the free-fall acceleration. (b) Each hydroelectric
unit at the Grand Coulee Dam takes in water at a rate of
8.50 � 105 kg/s from a height of 87.0 m. The power devel-
oped by the falling water is converted to electric power
with an efficiency of 85.0%. How much electric power does
each hydroelectric unit produce?

37. Figure P15.37 shows a stream of water in steady flow from a
kitchen faucet. At the faucet the diameter of the stream is
0.960 cm. The stream fills a 125-cm3 container in 16.3 s.
Find the diameter of the stream 13.0 cm below the open-
ing of the faucet.

h 0
h

FIGURE P15.33 Problems 15.33 and 15.34.

FIGURE P15.37
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34. A large storage tank, open at the top and filled with water,
develops a small hole in its side (Fig. P15.33) at a point 
16.0 m below the water level. If the rate of flow from the leak
is 2.50 � 10�3 m3/min, determine (a) the speed at which
the water leaves the hole and (b) the diameter of the hole.

35. A village maintains a large tank with an open top, contain-
ing water for emergencies. The water can drain from the
tank through a hose of diameter 6.60 cm. The hose ends
with a nozzle of diameter 2.20 cm. A rubber stopper is in-
serted into the nozzle. The water level in the tank is kept
7.50 m above the nozzle. (a) Calculate the friction force
exerted by the nozzle on the stopper. (b) The stopper is
removed. What mass of water flows from the nozzle in
2.00 h? (c) Calculate the gauge pressure of the flowing
water in the hose just behind the nozzle.

38. A legendary Dutch boy saved Holland by plugging a hole
in a dike with his finger, 1.20 cm in diameter. If the hole
was 2.00 m below the surface of the North Sea (density
1 030 kg/m3), (a) what was the force on his finger? (b) If
he pulled his finger out of the hole, during what time in-
terval would the released water fill 1 acre of land to a
depth of 1 ft? Assume that the hole remained constant in
size. (A typical U.S. family of four uses 1 acre-foot of water,
1 234 m3, in 1 year.)

39. Water is pumped up from the Colorado River to supply
Grand Canyon Village, located on the rim of the canyon.
The river is at an elevation of 564 m and the village is at an
elevation of 2 096 m. Imagine that water is pumped
through a single, long pipe 15.0 cm in diameter, driven by
a single pump at the bottom end. (a) What is the mini-
mum pressure at which the water must be pumped if it is
to arrive at the village? (b) If 4 500 m3 of water are
pumped per day, what is the speed of the water in the
pipe? (c) What additional pressure is necessary to deliver
this flow? (Note: You may assume that the free-fall accelera-
tion and the density of air are constant over this range of
elevations. The pressures you calculate are too high for an
ordinary pipe. In fact, the water is lifted in stages by several
pumps through shorter pipes.)

40. Old Faithful Geyser in Yellowstone Park (Fig. P15.40)
erupts at approximately 1-h intervals and the height of the
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water column reaches 40.0 m. (a) Model the rising stream
as a series of separate drops. Analyze the free-fall motion of
one of the drops to determine the speed at which the wa-
ter leaves the ground. (b) Model the rising stream as an
ideal fluid in streamline flow. Use Bernoulli’s equation to
determine the speed of the water as it leaves ground level.
(c) What is the pressure (above atmospheric) in the
heated underground chamber if its depth is 175 m? You
may assume that the chamber is large compared with the
geyser’s vent.

44. The Bernoulli effect can have important consequences for
the design of buildings. For example, wind can blow
around a skyscraper at remarkably high speed, creating
low pressure. The higher atmospheric pressure in the still
air inside the buildings can cause windows to pop out. As
originally constructed, the John Hancock Building in
Boston popped window panes, which fell many stories to
the sidewalk below. (a) Suppose a horizontal wind blows in
streamline flow with a speed of 11.2 m/s outside a large
pane of plate glass with dimensions 4.00 m � 1.50 m. As-
sume that the density of the air is 1.30 kg/m3. The air in-
side the building is at atmospheric pressure. What is the to-
tal force exerted by air on the window pane? (b) If a
second skyscraper is built nearby, the air speed can be es-
pecially high where wind passes through the narrow sepa-
ration between the buildings. Solve part (a) again, this
time taking the wind speed as 22.4 m/s, twice as high.

45. A hypodermic syringe contains a medicine with the
density of water (Fig. P15.45). The barrel of the syringe has
a cross-sectional area A � 2.50 � 10�5 m2 and the needle
has a cross-sectional area a � 1.00 � 10�8 m2. In the
absence of a force on the plunger, the pressure everywhere
is 1 atm. A force of magnitude 2.00 N acts on the plunger,
making medicine squirt horizontally from the needle. Deter-
mine the speed of the medicine as it leaves the needle’s tip.

F
:

41. An airplane is cruising at altitude 10 km. The pressure out-
side the craft is 0.287 atm; within the passenger compart-
ment the pressure is 1.00 atm and the temperature is 20°C.
A small leak occurs in one of the window seals in the pas-
senger compartment. Model the air as an ideal fluid to
find the speed of the stream of air flowing through the
leak.

Section 15.8 ■ Other Applications of Fluid Dynamics
42. An airplane has a mass of 1.60 � 104 kg and each wing has

an area of 40.0 m2. During level flight, the pressure on the
lower wing surface is 7.00 � 104 Pa. Determine the pres-
sure on the upper wing surface.

43. A siphon is used to drain water from a tank as illustrated in
Figure P15.43. The siphon has a uniform diameter.
Assume steady flow without friction. (a) Assuming that the
distance h � 1.00 m, find the speed of outflow at the end
of the siphon. (b) What is the limitation on the height of
the top of the siphon above the water surface? (For the
flow of the liquid to be continuous, the pressure must not
drop below the vapor pressure of the liquid.)

FIGURE P15.40
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Section 15.9 ■ Context Connection — A Near Miss Even
Before Leaving Southampton

46. According to the caption of the chapter-opening photo-
graph, about 11% of an iceberg is above water. (a) Con-
firm this value mathematically. (b) Suppose an iceberg
were floating in fresh water rather than in sea water. Would
a larger or smaller percentage be above the waterline? Cal-
culate this percentage.

47. The Titanic is docked in Southampton harbor just before
boarding. You, as a ticket agent for White Star Lines, no-
tice where the water level is on a scale of numbers marked
on the side of the vessel. Because your ticket-collecting job
is so boring that you need something to occupy your mind,
you make a note of the water level and check it again after
everyone boards. Over an interval of 2 h, 2 205 passengers,
of average mass 75.0 kg, board the Titanic. You notice that
the ship has sunk 1.00 cm deeper in the water with the pas-
sengers on board. What is the horizontal area enclosed by
the waterline of the Titanic?

48. Review problem. Assume that the Titanic is drifting in
Southampton harbor before its fateful journey and the
captain wishes to stop the drift by dropping an anchor.
The iron anchor has a mass of 2 000 kg. It is attached to a



massless rope. The rope is wrapped around a reel in the
form of a solid disk of radius 0.250 m and mass 300 kg that
rotates on a frictionless axle. (a) Find the angular displace-
ment of the reel when the anchor moves down 15.0 m. (b)
Find the acceleration of the anchor as it falls through the
air, which offers negligible resistance. (c) While the anchor
continues to drop through the water, the water exerts a
drag force of 2 500 N on it. With what acceleration does
the anchor move through the water? (d) While the anchor
drops through the water, what torque is exerted on the
reel?

Additional Problems
The true weight of an object can be measured in a vac-
uum, where buoyant forces are absent. An object of vol-
ume V is weighed in air on an equal-arm balance with the
use of counterweights of density �. Let the density of air be
�air and the balance reading be F 
g . Show that the true
weight Fg is 

50. Water is forced out of a fire extinguisher by air pressure as
shown in Figure P15.50. How much gauge air pressure in
the tank (above atmospheric) is required for the water jet
to have a speed of 30.0 m/s when the water level is 0.500 m
below the nozzle?

Fg � F 
g � �V �
F 
g

�g ��airg

49.
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52. Evangelista Torricelli was the first person to realize that we
live at the bottom of an ocean of air. He correctly surmised
that the pressure of our atmosphere is attributable to the
weight of the air. The density of air at 0°C at the Earth’s
surface is 1.29 kg/m3. The density decreases with increas-
ing altitude (as the atmosphere thins). On the other hand,
if we assume that the density is constant at 1.29 kg/m3 up
to some altitude h and is zero above that altitude, h would
represent the depth of the ocean of air. Use this model to
determine the value of h that gives a pressure of 1.00 atm
at the surface of the Earth. Would the peak of Mount Ever-
est rise above the surface of such an atmosphere?

Review problem. With reference to Fig-
ure 15.6, show that the total torque exerted by the water
behind the dam about a horizontal axis through O is

. Show that the effective line of action of the total
force exerted by the water is at a distance above O.

54. In about 1657, Otto von Guericke, inventor of the air
pump, evacuated a sphere made of two brass hemispheres.
Two teams of eight horses each could pull the hemispheres
apart only on some trials, and then “with greatest diffi-
culty,” with the resulting sound likened to a cannon firing
(Fig. P15.54). (a) Show that the force F required to pull
the evacuated hemispheres apart is �R 2(P0 � P), where R
is the radius of the hemispheres and P is the pressure
inside the hemispheres, which is much less than P0.
(b) Determine the force, taking P � 0.100P0 and R �
0.300 m.

1
3H

1
6 �g wH 3

53.

51. A light spring of constant k � 90.0 N/m is attached verti-
cally to a table (Fig. P15.51a). A 2.00-g balloon is filled with
helium (density � 0.180 kg/m3) to a volume of 5.00 m3

and is then connected to the spring, causing it to stretch as
shown in Figure P15.51b. Determine the extension dis-
tance L when the balloon is in equilibrium.

0.500 m

v

FIGURE P15.50

k k

(a) (b)

L

FIGURE P15.51

R

P
P0

F F

FIGURE P15.54 The colored engraving, dated 1672, illustrates Otto
von Guericke’s demonstration of the force due to air pressure as it
might have been performed before Emperor Ferdinand III in
about 1657.

(T
he

 G
ra

ng
er

 C
ol

le
ct

io
n)



PROBLEMS ❚ 491

y p g p pp

55. A beaker of mass mb containing oil of mass m 0 and density
�0 rests on a scale. A block of iron of mass m Fe is sus-
pended from a spring scale and completely submerged in
the oil as shown in Figure P15.55. Determine the equilib-
rium readings of both scales.

59. An incompressible, nonviscous fluid is initially at rest in
the vertical portion of the pipe shown in Figure P15.59a,
where L � 2.00 m. When the valve is opened, the fluid
flows into the horizontal section of the pipe. What is the
speed of the fluid when it is all in the horizontal section as
shown in Figure P15.59b? Assume that the cross-sectional
area of the entire pipe is constant.

56. Review problem. A copper cylinder hangs at the bottom of
a steel wire of negligible mass. The top end of the wire is
fixed. When the wire is struck, it emits sound with a funda-
mental frequency of 300 Hz. The copper cylinder is then
submerged in water so that half its volume is below the
waterline. Determine the new fundamental frequency.

57. Review problem. This problem extends the reasoning
of Problem 5.54 in Chapter 5 on sedimentation and
centrifugation. According to Stokes’s law, water exerts on a
slowly moving immersed spherical object a resistive force
described by

where r is the radius of the sphere and is its velocity.
(a) Spherical cells of average density 1.02 � 103 kg/m3

and radius 8.00 �m are suspended in water. Find the termi-
nal speed with which the cells drift down. (b) Over what
time interval will all the cells settle out of a tube 8.00 cm
high? (c) The sedimentation rate can be greatly increased
by the use of a centrifuge. Assume that it spins the tube at
3 000 rev/min in a horizontal plane, with the middle of
the tube at 9.00 cm from the axis of rotation. Find the ac-
celeration of the middle of the tube. (d) This acceleration
has the effect of an enhanced free-fall acceleration. Model
it as uniform over the length of the tube. Over what time
interval will all the suspended cells settle out the water in
this situation?

58. Show that the variation of atmospheric pressure with alti-
tude is given by P � P0e��y, where � � �0g/P0, P0 is atmos-
pheric pressure at some reference level y � 0, and �0 is the
atmospheric density at this level. Assume that the decrease
in atmospheric pressure over an infinitesimal change in al-
titude (so that the density is approximately uniform) is
given by dP � � �g dy and that the density of air is propor-
tional to the pressure.

v:

R
:

� (I )�0.018 8  N �s/m2 r v:

60. A cube of ice whose edges measure 20.0 mm is floating in a
glass of ice-cold water with one of its faces parallel to the
water’s surface. (a) How far below the water surface is the
bottom face of the block? (b) Ice-cold ethyl alcohol is
gently poured onto the water surface to form a layer
5.00 mm thick above the water. The alcohol does not mix
with the water. When the ice cube again attains hydrostatic
equilibrium, what will be the distance from the top of the
water to the bottom face of the block? (c) Additional cold
ethyl alcohol is poured onto the water’s surface until the
top surface of the alcohol coincides with the top surface of
the ice cube (in hydrostatic equilibrium). How thick is the
required layer of ethyl alcohol?

61. A U-tube open at both ends is partially filled with water
(Fig. P15.61a). Oil having a density 750 kg/m3 is then
poured into the right arm and forms a column
L � 5.00 cm high (Fig. P15.61b). (a) Determine the differ-
ence h in the heights of the two liquid surfaces. (b) The
right arm is then shielded from any air motion while air is
blown across the top of the left arm until the surfaces of
the two liquids are at the same height (Fig. P15.61c).
Determine the speed of the air being blown across the left
arm. Take the density of air as 1.29 kg/m3.

FIGURE P15.55
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FIGURE P15.61

62. The water supply of a building is fed through a main pipe
6.00 cm in diameter. A 2.00-cm-diameter faucet tap, lo-
cated 2.00 m above the main pipe, is observed to fill a



25.0 L container in 30.0 s. (a) What is the speed at which
the water leaves the faucet? (b) What is the gauge pressure
in the 6-cm main pipe? (Assume that the faucet is the only
“leak” in the building.)

63. The spirit-in-glass thermometer, invented in Florence, Italy,
around 1654, consists of a tube of liquid (the spirit) con-
taining a number of submerged glass spheres with slightly
different masses (Fig. P15.63). At sufficiently low tempera-
tures, all the spheres float, but as the temperature rises,
the spheres sink one after another. The device is a crude
but interesting tool for measuring temperature. Suppose
the tube is filled with ethyl alcohol, whose density is
0.789 45 g/cm3 at 20.0°C and decreases to 0.780 97 g/cm3

at 30.0°C. (a) Assuming that one of the spheres has a ra-
dius of 1.000 cm and is in equilibrium halfway up the tube
at 20.0°C, determine its mass. (b) When the temperature
increases to 30.0°C, what mass must a second sphere of the
same radius have to be in equilibrium at the halfway point?
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(c) At 30.0°C, the first sphere has fallen to the bottom of
the tube. What upward force does the bottom of the tube
exert on this sphere?

64. The hull of an experimental boat is to be lifted above
the water by a hydrofoil mounted below its keel as shown in
Figure P15.64. The hydrofoil has a shape like that of an air-
plane wing. Its area projected onto a horizontal surface is
A. When the boat is towed at sufficiently high speed, water
of density � moves in streamline flow so that its average
speed at the top of the hydrofoil is n times larger than its
speed vb below the hydrofoil. (a) Ignoring the buoyant
force, show that the upward lift force exerted by the water
on the hydrofoil has a magnitude given by

(b) The boat has mass M. Show that the liftoff speed is
given by

(c) Assume that an 800-kg boat is to lift off at 9.50 m/s.
Evaluate the area A required for the hydrofoil if its design
yields n � 1.05.

v � √ 2Mg
(n2 � 1)A�

F � 1
2(n2 � 1)�v 2

b A

FIGURE P15.63 FIGURE P15.64

ANSWERS TO QUICK QUIZZES

15.1 (a). Because the basketball player’s weight is distrib-
uted over the larger surface area of the shoe, the pres-
sure (F/A) that he applies is relatively small. The
woman’s lesser weight is distributed over the very small
cross-sectional area of the spiked heel, so the pressure
is high.

15.2 (a). Because both fluids have the same depth, the one
with the smaller density (alcohol) will exert the smaller
pressure.

15.3 (b). For a totally submerged object, the buoyant force
does not depend on the depth in an incompressible
fluid.

15.4 (b) or (c). In all three cases, the weight of the treasure
chest causes a downward force on the raft that makes it
sink into the water. In (b) and (c), however, the treasure
chest also displaces water, which provides a buoyant force
in the upward direction, reducing the effect of the
weight of the chest on the raft.

15.5 (b). The liquid moves at the highest speed in the straw
with the smallest cross sectional area.

15.6 (a). The high-speed air between the balloons results in
low pressure in this region. The higher pressure on the
outer surfaces of the balloons pushes them toward each
other.
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Finding and Visiting the Titanic
We have now investigated the physics of fluids and can respond to our central
question for the Search for the Titanic Context:

How can we safely visit the wreck of the Titanic?

Many individuals believed that the Titanic was unsinkable. One factor in this belief
was the series of watertight bulkheads that divided the hull of the ship into several
watertight compartments. Even if the hull were breached so that a compartment
became flooded, the incoming water could be isolated to that compartment by
closing watertight doors in the bulkhead.

According to the design of the ship, the Titanic could be kept afloat if its four
forwardmost compartments were flooded. Unfortunately, the collision with the
iceberg caused a breach in the first five compartments. As these forward compart-
ments filled, the extra weight of the water in the bow of the ship resulted in the
bow sinking into the water and the stern lifting out of the water (Fig. 1).

Despite the shipbuilders’
pride in their watertight com-
partments, they were not water-
tight at the top. The bulkheads
only went up to a certain height
in the ship and then ended.
Therefore, as the Titanic tilted
forward, water from one com-
partment simply spilled over the
top of the bulkhead into the
next compartment and the com-
partments filled one by one.

Some experts after the disas-
ter claimed that opening the wa-
tertight doors in the bulkheads
would have kept the Titanic
afloat longer, with an increased
possibility of another ship arriv-
ing in time to save those who
were not able to leave in the
lifeboats. According to this hy-
pothesis, if the water entering
the forward compartments had
been allowed to distribute evenly
along the ship by passing
through the doors in the bulk-
heads, the ship would not have
tilted so that water could spill
over the tops of the bulkheads. The sinking of a ship is a complicated event, how-
ever, and this hypothesis is not universally accepted.

In the region of the sinking of the Titanic, the depth of the ocean is about 4 km.
When the wreckage was located and visited, the depth was measured to be 3 784 m.

C O N T E X T CONCLUSION4

The Titanic struck the iceberg near the bow, so the forward compartments filled with
water and sank, lifting the stern of the ship above the water.
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Let us use Equation 15.4 to calculate the pressure at this depth of sea water:

P � P0 � �gh

� 1.013 � 105 Pa � (1.03 � 103 kg/m3)(9.80 m/s2)(3 784 m)

� 3.83 � 107 Pa � 378 atm

Therefore, the pressure is 378 times that at the surface! A human being could not
survive at this pressure.

Plans for finding and possibly salvaging the Titanic began immediately after it
sank. Families of some of the wealthy victims contacted salvage companies with re-
quests for a salvage operation. One plan suggested filling the Titanic with Ping-Pong
balls so that its overall density would be less than that of water and the ship would
float to the surface! This plan, of course, ignores the obvious problems of the Ping-
Pong balls’ failure to withstand the tremendous pressure at that depth.

An early expedition to find the Titanic occurred in 1980 and met with failure. Af-
ter unsuccessful searches were carried out by a number of teams, Dr. Robert Ballard
of Woods Hole Oceanographic Institute discovered the wreck in 1985, in coopera-
tion with a team from IFREMER, the French National Institute of Oceanography.
The search began by towing a sonar device, which emitted sound waves through the
water and analyzed the reflection of the waves from solid objects such as the hull of
the Titanic. The search pattern was a tedious back-and-forth sweeping of the area
near the reported location of the sinking of the ship, looking for sonar reflections
and checking possible sites with a magnetometer for the presence of an iron hull.

After failing to find the Titanic with the sonar system, Ballard switched to a visual
search using an underwater video system called Argo. After three more grueling
weeks with no reward, the searchers saw one of the Titanic’s boilers in the early
morning of September 1, 1985. After this first evidence of the wreck was found, the
remainder was located quickly.

The visual evidence indicated clearly that the Titanic had split in two as had
been reported by some of the survivors in 1912. As it tilted steeply in the water due
to the sinking of the bow, the midsection was subjected to forces that it was not de-
signed to sustain. After the break occurred, but while the two sections were still con-
nected, the stern section settled back into the water, with the bow section hanging
from it underwater. As more water entered the bow section, it pulled the stern sec-

tion into a vertical orientation
and then broke free, beginning
its trip to the bottom. The stern
bobbed for a while as it filled
with water and then sank into
the ocean.

The two sections of the
Titanic lie about 600 m apart on
the ocean floor. The bow section
(Fig. 2) is fairly intact, but the
stern section (Fig. 3) is tremen-
dously damaged. As the bow sec-
tion sank, it was already filled
with water. As the pressure of the
water outside the bow section in-
creased during the plummet to
the bottom, the pressure inside
the section increased. On the
other hand, the stern section
spent its time in the air before
sinking. Therefore, as it sank, a
significant volume of air was still
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The bow section of the Titanic rests on the ocean floor relatively intact.FIGURE 2
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trapped inside the stern section.
As the water pressure increased
while the stern section sank, the
air pressure inside could not
increase along with the external
water pressure because many air
pockets existed in the relatively
sealed sections of the structure.
Therefore, some areas of the hull
of the stern section experienced
very large pressure on the out-
side surface, with relatively low
pressure on the inside surface.
This extreme imbalance in pres-
sures possibly caused an implo-
sion of the stern section at some
depth, causing severe destruction
of the structure. Further damage
was caused by the sudden impact
of hitting the bottom. With little
structural integrity left, the decks
pancaked downward as the stern
hit the ocean floor.

The Titanic has been visited by
a number of teams for purposes
of research, salvage, and even
filmmaking, by James Cameron, the director of the 1997 version of the film Titanic
and the 2003 IMAX film Ghosts of the Abyss. What is necessary to travel to such
depths? Our calculation of the pressure at the location of the Titanic indicates that
special submarines must be used that can withstand such high pressure while main-
taining normal atmospheric pressure inside for the human occupants. That was first
done by Ballard in the summer of 1986 using a deep-sea submersible called Alvin
with a remote-controlled robot named Jason Ju-
nior. Figure 4 shows the structure of Alvin.

Alvin has a titanium alloy hull that can with-
stand the pressure at the depth of the Titanic.
The submersible has room for three occu-
pants, although they are quite cramped. A
number of air tanks on the craft can be
flooded with water. Blocks of iron can also be
jettisoned. When the tanks are filled with air
and the iron blocks are attached, Alvin floats
on water. When the air tanks are flooded with
water, the submersible sinks. In visiting the Ti-
tanic, the first step is to fill the air tanks with
water and then wait 2.5 h to sink to the bot-
tom. After visiting the wreckage, the iron
blocks are jettisoned. After doing so, the buoy-
ant force on Alvin is larger than its weight and
it starts upward on another long journey to the
surface. The descent and ascent of Alvin are ef-
fective examples of applications of the physics
described in Case I in Section 15.4.

Once Alvin reaches the Titanic, the only
means of viewing it are by visual inspection
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The stern section of the Titanic is heavily damaged and lies in pieces on the ocean floor.FIGURE 3
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The submersible Alvin, which can carry three scientists to the great
depths at which the Titanic currently lies.
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through the portholes or by video, using Jason Junior. It is impossible to don scuba
gear and exit the submersible because of the tremendous pressure. There is much
more to the story of the Titanic, but we need to return to our investigations into
physics.

Problems
1. When the Titanic is in its normal sailing position, the torque due to the gravita-

tional force about a horizontal axis through the midpoint of the ship is zero.
Imagine now that the bow of the ship is under water and the stern is in the air
above the water during the sinking process as shown in Figure 1. The waterline
is at the midpoint of the ship and the keel makes a 45.0° angle with the horizon-
tal. The net torque is zero here also because the Titanic as a whole is in equilib-
rium. If we take as our system the stern half of the ship, the torque counteract-
ing the weight of the stern section must be applied by the framework of the ship
at the midpoint. Calculate the torque about the midpoint of the Titanic required
to hold the stern section in the air. Model the ship as a uniform rod of length
269 m and mass 4.2 � 107 kg. This torque caused the Titanic to split near the
middle of the ship during the sinking process.

2. The Titanic had two almost identical sister ships, the Britannic and the Olympic.
The Britannic sank in 1916 off the coast of Athens, Greece, possibly due to a
mine planted during World War I. It now sits below 119 m of sea water. 
(a) What is the pressure at the location of the Britannic? (b) Look up a practical
limit for scuba diving and determine whether a person can visit the Britannic by
scuba diving.

3. The submersible Alvin requires 2.5 h to sink to the location of the Titanic.
(a) What is the average speed during descent? (b) Assume that the speed of
Alvin remains constant during the entire descent. Is the average density of Alvin
greater than, less than, or equal to the density of sea water? (Note: Include in
your analysis the resistive force on Alvin as it moves through the water.)

4. The Titanic is only one of many maritime disasters. In 1956, despite the use of
radar, which was invented after the time of the Titanic, a collision occurred be-
tween the Italian luxury liner Andrea Doria and the Swedish liner Stockholm.
Deaths were relatively few because of the long time interval between the colli-
sion and the sinking of the Andrea Doria, but a remarkable event occurred. 
A 14-year-old girl, asleep in her bed on the Andrea Doria before the collision,
awoke on the bow of the Stockholm. The bow of the latter ship pierced the hull of
the Andrea Doria at the location of the girl’s berth and miraculously scooped her
up with comparatively minor injuries.

Let us imagine that the collision between the Andrea Doria and the Stockholm is
perfectly inelastic. (In fact, the Stockholm drew away after the collision, but ours
is a reasonable model.) The weight of the Andrea Doria is 29 100 tons. At the
time of the collision, it is traveling at full speed of 23 knots at 15° south of west.
The Stockholm has a weight of 12 165 tons and is traveling at 18 knots at 30° east
of south. (a) Immediately after the collision, what is the velocity, in knots, of the
entangled wreckage? (b) What fraction of the initial kinetic energy was trans-
formed or transferred away in the collision?

496 ❚ CONTEXT 4 CONCLUSION FINDING AND VISITING THE TITANIC

y g p pp



y g p pp

C O N T E X T

Global Warming
Numerous news stories have detailed
the increase in temperature of the
Earth and its subsequent results, in-
cluding melting of ice from the polar
ice caps and changes in climate and the
corresponding effects on vegetation.
Data taken over the past few decades
are interpreted by some scientists as
showing a measurable global tempera-
ture increase. Life on this planet de-
pends on a delicate balance that keeps
the global temperature in a narrow
range necessary for our survival. How is
this temperature determined? What
factors need to be in balance to keep
the temperature constant? If we can de-
vise an adequate structural model to
calculate the correct surface tempera-
ture of the Earth, we can use the model
to predict changes in the temperature
as we vary the parameters.

You most likely have an intuitive
sense for the temperature of an object,
and as long as the object is small (and
the object is not undergoing combus-
tion or some other rapid process) no
significant temperature variation occurs
between different points on the object.
What about a huge object like the
Earth, though? It is clear that no single
temperature describes the entire
planet; we know that it is summer in
Australia when it is winter in Canada.
The polar ice caps clearly have differ-
ent temperatures from the tropical
regions. Variations also occur in tem-
perature within a single large body of
water such as an ocean. Temperature
varies greatly with altitude in a rela-
tively local region, such as in and near
Palm Springs, California, as shown in
Figure 1. Thus, when we speak of the
temperature of the Earth, we will refer
to an average surface temperature, tak-
ing into account all the variations
across the surface. It is this average
temperature that we would like to cal-
culate by building a structural model

of the atmosphere and comparing its
prediction with the measured surface
temperature.

A primary factor in determining the
surface temperature of the Earth is the

5

Temperature variations with altitude can exist in a local
region on the Earth. Here in Palm Springs, California, palm
trees grow in the city while snow is present at the top of the
local mountains.

FIGURE 1
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The concentration of atmos-
pheric carbon dioxide in parts per million (ppm)
of dry air as a function of time during the latter
part of the 20th century. These data were
recorded at the Mauna Loa Observatory in
Hawaii. The yearly variations (red curve) coincide
with growing seasons because vegetation absorbs
carbon dioxide from the air. The steady increase
in the average concentration (black curve) is of
concern to scientists.
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existence of our atmosphere. The at-
mosphere is a relatively thin (com-
pared with the radius of the Earth)
layer of gas above the surface that pro-
vides us with life-supporting oxygen. In
addition to providing this important el-
ement for life, the atmosphere plays a
major role in the energy balance that

determines the average temperature.
As we proceed with this Context, we
shall focus on the physics of gases and
apply the principles we learn to the at-
mosphere.

One important component of the
global warming problem is the concen-
tration of carbon dioxide in the atmos-
phere. Carbon dioxide plays an impor-
tant role in absorbing energy and
raising the temperature of the atmos-
phere. As seen in Figure 2, the amount
of carbon dioxide in the atmosphere
has been steadily increasing since the
middle of the 20th century. This graph
shows hard data that indicate that the
atmosphere is undergoing a distinct
change, although not all scientists
agree on the interpretation of what
that change means in terms of global
temperatures.

In addition to its scientific aspects,
global warming is a social issue with
many facets. These aspects encompass
international politics and economics,
because global warming is a worldwide
problem. Changing our policies re-
quires real costs to solve the problem.
Global warming also has technological
aspects, and new methods of manufac-
turing, transportation, and energy sup-
ply must be designed to slow down or
reverse the increase in temperature. We
shall restrict our attention to the physi-
cal aspects of global warming as we
address this central question:

What factors determine the average temperature at the Earth’s surface?

In this Context, we explore the energy balance of the

radiation.

FIGURE 3
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Our study thus far has focused mainly on Newtonian
mechanics, which explains a wide range of phenomena
such as the motion of baseballs, rockets, and planets. We

have applied these principles to oscillating systems, the propaga-
tion of mechanical waves through a medium, and the properties
of fluids at rest and in motion. In Chapter 6, we introduced the
notions of temperature and internal energy. We now extend the
study of such notions as we focus on thermodynamics, which is
concerned with the concepts of energy transfers between a sys-
tem and its environment and the resulting variations in tempera-
ture or changes of state. As we shall see, thermodynamics ex-
plains the bulk properties of matter and the correlation between
these properties and the mechanics of atoms and molecules.

Have you ever wondered how a refrigerator cools or what
types of transformations occur in an automobile engine or why a
bicycle pump becomes warm as you inflate a tire? The laws of
thermodynamics enable us to answer such questions. In general,
thermodynamics deals with the physical and chemical transfor-
mations of matter in all its states: solid, liquid, gas, and plasma.

This chapter concludes with a study of ideal gases, which we
shall approach on two levels. The first examines ideal gases on

Temperature and the Kinetic 
Theory of Gases

C H A P T E R 16

Why would someone designing a pipeline 
include these strange loops? Pipelines carrying
liquids often contain loops such as these to 
allow for expansion and contraction as the
temperature changes. We will study thermal
expansion in this chapter.
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the macroscopic scale. Here we shall be concerned with the relationships among
such quantities as pressure, volume, and temperature of the gas. On the second
level, we shall examine gases on a microscopic (molecular) scale, using a structural
model that treats the gas as a collection of particles. The latter approach will help
us understand how behavior on the atomic level affects such macroscopic proper-
ties as pressure and temperature.

TEMPERATURE  AND  THE  ZEROTH  LAW  
OF THERMODYNAMICS

We often associate the concept of temperature with how hot or cold an object feels to
the touch. Our sense of touch provides us with a qualitative indication of tempera-
ture. Our senses are unreliable and often misleading, however. For example, if you
stand with one bare foot on a tile floor and the other on an adjacent carpeted floor,
the tile floor feels colder to your foot than the carpet even though the two are at the
same temperature. That is because the properties of the tile are such that the transfer
of energy (by heat) to the tile floor from your foot is more rapid than to the carpet.
Your skin is sensitive to the rate of energy transfer—power—not the temperature of
the object. Of course, the larger the difference in temperature between that of the
object and that of your hand, the faster the energy transfer, so temperature and your
sense of touch are related in some way. What we need is a reliable and reproducible
method for establishing the relative “hotness” or “coldness” of objects that is related
solely to the temperature of the object. Scientists have developed a variety of ther-
mometers for making such quantitative measurements.

We are all familiar with experiences in which two objects at different initial tem-
peratures eventually reach some intermediate temperature when placed in contact
with each other. For example, if you combine hot water and cold water in a bathtub
from separate faucets, the combined water reaches an equilibrium temperature be-
tween the temperatures of the hot water and the cold water. Likewise, if an ice cube
is placed in a cup of hot coffee, the ice eventually melts and the temperature of the
coffee decreases.

We shall use these familiar examples to develop the scientific notion of tempera-
ture. Imagine two objects placed in an insulated container so that they form an iso-
lated system. If the objects are at different temperatures, energy can be exchanged
between them by, for example, heat or electromagnetic radiation. Objects that can
exchange energy with each other in this way are said to be in thermal contact. Even-
tually, the temperatures of the two objects will become the same, one becoming
warmer and the other cooler, as in our preceding examples. Thermal equilibrium is
the situation in which two objects in thermal contact cease to have any exchange of
energy by heat or electromagnetic radiation.

Using these ideas, we can develop a formal definition of temperature. Consider
two objects A and B that are not in thermal contact and a third object C that will be
our thermometer, a device calibrated to measure the temperature of an object. We
wish to determine whether A and B would be in thermal equilibrium if they were
placed in thermal contact. The thermometer is first placed in thermal contact with
A and its reading is recorded, as shown in Figure 16.1a. The thermometer is then
placed in thermal contact with B and its reading is recorded (Fig. 16.1b). If the two
readings are the same, A and B are in thermal equilibrium with each other. If they
are placed in thermal contact with each other, as in Figure 16.1c, there is no net
transfer of energy between them.

We can summarize these results in a statement known as the zeroth law of
thermodynamics:

If objects A and B are separately in thermal equilibrium with a third object C,
then A and B are in thermal equilibrium with each other.

16.1
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This statement, elementary as it may seem, is very important because it can be used
to define the notion of temperature and is easily proved experimentally. We can
think of temperature as the property that determines whether an object is in ther-
mal equilibrium with other objects. Two objects in thermal equilibrium with each
other are at the same temperature.

THERMOMETERS  AND  TEMPERATURE  SCALES
In our discussion of the zeroth law, we mentioned a thermometer. Thermometers
are devices used to measure the temperature of an object or a system with which
the thermometer is in thermal equilibrium. All thermometers make use of some
physical property that exhibits a change with temperature that can be calibrated to
make the temperature measurable. Some of the physical properties used are
(1) the volume of a liquid, (2) the length of a solid, (3) the pressure of a gas held at
constant volume, (4) the volume of a gas held at constant pressure, (5) the electric
resistance of a conductor, and (6) the color of a hot object.

A common thermometer in everyday use consists of a liquid—usually mercury
or alcohol—that expands into a glass capillary tube when its temperature rises
(Fig. 16.2). In this case, the physical property that changes is the volume of a liquid.
Because the cross-sectional area of the capillary tube is uniform, the change in vol-
ume of the liquid varies linearly with its length along the tube. We can then define
a temperature to be related to the length of the liquid column.

The thermometer can be calibrated by placing it in thermal contact with some
environments that remain at constant temperature and marking the end of the liq-
uid column on the thermometer. One such environment is a mixture of water and
ice in thermal equilibrium with each other at atmospheric pressure. Once we have
marked the ends of the liquid column for our chosen environments on our ther-
mometer, we need to define a scale of numbers associated with various tempera-
tures. One such scale is the Celsius temperature scale. On the Celsius scale, the
temperature of the ice–water mixture is defined as zero degrees Celsius, written
0°C; this temperature is called the ice point or freezing point of water. Another
commonly used environment is a mixture of water and steam in thermal equilib-
rium with each other at atmospheric pressure. On the Celsius scale, this tempera-
ture is defined as 100°C, the steam point or boiling point of water. Once the ends of
the liquid column in the thermometer have been marked at these two points, the
distance between the marks is divided into 100 equal segments, each denoting a
change in temperature of one degree Celsius.

16.2
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A
B B

A

(a) (b) (c)

The zeroth law of thermodynamics. (a) and (b) If the temperatures of A and B are
measured to be the same by placing them in thermal contact with a thermometer
(object C), no energy will be exchanged between them when they are placed in ther-
mal contact with each other (c).

FIGURE 16.1



Thermometers calibrated in this way present problems when extremely accurate
readings are needed. For instance, an alcohol thermometer calibrated at the ice
and steam points of water might agree with a mercury thermometer only at the cali-
bration points. Because mercury and alcohol have different thermal expansion
properties (the expansion may not be perfectly linear with temperature), when one
indicates a given temperature, the other may indicate a slightly different value. The
discrepancies between different types of thermometers are especially large when
the temperatures to be measured are far from the calibration points.

The Constant-Volume Gas Thermometer 
and the Kelvin Scale
Although practical devices such as the mercury thermometer can measure tempera-
ture, they do not define it in a fundamental way. Only one thermometer, the gas
thermometer, offers a way to define temperature and relate it to internal energy di-
rectly. In a gas thermometer, the temperature readings are nearly independent of
the substance used in the thermometer. One type of gas thermometer is the con-
stant-volume example shown in Figure 16.3. The behavior observed in this device is
the pressure variation with temperature of a fixed volume of gas.

When the constant-volume gas thermometer was developed, it was calibrated
using the ice and steam points of water as follows. (A different calibration proce-
dure, to be discussed shortly, is now used.) The gas flask is inserted into an ice bath,
and mercury reservoir B is raised or lowered until the volume of the confined gas is
at some value, indicated by the zero point on the scale. The height h, the difference
between the levels in the reservoir and column A, indicates the pressure in the flask
at 0°C, according to Equation 15.4. The flask is inserted into water at the steam
point, and reservoir B is readjusted until the height in column A is again brought to
zero on the scale, ensuring that the gas volume is the same as it had been in the ice
bath (hence the designation “constant-volume”). A measure of the new value for h
gives a value for the pressure at 100°C. These pressure and temperature values are
then plotted on a graph, as in Figure 16.4. Based on experimental observations that
the pressure of a gas varies linearly with its temperature, which is discussed in more
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As a result of 
thermal expansion, the level of the
mercury in the thermometer rises as
the mercury is heated by water in the
test tube.
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detail in Section 16.4, we draw a straight line through our two points. The line
connecting the two points serves as a calibration curve for measuring unknown
temperatures. If we want to measure the temperature of a substance, we place the
gas flask in thermal contact with the substance and adjust the column of mercury
until the level in column A again returns to zero. The height of the mercury
column tells us the pressure of the gas, and we can then find the temperature of
the substance from the calibration curve.

Now suppose temperatures are measured with various gas thermometers
containing different gases. Experiments show that the thermometer readings are
nearly independent of the type of gas used as long as the gas pressure is low and the
temperature is well above the point at which the gas liquefies.

We can also perform the temperature measurements with the gas in the flask at
different starting pressures at 0°C. As long as the pressure is low, we will generate
straight-line calibration curves for each different starting pressure, as shown for
three experimental trials (solid lines) in Figure 16.5.

If the curves in Figure 16.5 are extended back toward negative temperatures, we
find a startling result. In every case, regardless of the type of gas or the value of the
low starting pressure, the pressure extrapolates to zero when the temperature is
�273.15°C. This result suggests that this particular temperature is universal in its
importance because it does not depend on the substance used in the thermometer.
In addition, because the lowest possible pressure is P � 0, which would be a perfect
vacuum, this temperature must represent a lower bound for physical processes.
Therefore, we define this temperature as absolute zero. Some interesting effects
occur at temperatures near absolute zero, such as the phenomenon of superconduc-
tivity, which we shall study in Chapter 21.

This significant temperature is used as the basis for the Kelvin temperature
scale, which sets �273.15°C as its zero point (0 K). The size of a degree on the
Kelvin scale is chosen to be identical to the size of a degree on the Celsius scale.
Therefore, the following relationship enables conversion between these tempera-
tures:

[16.1]

where TC is the Celsius temperature and T is the Kelvin temperature (sometimes
called the absolute temperature). The primary difference between these two
temperature scales is a shift in the zero of the scale. The zero of the Celsius scale is
arbitrary; it depends on a property associated with only one substance, water. The
zero on the Kelvin scale is not arbitrary because it is characteristic of a behavior as-
sociated with all substances. Consequently, when an equation contains T as a vari-
able, the absolute temperature must be used. Similarly, a ratio of temperatures is
only meaningful if the temperatures are expressed on the Kelvin scale.

Equation 16.1 shows that the Celsius temperature TC is shifted from the ab-
solute temperature T by 273.15°. Because the size of a degree is the same on the

TC � T � 273.15
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A typical graph
of pressure versus temperature taken
with a constant-volume gas 
thermometer. The two dots represent
known reference temperatures (the
ice and steam points of water).
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Trial 2
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200 T (°C)1000–100–200–273.15

Pressure versus
temperature for experimental trials in which
gases have different pressures in a constant-
volume gas thermometer. Note that the
pressure extrapolates to zero at the
temperature of �273.15°C for all three trials.

FIGURE 16.5

A MATTER OF DEGREE Note that
notations for temperatures in the
Kelvin scale do not use the degree
sign. The unit for a Kelvin tempera-
ture is simply “kelvins” and not
“degrees Kelvin.”
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two scales, a temperature difference of 5°C is equal to a temperature difference of
5 K. The two scales differ only in the choice of the zero point. Therefore, the ice
point (273.15 K) corresponds to 0.00°C, and the steam point (373.15 K) is equiva-
lent to 100.00°C.

Early gas thermometers made use of ice and steam points according to the pro-
cedure just described. These points are experimentally difficult to duplicate, how-
ever. For this reason, a new procedure based on two new points was adopted in
1954 by the International Committee on Weights and Measures. The first point is
absolute zero. The second point is the triple point of water, which corresponds to
the single temperature and pressure at which water, water vapor, and ice can coexist
in equilibrium. This point is a convenient and reproducible reference temperature
for the Kelvin scale. It occurs at a temperature of 0.01°C and a very low pressure of
4.58 mm of mercury. The temperature at the triple point of water on the Kelvin
scale has a value of 273.16 K. Therefore, the SI unit of temperature, the kelvin, is
defined as 1/273.16 of the temperature of the triple point of water.

Figure 16.6 shows the Kelvin temperatures for various physical processes and
conditions. As the figure reveals, absolute zero has never been achieved, although
laboratory experiments have created conditions that are very close to absolute zero.

What would happen to a gas if its temperature could reach 0 K? As Figure 16.5
indicates (if we ignore the liquefaction and solidification of the substance), the
pressure it would exert on the container’s walls would be zero. In Section 16.5, we
shall show that the pressure of a gas is proportional to the kinetic energy of the
molecules of that gas. Therefore, according to classical physics, the kinetic energy
of the gas would go to zero and there would be no motion at all of the individual
components of the gas; hence, the molecules would settle out on the bottom of the
container. Quantum theory, to be discussed in Chapter 28, modifies this statement
to indicate that there would be some residual energy, called the zero -point energy, at
this low temperature.

The Fahrenheit Scale
The most common temperature scale in everyday use in the United States is the
Fahrenheit scale. This scale sets the temperature of the ice point at 32°F and the
temperature of the steam point at 212°F. The relationship between the Celsius and
Fahrenheit temperature scales is

[16.2]

Equation 16.2 can easily be used to find a relationship between changes in
temperature on the Celsius and Fahrenheit scales. It is left as a problem for you to
show that if the Celsius temperature changes by �TC , the Fahrenheit temperature
changes by an amount �TF given by

[16.3]�TF � 9
5  �TC

TF � 9
5 TC � 32�F
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Consider the following pairs of materials. Which pair represents two
materials in which one has twice the temperature of the other? (a) boiling water at
100°C, a glass of water at 50°C (b) boiling water at 100°C, frozen methane at �50°C
(c) an ice cube at �20°C, flames from a circus fire-eater at 233°C (d) None of these 
pairs

QUICK QUIZ 16.1

■ Thinking Physics 16.1
A group of future astronauts lands on an inhabited planet. The astronauts strike up
a conversation with the aliens about temperature scales. It turns out that the inhabi-
tants of this planet have a temperature scale based on the freezing and boiling



points of water, which are separated by 100 of the inhabitants’ degrees. Would these
two temperatures on this planet be the same as those on the Earth? Would the
size of the aliens’ degrees be the same as ours? Suppose the aliens have also
devised a scale similar to the Kelvin scale. Would their absolute zero be the same
as ours?

Reasoning The values of 0°C and 100°C for the freezing and boiling points of
water are defined at atmospheric pressure. On another planet, it is unlikely that
atmospheric pressure would be exactly the same as that on the Earth. Therefore,
water would freeze and boil at different temperatures on the alien planet. The
aliens may call these temperatures 0° and 100°, but they would not be the same
temperatures as our 0°C and 100°C. If the aliens did assign values of 0° and 100°
for these temperatures, their degrees would not be the same size as our Celsius de-
grees (unless their atmospheric pressure were the same as ours). For an alien ver-
sion of the Kelvin scale, the absolute zero would be the same as ours because it is
based on a natural, universal definition rather than being associated with a particu-
lar substance or a given atmospheric pressure. ■

THERMAL  EXPANSION  OF  SOLIDS  AND  LIQUIDS
Our discussion of the liquid thermometer makes use of one of the best known
changes that occur in most substances, that as the temperature of a substance in-
creases, its volume increases. This phenomenon, known as thermal expansion,
plays an important role in numerous applications. For example, thermal expansion
joints (Fig. 16.7) must be included in buildings, concrete highways, railroad tracks,
and bridges to compensate for changes in dimensions with temperature variations.

The overall thermal expansion of an object is a consequence of the change in
the average separation between its constituent atoms or molecules. To understand
this concept, consider how the atoms in a solid substance behave. These atoms are
located at fixed equilibrium positions; if an atom is pulled away from its position, a
restoring force pulls it back. We can build a structural model in which we imagine

16.3
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From Equation 16.1, we find that

283 KT � TC � 273.15 � 10�C � 273.15 �

10�CTC � 5
9 (TF � 32�F) � 5

9(50�F � 32�F) �

Converting TemperaturesEXAMPLE 16.1
On a day when the temperature reaches 50°F, what is
the temperature in degrees Celsius and in kelvins?

Solution Solving Equation 16.2 for the Celsius temper-
ature and substituting TF � 50°F, we have

(a) (b)

(a) Thermal
expansion joints are used to separate
sections of roadways on bridges.
Without these joints, the surfaces
would buckle due to thermal
expansion on very hot days or crack
due to contraction on very cold days.
(b) The long, vertical joint in a wall is
filled with a soft material that allows
the wall to expand and contract as the
temperature of the bricks changes.

FIGURE 16.7
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that the atoms are particles at their equilibrium positions connected by springs to
their neighboring atoms (Fig. 16.8). If an atom is pulled away from its equilibrium
position, the distortion of the springs provides a restoring force. If the atom is re-
leased, it oscillates, and we can apply the simple harmonic motion model to it. A
number of macroscopic properties of the substance can be understood with this
type of structural model on the atomic level.

In Chapter 6, we introduced the notion of internal energy and pointed out that it
is related to the temperature of a system. For a solid, the internal energy is associated
with the kinetic and potential energy of the vibrations of the atoms around their
equilibrium positions. At ordinary temperatures, the atoms vibrate with an ampli-
tude of about 10�11 m, and the average spacing between the atoms is about 10�10 m.
As the temperature of the solid increases, the average separation between atoms in-
creases. The increase in average separation with increasing temperature (and subse-
quent thermal expansion) is the result of a breakdown in the model of simple har-
monic motion. Active Figure 7.15 in Chapter 7 shows the potential energy curve for
an ideal simple harmonic oscillator. The potential energy curve for atoms in a solid
is similar but not exactly the same as that one; it is slightly asymmetric around the
equilibrium position. It is this asymmetry that leads to thermal expansion.

If the thermal expansion of an object is sufficiently small compared with the ob-
ject’s initial dimensions, the change in any dimension is, to a good approximation,
dependent on the first power of the temperature change. For most situations, we
can adopt a simplification model in which this dependence is true. Suppose an ob-
ject has an initial length Li along some direction at some temperature. The length
increases by �L for a change in temperature �T. Experiments show that when �T is
small enough, �L is proportional to �T and to Li :

[16.4]

or

[16.5]

where Lf is the final length, Tf is the final temperature, and the proportionality
constant � is called the average coefficient of linear expansion for a given material
and has units of inverse degrees Celsius, or (°C)�1.

Table 16.1 lists the average coefficient of linear expansion for various materials.
Note that for these materials � is positive, indicating an increase in length with

Lf � Li � �Li (Tf � Ti)

�L � �Li �T
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A structural model
of the atomic configuration in a solid.
The atoms (spheres) are imagined to
be connected to one another by
springs that reflect the elastic nature
of the interatomic forces.

FIGURE 16.8

Thermal expansion. The extremely
high temperature of a July day in 
Asbury Park, New Jersey, caused these
railroad tracks to buckle. ■
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Average Expansion Coefficients for Some 
Materials Near Room Temperature

TABLE 16.1

Average Coefficient Average Coefficient
of Linear Expansion of Volume Expansion

Material (�) (°C�1) Material (�)(°C�1)

Aluminum 24 � 10�6 Acetone 1.5 � 10�4

Brass and bronze 19 � 10�6 Alcohol, ethyl 1.12 � 10�4

Copper 17 � 10�6 Benzene 1.24 � 10�4

Glass (ordinary) 9 � 10�6 Gasoline 9.6 � 10�4

Glass (Pyrex) 3.2 � 10�6 Glycerin 4.85 � 10�4

Lead 29 � 10�6 Mercury 1.82 � 10�4

Steel 11 � 10�6 Turpentine 9.0 � 10�4

Invar (Ni–Fe alloy) 0.9 � 10�6 Aira at 0°C 3.67 � 10�3

Concrete 12 � 10�6 Heliuma 3.665 � 10�3

aGases do not have a specific value for the volume expansion coefficient because the amount of expan-
sion depends on the type of process through which the gas is taken. The values given here assume that
the gas undergoes an expansion at constant pressure.



increasing temperature, but that is not always the case. For example, some sub-
stances, such as calcite (CaCO3), expand along one dimension (positive �) and
contract along another (negative �) with increasing temperature.

It may be helpful to think of thermal expansion as a magnification or a photo-
graphic enlargement. For example, as a metal washer is heated (Active Figure 16.9),
all dimensions, including the radius of the hole, increase according to Equation
16.4. Because the linear dimensions of an object change with temperature, it follows
that volume and surface area also change with temperature. Consider a cube having
an initial edge length Li and therefore an initial volume Vi � Li

3. As the temperature
is increased, the length of each side increases to

The new volume, Vf � Lf
3, is

The last two terms in this expression contain the quantity � �T raised to the sec-
ond and third powers. Because � �T is a pure number much less than 1, raising it
to a power makes it even smaller. Therefore, we can ignore these terms to obtain a
simpler expression:

or

[16.6]

where � � 3�. The quantity � is called the average coefficient of volume expansion.
We considered a cubic shape in deriving this equation, but Equation 16.6 describes
a sample of any shape as long as the average coefficient of linear expansion is the
same in all directions.

By a similar procedure, we can show that the increase in area of an object accom-
panying an increase in temperature is

[16.7]

where 	, the average coefficient of area expansion, is given by 	 � 2�.

�A � 	Ai �T

�V � Vf � V i � �V i �T

Vf � Lf 

3 � Li 

3 � 3�Li 

3 �T � Vi � 3�Vi �T

Lf 

3 � (Li � �Li �T )3 � Li 

3 � 3�Li 

3 �T � 3�2Li 

3(�T )2 � �3Li 

3(�T )3

Lf � Li � �Li �T
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Thermal expansion of a
homogeneous metal washer. Note
that as the washer is heated, all
dimensions increase. (The
expansion is exaggerated in this
figure.)

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 16.9 to com-
pare expansions for various
temperatures of the burner and
materials from which the washer 
is made.

ACTIVE FIGURE 16.9

a

b

T + ∆T

b + ∆b

a + ∆a

Ti

Ti

Two spheres are made of the same metal and have the same radius,
but one is hollow and the other is solid. The spheres are taken through the same temper-
ature increase. Which sphere expands more? (a) The solid sphere does. (b) The hol-
low sphere does. (c) They expand by the same amount. (d) There is not enough infor-
mation to say.

QUICK QUIZ 16.2

■ Thinking Physics 16.2
As a homeowner is painting a ceiling, a drop of paint falls from the brush onto an
operating incandescent lightbulb. The bulb breaks. Why?

Reasoning The glass envelope of an incandescent lightbulb receives energy on the
inside surface by electromagnetic radiation from the very hot filament. In addition,
because the bulb contains gas, the glass envelope receives energy by matter transfer
related to the movement of the hot gas near the filament to the colder glass. There-
fore, the glass can become very hot. If a drop of relatively cold paint falls onto the
glass, that portion of the glass envelope suddenly becomes colder than the other
portions, and the contraction of this region can cause thermal stresses that might
break the glass. ■

As Table 16.1 indicates, each substance has its own characteristic coefficients of
expansion. For example, when the temperatures of a brass rod and a steel rod of

DO HOLES BECOME LARGER OR

SMALLER? When an object’s temper-
ature is raised, every linear dimen-
sion increases in size. Included are
any holes in the material, which
expand in the same way as if the
hole were filled with the material,
as shown in Active Figure 16.9.
Keep in mind the notion of thermal
expansion as being similar to a
photographic enlargement.

� PITFALL PREVENTION 16.2

www.pop4e.com


equal length are raised by the same amount from some common initial value, the
brass rod expands more than the steel rod because brass has a larger coefficient of
expansion than steel. A simple device called a bimetallic strip that demonstrates
this principle is found in practical devices such as thermostats in home furnace sys-
tems. The strip is made by securely bonding two different metals together along
their surfaces. As the temperature of the strip increases, the two metals expand by
different amounts and the strip bends as in Figure 16.10.
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(a)

Steel

Brass

Room temperature Higher temperature

(b)

Bimetallic strip

Off 30°COn 25°C

(a) A bimetallic strip
bends as the temperature changes because
the two metals have different expansion 
coefficients. (b) A bimetallic strip used in a 
thermostat to make or break electrical 
contact.

FIGURE 16.10

The Thermal Electrical ShortEXAMPLE 16.2
Solution We can conceptualize the situation by 
imagining that the ends of both bolts expand into 
the gap between them as the temperature rises. We 
categorize this problem as a thermal expansion one in
which the sum of the changes in length of the two bolts
must equal the length of the initial gap between the
ends. To analyze the problem, we write this condition
mathematically:

An electronic device has been poorly designed so that
two bolts attached to different parts of the device almost
touch in the interior of the device, as in Figure 16.11.
The steel and brass bolts are at different electric poten-
tials and if they touch, a short circuit will develop, 
damaging the device. (We will study electric potential 
in Chapter 20.) If the initial gap between the ends of
the bolts is 5.0 
m at 27°C, at what temperature will the
bolts touch? Assume that the frame supporting the bolts
is not affected by the temperature change.

0.010 m 0.030 m

5.0 mm

Steel Brass

(Example 16.2) Two bolts attached to different
parts of an electrical device are almost touching when the tempera-
ture is 27°C. As the temperature increases, the ends of the bolts move
toward each other.

FIGURE 16.11

�LBr � �L St � �Br Li,Br �T � �StLi,St �T � 5.0 � 10�6 m

Solving for �T, we find,

� 7.4�C

�
5.0 � 10�6

 m
(19 � 10�6 �C�1)(0.030 m)� (11 � 10�6

 
 � C�1)(0.010 m)

�T �
5.0 � 10�6

  m
�BrLi,Br � �StLi,St

Therefore, the temperature at which the bolts 
touch is 27°C � 7.4°C � . To finalize this problem,
note that this temperature is possible if the air condi-
tioning in the building housing the device fails for a
long period on a very hot summer day.

34�C



The Unusual Behavior of Water
Liquids generally increase in volume with increasing temperature and have volume
expansion coefficients on the order ten times greater than those of solids. Water
is an exception to this rule over a small temperature range, as we can see from its
density versus temperature curve in Figure 16.12. As the temperature increases
from 0°C to 4°C, water contracts and thus its density increases. Above 4°C, water
exhibits the expected expansion with increasing temperature. Therefore, the
density of water reaches a maximum value of 1 000 kg/m3 at 4°C.

We can use this unusual thermal expansion behavior of water to explain why a
pond freezes at the surface. When the atmospheric temperature drops from 7°C to
6°C, for example, the water at the surface of the pond also cools and consequently
decreases in volume. Hence, the surface water is denser than the water below it,
which has not cooled and has not decreased in volume. As a result, the surface wa-
ter sinks and warmer water from below moves to the surface to be cooled in a
process called upwelling. When the atmospheric temperature is between 4°C and
0°C, however, the surface water expands as it cools, becoming less dense than the
water below it. The sinking process stops, and eventually the surface water freezes.
As the water freezes, the ice remains on the surface because ice is less dense than
water. The ice continues to build up on the surface, while water near the bottom of
the pool remains at 4°C. If that did not happen, fish and other forms of marine life
would not survive through the winter.

A vivid example of the dangers of the absence of the upwelling and mixing
processes is the sudden and deadly release of carbon dioxide gas from Lake
Monoun in August 1984 and Lake Nyos in August 1986 (Fig. 16.13). Both lakes are
located in the rain forest country of Cameroon in Africa. More than 1 700 natives
of Cameroon died in these events.

In a lake located in a temperate zone such as the United States, significant tem-
perature variations occur during the day and during the entire year. For example,
imagine the Sun going down in the evening. As the temperature of the surface
water drops because of the absence of sunlight, the sinking process tends to mix
the upper and lower layers of water.

This mixing process does not normally occur in Lake Monoun and Lake Nyos
because of two characteristics that contributed significantly to the disasters. First,
the lakes are very deep, so mixing the various layers of water over such a large verti-
cal distance is difficult. This factor also results in such very large pressure at the bot-
tom of the lake that a large amount of carbon dioxide from local rocks and deep
springs dissolves into the water. Second, both lakes are located in an equatorial rain
forest region where the temperature variation is much smaller than in temperate
zones, which results in little driving force to mix the layers of water in the lakes.
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The variation of
density with temperature for water at
atmospheric pressure. The inset at the
right shows that the maximum density
of water occurs at 4°C.

FIGURE 16.12
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Water near the bottom of the lake stays there for a long time and collects a large
amount of dissolved carbon dioxide. In the absence of a mixing process, this car-
bon dioxide cannot be brought to the surface and released safely. It simply contin-
ues to increase in concentration.

The situation described is explosive. If the carbon dioxide– laden water is
brought to the surface where the pressure is much lower, the gas expands and
comes out of the solution rapidly. Once the carbon dioxide comes out of the solu-
tion, bubbles of carbon dioxide rise through the water and cause more mixing of
layers.

Suppose the temperature of the surface water were to decrease; this water would
become denser and sink, possibly triggering the release of carbon dioxide and the
beginning of the explosive situation just described. The monsoon season in
Cameroon occurs in August. Monsoon clouds block the sunlight, resulting in lower
surface water temperatures, which may be the reason the disasters occurred in Au-
gust. Climate data for Cameroon show lower than normal temperatures and higher
than normal rainfall in the mid-1980s. The resulting decrease in surface tempera-
ture could explain why these events occurred in 1984 and 1986. The exact reasons
for the sudden release of carbon dioxide are unknown and remain an area of active
research.

Finally, once the carbon dioxide was released from the lakes, it stayed near the
ground because carbon dioxide is denser than air. Therefore, a layer of carbon
dioxide gas spread out over the land around the lake, representing a deadly suffo-
cating gas for all humans and animals in its path.

MACROSCOPIC  DESCRIPTION  OF  AN  IDEAL  GAS
The properties of gases are very important in a number of thermal processes. Our
everyday weather is a perfect example of the types of processes that depend on the
behavior of gases.

If we introduce a gas into a container, it expands to fill the container uniformly.
Therefore, the gas does not have a fixed volume or pressure. Its volume is that of
the container, and its pressure depends on the size of the container. In this section,
we shall be concerned with the properties of a gas with pressure P and temperature
T, confined to a container of volume V. It is useful to know how these quantities are
related. In general, the equation that interrelates these quantities, called the

16.4
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(Left) Lake Nyos, in Cameroon, after an explosive outpouring of carbon dioxide.
(Right) The carbon dioxide caused many deaths, both of humans and animals, such
as the cattle shown here.

FIGURE 16.13
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equation of state, can be complicated. If the gas is maintained at a very low pres-
sure (or low density), however, the equation of state is found experimentally to be
relatively simple. Such a low-density gas is commonly referred to as an ideal gas.
Most gases at room temperature and atmospheric pressure behave approximately
as ideal gases. We shall adopt a simplification model, called the ideal gas model, for
these types of studies. An ideal gas is a collection of atoms or molecules that move
randomly, exert no long-range forces on one another, and are so small that they
occupy a negligible fraction of the volume of their container.

It is convenient to express the amount of gas in a given volume in terms of the
number of moles. One mole of any substance is that mass of the substance that con-
tains Avogadro’s number, NA � 6.022 � 1023, of molecules. The number of moles n
of a substance in a sample is related to its mass m through the expression

[16.8]

where M is the molar mass of the substance, usually expressed in grams per mole.
For example, the molar mass of molecular oxygen O2 is 32.0 g/mol. The mass of
one mole of oxygen is therefore 32.0 g. We can calculate the mass m0 of one mole-
cule by dividing the molar mass by the number of molecules, which is Avogadro’s
number. Therefore, for oxygen,

Now suppose an ideal gas is confined to a cylindrical container whose volume
can be varied by means of a movable piston, as in Active Figure 16.14. We shall as-
sume that the cylinder does not leak, so the number of moles of gas remains con-
stant. For such a system, experiments provide the following information:

• When the gas is kept at a constant temperature, its pressure is inversely propor-
tional to the volume. (This principle is known historically as Boyle’s law.)

• When the pressure of the gas is kept constant, the volume is directly proportional
to the temperature. (This principle is known historically as Charles’s law.)

• When the volume of the gas is kept constant, the pressure is directly proportional
to the temperature. (This principle is known historically as Gay-Lussac’s law.)

These observations can be summarized by the following equation of state,
known as the ideal gas law:

[16.9]

In this expression, R is a constant for a specific gas that can be determined from ex-
periments and T is the absolute temperature in kelvins. Experiments on several
gases show that as the pressure approaches zero, the quantity PV/nT approaches
the same value of R for all gases. For this reason, R is called the universal gas con-
stant. In SI units, where pressure is expressed in pascals and volume in cubic
meters, R has the value

[16.10]

If the pressure is expressed in atmospheres and the volume in liters (1 L � 103 cm3 �
10�3 m3), R has the value

R � 0.082 1 L �atm/mol �K

Using this value of R and Equation 16.9, one finds that the volume occupied by
1 mol of any gas at atmospheric pressure and 0°C (273 K) is 22.4 L.

R � 8.314 J/mol �K

PV � nRT

m0 �
M
NA

�
32.0 � 10�3

 
 kg/mol

6.02 � 1023
 
 molecule/mol

� 5.32 � 10�26
 
 kg/molecule

n �
m
M
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An
ideal gas confined to a cylinder
whose volume can be varied with a
movable piston.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 16.14. You
can choose to keep either the tem-
perature or the pressure constant
and verify Boyle’s law and
Charles’s law.

ACTIVE FIGURE 16.14

Gas

■ Ideal gas law

■ The universal gas constant

www.pop4e.com


The ideal gas law is often expressed in terms of the total number of molecules
N. Because the total number of molecules equals the product of the number of
moles and Avogadro’s number NA, we can write Equation 16.9 as

[16.11]

where kB is called Boltzmann’s constant and has the value

[16.12]kB �
R

NA
� 1.38 � 10�23 J/K

 PV � NkBT

PV � nRT �
N
NA

 RT
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A common material for cushioning objects in packages is made by
trapping bubbles of air between sheets of plastic. This material is more effective at keep-
ing the contents of the package from moving around inside the package on (a) a hot day,
(b) a cold day, or (c) either hot or cold days.

QUICK QUIZ 16.3

On a winter day, you turn on your furnace and the temperature of
the air inside your home increases. Assuming that your home has the normal amount of
leakage between inside air and outside air, the number of moles of air in your room at the
higher temperature is (a) larger than before, (b) smaller than before, or (c) the same 
as before.

QUICK QUIZ 16.4

where i and f refer to the initial and final values, respec-
tively, for the variables. Solving for Tf , we find

� 420 K

Tf �
Pf Vf

PiVi
 Ti �

(350 kPa)(12.0 � 10�3 m3)

(200 kPa)(15.0 � 10�3 m3)
 (300 K)

nR �
PiVi

Ti
�

Pf V f

Tf

Squeezing a Tank of GasEXAMPLE 16.3
Pure helium gas is admitted into a tank containing a
movable piston. The initial volume, pressure, and tem-
perature of the gas are 15.0 � 10�3 m3, 200 kPa,
and 300 K, respectively. If the volume is decreased to
12.0 � 10�3 m3 and the pressure increased to 
350 kPa, find the final temperature of the gas.

Solution Let us model the helium as an ideal gas. If no
gas escapes from the tank, the number of moles of gas
remains constant; therefore, using PV � nRT at the ini-
tial and final conditions gives

Heating a Spray CanEXAMPLE 16.4INTERACTIVE

Because the initial and final volumes of the gas are as-
sumed to be equal, this expression reduces to

Solving for Pf gives

(2)

where we have substituted the temperatures on the
Kelvin scale to evaluate their ratio. Obviously, the higher
the temperature, the higher the pressure exerted by the
trapped gas. Of course, if the pressure increases high

320 kPaPf �
Tf

Ti
 Pi � � 468 K

295 K � (202 kPa) �

Pi

Ti
�

Pf

Tf

A spray can containing a propellant gas at twice atmos-
pheric pressure (202 kPa) and having a volume of
125 cm3 is at 22°C. It is then tossed into an open fire.

When the temperature of the gas in the can
reaches 195°C, what is the pressure inside the can? 
Assume that any change in the volume of the can is
negligible.

Solution We employ the same approach we used in 
Example 16.3, starting with the expression

(1)
PiVi

Ti
�

Pf Vf

Tf

A

SO MANY k ’S In a variety of situa-
tions in physics, the letter k is used.
We have seen two uses previously,
the force constant for a spring
(Chapter 12) and the wave 
number for a mechanical wave
(Chapter 13). We also saw ke, the
Coulomb constant, in Chapter 5.
Boltzmann’s constant is another k,
and we will see k used for thermal
conductivity in Chapter 17. To
make some sense of this confusing
state of affairs, we will use a sub-
script for Boltzmann’s constant to
help us recognize it. In this book,
we will see Boltzmann’s constant as
kB, but you may see Boltzmann’s
constant in other resources as
simply k.

� PITFALL PREVENTION 16.3



THE  KINETIC  THEORY  OF  GASES
In the preceding section, we discussed the macroscopic properties of an ideal gas
using such quantities as pressure, volume, number of moles, and temperature.
From a macroscopic point of view, the mathematical representation of the ideal gas
model is the ideal gas law. In this section, we consider the microscopic point of view
of the ideal gas model. We shall show that the macroscopic properties can be un-
derstood on the basis of what is happening on the atomic scale.

Using the ideal gas model, we shall build a structural model of a gas enclosed in
a container. The mathematical structure and the predictions made by this model
constitute what is known as the kinetic theory of gases. With this theory, we shall in-
terpret the pressure and temperature of an ideal gas in terms of microscopic vari-
ables. In our structural model, we make the following assumptions:

1. The number of molecules in the gas is large, and the average separation be-
tween them is large compared with their dimensions. Thus, the molecules
occupy a negligible volume in the container. This assumption is consistent with
the ideal gas model, in which we imagine the molecules to be point-like.

2. The molecules obey Newton’s laws of motion, but as a whole their motion is
isotropic. By “isotropic” we mean that any molecule can move in any direction
with any speed. 

3. The molecules interact only by short-range forces during elastic collisions. This
assumption is consistent with the ideal gas model, in which the molecules exert
no long-range forces on one another.

4. The molecules make elastic collisions with the walls.
5. The gas under consideration is a pure substance; that is, all molecules are

identical.

Although we often picture an ideal gas as consisting of single atoms, molecular
gases exhibit equally good approximations to ideal gas behavior at low pressures.
Effects associated with molecular structure have no influence on the motions con-
sidered here. Therefore, we can apply the results of the following development to
molecular gases as well as to monatomic gases.

16.5
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enough, the can will explode. Because of this possibility,
you should never dispose of spray cans in a fire.

Suppose we include a volume change due to 
thermal expansion of the steel can as the temperature
increases. Does that alter our answer for the final
pressure significantly?

Solution Because the thermal expansion coefficient of
steel is very small, we do not expect much of an effect
on our final answer. Let find the change in the volume
of the can, using Equation 16.6 and the value for � for
steel from Table 16.1:

�V � �Vi �T � 3�Vi �T

� 3(11 � 10�6 °C�1)(125 cm3)(173°C)

� 0.71 cm3

So the final volume of the can is 125.71 cm3. Starting
from (1) again, the equation for the final pressure 

B

becomes

This equation differs from (2) only in the factor Vi/Vf .
Let us evaluate this factor:

Therefore, the final pressure will differ by only 0.6%
from the value we calculated without considering the
thermal expansion of the can. Taking 99.4% of the pre-
vious final pressure, the final pressure including ther-
mal expansion is 318 kPa.

Put the can in the fire by logging into
PhysicsNow at www.pop4e.com and going to Interactive 
Example 16.4.

Vi

Vf
�

125 cm3

125.71 cm3  � 0.994 � 99.4%

Pf � � Tf

Ti
� � Vi

Vf
� Pi

Ludwig Boltzmann (1844 – 1906)
Austrian theoretical physicist
Boltzmann made many important
contributions to the development
of the kinetic theory of gases,
electromagnetism, and
thermodynamics. His pioneering
work in the field of kinetic theory
led to the branch of physics known
as statistical mechanics.
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Molecular Interpretation of the 
Pressure of an Ideal Gas
For our first application of kinetic theory, let us derive an expression for the pressure
of N molecules of an ideal gas in a container of volume V in terms of microscopic
quantities. The container is a cube with edges of length d (Fig. 16.15). We shall focus
our attention on one of these molecules of mass m0 and assumed to be moving so
that its component of velocity in the x direction is vxi as in Active Figure 16.16. (The
subscript i here refers to the i th molecule, not to an initial value. We will combine the
effects of all of the molecules shortly.) As the molecule collides elastically with any
wall (assumption 4), its velocity component perpendicular to the wall is reversed
because the mass of the wall is far greater than the mass of the molecule.
Because the momentum component pxi of the molecule is m0vxi before the collision
and �m0vxi after the collision, the change in momentum of the molecule in the
x -direction is

Applying the impulse–momentum theorem (Eq. 8.11) to the molecule gives

where is the average force component,1 perpendicular to the wall, for
the force that the wall exerts on the molecule during the collision and is
the duration of the collision. For the molecule to make another collision with the
same wall after this first collision, it must travel a distance of 2d in the x direction
(across the container and back). The time interval between two collisions with the
same wall is therefore

The force that causes the change in momentum of the molecule in the collision
with the wall occurs only during the collision. We can, however, average the
force over the time interval for the molecule to move across the cube and back.
Sometime during this time interval the collision occurs, so the change in momen-
tum for this time interval is the same as that for the short duration of the collision.
Therefore, we can rewrite the impulse–momentum theorem as

where is interpreted as the average force component on the molecule over the
time for the molecule to move across the cube and back. Because exactly one
collision occurs for each such time interval, it is also the long-term average force
component on the molecule, over long time intervals containing any number of
multiples of �t.

The substitution of �t into the impulse–momentum equation enables us to
express the long-term average force component of the wall on the molecule:

Now, by Newton’s third law, the force component of the molecule on the wall is
equal in magnitude and opposite in direction:

Fi,on wall � �  Fi � �� �m0vxi 

2

d � �
m0vxi 

2

d

Fi �
� 2m0vxi

�t
�

� 2m0vxi 

2

2d
�

� m0vxi
2

d

Fi

Fi �t � � 2m0vxi

�t �
2d
vxi

� tcollision

Fi ,on molecule

Fi,on molecule �tcollision � �pxi � �  2m0vxi

�pxi � � m0vxi � (m0vxi) � � 2m0vxi
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d

d d
z x

y

m 0

vxi

vi

A cubical box with
sides of length d containing an ideal
gas. The molecule shown moves with
velocity .v:i

FIGURE 16.15

A mol-
ecule makes an elastic collision
with the wall of the container. Its x
component of momentum is 
reversed whereas its y component
remains unchanged. In this con-
struction, we assume that the mol-
ecule moves in the xy plane.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 16.16 to
observe molecules within a con-
tainer making collisions with the
walls of the container and with
each other.

ACTIVE FIGURE 16.16

vyi

vxi

vi

vyi

–vxi

vi

1 For this discussion, we will use a bar over a variable to represent the average value of the variable,
such as for the average force, rather than the subscript “avg” that we have used before. This notation
saves confusion because we will already have a number of subscripts on variables.

F
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The magnitude of the total average force exerted on the wall by the gas is
found by adding the average force components exerted by the individual
molecules. We add terms such as those shown in the preceding equations for all
molecules:

where we have factored out the length of the box and the mass m0 because assump-
tion 5 tells us that all the molecules are the same. We now impose assumption 1,
that the number of molecules is large. For a small number of molecules, the actual
force on the wall would vary with time. It would be nonzero during the short inter-
val of a collision of a molecule with the wall and zero when no molecule happens to
be hitting the wall. For a very large number of molecules, however, such as
Avogadro’s number, these variations in force are smoothed out, so the average
force is the same over any time interval. Therefore, the constant force F on the wall
due to the molecular collisions is the same as the average force and is of
magnitude

To proceed further, let us consider how we express the average value of the
square of the x component of the velocity for the N molecules. The traditional aver-
age of a value is the sum of the values over the number of values:

The numerator of this expression is contained in the right-hand side of the previ-
ous equation. Therefore, by combining the two expressions the total force on the
wall can be written

Now let us focus again on one molecule with velocity components vxi, vyi, and
vzi . The Pythagorean theorem relates the square of the speed of the molecule to
the squares of the velocity components:

If we take an average of both sides of this equation (sum over all particles and
divide by N ), the average value of v2 for all the molecules in the container is re-
lated to the average values of vx

2, vy
2, and vz

2 according to the expression

Now we assume that the motion is completely isotropic (assumption 2), which
implies that no direction is preferred. On the average, the x, y, and z directions are
equivalent, so

which allows us to write

Therefore, the total force on the wall is

F �
m0

d
 N (1

3v2) �
N
3

 � m0v 2

d �

v2 � 3vx 

2

vx 

2 � vy 

2 � vz 

2

v2 � vx 

2 � vy 

2 � vz 

2

vi 

2 � vxi 

2 � vyi 

2 � vzi 

2

F �
m0

d
 N vx 

2

vx 

2 �
�
N

i�1
vxi 

2 

N

F �
m0

d �
N

i �1
vxi 

2 

F

F � �
N

i�1

m0vxi 

2

d
 �

m0

d
 �

N

i�1
vxi 

2 

F
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From this expression, we can find the pressure exerted on the wall by dividing this
force by the area of the wall:

[16.13]

This result shows that the pressure is proportional to the number of molecules per
unit volume and to the average translational kinetic energy of the molecules,

. With this structural model of an ideal gas, we have arrived at an important
result that relates the macroscopic quantity of pressure to a microscopic quantity,
the average value of the molecular translational kinetic energy. Thus, we have a key
link between the atomic world and the large-scale world.

Equation 16.13 verifies some features of pressure that are probably familiar to
you. One way to increase the pressure inside a container is to increase the number
of molecules per unit volume in the container (N/V ). You do so when you add air
to a tire. The pressure in the tire can also be increased by increasing the average
translational kinetic energy of the molecules in the tire. As we shall see shortly, that
can be accomplished by increasing the temperature of the gas inside the tire.
Hence, the pressure inside a tire increases as the tire warms up during long trips.
The continuous flexing of the tires as they move along the road surface results in
work done as parts of the tire distort and in an increase in internal energy of the
rubber. The increased temperature of the rubber results in transfer of energy into
the air by heat, increasing the average translational kinetic energy of the molecules,
which in turn produces an increase in pressure.

Molecular Interpretation of the 
Temperature of an Ideal Gas
We have related the pressure to the average kinetic energy of molecules; let us now
relate temperature to a microscopic description of the gas. We can obtain some in-
sight into the meaning of temperature by first writing Equation 16.13 in the form

Let us now compare this equation with the equation of state for an ideal gas:

The left-hand sides of these two equations are identical. Equating the right-hand
sides of these expressions, we find that

[16.14]

which tells us that the temperature of a gas is a direct measure of average transla-
tional molecular kinetic energy. Therefore, as the temperature of a gas increases,
the molecules move with higher average kinetic energy.

By rearranging Equation 16.14, we can relate the average translational molecu-
lar kinetic energy to the temperature:

[16.15]

That is, the average translational kinetic energy per molecule is Because
it follows that

[16.16]1
2 m0vx 

2 � 1
2 kBT

vx 

2 � 1
3 v 2,

3
2 kBT.

1
2 m0v 2 � 3

2 kBT

T �
2

3kB
 (1

2 m0v 2)

PV � NkBT

PV � 2
3 N (1

2 m0v2)

1
2 m0v2

P � 2
3 � N

V � (1
2 m 0v 2)

P �
F
A

�
F

d 2 � 1
3  

N
d 3  (m0v2) � 1

3 � N
V � (m0v 2)
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■ Pressure of an ideal gas

■ Temperature is proportional to
average kinetic energy

■ Average kinetic energy per
molecule



In a similar manner, for the y and z motions we find that

Therefore, each translational degree of freedom contributes an equal amount of
energy to the gas, namely per molecule. (In general, the phrase degrees of free-
dom refers to the number of independent means by which a molecule can possess
energy.) A generalization of this result, known as the theorem of equipartition of
energy, states that the energy of a system in thermal equilibrium is equally divided
among all degrees of freedom. Furthermore, each degree of freedom contributes
the same amount of average energy to the total, per molecule.

The total translational kinetic energy of N molecules of gas is simply N times the
average translational kinetic energy per molecule, which is given by Equation 16.15:

[16.17]

where we have used kB � R/NA for Boltzmann’s constant and n � N/NA for the
number of moles of gas. From this result we see that the total translational kinetic
energy of a system of molecules is proportional to the absolute temperature of the
system.

For a monatomic gas, translational kinetic energy is the only type of energy the
particles of the gas can have. Therefore, Equation 16.17 gives the internal energy
for a monatomic gas:

(monatomic gas) [16.18]

This equation mathematically justifies our claim that internal energy is related to
the temperature of a system, which we introduced in Chapter 6. For diatomic and
polyatomic molecules, additional possibilities for energy storage are available in the
vibration and rotation of the molecule, but a proportionality between E int and T
remains.

The square root of is called the root-mean-square (rms) speed of the mole-
cules. From Equation 16.15 we find for the rms speed that

[16.19]

where M is the molar mass in kilograms per mole. This expression shows that, at a
given temperature, lighter molecules move faster, on the average, than heavier mol-
ecules. For example, hydrogen, with a molar mass of 2.0 � 10�3 kg/mol, moves
four times as fast as oxygen, whose molar mass is 32 � 10�3 kg/mol. If we calculate
the rms speed for hydrogen at room temperature (� 300 K), we find that

This value is about 17% of the escape speed for the Earth, which we calculated in
Chapter 11. Because this value is an average speed, a large number of molecules
having speeds much higher than the average can escape from the Earth’s atmos-
phere. Thus, the Earth’s atmosphere does not at present contain hydrogen because
it has all bled off into space.

Table 16.2 lists the rms speeds for various molecules at 20°C.

vrms � √ 3RT
M

� √ 3(8.31 J/mol � K)(300 K)
2.0 � 10�3 kg/mol

� 1.9 � 103 m/s

v rms � √v 2 � √ 3k BT
m0

� √ 3RT
M

v2

E int � 3
2 nRT

E total � N(1
2 m0v 2) � 3

2NkBT � 3
2 nRT

1
2 k BT

1
2 kBT

1
2 m0vy 

2 � 1
2 kBT   and   12 m0vz 

2 � 1
2 kBT
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Some rms Speeds

TABLE 16.2

vrms
Molar mass at 20°C

Gas (g/mol) (m/s)

H2 2.02 1 902
He 4.00 1 352
H2O 18.0 637
Ne 20.2 602
N2 or CO 28.0 511
NO 30.0 494
O2 32.0 478
CO2 44.0 408
SO2 64.1 338

Two containers of ideal gas are at the same temperature. Both con-
tainers hold the same type of gas, but container B has twice the volume of container A. 
(i) The average translational kinetic energy per molecule in container B is (a) twice that
for container A, (b) the same as that for container A, (c) half that for container A, or (d) im-
possible to determine. (ii) The internal energy of the gas in container B is related in what
way to that in A, from the same list of choices? (iii) The rms speed of the gas molecules in
container B is related in what way to that in A, from the same list of choices?

QUICK QUIZ 16.5

■ Total kinetic energy of N
molecules

■ Root-mean-square speed



DISTRIBUTION  OF  MOLECULAR  SPEEDS
In the preceding section, we derived an expression for the average speed of a gas
molecule but made no mention of the actual distribution of molecular speeds
among all possible values. In 1860, James Clerk Maxwell (1831–1879) derived an
expression that describes this distribution of molecular speeds. His work and devel-
opments by other scientists shortly thereafter were highly controversial because ex-
periments at that time could not directly detect molecules. About 60 years later,
however, experiments confirmed Maxwell’s predictions.

Consider a container of gas whose molecules have some distribution of speeds.
Suppose we want to determine how many gas molecules have a speed in the range
from, for example, 400 to 410 m/s. Intuitively, we expect that the speed distribution
depends on temperature. Furthermore, we expect that the distribution peaks in the
vicinity of vrms. That is, few molecules are expected to have speeds much less than
or much greater than vrms because these extreme speeds will result only from an
unlikely chain of collisions.

The observed speed distribution of gas molecules in thermal equilibrium is
shown in Active Figure 16.17. The quantity Nv, called the Maxwell–Boltzmann dis-
tribution function, is defined as follows. If N is the total number of molecules, the
number of molecules with speeds between v and v � dv is dN � Nv dv. This number
is also equal to the area of the shaded rectangle in Active Figure 16.17. Further-
more, the fraction of molecules with speeds between v and v � dv is Nvdv/N. This
fraction is also equal to the probability that a molecule has a speed in the range v to
v � dv.

The fundamental expression that describes the distribution of speeds of N gas
molecules is

[16.20]

where m0 is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the ab-
solute temperature.2

As indicated in Active Figure 16.17, the average speed is somewhat lower than
the rms speed. The most probable speed vmp is the speed at which the distribution

v

Nv � 4�N � m0

2�kBT �
3/2

v2e�m 0v 2/ 2k BT

16.6
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What is the average kinetic energy per molecule?

Solution From Equation 16.15, we see that the average
kinetic energy per molecule is

� 6.07 � 10�21  J

1
2 m 0v2 � 3

2 kBT � 3
2 (1.38 � 10�23 J/K)(293 K)

B

A Tank of HeliumEXAMPLE 16.5
A tank of volume 0.300 m3 contains 2.00 mol of helium
gas at 20.0°C.

Assuming that the helium behaves like an ideal
gas, find the total internal energy of the gas.

Solution Helium is a monatomic gas, so Equation
16.18 can be used for the internal energy. With 
n � 2.00 mol and T � 293 K, we have

� 7.30 � 103 J

E int � 3
2 nRT � 3

2 (2.00 mol)(8.31 J/mol �K)(293 K)

A

The
speed distribution of gas molecules
at some temperature. The number
of molecules having speeds in the
range v to v � dv is equal to the
area of the shaded rectangle, 
Nv dv. The function Nv approaches
zero as v approaches infinity.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 16.17. You
can move the blue rectangle and
measure the number of molecules
having speeds within a small range.

ACTIVE FIGURE 16.17

vmp

vrms

Nv

v

v

Nv

dv

2 For the derivation of this expression, see a text on thermodynamics such as that by R. P. Bauman,
Modern Thermodynamics and Statistical Mechanics (New York: Macmillan, 1992).

� Maxwell – Boltzmann distribu-
tion function

www.pop4e.com


curve reaches a peak. Using Equation 16.20, we find that

[16.21]

[16.22]

[16.23]

From these equations we see that 
Active Figure 16.18 represents speed distribution curves for nitrogen molecules.

The curves were obtained using Equation 16.20 to evaluate the distribution func-
tion at various speeds and at two temperatures. Note that the peak in the curve
shifts to the right as T increases, indicating that the average speed increases with in-
creasing temperature, as expected. In addition, the overall width of the curve in-
creases with temperature. The shape of the curves is asymmetrical because the low-
est speed possible is zero, whereas the upper classical limit of the speed is infinity.

The speed distribution curve for molecules in a liquid is similar to those
shown in Active Figure 16.18. The phenomenon of evaporation of a liquid can
be understood from this distribution in speeds because some molecules in the
liquid are more energetic than others. Some of the faster-moving molecules in
the liquid penetrate the surface and leave the liquid even at temperatures well
below the boiling point. The molecules that escape the liquid by evaporation
are those that have sufficient energy to overcome the attractive forces of the
molecules in the liquid phase. Consequently, the molecules left behind in
the liquid phase have a lower average kinetic energy, causing the temperature of
the liquid to decrease. Hence, evaporation is a cooling process. For example, an
alcohol-soaked cloth is often placed on a feverish head to cool and comfort the
patient.

vrms � v � vmp.

 vmp � √2k BT/m0 � 1.41 √kBT/m0

  v � √8kBT/�m0 � 1.60 √kBT/m0

vrms � √v 2 � √3kBT/m 0 � 1.73 √kBT/m0
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Consider the qualitative shapes of the two curves in Active Figure
16.18, without regard for the numerical values or labels in the graph. Suppose you have
two containers of gas at the same temperature. Container A has 105 nitrogen molecules and
container B has 105 hydrogen molecules. What is the correct qualitative matching be-
tween the containers and the two curves in Active Figure 16.18? (a) Container A corre-
sponds to the blue curve and container B to the brown curve. (b) Container B corre-
sponds to the blue curve and container A to the brown curve. (c) Both containers will
correspond to the same curve.

QUICK QUIZ 16.6

The
speed distribution function for
105 nitrogen molecules at 300 K
and 900 K. The total area under
either curve is equal to the total
number of molecules, which in
this case equals 105. Note that

.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 16.18 to set
a desired temperature and see the
effect on the distribution curve.

v rms > v  > v mp

ACTIVE FIGURE 16.18200
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THE  ATMOSPHERIC  LAPSE  RATE
We have discussed the temperature of a gas with the assumption that all parts of the
gas are at the same temperature. For small volumes of gas, this assumption is rela-
tively good. What about a huge volume of gas, however, such as the atmosphere? It is
clear that the assumption of a uniform temperature throughout the gas is not valid
in this case. When it is a hot summer day in Los Angeles, it is a cold winter day in
Melbourne; different parts of the atmosphere are clearly at different temperatures.

We can address this question, as we discussed in the opening section of 
this Context, by considering the global average of the air temperature at the
surface of the Earth. Yet variations also occur in temperature at different heights
in the atmosphere. It is this variation of temperature with height that we explore
here.

Figure 16.19 shows graphical representations of average air temperature in Janu-
ary at various heights in four states.3 These data are taken at locations on the sur-
face of the Earth, but at varying elevations, such as at sea level and on mountains.
For all four states we see a clear indication that the temperature decreases as we
move to higher elevations. Of course, one look at snow-capped mountains tells us
that is the case. We also see that the data tend to lie along straight lines, although
some of the data are scattered, suggesting that the temperature decreases approxi-
mately linearly with height above the surface.

We can argue conceptually why the temperature decreases with height. Imagine
a parcel of air moving upward along the slope of a mountain. As this parcel rises
into higher elevations, the pressure on it from the surrounding air decreases. The
pressure difference between the interior and the exterior of the parcel causes the
parcel to expand. In doing so, the parcel is pushing the surrounding air outward,

16.7
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Solution
The average value of the square of the speed is

�

Hence, the rms speed is

What is the most probable speed of the particles?

Solution
Three of the particles have a speed of 12.0 m/s, two
have a speed of 14.0 m/s, and the remaining particles
have different speeds. Hence, we see that the most
probable speed vmp is .12.0 m/s

C

13.3 m/svrms � √v2 � √178 m2/s2 �

178 m2/s2

v 2 �
� 14.02 � 14.02 � 17.02 � 20.02) m2/s2
(5.002 � 8.002 � 12.02 � 12.02 � 12.02

9

A System of Nine ParticlesEXAMPLE 16.6
Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0,
14.0, 14.0, 17.0, and 20.0 m/s.

Find the average speed.

Solution We cannot use Equations 16.21, 16.22, and
16.23 to calculate average speeds because these
equations are only valid for a large number of gas
particles. On the other hand, because we have 
so few particles, we can calculate the averages 
directly.

The average speed is the sum of the speeds divided
by the total number of particles:

�

What is the rms speed?B

12.7 m/s

v �
� 14.0 �14.0 � 17.0 � 20.0) m/s 
(5.00 � 8.00 � 12.0 � 12.0 � 12.0

9

A

CONTEXT 
connection

3 Data are taken from National Oceanic and Atmospheric Administration, Climates of the States
(Port Washington, NY: U.S. Department of Commerce, Water Information Center Inc., 1974.)



doing work on it. Because the system (the parcel of air) is doing work on the envi-
ronment, the energy in the parcel decreases. The decreased energy is manifested as
a decrease in temperature.

If this process is reversed so that the parcel moves toward lower elevations, work
is done on the parcel, which increases its energy so that it becomes warmer. This sit-
uation occurs during Santa Ana wind conditions in the Los Angeles basin in which
air is pushed from the mountains down into the low elevations of the basin, result-
ing in hot, dry winds. Similar conditions go by other names in other regions, such
as the chinook from the Rocky Mountains and the foehn from the Swiss Alps.

Notice in Figure 16.19 that the slopes of all four lines are relatively close
together. This closeness suggests that the decrease in temperature with height—
called the atmospheric lapse rate—is similar at various locations across the surface
of the Earth, so we might define an average lapse rate for the entire surface.

That is indeed the case, and we find that the average global lapse rate is about
�6.5°C/km. If you determine the slopes of the lines in Figure 16.19, you will find
that they are close to this value.

The linear decrease with temperature only occurs in the lower part of the atmos-
phere called the troposphere, the part of the atmosphere in which weather occurs
and airplanes fly. Above the troposphere is the stratosphere, with an imaginary
boundary called the tropopause separating the two layers. In the stratosphere, tem-
perature tends to be relatively constant with height.

The decrease in temperature with height in the troposphere is one component
to a structural model of the atmosphere that will allow us to predict the surface
temperature of the Earth. If we can find the temperature of the stratosphere and
the height of the tropopause, we can extrapolate to the surface, using the lapse rate
to find the temperature at the surface. The lapse rate and the height of the
tropopause can be measured. To find the temperature of the stratosphere, we need
to know more about energy exchanges in the Earth’s atmosphere, which we will in-
vestigate in the next chapter.
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FIGURE 16.19

SUMMARY

Take a practice test by logging into Physics-
Now at www.pop-4e.com and clicking on the
Pre-Test link for this chapter.

The zeroth law of thermodynamics states that if two objects, A
and B, are separately in thermal equilibrium with a third ob-
ject, A and B are in thermal equilibrium with each other.

The relationship between TC, the Celsius temperature, and
T, the Kelvin (absolute) temperature, is

TC � T � 273.15 [16.1]

The relationship between the Fahrenheit and Celsius tem-
peratures is

www.pop-4e.com
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[16.2]

When the temperature of a substance is raised, it generally
expands. If an object has an initial length of Li at some temper-
ature and undergoes a change in temperature �T, its length
changes by the amount �L, which is proportional to the ob-
ject’s initial length and the temperature change:

[16.4]

The parameter � is called the average coefficient of linear
expansion.

The change in volume of most substances is proportional to
the initial volume Vi and the temperature change �T :

�V � �Vi �T [16.6]

where � is the average coefficient of volume expansion and is
equal to 3�.

The change in area of a substance is given by

�A � 	Ai �T [16.7]

where 	 is the average coefficient of area expansion and is
equal to 2�.

The ideal gas model refers to a collection of gas molecules
that move randomly and are of negligible size. An ideal gas
obeys the equation

PV � nRT [16.9]

where P is the pressure of the gas, V is its volume, n is the number
of moles of gas, R is the universal gas constant (8.314 J/mol �K),

�L � �Li �T

TF � 9
5TC � 32�F and T is the absolute temperature in kelvins. A real gas at very

low pressures behaves approximately as an ideal gas.
The pressure of N molecules of an ideal gas contained in a

volume V is given by

[16.13]

where is the average translational kinetic energy per
molecule.

The average kinetic energy of the molecules of a gas is
directly proportional to the absolute temperature of the gas:

[16.15]

where kB is Boltzmann’s constant (1.38 � 10�23 J/K).
For a monatomic gas, the internal energy of the gas is the

total translational kinetic energy

(monatomic gas) [16.18]

The root-mean-square (rms) speed of the molecules of a gas is

[16.19]

The Maxwell–Boltzmann distribution function describes the
distribution of speeds of N gas molecules:

[16.20]

where m0 is the mass of a gas molecule, kB is Boltzmann’s con-
stant, and T is the absolute temperature.

Nv � 4�N � m 0

2�k BT �
3/2

  v 2e�m 0v 2/2k BT

v rms � √v 2 � √ 3k BT
m0

� √ 3RT
M

E int � 3
2 nRT

1
2 m 0v 2 � 3

2 kBT

1
2 m0v2

P � 2
3 � N

V � (1
2m0v2)
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

A piece of copper is dropped into a beaker of water. If the
water’s temperature rises, what happens to the tempera-
ture of the copper? Under what conditions are the water
and copper in thermal equilibrium?

2. In describing his upcoming trip to the Moon, and as por-
trayed in the movie Apollo 13 (Universal, 1995), astronaut
Jim Lovell said, “I’ll be walking in a place where there’s a
400-degree difference between sunlight and shadow.”
What is it that is hot in sunlight and cold in shadow? Sup-
pose an astronaut standing on the Moon holds a ther-
mometer in his gloved hand. Is the thermometer reading
the temperature of the vacuum at the Moon’s surface?
Does it read any temperature? If so, what object or sub-
stance has that temperature?

3. Why should the amalgam used in dental fillings have
the same average coefficient of expansion as a tooth? What
would occur if they were mismatched?

4. Markings to indicate length are placed on a steel tape in a
room that has a temperature of 22°C. Are measurements
made with the tape on a day when the temperature is 27°C
too long, too short, or accurate? Defend your answer.

1.

5. Use a periodic table of the elements, as in Appendix C, to
determine the number of grams in one mole of the follow-
ing gases: (a) hydrogen, (b) helium, (c) carbon monoxide.

6. What does the ideal gas law predict about the volume of a
sample of gas at absolute zero? Why is this prediction in-
correct?

7. An inflated rubber balloon filled with air is immersed in a
flask of liquid nitrogen that is at 77 K. Describe what hap-
pens to the balloon, assuming that it remains flexible while
being cooled.

8. Two identical cylinders at the same temperature each con-
tain the same kind of gas and the same number of moles of
gas. If the volume of cylinder A is three times greater than
the volume of cylinder B, what can you say about the rela-
tive pressures in the cylinders?

9. After food is cooked in a pressure cooker, why is it very im-
portant to cool off the container with cold water before at-
tempting to remove the lid?

10. The shore of the ocean is very rocky at a particular place.
The rocks form a cave sloping upward from an underwater
opening, as shown in Figure Q16.10a. Inside the cave is a
pocket of trapped air. As the level of the ocean rises and
falls with the tides, will the level of water in the cave rise
and fall? If so, will it have the same amplitude as that of the



ocean? (b) Now suppose that the cave is deeper in the wa-
ter so that it is completely submerged and filled with water
at high tide, as shown in Figure Q16.10b. At low tide, will
the level of the water in the cave be the same as that of the
ocean?

When the metal ring and metal sphere in Figure Q16.11
are both at room temperature, the sphere can just be
passed through the ring. After the sphere is heated, it can-
not be passed through the ring. Explain. What if the ring is
heated and the sphere is left at room temperature? Does
the sphere pass through the ring?

11.

12. Metal lids on glass jars can often be loosened by running
hot water over them. How is that possible?

When alcohol is rubbed on your body, it lowers your
skin temperature. Explain this effect.

14. Dalton’s law of partial pressures states that the total pres-
sure of a mixture of gases is equal to the sum of the partial
pressures of gases making up the mixture. Give a convinc-
ing argument of this law based on the kinetic theory of
gases.

If a helium-filled balloon initially at room temperature is
placed in a freezer, will its volume increase, decrease, or re-
main the same?

16. Which is denser, dry air or air saturated with water vapor?
Explain. 

What happens to a helium-filled balloon released into the
air? Will it expand or contract? Will it stop rising at some
height?

18. An ideal gas is contained in a vessel at 300 K. If the temper-
ature is increased to 900 K, determine the factor by which
each of the following changes: (a) the average kinetic en-
ergy of the molecules, (b) the rms molecular speed, (c)
the average momentum change of one molecule in a colli-
sion with a wall, (d) the rate of collisions of molecules with
walls, (e) the pressure of the gas.

17.

15.

13.
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1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions

Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 16.2 ■ Thermometers and Temperature Scales
A constant-volume gas thermometer is

calibrated in dry ice (that is, evaporating carbon dioxide in
1.

the solid state, with a temperature of �80.0°C) and in boil-
ing ethyl alcohol (78.0°C). The two pressures are 
0.900 atm and 1.635 atm, respectively. (a) What Celsius
value of absolute zero does the calibration yield? What is
the pressure at (b) the freezing point of water and (c) the
boiling point of water?

2. Convert the following to equivalent temperatures on the Cel-
sius and Kelvin scales: (a) the normal human body tempera-
ture, 98.6°F; (b) the air temperature on a cold day, �5.00°F.

Liquid nitrogen has a boiling point of �195.81°C at atmos-
pheric pressure. Express this temperature in (a) degrees
Fahrenheit and (b) kelvins.

4. The temperature difference between the inside and the
outside of an automobile engine is 450°C. Express this

3.

PROBLEMS

www.pop4e.com


temperature difference on (a) the Fahrenheit scale and
(b) the Kelvin scale.

Section 16.3 ■ Thermal Expansion of Solids and Liquids

Note: Table 16.1 is available for use in solving problems in
this section.

5. The Trans-Alaska pipeline is 1 300 km long, reaching from
Prudhoe Bay to the port of Valdez. It experiences tempera-
tures from �73°C to �35°C. How much does the steel
pipeline expand because of the difference in temperature?
How can this expansion be compensated for?

6. A pair of eyeglass frames is made of epoxy plastic. At
room temperature (20.0°C), the frames have circular lens
holes 2.20 cm in radius. To what temperature must the
frames be heated if lenses 2.21 cm in radius are to be
inserted in them? The average coefficient of linear expan-
sion for epoxy is 1.30 � 10�4 (°C)�1.

7. Each year thousands of children are badly burned by
hot tap water. Figure P16.7 shows a cross-sectional view of
an antiscalding faucet attachment designed to prevent such
accidents. Within the device, a spring made of material with
a high coefficient of thermal expansion controls a movable
plunger. When the water temperature rises above a preset
safe value, the expansion of the spring causes the plunger
to shut off the water flow. Assuming that the initial length L
of the unstressed spring is 2.40 cm and its coefficient of
linear expansion is 22.0 � 10�6 (°C)�1, determine the
increase in length of the spring when the water tempera-
ture rises by 30.0°C. (You will find the increase in length to
be small. Therefore, to provide a greater variation in valve
opening for the temperature change anticipated, actual
devices have a more complicated mechanical design.)

the vinyl. According to the manufacturer’s directions, most
of the nails are left loose enough to allow the vinyl slots to
slide under the nail heads. Near one end of the wall, how-
ever, one nail is driven in farther than the others so that
the nail head holds the vinyl stationary relative to the insu-
lating panel at that location. On a summer day the sun
raises the temperature of all the vinyl to 38.0°C. Find the
coefficient of linear expansion for vinyl implied by these
assumptions.

The active element of a certain laser is
made of a glass rod 30.0 cm long by 1.50 cm in diameter. If
the temperature of the rod increases by 65.0°C, what is the
increase in (a) its length, (b) its diameter, and (c) its vol-
ume? Assume that the average coefficient of linear expan-
sion of the glass is 9.00 � 10�6 (°C)�1.

10. Review problem. Inside the wall of a house, an L-shaped
section of hot water pipe consists of a straight horizontal
piece 28.0 cm long, an elbow, and a straight vertical piece
134 cm long (Fig. P16.10). A stud and a second-story floor-
board hold stationary the ends of this section of copper
pipe. Find the magnitude and direction of the displace-
ment of the pipe elbow when the water flow is turned on,
raising the temperature of the pipe from 18.0°C to 46.5°C.

9.
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8. Vinyl siding for houses is manufactured with horizontal
slots 2.80 cm long for nailing. Assume that the manufactur-
ers chose this length to allow for the expansion that would
occur in the following situation. The wall of a house is 
15.0 m long. Its vinyl siding is nailed through insulating
panels to studs that stay at nearly constant temperature
throughout the year. The siding is installed in midwinter,
when its temperature is �5°C. Adjacent pieces of vinyl are
butted snug, end to end against each other. The nails hold-
ing them to the wall are placed at the centers of the slots in

FIGURE P16.10

11. A square hole 8.00 cm along each side is cut in a sheet of
copper. (a) Calculate the change in the area of this hole
resulting when the temperature of the sheet is increased by
50.0 K. (b) Does this change represent an increase or a de-
crease in the area enclosed by the hole?

12. The average coefficient of volume expansion for carbon
tetrachloride is 5.81 � 10�4 (°C)�1. If a 50.0-gal steel con-
tainer is filled completely with carbon tetrachloride when
the temperature is 10.0°C, how much will spill over when
the temperature rises to 30.0°C?



A hollow aluminum cylinder 20.0 cm deep has an internal
capacity of 2.000 L at 20.0°C. It is completely filled with
turpentine and then slowly warmed to 80.0°C. (a) How
much turpentine overflows? (b) If the cylinder is then
cooled back to 20.0°C, how far below the cylinder’s rim
does the turpentine’s surface recede?

14. At 20.0°C, an aluminum ring has an inner diameter of
5.000 0 cm and a brass rod has a diameter of 5.050 0 cm.
(a) If only the ring is heated, what temperature must it
reach so that it will just slip over the rod? (b) If both are
heated together, what temperature must they both reach
so that the ring just slips over the rod? Would this latter
process work?

Section 16.4 ■ Macroscopic Description of an Ideal Gas
15. On your wedding day your lover gives you a gold ring of

mass 3.80 g. Fifty years later its mass is 3.35 g. On the aver-
age, how many atoms were abraded from the ring during
each second of your marriage? The molar mass of gold is
197 g/mol.

16. Use the definition of Avogadro’s number to find the mass
of a helium atom.

17. An automobile tire is inflated with air originally at 10.0°C
and normal atmospheric pressure. During the process, the
air is compressed to 28.0% of its original volume and the
temperature is increased to 40.0°C. (a) What is the tire
pressure? (b) After the car is driven at high speed, the tire
air temperature rises to 85.0°C and the interior volume of
the tire increases by 2.00%. What is the new tire pressure
(absolute) in pascals?

18. A rigid tank having a volume of 0.100 m3 contains helium
gas at 150 atm. How many balloons can be inflated by
opening the valve at the top of the tank? Each filled bal-
loon is a sphere 0.300 m in diameter at an absolute pres-
sure of 1.20 atm.

An auditorium has dimensions 10.0 m � 20.0 m � 30.0 m.
How many molecules of air fill the auditorium at 20.0°C
and a pressure of 101 kPa?

20. Your father and your little brother are confronted with the
same puzzle. Your father’s garden sprayer and your
brother’s water cannon both have tanks with a capacity of
5.00 L (Fig. P16.20). Your father introduces a negligible
amount of concentrated insecticide into his tank. Your fa-
ther and your brother both pour in 4.00 L of water and
seal up their tanks so that the tanks also contain air at at-
mospheric pressure. Next, each uses a hand-operated pis-
ton pump to inject more air until the absolute pressure in
the tank reaches 2.40 atm and it becomes too difficult to
move the pump handle. Now each uses his device to spray
out water—not air—until the stream becomes feeble, as it
does when the pressure in the tank reaches 1.20 atm. Then
each device must be pumped up again, sprayed again, and
so on. To spray out all the water, each finds that he
must pump up the tank three times. Here is the puzzle:
most of the water sprays out as a result of the second
pumping. The first and the third pumping-up processes
seem just as difficult, but they result in a disappointingly
small amount of water coming out. Account for this
phenomenon.

19.

13.

The mass of a hot-air balloon and its
cargo (not including the air inside) is 200 kg. The air out-
side is at 10.0°C and 101 kPa. The volume of the balloon is
400 m3. To what temperature must the air in the balloon
be heated before the balloon will lift off? (Air density at
10.0°C is 1.25 kg/m3.)

22. A cube 10.0 cm on each edge contains air (with equivalent
molar mass 28.9 g/mol) at atmospheric pressure and tem-
perature 300 K. Find (a) the mass of the gas, (b) its weight,
and (c) the force it exerts on each face of the cube. 
(d) Comment on the physical reason why such a small sam-
ple can exert such a great force.

23. How deep will a shearwater dive? To measure how far
below the ocean surface the bird goes to catch a fish, Will
Mackin used a method originated by Lord Kelvin for
soundings by the British Navy. It was adapted for zoological
use by Alan Burger and Rory Wilson. With powdered sugar
Mackin dusted the interiors of very thin plastic tubes and
then sealed one end of each tube with a cigarette lighter.
Charging around on a rocky beach at night with a miner’s
headlamp, he would grab an Audubon’s shearwater in its
nest and attach a tube to its back. He caught the same bird
the next night and removed the tube. After hundreds of
captures the birds thoroughly disliked him but were not
permanently frightened away from the rookery. Assume
that in one trial, with a tube 6.50 cm long, he found that
water had entered the tube to wash away the sugar over a
distance of 2.70 cm from the open end. (a) Find the great-
est depth to which the shearwater dove, assuming that the
air in the tube stayed at constant temperature. (b) Must
the tube be attached to the bird in any particular orienta-
tion for this method to work? (Audubon’s shearwater can
dive to more than twice the depth you calculate, and larger
species can dive nearly ten times deeper.)

24. At 25.0 m below the surface of the sea (density �
1 025 kg/m3), where the temperature is 5.00°C, a diver
exhales an air bubble having a volume of 1.00 cm3. If the
surface temperature of the sea is 20.0°C, what is the vol-
ume of the bubble just before it breaks the surface?

The pressure gauge on a tank registers the gauge pressure,
which is the difference between the interior and exterior
pressure. When the tank is full of oxygen (O2), it contains

25.

21.
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12.0 kg of the gas at a gauge pressure of 40.0 atm. Deter-
mine the mass of oxygen that has been withdrawn from
the tank when the pressure reading is 25.0 atm. Assume
that the temperature of the tank remains constant.

26. Estimate the mass of the air in your bedroom. State the
quantities you take as data and the value you measure or
estimate for each.

27. A popular brand of cola contains 6.50 g of carbon dioxide
dissolved in 1.00 L of soft drink. If the evaporating carbon
dioxide is trapped in a cylinder at 1.00 atm and 20.0°C,
what volume does the gas occupy?

28. In state-of-the-art vacuum systems, pressures as low as 
10�9 Pa are being attained. Calculate the number of mole-
cules in a 1.00-m3 vessel at this pressure assuming that the
temperature is 27.0°C.

29. A room of volume V contains air having equivalent molar
mass M (in g/mol). If the temperature of the room is
raised from T1 to T2, what mass of air will leave the room?
Assume that the air pressure in the room is maintained
at P0.

Section 16.5 ■ The Kinetic Theory of Gases
30. Review problem. In a time interval �t � t � 0 � t, N hail-

stones strike a glass window of area A at an angle � to the
window surface. Each hailstone has a mass m and a speed
v. If the collisions are elastic, what are the average force
and pressure on the window?

31. In a period of 1.00 s, 5.00 � 1023 nitrogen molecules strike
a wall with an area of 8.00 cm2. If the molecules move with
a speed of 300 m/s and strike the wall head-on in elastic
collisions, what is the pressure exerted on the wall? (The
mass of one N2 molecule is 4.68 � 10�26 kg.)

32. A 5.00-L vessel contains nitrogen gas at 27.0°C and 
3.00 atm. Find (a) the total translational kinetic energy of
the gas molecules and (b) the average kinetic energy per
molecule.

(a) How many atoms of helium gas fill a balloon of diame-
ter 30.0 cm at 20.0°C and 1.00 atm? (b) What is the aver-
age kinetic energy of the helium atoms? (c) What is the
root-mean-square speed of the helium atoms?

34. Brownian motion. Molecular motion is invisible in itself.
When a small particle is suspended in a fluid, bombard-
ment by molecules makes the particle jitter about at ran-
dom. Robert Brown discovered this motion in 1827 while
studying plant fertilization. Albert Einstein analyzed it in
1905 and Jean Perrin used it for an early measurement of
Avogadro’s number. The visible particle’s average kinetic
energy can be taken as , the same as that of a mole-
cule in an ideal gas. Consider a spherical particle of density
1 000 kg/m3 in water at 20°C. (a) For a particle of diame-
ter 3.00 
m, evaluate the rms speed. (b) The particle’s ac-
tual motion is a random walk, but imagine that it moves
with constant velocity equal in magnitude to its rms speed.
In what time interval would it move by a distance equal to
its own diameter? (c) Repeat parts (a) and (b) for a parti-
cle of mass 70.0 kg, modeling your own body. (d) Find the
diameter of a particle whose rms speed is equal to its own
diameter divided by 1 s. (Note: You can solve all parts of

3
2 
kBT

33.

this problem most efficiently by first finding a symbolic
relationship between the particle size and its rms speed.)

A cylinder contains a mixture of helium
and argon gas in equilibrium at 150°C. (a) What is the av-
erage kinetic energy for each type of gas molecule? 
(b) What is the root-mean-square speed of each type of
molecule?

Section 16.6 ■ Distribution of Molecular Speeds
36. Fifteen identical particles have various speeds. One has a

speed of 2.00 m/s, two have speeds of 3.00 m/s, three have
speeds of 5.00 m/s, four have speeds of 7.00 m/s, three
have speeds of 9.00 m/s, and two have speeds of 12.0 m/s.
Find (a) the average speed, (b) the rms speed, and (c) the
most probable speed of these particles.

From the Maxwell–Boltzmann speed distribution, show
that the most probable speed of a gas molecule is given by
Equation 16.23. Note that the most probable speed corre-
sponds to the point at which the slope of the speed distrib-
ution curve dNv/dv is zero.

38. Helium gas is in thermal equilibrium with liquid helium at
4.20 K. Even though it is on the point of condensation,
model the gas as ideal and determine the most probable
speed of a helium atom (mass � 6.64 � 10�27 kg) in it.

39. Review problem. At what temperature would the average
speed of helium atoms equal (a) the escape speed from
the Earth, 1.12 � 104 m/s; and (b) the escape speed from
the Moon, 2.37 � 103 m/s? (See Chapter 11 for a discus-
sion of escape speed; also note that the mass of a helium
atom is 6.64 � 10�27 kg.)

Section 16.7 ■ Context Connection — The Atmospheric
Lapse Rate

40. The summit of Mount Whitney, in California, is 3 660 m
higher than a point in the foothills. Assume that the atmos-
pheric lapse rate in the Mount Whitney area is the same as
the global average of �6.5°C/km. What is the temperature
of the summit of Mount Whitney when eager hikers depart
from the foothill location at a temperature of 30°C?

41. The theoretical lapse rate for dry air (no water vapor) in
an atmosphere is given by

where g is the acceleration due to gravity, M is the molar
mass of the uniform ideal gas in the atmosphere, R is the
gas constant, and 	 is the ratio of molar specific heats,
which we will study in Chapter 17. (a) Calculate the theo-
retical lapse rate on the Earth given that 	 � 1.40 and the
effective molar mass of air is 28.9 g/mol. (b) Why is this
value different from the value of �6.5°C/km given in the
text? (c) The atmosphere of Mars is mostly dry carbon
dioxide, with a molar mass of 44.0 g/mol and a ratio of
molar specific heats of 	 � 1.30. The mass of Mars is
6.42 � 1023 kg and the radius is 3.37 � 106 m. What is the
lapse rate for the Martian troposphere? (d) A typical sur-
face atmospheric temperature on Mars is �40.0°C. Using
the lapse rate calculated in part (c), find the height in the
Martial troposphere at which the temperature is �60.0°C. 

dT
dy
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(e) Data from the Mariner flights in 1969 indicated a lapse
rate in the Martian troposphere of about �1.5°C/km. The
Viking missions in 1976 gave measured lapse rates of about
�2°C/km. These values deviate from the ideal value calcu-
lated in part (c) because of dust in the Martian atmos-
phere. Why would dust affect the lapse rate? Which mis-
sion occurred in dustier conditions, Mariner or Viking ?

Additional Problems
42. A student measures the length of a brass rod with a steel

tape at 20.0°C. The reading is 95.00 cm. What will the tape
indicate for the length of the rod when the rod and the
tape are at (a) �15.0°C and (b) 55.0°C?

43. The density of gasoline is 730 kg/m3 at 0°C. Its average
coefficient of volume expansion is 9.60 � 10�4 (°C)�1. If
1.00 gal of gasoline occupies 0.003 80 m3, how many extra
kilograms of gasoline would you get if you bought 10.0 gal
of gasoline at 0°C rather than at 20.0°C from a pump that
is not temperature compensated?

44. A liquid with a coefficient of volume expansion � just fills a
spherical shell of volume Vi at a temperature of Ti
(Fig. P16.44). The shell is made of a material that has an
average coefficient of linear expansion �. The liquid is free
to expand into an open capillary of area A projecting from
the top of the sphere. (a) The temperature increases by
�T. Show that the liquid rises in the capillary by the
amount �h given by the equation �h � (Vi/A)(� � 3�) �T.
(b) For a typical system, such as a mercury thermometer,
why is it a good approximation to ignore the expansion of
the shell?

respiration recycling of three astronauts during one week
of flight is stored in an originally empty 150-L tank at
�45.0°C, what is the final pressure in the tank?

A vertical cylinder of cross-sectional area
A is fitted with a tight-fitting, frictionless piston of mass m
(Fig. P16.47). (a) If n moles of an ideal gas are in the cylin-
der at a temperature of T, what is the height h at which the
piston is in equilibrium under its own weight? (b) What is
the value for h if n � 0.200 mol, T � 400 K, A � 0.008 00 m2,
and m � 20.0 kg?

47.
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A liquid has a density �. (a) Show that the fractional
change in density for a change in temperature �T is ��/� �
�� �T. What does the negative sign signify? (b) Fresh wa-
ter has a maximum density of 1.000 0 g/cm3 at 4.0°C. At
10.0°C, its density is 0.999 7 g/cm3. What is � for water
over this temperature interval?

46. Long-term space missions require reclamation of the
oxygen in the carbon dioxide exhaled by the crew. In one
method of reclamation, 1.00 mol of carbon dioxide pro-
duces 1.00 mol of oxygen and 1.00 mol of methane as a by-
product. The methane is stored in a tank under pressure
and is available to control the attitude of the spacecraft by
controlled venting. A single astronaut exhales 1.09 kg of
carbon dioxide each day. If the methane generated in the

45.
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48. A bimetallic strip is made of two ribbons of dissimilar
metals bonded together. (a) First assume that the strip is
originally straight. As the metals are heated, the metal
with the greater average coefficient of expansion
expands more than the other, forcing the strip into an
arc, with the outer radius having a greater circumference
(Fig. P16.48a). Derive an expression for the angle of
bending � as a function of the initial length of the strips,
their average coefficients of linear expansion, the
change in temperature, and the separation of the cen-
ters of the strips (�r � r 2 � r1). (b) Show that the angle
of bending decreases to zero when �T decreases to zero
and also when the two average coefficients of expansion
become equal. (c) What happens if the strip is cooled?
(d) Figure P16.48b shows a compact spiral bimetallic
strip in a home thermostat. The equation from part
(a) applies to it as well if � is interpreted as the angle of
additional bending caused by a change in temperature.
The inner end of the spiral strip is fixed and the outer
end is free to move. Assume that the metals are bronze
and invar, the thickness of the strip is 2�r � 0.500 mm,
and the overall length of the spiral strip is 20.0 cm. Find
the angle through which the free end of the strip turns
when the temperature changes by 1°C. The free end of
the strip supports a capsule partly filled with mercury,
visible above the strip in Figure P16.48b. When the cap-
sule tilts, the mercury shifts from one end to the other,
to make or break an electrical contact switching the fur-
nace on or off.



49. The rectangular plate shown in Figure P16.49 has an area
Ai equal to �w. If the temperature increases by �T, each di-
mension increases according to the equation �L � �Li �T,
where � is the average coefficient of linear expansion.
Show that the increase in area is �A � 2�Ai �T. What
approximation does this expression assume?

52. (a) Derive an expression for the buoyant force on a spheri-
cal balloon, submerged in water, as a function of the depth
below the surface, the volume of the balloon at the sur-
face, the pressure at the surface, and the density of the
water. (Assume that the water temperature does not
change with depth.) (b) Does the buoyant force increase
or decrease as the balloon is submerged? (c) At what
depth is the buoyant force one-half the surface value?

53. Two concrete spans of a 250-m-long bridge are placed end
to end so that no room is allowed for expansion 
(Fig. P16.53a). If a temperature increase of 20.0°C occurs,
what is the height y to which the spans rise when they
buckle (Fig. P16.53b)?
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50. Review problem. A clock with a brass pendulum has a pe-
riod of 1.000 s at 20.0°C. If the temperature increases to
30.0°C, (a) by how much does the period change and 
(b) how much time does the clock gain or lose in one week?

51. Review problem. Consider an object with any one of the
shapes displayed in Table 10.2. What is the percentage in-
crease in the moment of inertia of the object when it is
heated from 0°C to 100°C if it is composed of (a) copper
or (b) aluminum? Assume that the average linear expan-
sion coefficients shown in Table 16.1 do not vary between
0°C and 100°C.

(a)

T

250 m

T + 20°C

(b)

y

FIGURE P16.53 Problems 16.53 and 16.54.

54. Two concrete spans of a bridge of length L are placed end
to end so that no room is allowed for expansion (Fig.
P16.53a). If a temperature increase of �T occurs, what is
the height y to which the spans rise when they buckle (Fig.
P16.53b)?

55. Review problem. Following a collision in outer space, a
copper disk at 850°C is rotating about its axis with an angu-
lar speed of 25.0 rad/s. As the disk radiates infrared light,
its temperature falls to 20.0°C. No external torque acts on
the disk. (a) Does the angular speed increase or decrease
as the disk cools off? Explain why. (b) What is its angular
speed at the lower temperature?

56. (a) Take the definition of the coefficient of volume expan-
sion to be

Use the equation of state for an ideal gas to show that the
coefficient of volume expansion for an ideal gas at con-
stant pressure is given by � � 1/T, where T is the absolute
temperature. (b) What value does this expression predict
for � at 0°C? Compare this result with the experimental
values for helium and air in Table 16.1. Note that these are
much larger than the coefficients of volume expansion for
most liquids and solids.

57. (a) Show that the density of an ideal gas occupying a vol-
ume V is given by � � PM/RT, where M is the molar mass.
(b) Determine the density of oxygen gas at atmospheric
pressure and 20.0°C. 

58. A cylinder that has a 40.0-cm radius and is 50.0 cm deep is
filled with air at 20.0°C and 1.00 atm (Fig. P16.58a). A
20.0-kg piston is now lowered into the cylinder, compress-
ing the air trapped inside (Fig. P16.58b). Finally, a 75.0-kg
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man stands on the piston, further compressing the air,
which remains at 20°C (Fig. P16.58c). (a) How far down
(�h) does the piston move when the man steps onto it?
(b) To what temperature should the gas be heated to raise
the piston and man back to hi?

59. In a chemical processing plant, a reaction chamber of
fixed volume V0 is connected to a reservoir chamber of
fixed volume 4V0 by a passage containing a thermally in-
sulating porous plug. The plug permits the chambers to
be at different temperatures. The plug allows gas to pass
from either chamber to the other, ensuring that the
pressure is the same in both. At one point in the pro-
cessing, both chambers contain gas at a pressure of 1.00
atm and a temperature of 27.0°C. Intake and exhaust
valves to the pair of chambers are closed. The reservoir
is maintained at 27.0°C while the reaction chamber is
heated to 400°C. What is the pressure in both chambers
after that is done?

60. A 1.00-km steel railroad rail is fastened securely at
both ends when the temperature is 20.0°C. As the tempera-
ture increases, the rail begins to buckle. Assuming that its
shape is an arc of a vertical circle, find the height h of the
center of the rail when the temperature is 25.0°C. You will
need to solve a transcendental equation.

61. Review problem. A perfectly plane house roof makes
an angle � with the horizontal. When its temperature
changes, between Tc before dawn each day to Th in the
middle of each afternoon, the roof expands and con-
tracts uniformly with a coefficient of thermal expansion
�1. Resting on the roof is a flat, rectangular, metal plate
with expansion coefficient �2, greater than �1. The
length of the plate is L, measured up the slope of the
roof. The component of the plate’s weight perpendicu-
lar to the roof is supported by a normal force uniformly
distributed over the area of the plate. The coefficient of

kinetic friction between the plate and the roof is 
k .
The plate is always at the same temperature as the roof,
so we assume that its temperature is continuously chang-
ing. Because of the difference in expansion coefficients,
each bit of the plate is moving relative to the roof below
it, except for points along a certain horizontal line run-
ning across the plate, called the stationary line. If the
temperature is rising, parts of the plate below the sta-
tionary line are moving down relative to the roof, and
feel a force of kinetic friction acting up the roof. Ele-
ments of area above the stationary line are sliding up
the roof, and on them kinetic friction acts downward
parallel to the roof. The stationary line occupies no
area, so we assume that no force of static friction acts on
the plate while the temperature is changing. The plate
as a whole is very nearly in equilibrium, so the net fric-
tional force on it must be equal to the component of its
weight acting down the incline. (a) Prove that the sta-
tionary line is at a distance of 

below the top edge of the plate. (b) Analyze the forces that
act on the plate when the temperature is falling and prove
that the stationary line is at that same distance above the
bottom edge of the plate. (c) Show that the plate steps
down the roof like an inchworm, moving each day by the
distance

(d) Evaluate the distance an aluminum plate moves each
day if its length is 1.20 m, if the temperature cycles
between 4.00°C and 36.0°C, and if the roof has slope 18.5°,
coefficient of linear expansion 1.50 � 10�5 (°C)�1, and
coefficient of friction 0.420 with the plate. (e) What if the
expansion coefficient of the plate is less than that of the
roof? Will the plate creep up the roof ?

62. Review problem. Oxygen at pressures much greater
than 1 atm is toxic to lung cells. Assume that a deep-sea
diver breathes a mixture of oxygen (O2) and helium (He).
By weight, what ratio of helium to oxygen must be used if
the diver is at an ocean depth of 50.0 m?

63. For a Maxwellian gas, use a computer or programma-
ble calculator to find the numerical value of the ratio
Nv(v)/Nv(vmp) for the following values of v : v � (vmp/50),
(vmp/10), (vmp/2), vmp, 2vmp, 10vmp, 50vmp. Give your
results to three significant figures.

64. A vessel contains 1.00 � 104 oxygen molecules at 500 K.
(a) Make an accurate graph of the Maxwell–Boltzmann
speed distribution function versus speed with points at
speed intervals of 100 m/s. (b) Determine the most
probable speed from this graph. (c) Calculate the aver-
age and rms speeds for the molecules and label these
points on your graph. (d) From the graph, estimate the
fraction of molecules with speeds in the range 300 m/s
to 600 m/s.

L(� 2 � �1)(Th � Tc ) 
tan �


k

L
2

 �1 �
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k
�
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ANSWERS TO QUICK QUIZZES

16.1 (c). A ratio of temperatures must be calculated using
temperatures on the Kelvin scale. When the given tem-
peratures are converted to kelvins, only those in part (c)
are in the correct ratio.

16.2 (c). A cavity in a material expands in the same way as if it
were filled with material.

16.3 (a). On a cold day, the trapped air in the bubbles is
reduced in volume, according to the ideal gas law. There-
fore, the smaller bubbles can allow the package contents
to shift more.

16.4 (b). Because of the increased temperature, the air
expands. Consequently, some of the air leaks to the out-
side, leaving less air in the house.

16.5 (i), (b). The average translational kinetic energy per mol-
ecule is a function only of temperature. (ii), (a). Because
there are twice as many molecules and the temperature
of both containers is the same, the total energy in B is
twice that in A. (iii), (b). Because both containers hold
the same type of gas, the rms speed is a function only of
temperature.

16.6 (a). Because the hydrogen atoms are lighter than the
nitrogen molecules, they move with a higher average
speed and the distribution curve is stretched out
more along the horizontal axis. See Equation 16.20
for a mathematical statement of the dependence of Nv
on m0.



In Chapters 6 and 7, we introduced the relationship between
energy in mechanics and energy in thermodynamics. We dis-
cussed the transformation of mechanical energy to internal

energy in cases in which a nonconservative force such as friction
is acting. In Chapter 16, we discussed additional concepts of the
relationship between internal energy and temperature. In this
chapter, we extend these discussions into a complete treatment
of energy in thermal processes.

Until around 1850, the fields of thermodynamics and me-
chanics were considered to be two distinct branches of science,
and the law of conservation of energy seemed to describe only
certain kinds of mechanical systems. Mid-19th-century experi-
ments performed by English physicist James Joule (1818–1889)
and others showed that energy may enter or leave a system by
heat and by work. Today, as we discussed in Chapter 6, internal
energy is treated as a form of energy that can be transformed
into mechanical energy and vice versa. Once the concept of en-
ergy was broadened to include internal energy, the law of conser-
vation of energy emerged as a universal law of nature.

Energy in Thermal Processes:
The First Law of Thermodynamics

C H A P T E R 17

In this photograph of Moraine Lake in Banff
National Park, Alberta, we see evidence of
water in all three phases. In the lake is liquid
water, and solid water in the form of snow
appears on the mountains. The clouds in the
sky consist of liquid water droplets that have
condensed from the gaseous water vapor in
the air. Changes of a substance from one
phase to another are a result of energy
transfer.

C H A P T E R  O U T L I N E
17.1 Heat and Internal Energy
17.2 Specific Heat
17.3 Latent Heat and Phase Changes
17.4 Work in Thermodynamic Processes
17.5 The First Law of Thermodynamics
17.6 Some Applications of the First Law 

of Thermodynamics
17.7 Molar Specific Heats of Ideal Gases
17.8 Adiabatic Processes for an Ideal Gas
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Processes
17.11 Context Connection — Energy Balance

for the Earth
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This chapter focuses on developing the concept of heat, extending our concept
of work to thermal processes, introducing the first law of thermodynamics, and in-
vestigating some important applications.

HEAT  AND  INTERNAL  ENERGY
A major distinction must be made between internal energy and heat because these
terms tend to be used interchangeably in everyday communication. You should
read the following descriptions carefully and try to use these terms correctly be-
cause they are not interchangeable. They have very different meanings.

We introduced internal energy in Chapter 6, and we formally define it here:

Internal energy E int is the energy associated with the microscopic compo-
nents of a system—atoms and molecules—when viewed from a reference
frame at rest with respect to the system. It includes kinetic and potential 
energy associated with the random translational, rotational, and vibrational
motion of the atoms or molecules that make up the system as well as inter-
molecular potential energy.

In Chapter 16, we showed that the internal energy of a monatomic ideal gas is
associated with the translational motion of its atoms. In this special case, the inter-
nal energy is simply the total translational kinetic energy of the atoms; the higher
the temperature of the gas, the greater the kinetic energy of the atoms and the
greater the internal energy of the gas. For more complicated diatomic and poly-
atomic gases, internal energy includes other forms of molecular energy, such as
rotational kinetic energy and the kinetic and potential energy associated with mole-
cular vibrations.

Heat was introduced in Chapter 6 as one possible method of energy transfer,
and we provide a formal definition here:

Heat is a mechanism by which energy is transferred between a system and its
environment because of a temperature difference between them. It is also
the amount of energy Q transferred by this mechanism.

Figure 17.1 shows a pan of water in contact with a gas flame. Energy enters
the water by heat from the hot gases in the flame, and the internal energy of the
water increases as a result. It is incorrect to say that the water has more heat as time
goes by.

As further clarification of the use of the word heat, consider the distinction be-
tween work and energy. The work done on (or by) a system is a measure of the
amount of energy transferred between the system and its surroundings, whereas the
mechanical energy of the system (kinetic or potential) is a consequence of its mo-
tion and coordinates. Thus, when a person does work on a system, energy is trans-
ferred from the person to the system. It makes no sense to talk about the work in a
system; one refers only to the work done on or by a system when some process has
occurred in which energy has been transferred to or from the system. Likewise, it
makes no sense to use the term heat unless energy has been transferred as a result
of a temperature difference.

Units of Heat
Early in the development of thermodynamics, before scientists recognized the con-
nection between thermodynamics and mechanics, heat was defined in terms of the
temperature changes it produced in an object, and a separate unit of energy, the
calorie, was used for heat. The calorie (cal) was defined as the heat necessary to

17.1
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James Prescott Joule (1818–1889)
Joule, an English physicist, received
some formal education in mathe-
matics, philosophy, and chemistry
but was in large part self-educated.
His research led to the establish-
ment of the principle of conserva-
tion of energy. His study of the
quantitative relationship among
electrical, mechanical, and chemical
effects of heat culminated in his an-
nouncement in 1843 of the amount
of work required to produce a unit
of internal energy, called the
mechanical equivalent of heat.

(B
y 

ki
nd

 p
er

m
is

si
on

 o
f t

he
 P

re
si

de
nt

 a
nd

 C
ou

nc
il 

of
 th

e 
Ro

ya
l S

oc
ie

ty
)

A pan of boiling
water is warmed by a gas flame.
Energy enters the water through the
bottom of the pan by heat.

FIGURE 17.1
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HEAT, TEMPERATURE, AND INTERNAL

ENERGY ARE DIFFERENT As you read
the newspaper or listen to the 
radio, be alert for incorrectly used
phrases including the word heat and
think about the proper word to be
used in place of it. “As the truck
braked to a stop, a large amount 
of heat was generated by friction”
and “The heat of a hot summer
day . . .” are two examples.
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raise the temperature of 1 g of water1 from 14.5�C to 15.5�C. (The “Calorie,” with a
capital C, used in describing the energy content of foods, is actually a kilocalorie.)
Likewise, the unit of heat in the U.S. customary system, the British thermal unit
(Btu), was defined as the heat required to raise the temperature of 1 lb of water
from 63�F to 64�F.

In 1948, scientists agreed that because heat (like work) is a measure of the trans-
fer of energy, its SI unit should be the joule. The calorie is now defined to be ex-
actly 4.186 J:

[17.1]

Note that this definition makes no reference to the heating of water. The calorie is
a general energy unit. We could have used it in Chapter 6 for the kinetic energy of
an object, for example. It is introduced here for historical reasons, but we shall
make little use of it as an energy unit. The definition in Equation 17.1 is known as
the mechanical equivalent of heat.

1 cal � 4.186 J
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1Originally, the calorie was defined as the heat necessary to raise the temperature of l g of water by 1�C
at any initial temperature. Careful measurements, however, showed that the energy required depends
somewhat on temperature; hence, a more precise definition evolved.

Solving for n,

8.54 � 103 timesn �
8.37 � 106 J

(50.0 kg)(9.80 m/s2)(2.00 m)
�

If the student is in good shape and lifts the weight once
every 5 s, it will take him about 12 h to perform this
feat. Clearly, it is much easier to lose weight by dieting
than by lifting weights!

In reality, the human body is not 100% efficient.
Thus, not all the energy transformed within the body
from the dinner transfers out of the body by work done
on the barbell. Some of this energy is used to pump
blood and perform other functions within the body.
Thus, the 2 000 Calories can be worked off in less time
than 12 hours when these other energy requirements
are included.

Losing Weight the Hard WayEXAMPLE 17.1
A student eats a dinner containing 2 000 Calories of
energy. He wishes to do an equivalent amount of work
in the gymnasium by lifting a 50.0-kg object. How many
times must he raise the object to expend this much
energy? Assume that he raises it a distance of 2.00 m
each time.

Solution The student desires to transfer 2 000 Calories
of energy from his body by doing work on the object–
Earth system. Because 1 Calorie � 1.00 � 103 cal, the
total work required is 2.00 � 106 cal. Converting to
joules, we have for the total work required

W � (2.00 � 106 cal)(4.186 J/cal) � 8.37 � 106 J

The work done in lifting the object of mass m a distance
h is equal to mgh, and the work done in lifting it n times
is nmgh. We equate this expression to the total work
required:

W � nmgh � 8.37 � 106 J

SPECIFIC  HEAT
The definition of the calorie indicates the amount of energy necessary to raise the
temperature of 1 g of a specific substance—water—by 1�C, which is 4.186 J. To
raise the temperature of 1 kg of water by 1�C, we need to transfer 4 186 J of energy.
The quantity of energy required to raise the temperature of 1 kg of an arbitrary
substance by 1�C varies with the substance. For example, the energy required to
raise the temperature of 1 kg of copper by 1�C is 387 J, which is significantly less
than that required for water. Every substance requires a unique amount of energy
per unit mass to change the temperature of that substance by 1�C.

17.2

■ Mechanical equivalent of heat



Suppose a quantity of energy Q is transferred to a mass m of a substance, thereby
changing its temperature by �T. The specific heat c of the substance is defined as

[17.2]

The units of specific heat are joules per kilogram-degree Celsius, or J/kg � �C.
Table 17.1 lists specific heats for several substances. From the definition of the calo-
rie, the specific heat of water is 4 186 J/kg � �C.

From this definition, we can express the energy Q transferred between a system
of mass m and its surroundings in terms of the resulting temperature change �T as

Q � mc �T [17.3]

For example, the energy required to raise the temperature of 0.500 kg of water by
3.00�C is Q � (0.500 kg)(4 186 J/kg � �C)(3.00�C) � 6.28 � 103 J. Note that when
the temperature increases, �T and Q are taken to be positive, corresponding to en-
ergy flowing into the system. When the temperature decreases, �T and Q are nega-
tive and energy flows out of the system. These sign conventions are consistent with
those in our discussion of the continuity equation for energy, Equation 6.20.

Table 17.1 shows that water has a high specific heat relative to most other com-
mon substances (the specific heats of hydrogen and helium are higher). The high
specific heat of water is responsible for the moderate temperatures found in re-
gions near large bodies of water. As the temperature of a body of water decreases
during the winter, the water transfers energy to the air, which carries the energy
landward when prevailing winds are toward the land. For example, the prevailing
winds off the western coast of the United States are toward the land, and the energy
liberated by the Pacific Ocean as it cools keeps coastal areas much warmer than
they would be otherwise. Thus, the western coastal states generally have warmer

c � 
Q

m �T
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Specific Heats of Some Substances
at 25�C and Atmospheric Pressure

TABLE 17.1

Specific Heat c

Substance J/kg � �C cal/g � �C

Elemental Solids
Aluminum 900 0.215
Beryllium 1 830 0.436
Cadmium 230 0.055
Copper 387 0.092 4
Germanium 322 0.077
Gold 129 0.030 8
Iron 448 0.107
Lead 128 0.030 5
Silicon 703 0.168
Silver 234 0.056

Other Solids
Brass 380 0.092
Glass 837 0.200
Ice (�5�C) 2 090 0.50
Marble 860 0.21
Wood 1 700 0.41

Liquids
Alcohol (ethyl) 2 400 0.58
Mercury 140 0.033
Water (15�C) 4 186 1.00

Gas
Steam (100�C) 2 010 0.48

AN UNFORTUNATE CHOICE OF

TERMINOLOGY The name specific
heat is an unfortunate holdover
from the days when thermody-
namics and mechanics developed
separately. A better name would 
be specific energy transfer, but the 
existing term is too entrenched to
be replaced.

� PITFALL PREVENTION 17.2



winter weather than the eastern coastal states, where the winds do not transfer en-
ergy toward land.

That the specific heat of water is higher than that of sand accounts for the pat-
tern of air flow at a beach. During the day, the Sun adds roughly equal amounts of
energy to beach and water, but the lower specific heat of sand causes the beach to
reach a higher temperature than the water. As a result, the air above the land
reaches a higher temperature than the air above the water. The denser cold air
pushes the less dense hot air upward (due to Archimedes’s principle), which results
in a breeze from ocean to land during the day. Because the hot air gradually
cools as it rises, it subsequently sinks, setting up the circulating pattern shown in
Figure 17.2. During the night, the sand cools more quickly than the water, and the
circulating pattern reverses because the hotter air is now over the water. These off-
shore and onshore breezes are well known to sailors.

Calorimetry
One technique for measuring the specific heat of a solid or liquid is to raise the
temperature of the substance to some value, place it into a vessel containing water
of known mass and temperature, and measure the temperature of the combination
after equilibrium is reached. Let us define the system as the substance and the wa-
ter. If the vessel is assumed to be a good insulator so that energy does not leave the
system by heat (nor by any other means), we can use the isolated system model. A
vessel having this property is called a calorimeter, and the analysis performed by us-
ing such a vessel is called calorimetry.

The principle of conservation of energy for this isolated system requires that the
energy leaving by heat from the warmer substance (of unknown specific heat)
equals the energy entering the water.2 Thus, we can write

Q cold � � Q hot [17.4]

To see how to set up a calorimetry problem, suppose mx is the mass of a sub-
stance whose specific heat we wish to determine, cx its specific heat, and Tx its initial
temperature. Let mw, cw, and Tw represent corresponding values for the water. If
T is the final equilibrium temperature after the substance and the water are
combined, from Equation 17.3 we find that the energy gained by the water is
mwcw(T � Tw) and that the energy lost by the substance of unknown specific heat is
mxcx(T � Tx). Substituting these values into Equation 17.4, we have

mwcw(T � Tw) � � mxcx(T � Tx)

Solving for cx gives

By substituting the known values in the right-hand side, we can calculate the spe-
cific heat of the substance.

cx �
mwcw(T � Tw)
mx(Tx � T )
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Imagine you have 1.00 kg each of iron, glass, and water and that all
three samples are at 10.0�C. (a) Rank them from lowest to highest temperature after
100 J of energy is added to each. (b) Rank them from lowest to greatest amount of
energy transfer by heat if each increases in temperature by 20.0�C.

QUICK QUIZ 17.1

Beach
Water

Circulation of air
at the beach. On a hot day, the air
above the warm sand warms faster
than the air above the cooler water.
The warmer air floats upward due to
Archimedes’s principle, resulting in
the movement of cooler air toward
the beach.

FIGURE 17.2

2For precise measurements, the container holding the water should be included in the calculations
because it also changes temperature. Doing so would require a knowledge of its mass and composition.
If, however, the mass of the water is large compared with that of the container, we can adopt a simplifi-
cation model in which we ignore the energy gained by the container.

REMEMBER THE NEGATIVE SIGN It is
critical to include the negative sign
in Equation 17.4. The negative sign
in the equation is necessary for 
consistency with our sign conven-
tion for energy transfer. The energy
transfer Q hot is negative because
energy is leaving the hot substance.
The negative sign in the equation
ensures that the right-hand side is a
positive number, consistent with the
left-hand side, which is positive
because energy is entering the cold
substance.

� PITFALL PREVENTION 17.3

CELSIUS VERSUS KELVIN In equations
in which T appears (e.g., the ideal
gas law), the Kelvin temperature
must be used. In equations involving
�T, such as calorimetry equations,
it is possible to use Celsius tempera-
tures because a change in tempera-
ture is the same on both scales. It is
safest, however, to use Kelvin tem-
peratures consistently in all equations
involving T or �T.

� PITFALL PREVENTION 17.4



■ Thinking Physics 17.1
The equation Q � mc �T indicates the relationship between energy Q transferred
to an object of mass m and specific heat c by means of heat and the resulting tem-
perature change �T. In reality, the energy transfer on the left-hand side of the
equation could be made by any method, not just heat. Give a few examples in
which this equation could be used to calculate a temperature change of an object
due to an energy transfer process other than heat.

Reasoning The following are a few of several possible examples.

During the first few seconds after turning on a toaster, the temperature of
the electrical coils rises. The transfer mechanism here is electrical transmission
of energy through the power cord.

The temperature of a potato in a microwave oven increases due to the ab-
sorption of microwaves. In this case, the energy transfer mechanism is by elec-
tromagnetic radiation, the microwaves.

A carpenter attempts to use a dull drill bit to bore a hole in a piece of wood.
The bit fails to make much headway but becomes very warm. The increase in
temperature in this case is due to work done on the bit by the wood.

In each of these cases, as well as many other possibilities, the Q on the left of the
equation of interest is not a measure of heat but, rather, is replaced with the energy
transferred or transformed by other means. Even though heat is not involved, the
equation can still be used to calculate the temperature change. ■

536 ❚ CHAPTER 17 ENERGY IN THERMAL PROCESSES: THE FIRST LAW OF THERMODYNAMICS

y g p pp

Cooling a Hot IngotEXAMPLE 17.2
Substituting numerical values, we have

(0.400 kg)(4 186 J/kg ��C)(22.4�C � 20.0�C)

� � (0.050 0 kg)(cx)(22.4�C � 200.0�C)

from which we find that

The ingot is most likely iron, as can be seen by com-
paring this result with the data in Table 17.1.

453 J/kg ��Ccx �

The temperature of a 0.050 0-kg ingot of metal is raised to
200.0�C and the ingot is then dropped into a light, 
insulated beaker containing 0.400 kg of water initially at
20.0�C. If the final equilibrium temperature of the mixed
system is 22.4�C, find the specific heat of the metal.

Solution Using Equations 17.3 and 17.4, we can write

 m wcw(T � Tw) � �m xcx(T � Tx)

 Q cold � �Q hot

LATENT  HEAT  AND  PHASE  CHANGES
A substance often undergoes a change in temperature when energy is transferred
between the substance and its environment. In some situations, however, the trans-
fer of energy does not result in a change in temperature. That can occur when the
physical characteristics of the substance change from one form to another, com-
monly referred to as a phase change. Some common phase changes are solid to liq-
uid (melting), liquid to gas (boiling), and a change in crystalline structure of a
solid. All such phase changes involve a change in internal energy but no change in
temperature. The energy that enters the substance during melting and boiling ap-
pears as increased intermolecular potential energy as bonds are broken rather than
as an increase in random motion of the molecules.

17.3



In Chapter 11, we discussed two types of bound systems. An object is gravitation-
ally bound to the Earth, and a certain amount of energy must be added to the
object–Earth system to separate the Earth and the object by an infinite distance.
Knowing this energy allowed us to calculate the escape speed (Section 11.4). The
input of energy breaks the bond between the object and the Earth. In Section 11.5,
we discussed the bound system of an electron and a proton in the hydrogen atom.
The minimum energy required to separate the electron and the proton of a hydro-
gen atom was called the ionization energy. An input of energy of at least the ioniza-
tion energy breaks the bond between the electron and the proton. The energy
input during a phase change is similar to these examples. During phase changes,
the energy added to the system of all the molecules of a substance modifies or
breaks the bonds between the molecules.

The energy transfer required to change the phase of a given mass m of a pure
substance is

Q � � mL [17.5]

where L is called the latent heat3 of the substance and depends on the nature of the
phase change as well as on the substance. The proper sign in Equation 17.5 is
chosen according to the direction of the energy flow. When an ice cube melts into
water, we express Equation 17.5 as Q � mL, but in the case of liquid water freezing
into ice, because we are removing energy from the water, we express Equation 17.5
with the negative sign: Q � � mL.

Heat of fusion Lf is the term used when the phase change occurs during melt-
ing or freezing, and heat of vaporization Lv is the term used when the phase
change occurs during boiling or condensing. For example, the latent heat of fusion
for water at atmospheric pressure is 3.33 � 105 J/kg, and the latent heat of vapor-
ization of water is 2.26 � 106 J/kg. The latent heats of different substances vary
considerably, as is seen in Table 17.2.

The latent heat of fusion is the energy required to modify all the intermolecular
bonds in 1 kg of a substance so as to convert the solid phase to the liquid phase.
The latent heat of vaporization is the energy that must be added to 1 kg of the liq-
uid phase of a substance to break all the liquid bonds so as to form a gas.

As you can see from Table 17.2, the latent heat of vaporization for a given sub-
stance is usually larger than the latent heat of fusion. In the change from solid to
liquid phase, solid bonds between molecules are transformed into somewhat
weaker liquid bonds. In the change from liquid to gas phase, however, liquid bonds
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3The word latent is from the Latin latere, meaning hidden or concealed. Notice that this phrase uses the
term heat incorrectly, but we will still use it because it is well ingrained in the terminology of physics.

Latent Heats of Fusion and VaporizationTABLE 17.2

Latent Heat
Melting of Fusion Boiling Latent Heat of

Substance Point (�C) ( J/kg) Point (�C) Vaporization ( J/kg)

Helium �269.65 5.23 � 103 �268.93 2.09 � 104

Nitrogen �209.97 2.55 � 104 �195.81 2.01 � 105

Oxygen �218.79 1.38 � 104 �182.97 2.13 � 105

Ethyl alcohol �114 1.04 � 105 78 8.54 � 105

Water 0.00 3.33 � 105 100.00 2.26 � 106

Sulfur 119 3.81 � 104 444.60 3.26 � 105

Lead 327.3 2.45 � 104 1 750 8.70 � 105

Aluminum 660 3.97 � 105 2 450 1.14 � 107

Silver 960.80 8.82 � 104 2 193 2.33 � 106

Gold 1 063.00 6.44 � 104 2 660 1.58 � 106

Copper 1 083 1.34 � 105 1 187 5.06 � 106

SIGNS ARE CRITICAL Sign errors oc-
cur very often when students per-
form calorimetry equations, so we
will make this point once again. 
For phase changes, use the correct
explicit sign in Equation 17.5, 
depending on whether you are
adding or removing energy from
the substance. Equation 17.3 has 
no explicit sign to consider, but be
sure that your �T is always the final
temperature minus the initial tem-
perature. In addition, make sure
that you always include the nega-
tive sign on the right-hand side of
Equation 17.4.

� PITFALL PREVENTION 17.5

■ Latent heat



are broken, creating a situation in which the molecules of the gas have essentially
no bonding to one another. More energy is therefore required to vaporize a given
mass of substance than to melt it.

With our knowledge of latent heat, we can understand the full behavior of a
substance as energy is added to it. Consider, for example, the addition of energy
to a system of a 1-g block of ice at � 30.0�C in a container held at constant pres-
sure. Suppose this energy results in the ice turning to steam (water vapor) at
120.0�C. Figure 17.3 indicates the experimental measurement of temperature as
energy is added to the system. Let us examine each portion of the curve separately.

Part A During this portion of the curve, the temperature of the ice changes from
� 30.0�C to 0.0�C. Because the specific heat of ice is 2 090 J/kg � � C, we can calcu-
late the amount of energy added from Equation 17.3:

Q � mc ice �T � (1.00 � 10�3 kg)(2 090 J/kg � � C)(30.0�C) � 62.7 J

The transferred energy appears in the system as internal energy associated with
random motion of the molecules of the ice, as represented by the increasing tem-
perature of the ice.

Part B When the ice reaches 0.0�C, the ice–water mixture remains at this tempera-
ture—even though energy is being added—until all the ice melts to become water
at 0.0�C. According to Equation 17.5, the energy required to melt 1.00 g of ice at
0.0�C is

Q � mLf � (1.00 � 10�3 kg)(3.33 � 105 J/kg) � 333 J

During this process, the transferred energy appears in the system as internal energy
associated with the increase in intermolecular potential energy as the bonds be-
tween water molecules in the ice break.

Part C Between 0.0�C and 100.0�C, no phase change occurs. The energy added to
the water is used to increase its temperature, as it was in part A. The amount of en-
ergy necessary to increase the temperature from 0.0�C to 100.0�C is

Q � mc water �T � (1.00 � 10�3 kg)(4.19 � 103 J/kg � � C)(100.0�C) � 419 J

Part D At 100.0�C, another phase change occurs as the water changes to steam at
100.0�C. Similar to the behavior in part B, the water–steam mixture remains at a con-
stant temperature, this time at 100.0�C—and the energy goes into breaking bonds so
that the gas molecules move far apart—until all the liquid has been converted to
steam. The energy required to convert 1.00 g of water to steam at 100.0�C is

Q � mLv � (1.00 � 10�3 kg)(2.26 � 106 J/kg) � 2.26 � 103 J
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Part E On this portion of the curve, as in parts A and C, no phase change occurs,
so all energy added is used to increase the temperature of the steam. The energy
that must be added to raise the temperature of the steam to 120.0�C is

Q � mc steam �T � (1.00 � 10�3 kg)(2.01 � 103 J/kg � � C)(20.0�C) � 40.2 J

The total amount of energy that must be added to change 1 g of ice at � 30.0�C
to steam at 120.0�C is the sum of the results from all five parts of the curve, 
3.11 � 103 J. Conversely, to cool 1 g of steam at 120.0�C to ice at � 30.0�C, we must
remove 3.11 � 103 J of energy.
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Suppose the same process of adding energy to the ice cube is per-
formed but we graph the internal energy of the system as a function of energy input.
What would this graph look like?

QUICK QUIZ 17.2

Calculate the slopes for the A, C, and E portions of Figure 17.3. Rank
the slopes from least steep to steepest, and explain what this ordering means.
QUICK QUIZ 17.3

Solving for the time interval, we have

Now, substituting the numerical values gives

35 min�

�t �
(1.00 kg)(2.09 � 104 J/kg)

10.0 W
� 2.09 � 103 s

�t �
mLv

�

Boiling Liquid HeliumEXAMPLE 17.3
Liquid helium has a very low boiling point, 4.2 K, and a
very low heat of vaporization, 2.09 � 104 J/kg (see
Table 17.2). Energy is transferred at a constant rate of
10.0 W to a container of liquid helium from an im-
mersed electric heater. At this rate, how long does it
take to vaporize 1.00 kg of liquid helium?

Solution We divide Equation 17.5 by our desired time
interval and recognize the ratio of the energy transfer
to the time interval as the power:

Q � mLv :  � �
Q
�t

�
mLv

�t

WORK  IN  THERMODYNAMIC  PROCESSES
In the macroscopic approach to thermodynamics, we describe the state of a system
with such quantities as pressure, volume, temperature, and internal energy. As a re-
sult, these quantities belong to a category called state variables. For any given con-
dition of the system, we can identify values of the state variables. It is important to
note, however, that a macroscopic state of a system can be specified only if the sys-
tem is in internal thermal equilibrium. In the case of a gas in a container, internal
thermal equilibrium requires that every part of the gas be at the same pressure and
temperature. If the temperature varies from one part of the gas to another, for ex-
ample, we cannot specify a single temperature for the entire gas to be used in the
ideal gas law.

A second category of variables in situations involving energy is transfer vari-
ables. These variables only have a value if a process occurs in which energy is trans-
ferred across the boundary of the system. Because a transfer of energy across the
boundary represents a change in the system, transfer variables are not associated
with a given state of the system, but with a change in the state of the system. In the
previous sections, we discussed heat as a transfer variable. For a given set of condi-
tions of a system, the heat has no defined value. We can assign a value to the heat
only if energy crosses the boundary by heat, resulting in a change in the system.

17.4

■ State variables

■ Transfer variables



State variables are characteristic of a system in internal thermal equilibrium. Trans-
fer variables are characteristic of a process in which energy is transferred between a
system and its environment.

We have seen this notion before, but we have not used the language of state vari-
ables and transfer variables. In the continuity equation for energy, �E system � T,
we can identify the terms on the right-hand side as transfer variables: work, heat,
mechanical waves, matter transfer, electromagnetic radiation, and electrical
transmission. The left side of the continuity equation represents changes in state
variables: kinetic energy, potential energy, and internal energy. For a gas, we have
additional state variables, such as pressure, volume, and temperature.

In this section, we study an important transfer variable for thermodynamic
systems, work. Work performed on particles was studied extensively in Chapter 6,
and here we investigate the work done on a deformable system, a gas. Consider a
gas contained in a cylinder fitted with a frictionless, movable piston of face area A
(Fig. 17.4) and in thermal equilibrium. The gas occupies a volume V and exerts a
uniform pressure P on the cylinder walls and the piston. Now let us adopt a simplifi-
cation model in which the gas is compressed in a quasi-static process, that is, slowly
enough to allow the system to remain in thermal equilibrium at all times. As the pis-
ton is pushed inward by an external force through a displacement 
(Fig. 17.4b), the work done on the gas is, according to our definition of work in
Chapter 6,

Because the piston is in equilibrium at all times during the process, the external
force has the same magnitude as the force exerted by the gas but is in the opposite
direction:

where we have set the magnitude of the force exerted by the gas equal to PA. The
work done by the external force can now be expressed as

Because A dy is the change in volume of the gas dV, we can express the work done
on the gas as

dW � � P dV [17.6]

If the gas is compressed, dV is negative and the work done on the gas is positive. If
the gas expands, dV is positive and the work done on the gas is negative. If the vol-
ume remains constant, the work done on the gas is zero. The total work done on
the gas as its volume changes from Vi to Vf is given by the integral of Equation 17.6:

[17.7]

To evaluate this integral, one must know how the pressure varies with volume dur-
ing the expansion process.

In general, the pressure is not constant during a process that takes a gas from its
initial state to its final state but depends on the volume and temperature. If the
pressure and volume are known at each step of the process, the state of the gas at
each step can be plotted on a specialized graphical representation—a PV diagram,
as in Active Figure 17.5—that is very important in thermodynamics. This type of di-
agram allows us to visualize a process through which a gas is progressing. The curve
on such a graphical representation is called the path taken between the initial and
final states.

Considering the integral in Equation 17.7 and recognizing the significance of the
integral as an area under a curve, we can identify an important use for PV diagrams:

W � ��Vf

Vi

 P dV 

dW � �PA ĵ �dy ĵ � �PA dy

F
:

ext � � F
:

gas � �PA ĵ

dW � F
:

ext �d r: � F
:

ext �dy ĵ

d r: � dy ĵF
:

ext

�
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(a)

A

V

(b)

Work is done on a
gas contained in a cylinder at pressure
P as the piston is pushed downward so
that the gas is compressed.

FIGURE 17.4
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ViVf

Pi

A gas is compressed quasi-statically
from state i to state f. The work done
on the gas equals the negative of the
area under the PV curve. Note that
the area is negative because Vf � Vi ,
so the work done on the gas is posi-
tive.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 17.5. You can compress
the piston in Figure 17.4 and see the
result on the PV diagram of this 
figure.

ACTIVE FIGURE 17.5
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The work done on a gas in a quasi-static process that takes the gas from an
initial state to a final state is the negative of the area under the curve on a PV
diagram, evaluated between the initial and final states.

For our process of compressing a gas in the cylinder, as Active Figure 17.5
suggests, the work done depends on the particular path taken between the initial
and final states. To illustrate this important point, consider several different paths
connecting i and f (Active Fig. 17.6). In the process depicted in Active Figure 17.6a,
the volume of the gas is first reduced from Vi to Vf at constant pressure Pi and the
pressure of the gas then increases from Pi to Pf by heating at constant volume Vf .
The work done on the gas along this path is � Pi(Vf � Vi). In Active Figure 17.6b,
the pressure of the gas is increased from Pi to Pf at constant volume Vi and then the
volume of the gas is reduced from Vi to Vf at constant pressure Pf . The work done
on the gas along this path is � Pf (Vf � Vi), which is greater in magnitude than
that for the process described in Active Figure 17.6a because the piston is
displaced through the same distance by a larger force than for the situation in
Active Figure 17.6a. Finally, for the process described in Active Figure 17.6c, where
both P and V change continuously, the work done on the gas has some value inter-
mediate between the values obtained in the first two processes.

In a similar manner, the energy transferred by heat into or out of the gas is also
found to depend on the process, which can be demonstrated by the situations de-
picted in Figure 17.7. In each case, the gas has the same initial volume, tempera-
ture, and pressure and is assumed to be ideal. In Figure 17.7a, the gas is thermally
insulated from its surroundings except at the bottom where it is in thermal contact
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The work done on a gas as it is
taken from an initial state to a
final state depends on the path
between these states.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 17.6. You
can choose one of the three paths
and see the movement of the pis-
ton in Figure 17.4 and of a point
on the PV diagram of this figure.

ACTIVE FIGURE 17.6
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with an energy reservoir. An energy reservoir is a source of internal energy that is
considered to be so large that a finite transfer of energy to or from the reservoir
does not change its temperature. The piston is held at its initial position by an ex-
ternal agent, such as your hand. Now, the force holding the piston is reduced
slightly so that the piston rises very slowly to its final position. Because the piston is
moving upward, negative work is done on the gas; the gas is doing work on the pis-
ton. During this expansion to the final volume Vf , just enough energy to maintain a
constant temperature Ti is transferred by heat from the reservoir to the gas.

Now consider the completely thermally insulated system shown in Figure 17.7b.
When the membrane is broken, the gas expands rapidly into the vacuum until it oc-
cupies a volume Vf and is at a pressure Pf . In this case, no work is done on the gas
because no force that is exerted on the gas moves through a displacement. Further-
more, no energy is transferred by heat through the insulating wall. As we shall show
in Section 17.6, the initial and final temperatures of the gas are the same in this
type of expansion.

The initial and final states of the ideal gas in Figure 17.7a are identical to the
initial and final states in Figure 17.7b, but the paths are different. In the first case,
the gas does work on the piston and energy is transferred slowly to the gas. In the
second case, no energy is transferred and the work done is zero. We therefore con-
clude that energy transfer by heat, like work done, depends on the process fol-
lowed between the initial and final states of the system.
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process, the pressure is constant at P � Pi . Let us use
these results in the ratio of the work done:

Substituting the numerical values for the initial and fi-
nal volumes gives us

2.01
W1

W2
�

(10.0 m3) ln � 2.00 m3

10.0 m3 �
(2.00 m3 � 10.0 m3)

�

 �
nRT ln � Vf

Vi
�

Pi(Vf � Vi)
�

PiVi ln � Vf

Vi
�

Pi(Vf � Vi)
�

Vi ln � Vf

Vi
�

Vf � Vi

 
W1

W2
�

��

process 1

P dV

��

process 2

P dV
 �

�Vf

Vi
 
nRT

V
 dV

�Vf

Vi
 
PidV

�

nRT �Vf

Vi  
 
dV
V

Pi �Vf

Vi
 
dV

Comparing ProcessesEXAMPLE 17.4
An ideal gas is taken through two processes in which 
Pf � 1.00 � 105 Pa, Vf � 2.00 m3, Pi � 0.200 � 105 Pa,
and Vi � 10.0 m3. For process 1 shown in Active Figure
17.5, the temperature remains constant. For process
2 shown in Active Figure 17.6a, the pressure remains
constant and then the volume remains constant. What
is the ratio of the work W1 done on the gas in the first
process to the work W2 done in the second process?

Solution For process 1, the pressure as a function of
volume can be expressed using the ideal gas law:

For process 2, no work is done during the portion at
constant volume because the piston does not move
through a displacement. During the first part of the

P �
nRT

V

THE  FIRST  LAW  OF  THERMODYNAMICS
In Chapter 6, we discussed the continuity equation for energy, Equation 6.20. Let
us consider a special case of this general principle in which the only change in the
energy of a system is in its internal energy E int and the only transfer mechanisms
are heat Q and work W, which we have discussed in this chapter. This case leads to
an equation that can be used to analyze many problems in thermodynamics.

This special case of the continuity equation, called the first law of thermody-
namics, can be written as

[17.8]�E int � Q 	 W

17.5

■ First law of thermodynamics



This equation indicates that the change in the internal energy of a system is equal
to the sum of the energy transferred across the system boundary by heat and the
energy transferred by work.

Active Figure 17.8 shows the energy transfers and change in internal energy for a
gas in a cylinder consistent with the first law. Equation 17.8 can be used in a variety of
problems in which the only energy considerations are internal energy, heat, and work.
We shall consider several examples shortly. Some problems may not fit the conditions
of the first law. For example, the internal energy of the coils in your toaster does not
increase due to heat or work, but rather due to electrical transmission. Keep in mind
that the first law is a special case of the continuity equation for energy and the latter is
the more general equation that covers the widest range of possible situations.

When a system undergoes an infinitesimal change in state, such that a small
amount of energy dQ is transferred by heat and a small amount of work dW is done
on the system, the internal energy also changes by a small amount dE int. Thus, for
infinitesimal processes we can express the first law as4

dE int � dQ 	 dW [17.9]

No practical distinction exists between the results of heat and work on a micro-
scopic scale. Each can produce a change in the internal energy of a system. Although
the macroscopic quantities Q and W are not properties of a system, they are related to
changes of the internal energy of a stationary system through the first law of thermo-
dynamics. Once a process or path is defined, Q and W can be either calculated or
measured, and the change in internal energy can be found from the first law.
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Q

∆ E int

W

The first law of thermodynamics
equates the change in internal energy
in a system to the net energy transfer
to the system by heat Q and work W.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 17.8. You can choose
one of the four processes for the gas
discussed in Section 17.6 and see the
movement of the piston and of a
point on a PV diagram.

ACTIVE FIGURE 17.8

Fill in the spaces in the following table with �, 	, or 0 for each of the
three terms in the first law of thermodynamics. For each situation, the system to be con-
sidered is identified.

Situation System Q W �E int

(a) Rapidly pumping up a Air in the pump
bicycle tire
(b) Pan of room- Water in the pan
temperature water sitting
on a hot stove
(c) Air quickly leaking Air originally in the
out of a balloon balloon

QUICK QUIZ 17.4

■ Thinking Physics 17.2
In the late 1970s, casino gambling was approved in Atlantic City, New Jersey, which
can become quite cold in the winter. Energy projections that were performed for
the design of the casinos showed that the air-conditioning system would need to
operate in the casino even in the middle of a very cold January. Why?

Reasoning If we consider the air in the casino to be the gas to which we apply the
first law, imagine a simplification model in which there is no air conditioning and
no ventilation so that this gas simply stays in the room. No work is being done on
the gas, so we focus on the energy transferred by heat. A casino contains a large
number of people, many of whom are active (throwing dice, cheering, etc.) and
many of whom are in excited states (celebration, frustration, panic, etc.). As a
result, these people have large rates of energy flow by heat from their bodies into
the air. This energy results in an increase in internal energy of the air in the casino.

4It should be noted that dQ and dW are not true differential quantities because Q and W are not state
variables, although dE int is a true differential. For further details on this point, see R. P. Bauman,
Modern Thermodynamics and Statistical Mechanics (New York, Macmillan, 1992).

DUAL SIGN CONVENTIONS Some
physics and engineering textbooks
present the first law as �E int �
Q � W, with a minus sign between
the heat and work. The reason is
that work is defined in these treat-
ments as the work done by the gas
rather than on the gas, as in 
our treatment. The equivalent
equation to Equation 17.7 in 
these treatments defines work as

. Thus, if positive 
work is done by the gas, energy is
leaving the system, leading to the
negative sign in the first law.

In your studies in other chem-
istry or engineering courses, or in
your reading of other physics
textbooks, be sure to note which
sign convention is being used for
the first law.

W � �Vf
Vi

 P dV

� PITFALL PREVENTION 17.6

www.pop4e.com


With the large number of excited people in a casino (along with the large number
of machines and incandescent lights), the temperature of the gas can rise quickly,
and to a very high value. To keep the temperature at a comfortable level, energy
must be transferred out of the air to compensate for the energy input. Calculations
show that energy transfer by heat through the walls even on a 10�F January day is
not sufficient to provide the required energy transfer, so the air-conditioning sys-
tem must be in almost continuous use throughout the year. ■

SOME  APPLICATIONS  OF  THE  FIRST  LAW  
OF THERMODYNAMICS

To apply the first law of thermodynamics to specific systems, it is useful to first de-
fine some common thermodynamic processes. We shall identify four special
processes used as simplification models to approximate real processes. For each of
the following processes, we build a mental representation by imagining that the
process occurs for the gas in Active Figure 17.8.

During an adiabatic process, no energy enters or leaves the system by heat; that
is, Q � 0. For the piston in Active Figure 17.8, imagine that all surfaces of the pis-
ton are perfect insulators so that energy transfer by heat does not exist. (Another
way to achieve an adiabatic process is to perform the process very rapidly because
energy transfer by heat tends to be relatively slow.) Applying the first law in this
case, we see that

�E int � W [17.10]

From this result, we see that when a gas is compressed adiabatically, both W and
�E int are positive; work is done on the gas, representing a transfer of energy into
the system, so the internal energy increases. Conversely, when the gas expands adia-
batically, �E int is negative.

Adiabatic processes are very important in engineering practice. Common appli-
cations include the expansion of hot gases in an internal combustion engine, the
liquefaction of gases in a cooling system, and the compression stroke in a diesel en-
gine. We study adiabatic processes in more detail in Section 17.8.

The free expansion depicted in Figure 17.7b is a unique adiabatic process in which
no work is done on the gas. Because Q � 0 and W � 0, we see from the first law that
�E int � 0 for this process. That is, the initial and final internal energies of a gas are
equal in a free expansion. As we saw in Chapter 16, the internal energy of an ideal gas
depends only on its temperature. Thus, we expect no change in temperature during
an adiabatic free expansion, which is in accord with experiments performed at low
pressures. Experiments with real gases at high pressures show a slight increase or de-
crease in temperature after the expansion because of interactions between molecules.

A process that occurs at constant pressure is called an isobaric process. In Active
Figure 17.8, as long as the piston is perfectly free to move, the pressure of the gas in-
side the cylinder is due to atmospheric pressure and the weight of the piston.
Hence, the piston can be modeled as a particle in equilibrium. When such a process
occurs, the work done on the gas is simply the negative of the constant pressure mul-
tiplied by the change in volume, or � P(Vf � Vi). On a PV diagram, an isobaric
process appears as a horizontal line, such as the first portion of the process in Active
Figure 17.6a or the second portion of the process in Active Figure 17.6b.

A process that takes place at constant volume is called an isovolumetric process.
In Active Figure 17.8, an isovolumetric process is created by locking the piston in
place so that it cannot move. In such a process, the work done is zero because the vol-
ume does not change. Hence, the first law applied to an isovolumetric process gives

�E int � Q [17.11]

This equation tells us that if energy is added by heat to a system kept at constant
volume, all the energy goes into increasing the internal energy of the system and

17.6
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none enters or leaves the system by work. For example, when an aerosol can is
thrown into a fire, energy enters the system (the gas in the can) by heat through
the metal walls of the can. Consequently, the temperature and pressure of the gas
rise until the can possibly explodes. On a PV diagram, an isovolumetric process
appears as a vertical line, such as the second portion of the process in Active 
Figure 17.6a or the first portion of the process in Active Figure 17.6b.

A process that occurs at constant temperature is called an isothermal process.
Because the internal energy of an ideal gas is a function of temperature only, in an
isothermal process for an ideal gas, �E int � 0. Hence, the first law applied to an
isothermal process gives

Q � � W

Whatever energy enters the gas by work leaves the gas by heat in an isothermal
process so that the internal energy remains fixed. On a PV diagram, an isothermal
process appears as a curved line such as that in Figure 17.9. The path of the isother-
mal process in Figure 19.7 follows along the blue curve, which is an isotherm, de-
fined as the curve passing through all points on the PV diagram for which the gas
has the same temperature. The work done on the ideal gas in an isothermal process
was calculated in Example 17.4:

[17.12]

The isothermal process can be analyzed as a model of a nonisolated system in
steady state. There is a transfer of energy across the boundary of the system, but no
change occurs in the internal energy of the system. The adiabatic, isobaric, and iso-
volumetric processes are examples of the nonisolated system model.

Next consider the case in which a nonisolated system is taken through a cyclic
process, that is, one that originates and ends at the same state. In this case, the
change in the internal energy must be zero because internal energy is a state vari-
able and the initial and final states are identical. The energy added by heat to the
system must therefore equal the negative of the work done on the system during
the cycle. That is, in a cyclic process,

�E int � 0 and Q � � W

The net work done per cycle equals the area enclosed by the path representing the
process on a PV diagram. As we shall see in Chapter 18, cyclic processes are very im-
portant in describing the thermodynamics of heat engines, thermal devices in which
a fraction of the energy added by heat to the system is extracted by mechanical work.

W � �nRT ln � Vf

Vi
�
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f

i

V

PV = constant

Isotherm

P

Pi

Pf

Vi Vf

The PV diagram
for an isothermal expansion of an
ideal gas from an initial state to a final
state. The curve is a hyperbola.

FIGURE 17.9

Characterize the paths in Figure 17.10 as isobaric, isovolumetric,
isothermal, or adiabatic. Note that Q � 0 in path B.
QUICK QUIZ 17.5

A

B

C

D

V

P

T1

T3

T2

T4

(Quick Quiz 17.5)
Identify the nature of paths A, B, C, 
and D.

FIGURE 17.10

■ Work done on a gas in an
isothermal process

Q Y 0 IN AN ISOTHERMAL PROCESS

Do not fall into the common trap of
thinking that no energy is trans-
ferred by heat if the temperature
does not change, as is the case in an
isothermal process. Because the
cause of temperature change can
be either heat or work, the tempera-
ture can remain constant even if
energy enters the gas by heat. That
can only happen if the energy
entering the system by heat leaves
by work.

� PITFALL PREVENTION 17.7
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Solution The cycle is shown in Figure 17.11b.

The work done on the gas during the cycle is 500 J.
What mass of ice in the ice water bath melts during the
cycle?

Solution For the entire cycle, the change in internal
energy is zero. Thus, from the first law, the energy
transfer by heat must equal the negative of the work
done on the gas, Q � � W � � 500 J. This equation
indicates that energy leaves the system of the gas by
heat during the cycle, entering the ice-water bath (so 
Q ice � � 500 J), where it melts some of the ice. The
amount of ice that melts is found using Equation 17.5:

� 1.50 g

 m �
Q ice

Lf
�

500 J
3.33 � 105 J/kg

� 1.5 � 10�3 kg

 Q ice � mLf 

C

Cylinder in an Ice Water BathEXAMPLE 17.5
The cylinder in Figure 17.11a has thermally conducting
walls and is immersed in an ice-water bath. The gas in
the cylinder undergoes three processes: (1) the piston
is rapidly pushed downward, compressing the gas in the
cylinder; (2) the piston is held at the final position of
the previous process while the gas returns to the
temperature of the ice-water bath; and (3) the piston is
very slowly raised back to the original position.

For the system of the gas, what kind of special ther-
modynamic process does each of these represent?

Solution Because process 1 occurs rapidly, it is very
close to an adiabatic compression. In process 2, the pis-
ton is held fixed, so this process is isovolumetric. In the
very slow process 3, the gas and the ice-water bath can
be approximated as remaining in thermal equilibrium
at all times, so the process is very close to isothermal.

Draw the complete cycle on a PV diagram.B

A

A

P V

(a)

P

V

Tf

Ti

(b)

(Example 17.5) (a) Cutaway view of a
cylinder containing an ideal gas immersed in an ice water
bath. (b) The PV diagram for the cycle described.

FIGURE 17.11

the water. The pressure of the air in the glass in this sit-
uation is atmospheric pressure. As the opening of the
glass enters the water, this sample of air is trapped. As
the glass moves to a lower position in the water, the
pressure of the water will increase, so we categorize this
part of the problem as one for which we will need the
equation for the pressure as a function of depth in a
liquid, Equation 15.4. As the water pressure increases,
the trapped air is compressed and water enters the
open end of the glass. To analyze the situation, we find
the pressure in the water (and of the air in the glass) at

The Diving Drinking GlassEXAMPLE 17.6
An empty drinking glass is held upside down just above
the surface of water. A scuba diver carefully takes the
glass, which remains upside down, to a depth of 10.3 m
below the surface so that a sample of air is trapped in
the glass. Assume that the temperature of the water re-
mains fixed at 285 K during the descent.

At the depth of 10.3 m, what fraction of the glass’s
volume is filled with air?

Solution Conceptualize the problem by imagining the
glass held above the water surface just before it enters

A



MOLAR  SPECIFIC  HEATS  OF  IDEAL  GASES
In Section 17.2, we considered the energy necessary to change the temperature of a
mass m of a substance by �T. In this section, we focus our attention on ideal gases,
and the amount of gas is measured by the number of moles n rather than the mass
m. In doing so, some important new connections are found between thermodynam-
ics and mechanics.

The energy transfer by heat required to raise the temperature of n moles of gas
from Ti to Tf depends on the path taken between the initial and final states. To un-
derstand this concept, consider an ideal gas undergoing several processes such that
the change in temperature is �T � Tf � Ti for all processes. The temperature
change can be achieved by traveling along a variety of paths from one isotherm to
another as in Figure 17.12. Because �T is the same for all paths, the change in in-
ternal energy �E int is the same for all paths. From the first law, Q � �E int � W ; we
see, however, that the heat Q for each path is different because W (the negative of
the area under the curves) is different for each path. Thus, the heat required to
produce a given change in temperature does not have a unique value.

This difficulty is addressed by defining specific heats for two processes from
Section 17.6: isovolumetric and isobaric processes. Modifying Equation 17.3 so that
the amount of gas is measured in moles, we define the molar specific heats associ-
ated with these processes with the following equations:

[17.13]

[17.14]

where CV is the molar specific heat at constant volume and CP is the molar specific
heat at constant pressure.

In Chapter 16, we found that the temperature of a monatomic gas is a measure
of the average translational kinetic energy of the gas molecules. In view of this find-
ing, let us first consider the simplest case of an ideal monatomic gas (i.e., a gas con-
taining one atom per molecule), such as helium, neon, or argon. When energy is
added to a monatomic gas in a container of fixed volume (e.g., by heating), all the
added energy goes into increasing the translational kinetic energy of the atoms.
There is no other way to store the energy in a monatomic gas. The constant-volume
process from i to f is described in Active Figure 17.13, where �T is the temperature

 Q � nCP �T  (constant pressure)

 Q � nCV �T  (constant volume)

17.7
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Solution Because the process is isothermal, the first law
tells us that �E int � 0 and the energy flow by heat is
equal to the negative of the work done on the gas; from
Equation 17.12,

� 

To finalize the problem, note that because Q is nega-
tive, energy comes out of the air by heat. As the air is
compressed, the tendency is for its temperature to
increase as work is done on it by the surrounding water.
Because its temperature is to remain fixed, however,
energy must leave the air in the glass by heat so that the
temperature does not rise.

�32.8 J

 � (0.020 0 mol)(8.314 J/mol�K)(285 K) ln(0.500)

 Q � �W � nRT ln � Vf

Vi
�

the depth of 10.3 m:

P � Patm 	 
gh � 1.013 � 105 Pa 

	 (1 000 kg/m3)(9.80 m/s2)(10.3 m)

� 2.02 � 105 Pa

Because the temperature remains fixed, we categorize
the process occurring for the gas as isothermal. We cal-
culate the ratio of volumes of the air in the glass for the
final and initial conditions of this isothermal process
from the ideal gas law:

There are 0.020 0 mol of air trapped in the glass.
How much energy crosses the boundary of the system of
the air trapped in the glass by heat during the process?

B

0.500PiVi � Pf Vf :
Vf

Vi
�

Pi

Pf
�

1.013 � 105 Pa

2.02 � 105 Pa
�

P

V

Isotherms

i

f

f ′

T + ∆T

f ′′

T

An ideal gas is
taken from one isotherm at tempera-
ture T to another at temperature 
T 	 �T along three different paths.

FIGURE 17.12



difference between the two isotherms. From Equation 16.18, we see that the total
internal energy E int of N molecules (or n mol) of an ideal monatomic gas is

[17.15]

If energy is transferred by heat to the system at constant volume, the work done
on the system is zero. That is, for a constant-volume process.
Hence, from the first law of thermodynamics and Equation 17.15 we find that

[17.16]

Substituting the value for Q given by Equation 17.13 into Equation 17.16, we have

[17.17]

This expression predicts a value of for all monatomic gases, regardless of
the type of gas. This prediction is based on our structural model of kinetic theory,
in which the atoms interact with one another only via short-range forces. The third
column of Table 17.3 indicates that this prediction is in excellent agreement with
measured values of molar specific heats for monatomic gases. It also indicates that
this prediction is not in agreement with values of molar specific heats for diatomic
and polyatomic gases. We address these types of gases shortly.

Because no work is done on an ideal gas undergoing an isovolumetric process,
the energy transfer by heat is equal to the change in internal energy. Thus, the
change in internal energy can be expressed as

[17.18]

Because internal energy is a state function, the change in internal energy does not
depend on the path followed between the initial and final states. Thus, Equation
17.18 gives the change in internal energy of an ideal gas for any process in which
the temperature change is �T, not just an isovolumetric process. Furthermore, it is
true for monatomic, diatomic, and polyatomic gases.

�E int � nCV �T

CV � 3
2 
R

 CV � 3
2 
R � 12.5 J/mol �K

 nCV �T � 3
2 
nR �T

Q � �E int � 3
2 
nR �T

W � ��P dV � 0 

E int � 3
2 
nRT
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P

V

T + ∆T
T

i

f

f ′

Isotherms

Energy is transferred by heat to an
ideal gas in two ways. For the con-
stant-volume path i : f, all the energy
goes into increasing the internal en-
ergy of the gas because no work is
done. Along the constant-pressure
path i : f �, part of the energy trans-
ferred into the gas by heat is trans-
ferred out by work.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 17.13. You can choose
initial and final temperatures for one
mole of an ideal gas undergoing
constant-volume and constant-
pressure processes and measure 
Q , W, �E int , CV , and CP.

ACTIVE FIGURE 17.13

Molar Specific Heats of
Various Gases

TABLE 17.3

Molar Specific Heata

( J/mol � K)

Gas CP CV CP � CV � � CP/CV

Monatomic Gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic Gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic Gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

aAll values except that for water were obtained at 300 K.

www.pop4e.com


In the case of infinitesimal changes, we can use Equation 17.18 to express the
molar specific heat at constant volume as

[17.19]

Now suppose the gas is taken along the constant-pressure path i : f � in Active
Figure 17.13. Along this path, the temperature again increases by �T. The energy
transferred to the gas by heat in this process is . Because the volume
changes in this process, the work done on the gas is W � � P �V. Applying the first
law to this process gives

[17.20]

The change in internal energy for the process i : f � is equal to that for the process
i : f because E int depends only on temperature for an ideal gas and �T is the same
for both processes. Because PV � nRT, for a constant-pressure process P�V �
nR �T. Substituting this value for P �V into Equation 17.20 with 
(Eq. 17.18) gives

[17.21]

This expression applies to any ideal gas. It shows that the molar specific heat of an
ideal gas at constant pressure is greater than the molar specific heat at constant vol-
ume by an amount R, the universal gas constant. As shown by the fourth column in
Table 17.3, this result is in good agreement with real gases regardless of the number
of atoms in the molecule.

Because for a monatomic ideal gas, Equation 17.21 predicts a value
20.8 J/mol � K for the molar specific heat of a monatomic gas at con-

stant pressure. The second column of Table 17.3 shows the validity of this predic-
tion for monatomic gases.

The ratio of molar specific heats is a dimensionless quantity �:

[17.22]

For a monatomic gas, this ratio has the value

The last column in Table 17.3 shows good agreement between this predicted value
for � and experimentally measured values for monatomic gases.

� �
CP

CV
�

5
2R
3
2R

�
5

3
� 1.67

� �
CP

CV

CP � 5
2 
R �

CV � 3
2 
R

nCV �T � nCP �T � nR �T  :  CP � CV � R

�E int � nCV �T

�E int � Q 	 W � nCP �T � P �V

Q � nCP �T

CV �
1
n

 
dE int

dT
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(i) How does the internal energy of an ideal gas change as it follows
path i : f in Active Figure 17.13? (a) E int increases. (b) E int decreases. (c) E int stays
the same. (d) There is not enough information to determine how E int changes. 
(ii) From the same list of choices, how does the internal energy of a gas change as it 
follows path f : f � along the isotherm labeled T 	 �T in Active Figure 17.13?

QUICK QUIZ 17.6

� 

How much energy must be transferred to the gas
by heat at constant pressure to raise the temperature to
500 K?

B

7.48 � 103 J

 Q � 3
2 (3.00 mol)(8.31 J/mol �K)(500 K � 300 K)

 Q � nCV  �T � 3
2 
nR �T

Heating a Cylinder of HeliumEXAMPLE 17.7
A cylinder contains 3.00 mol of helium gas at a temper-
ature of 300 K.

How much energy must be transferred to the gas
by heat to increase its temperature to 500 K if it is
heated at constant volume?

Solution For the constant-volume process,

A

■ Relation between molar specific
heats



ADIABATIC  PROCESSES  FOR  AN  IDEAL  GAS
In Section 17.6, we identified four special processes of interest for ideal gases. In
three of them, a state variable is held constant: P � constant for an isobaric process,
V � constant for an isovolumetric process, and T � constant for an isothermal
process. What about our fourth special process, the adiabatic process? Is anything
constant in this process? As you recall, an adiabatic process is one in which no en-
ergy is transferred by heat between a system and its surroundings. In reality, true
adiabatic processes on the Earth cannot occur because there is no such thing as a
perfect thermal insulator. Some processes, however, are nearly adiabatic. For exam-
ple, if a gas is compressed (or expanded) very rapidly, very little energy flows out of
(or into) the system by heat and so the process is nearly adiabatic.

Suppose an ideal gas undergoes a quasi-static adiabatic expansion. We find that
all three variables in the ideal gas law—P, V, and T—change during an adiabatic
process. At any time during the process, however, the ideal gas law PV � nRT de-
scribes the correct relationship among these variables. Although none of the three
variables alone is constant in this process, we find that a combination of some of these
variables remains constant. This relationship is derived in the following discussion.

Imagine a gas expanding adiabatically in a thermally insulated cylinder so that
Q � 0. Let us take the infinitesimal change in volume to be dV and the infinitesimal
change in temperature to be dT. The work done on the gas is � PdV. The change in
internal energy is given by the differential form of Equation 17.18, dE int � nCV dT.
Hence, the first law of thermodynamics becomes

[17.23]

Taking the differential of the equation of state for an ideal gas, PV � nRT, gives

P dV 	 V dP � nR dT

Eliminating n dT from these last two equations, we find that

From Equation 17.21, we substitute R � CP � CV and divide by PV to obtain

Integrating this expression gives

which we can write as

[17.24]

The PV diagram for an adiabatic expansion is shown in Figure 17.14. Because
�  1, the PV curve is steeper than that for an isothermal expansion, in which 

PV � � constant

ln P 	 � ln V � constant

 
dP
P

	 � 
dV
V

� 0

 
dV
V

	
dP
P

� �� CP � CV

CV
� 

dV
V

� (1 � �) 
dV
V

P dV 	 V dP � � 
R
CV

 P dV

dE int � dQ 	 dW : nCV dT � 0 � P dV
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Notice that the energy transfer for part B is larger than
that for part A because positive work must be done by
the gas pushing the piston outward to maintain the
constant pressure in an isobaric process, but no work is
done in an isovolumetric process.

Solution For the constant-pressure process,

� 12.5 � 103 J

 Q � 5
2 
(3.00 mol)(8.31 J/mol �K)(500 K � 300 K)

 Q � nCP �T � 5
2 
nR �T

■ Relation between pressure and
volume in an adiabatic process
for an ideal gas



PV � constant. Equation 17.23 shows that during an adiabatic expansion, �E int is
negative and so �T is also negative. Thus, the gas cools during an adiabatic expan-
sion. Conversely, the temperature increases if the gas is compressed adiabatically.
Equation 17.24 can be expressed in terms of initial and final states as

[17.25]

Using the ideal gas law, Equation 17.25 can also be expressed as

[17.26]

Given the relationship in Equation 17.24, it can be shown that the work done on
a gas during an adiabatic process is

[17.27]

Problem 17.72 invites you to derive this equation.

W �
1

� � 1
 (Pf Vf � PiVi)

TiVi 

��1 � Tf Vf 

��1

PiV i
� � PfV f

�
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Ti
Tf

Isotherms

P

V

Pi

Pf

Vi Vf

Adiabatic process

i

f

The PV diagram
for an adiabatic expansion of an ideal
gas. Note that Tf � Ti in this process,
so the gas cools.

FIGURE 17.14

initial and final conditions in another way as

By solving for the final temperature and substituting
the given and calculated quantities,

PiVi

Ti
�

PfVf

Tf

� 553�C

Tf �
PfVf

PiVi
 Ti �

(37.6 atm)(60.0 cm3)

(1.00 atm)(800 cm3)
 (293 K) � 826 K

The high compression in a diesel engine raises the 
temperature of the fuel enough to cause its combustion 
without the need for spark plugs.

A Diesel Engine CylinderEXAMPLE 17.8
The fuel–air mixture in the cylinder of a diesel engine at
20.0�C is compressed from an initial pressure of 1.00 atm
and volume of 800 cm3 to a volume of 60.0 cm3. Assum-
ing that the mixture behaves as an ideal gas with 
� � 1.40 and that the compression is adiabatic, find the
final pressure and temperature of the mixture.

Solution Using Equation 17.25, we find that

�

Because PV � nRT for an ideal gas, we can compare

37.6 atm

Pf � Pi � Vi

Vf
�

�

� (1.00 atm)� 800 cm3

60.0 cm3 �
1.40

MOLAR  SPECIFIC  HEATS  AND  THE  EQUIPARTITION
OF  ENERGY

We have found that predictions of molar specific heats based on kinetic theory
agree quite well with the behavior of monatomic gases but not with the behavior of
complex gases (Table 17.3). To explain the variations in CV and CP between
monatomic gases and more complex gases, let us explore the origin of specific heat
by extending our structural model of kinetic theory in Chapter 16. In Section 16.5,
we discussed that the sole contribution to the internal energy of a monatomic gas is
the translational kinetic energy of the molecules. We also discussed the theorem of
equipartition of energy, which states that, at equilibrium, each degree of freedom
contributes, on the average, of energy per molecule. The monatomic gas has
three degrees of freedom, one associated with each of the independent directions
of translational motion.

For more complex molecules, other types of motion exist in addition to transla-
tion. The internal energy of a diatomic or polyatomic gas includes contributions
from the vibrational and rotational motion of the molecules in addition to transla-
tion. The rotational and vibrational motions of molecules with structure can be ac-
tivated by collisions and therefore are “coupled” to the translational motion of the

1
2 
kBT

17.9



molecules. The branch of physics known as statistical mechanics suggests that the av-
erage energy for each of these additional degrees of freedom is the same as that for
translation, which in turn suggests that the determination of a gas’s internal energy
is a simple matter of counting the degrees of freedom. We will find that this process
works well, although the model must be modified with some notions from quantum
physics for us to explain the experimental data completely.

Let us consider a diatomic gas, which we can model as consisting of dumbbell-
shaped molecules (Fig. 17.15), and apply concepts that we studied in Chapter 10.
In this model, the center of mass of the molecule can translate in the x, y, and z
directions (Fig. 17.15a). In addition, the molecule can rotate about three mutually
perpendicular axes (Fig. 17.15b). We can ignore the rotation about the y axis be-
cause the moment of inertia and the rotational energy about this axis are neg-
ligible compared with those associated with the x and z axes. Thus, there are five
degrees of freedom: three associated with the translational motion and two associ-
ated with the rotational motion. Because each degree of freedom contributes, on
average, of energy per molecule, the total internal energy for a diatomic gas
consisting of N molecules and considering both translation and rotation is

We can use this result and Equation 17.19 to predict the molar specific heat at con-
stant volume:

[17.28]

From Equations 17.21 and 17.22, we find that the model predicts that 

[17.29]

[17.30]

Let us now incorporate the vibration of the molecule in the model. We use the
structural model for the diatomic molecule in which the two atoms are joined by an
imaginary spring (Fig. 17.15c) and apply the concepts of Chapter 12. The vibra-
tional motion has two types of energy associated with the vibrations along the
length of the molecule—kinetic energy of the atoms and potential energy in the
model spring—which adds two more degrees of freedom for a total of seven for
translation, rotation, and vibration. Because each degree of freedom contributes

of energy per molecule, the total internal energy for a diatomic gas consisting
of N molecules and considering all types of motion is

Thus, the molar specific heat at constant volume is predicted to be

[17.31]

From Equations 17.21 and 17.22,

[17.32]

[17.33]

When we compare our predictions with the section of Table 17.3 corresponding to
diatomic gases, we find a curious result. For the first four gases—hydrogen, nitro-
gen, oxygen, and carbon monoxide—the value of CV is close to that predicted by
Equation 17.28, which includes rotation but not vibration. The value for the fifth
gas, chlorine, lies between the prediction including rotation and the prediction

 � �
CP

CV
�

9
2 
R

7
2 
R

�
9

7
� 1.29

 CP � CV 	 R � 9
2 
R

CV �
1
n

 
dE int

dT
�

1
n

 
d

dT
 (7

2nRT ) � 7
2 
R � 29.1 J/mol �K

E int � 3N(1
2 
k BT ) 	 2N(1

2 
k BT ) 	 2N(1

2 
kBT ) � 7

2 
Nk BT � 7

2nRT

1
2 
k BT

 � �
CP

CV
�

7
2R
5
2R

�
7

5
� 1.40

 CP � CV 	 R � 7
2 
R

CV �
1
n

 
dE int

dT
�

1
n

 
d

dT
 (5

2nRT ) � 5
2 
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that includes rotation and vibration. None of the values agrees with Equation 17.31,
which is based on the most complete model for motion of the diatomic molecule!

It might seem that our model is a failure for predicting molar specific heats for
diatomic gases. We can claim success for our model, however, if measurements of
molar specific heat are made over a wide temperature range rather than at the sin-
gle temperature that gives us the values in Table 17.3. Figure 17.16 shows the molar
specific heat of hydrogen as a function of temperature. The curve has three
plateaus and they are at the values of the molar specific heat predicted by Equa-
tions 17.17, 17.28, and 17.31! For low temperatures, the diatomic hydrogen gas be-
haves like a monatomic gas. As the temperature rises to room temperature, its mo-
lar specific heat rises to a value for a diatomic gas, consistent with the inclusion of
rotation but not vibration. For high temperatures, the molar specific heat is consis-
tent with a model including all types of motion.

Before addressing the reason for this mysterious behavior, let us make a brief re-
mark about polyatomic gases. For molecules with more than two atoms, the num-
ber of degrees of freedom is even larger and the vibrations are more complex than
for diatomic molecules. These considerations result in an even higher predicted
molar specific heat, which is in qualitative agreement with experiment. For the
polyatomic gases shown in Table 17.3, we see that the molar specific heats are
higher than those for diatomic gases. The more degrees of freedom available to a
molecule, the more “ways” of storing energy are available, resulting in a higher mo-
lar specific heat.

A Hint of Energy Quantization
Our model for molar specific heats has been based so far on purely classical no-
tions. It predicts a value of the specific heat for a diatomic gas that, according to
Figure 17.16, only agrees with experimental measurements made at high tempera-
tures. To explain why this value is only true at high temperatures and why the
plateaus exist in Figure 17.16, we must go beyond classical physics and introduce
some quantum physics into the model. In Section 11.5, we discussed energy quanti-
zation for the hydrogen atom. Only certain energies are allowed for the system, and
an energy level diagram can be drawn to illustrate those allowed energies. For a
molecule, quantum physics tells us that the rotational and vibrational energies are
quantized. Figure 17.17 shows an energy level diagram for the rotational and vibra-
tional quantum states of a diatomic molecule. Notice that vibrational states are sep-
arated by larger energy gaps than rotational states.

At low temperatures, the energy that a molecule gains in collisions with its
neighbors is generally not large enough to raise it to the first excited state of either
rotation or vibration. All molecules are in the ground state for rotation and vibra-
tion. Therefore, at low temperatures, the only contribution to the molecules’
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average energy is from translation, and the specific heat is that predicted by
Equation 17.17.

As the temperature is raised, the average energy of the molecules increases. In
some collisions, a molecule may have enough energy transferred to it from another
molecule to excite the first rotational state. As the temperature is raised further,
more molecules can be excited to this state. The result is that rotation begins to
contribute to the internal energy and the molar specific heat rises. At about room
temperature in Figure 17.16, the second plateau is reached and rotation con-
tributes fully to the molar specific heat. The molar specific heat is now equal to the
value predicted by Equation 17.28.

Vibration contributes nothing at room temperature because the vibrational
states are farther apart in energy than the rotational states; the molecules are in the
ground vibrational state. The temperature must be even higher to raise the mole-
cules to the first excited vibrational state. That happens in Figure 17.16 between
1 000 K and 10 000 K. At 10 000 K on the right side of the figure, vibration is con-
tributing fully to the internal energy and the molar specific heat has the value pre-
dicted by Equation 17.31.

The predictions of this structural model are supportive of the theorem of
equipartition of energy. In addition, the inclusion in the model of energy quantiza-
tion from quantum physics allows a full understanding of Figure 17.16. This excel-
lent example shows the power of the modeling approach.

ENERGY  TRANSFER  MECHANISMS  
IN  THERMAL  PROCESSES

In Chapter 6, we introduced the continuity equation for energy �E system � T as a
principle allowing a global approach to energy considerations in physical processes.
Earlier in this chapter, we discussed two of the terms on the right-hand side of the
continuity equation: work and heat. In this section, we consider more details of
heat and two other energy transfer methods that are often related to temperature
changes: convection (a form of matter transfer) and electromagnetic radiation.

Conduction
The process of energy transfer by heat can also be called conduction or thermal
conduction. In this process, the transfer mechanism can be viewed on an atomic
scale as an exchange of kinetic energy between molecules in which the less ener-
getic molecules gain energy by colliding with the more energetic molecules. For ex-
ample, if you hold one end of a long metal bar and insert the other end into a

�
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flame, the temperature of the metal in your hand soon increases. The energy
reaches your hand through conduction. How that happens can be understood
by examining what is happening to the atoms in the metal. Initially, before the rod
is inserted into the flame, the atoms are vibrating about their equilibrium positions.
As the flame provides energy to the rod, those atoms near the flame begin to
vibrate with larger and larger amplitudes. These atoms in turn collide with
their neighbors and transfer some of their energy in the collisions. Slowly, metal
atoms farther and farther from the flame increase their amplitude of vibration
until eventually those in the metal near your hand are affected. This increased
vibration represents an increase in temperature of the metal (and possibly a
burned hand).

Although the transfer of energy through a material can be partially explained by
atomic vibrations, the rate of conduction also depends on the properties of the sub-
stance. For example, it is possible to hold a piece of asbestos in a flame indefinitely,
which implies that very little energy is being conducted through the asbestos. In
general, metals are good thermal conductors because they contain large numbers
of electrons that are relatively free to move through the metal and can transport en-
ergy from one region to another. Thus, in a good thermal conductor, such as cop-
per, conduction takes place via the vibration of atoms and via the motion of free
electrons. Materials such as asbestos, cork, paper, and fiberglass are poor thermal
conductors. Gases also are poor thermal conductors because of the large distance
between the molecules.

Conduction occurs only if the temperatures differ between two parts of the con-
ducting medium. This temperature difference drives the flow of energy. Consider a
slab of material of thickness �x and cross-sectional area A with its opposite faces at
different temperatures Tc and Th, where Th  Tc (Fig. 17.18). The slab allows en-
ergy to transfer from the region of high temperature to that of low temperature by
thermal conduction. The rate of energy transfer by heat, � � Q/�t, is proportional
to the cross-sectional area of the slab and the temperature difference and inversely
proportional to the thickness of the slab:

Note that � has units of watts when Q is in joules and �t is in seconds. That is
not surprising because � is power, the rate of transfer of energy by heat. For a slab of
infinitesimal thickness dx and temperature difference dT, we can write the law of
conduction as

[17.34]

where the proportionality constant k is called the thermal conductivity of the mater-
ial and dT/dx is the temperature gradient (the variation of temperature with posi-
tion). It is the higher thermal conductivity of tile relative to carpet that makes the
tile floor feel colder than the carpeted floor in the discussion at the beginning of
Chapter 16.

Suppose a substance is in the shape of a long uniform rod of length L as in
Figure 17.19 and is insulated so that energy cannot escape by heat from its surface
except at the ends, which are in thermal contact with reservoirs having tempera-
tures Tc and Th. When steady state is reached, the temperature at each point along
the rod is constant in time. In this case, the temperature gradient is the same every-
where along the rod and is

� dT
dx � �

Th � Tc

L

� � kA � dT
dx �

� �
Q
�t

 � A 
�T
�x
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Thus, the rate of energy transfer by heat is

[17.35]

Substances that are good thermal conductors have large thermal conductivity
values, whereas good thermal insulators have low thermal conductivity values.
Table 17.4 lists thermal conductivities for various substances.

� � kA 
(Th � Tc)

L
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Thermal Conductivities

TABLE 17.4

Substance Thermal Conductivity
(W/m��C)

Metals (at 25�C)
Aluminum 238
Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427
Nonmetals (approximate values)

Asbestos 0.08
Concrete 0.8
Diamond 2 300
Glass 0.8
Ice 2
Rubber 0.2
Water 0.6
Wood 0.08

Gases (at 20�C)
Air 0.023 4
Helium 0.138
Hydrogen 0.172
Nitrogen 0.023 4
Oxygen 0.023 8

You have two rods of the same length and diameter, but they are
formed from different materials. The rods will be used to connect two regions of different
temperature such that energy will transfer through the rods by heat. They can be con-
nected in series, as in Figure 17.20a, or in parallel, as in Figure 17.20b. In which case is
the rate of energy transfer by heat larger? (a) It is larger when the rods are in series. 
(b) It is larger when the rods are in parallel. (c) The rate is the same in both cases.

QUICK QUIZ 17.7

Th Tc
Rod 1 Rod 2

(a)

Th Tc

Rod 1

Rod 2

(b)

(Quick Quiz 17.7)
In which case is the rate of energy
transfer larger?

FIGURE 17.20

The Leaky WindowEXAMPLE 17.9INTERACTIVE

Solution We cast the answer to part A in units of
kilowatt-hours:

Q � � �t � (6 � 103 W)(1.0 h) � 6 � 103 Wh � 6 kWh

Thus, the cost to replace the energy transferred
through the window is (6 kWh)(12¢/kWh) � .

If you imagine paying this much for each hour for
each window in your home, your electric bill will be
extremely high! For example, for ten such windows,
your electric bill would be over $5 000 for one month.
It seems like something is wrong here because electric
bills are not that high. In reality, a thin layer of air
adheres to each of the two surfaces of the window.
This air provides additional insulation to that of the
glass. As seen in Table 17.4, air is a much poorer
thermal conductor than glass, so most of the 
insulation is performed by the air, not the glass, in a
window!

Determine the cost for replacing the
energy conducting through windows by logging into
PhysicsNow at www.pop4e.com and going to Interactive
Example 17.9.

72¢

A window of area 2.0 m2 is glazed with glass of thickness
4.0 mm. The window is in the wall of a house, and the
outside temperature is 10�C. The temperature inside
the house is 25�C.

How much energy transfers through the window
by heat in 1.0 h?

Solution We use Equation 17.35 to find the rate of en-
ergy transfer by heat:

where k for glass is from Table 17.4. From the defini-
tion of power as the rate of energy transfer, we find the
energy transferred at this rate in 1.0 h:

If electrical energy costs 12¢/kWh, how much does
the transfer of energy in part A cost to replace with
electrical heating?

B

2 � 107 JQ � � �t � (6 � 103 W)(3.6 � 103 s) �

 � 6 � 103 W

 � (0.8 W/m ��C)(2.0 m2) 
(25�C � 10�C)
4.0 � 10�3 m

 � � kA 
(Th � Tc)

L

A

www.pop4e.com


Convection
At one time or another you may have warmed your hands by holding them over an
open flame. In this situation, the air directly above the flame is heated and ex-
pands. As a result, the density of the air decreases and the air rises. This warmed
mass of air transfers energy by heat into your hands as it flows by. The transfer of
energy from the flame to your hands is performed by matter transfer because the
energy travels with the air. Energy transferred by the movement of a fluid is a
process called convection. When the movement results from differences in density,
as in the example of air around a fire, the process is called natural convection.
When the fluid is forced to move by a fan or pump, as in some air and water heat-
ing systems, the process is called forced convection.

The circulating pattern of air flow at a beach (Fig 17.2) is an example of convec-
tion in nature. The mixing that occurs as water is cooled and eventually freezes at
its surface (Section 16.3) is another example.

If it were not for convection currents, it would be very difficult to boil water. As
water is heated in a teakettle, the lower layers are warmed first. These regions ex-
pand and rise to the top because their density is lower than that of the cooler water.
At the same time, the denser cool water falls to the bottom of the kettle so that it
can be heated.

The same process occurs near the surface of the Sun. Figure 17.21 shows a close-
up view of the solar surface. The granulation that appears is because of convection
cells. The bright center of a cell is the location at which hot gases rise to the surface,
just like the hot water rises to the surface in a pan of boiling water. As the gases
cool, they sink back downward along the edges of the cell, forming the darker out-
line of each cell. The sinking gases appear dark because they are cooler than the
gases in the center of the cell. Although the sinking gases emit a tremendous
amount of radiation, the filter used to take the photograph in Figure 17.21 makes
these areas appear dark relative to the warmer center of the cell.

Convection occurs when a room is heated by a radiator. The radiator warms
the air in the lower regions of the room by heat at the interface between the
radiator surface and the air. The warm air expands and floats to the ceiling because
of its lower density, setting up the continuous air current pattern shown in 
Figure 17.22.

Radiation
Another method of transferring energy that can be related to a temperature
change is electromagnetic radiation. All objects radiate energy continuously in the
form of electromagnetic waves. As we shall find out in Chapter 24, electromagnetic
radiation arises from accelerating electric charges. From our discussion of tempera-
ture, we know that temperature corresponds to random motion of molecules that
are constantly changing direction and therefore are accelerating. Because the mol-
ecules contain electric charges, the charges also accelerate. Thus, any object emits
electromagnetic radiation because of the thermal motion of its molecules. This ra-
diation is called thermal radiation.

Through electromagnetic radiation, approximately 1 370 J of energy from the
Sun strikes each square meter at the top of the Earth’s atmosphere every second.
Some of this energy is reflected back into space and some is absorbed by the atmos-
phere, but enough arrives at the surface of the Earth each day to supply all our en-
ergy needs on this planet hundreds of times over, if it could be captured and used
efficiently. The growth in the number of solar houses in the United States is one ex-
ample of an attempt to make use of this abundant energy.

The rate at which an object emits energy by thermal radiation from its surface is
proportional to the fourth power of its absolute surface temperature. This princi-
ple, known as Stefan’s law, is expressed in equation form as

ENERGY TRANSFER MECHANISMS IN THERMAL PROCESSES ❚ 557

y g p pp

The surface of the
Sun shows granulation, due to the exis-
tence of separate convection cells,
each carrying energy to the surface by
convection. 
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CONTEXT 
connection

[17.36]

where � is the power radiated by the object in watts, � is the Stefan–Boltzmann
constant, equal to 5.669 6 � 10�8 W/m2 � K4, A is the surface area of the object in
square meters, e is a constant called the emissivity, and T is the surface temperature
of the body in kelvins. The value of e can vary between zero and unity, depending
on the properties of the surface. The emissivity of a surface is equal to its absorptiv-
ity, or the fraction of incoming radiation that the surface absorbs.

At the same time as it radiates, the object also absorbs electromagnetic radiation
from the environment. If the latter process did not occur, an object would continu-
ously radiate its energy and its temperature would eventually decrease spontaneously
to absolute zero. If an object is at a temperature T and its environment is at a tem-
perature T0, the net rate of energy change for the object as a result of radiation is

[17.37]

When an object is in equilibrium with its environment, it radiates and absorbs en-
ergy at the same rate and so its temperature remains constant, which is the noniso-
lated system in steady-state model. When an object is hotter than its surroundings,
it radiates more energy than it absorbs and so it cools, which is the nonisolated sys-
tem model.

■ Thinking Physics 17.3
If you sit in front of a fire with your eyes closed, you can feel significant warmth in
your eyelids. If you now put on a pair of eyeglasses and repeat this activity, your eye-
lids will not feel nearly so warm. Why?

Reasoning Much of the warmth you feel is because of electromagnetic radiation
from the fire. A large fraction of this radiation is in the infrared part of the electro-
magnetic spectrum. (We will study the electromagnetic spectrum in detail in Chap-
ter 24.) Your eyelids are particularly sensitive to infrared radiation. On the other
hand, glass is very opaque to infrared radiation. Therefore, when you put on the
glasses, you block much of the radiation from reaching your eyelids and they feel
cooler. ■

■ Thinking Physics 17.4
If you inspect a lightbulb that has been operating for a long time, a dark region ap-
pears on the inner surface of the bulb. This region is located on the highest parts
of the bulb’s glass envelope. What is the origin of this dark region, and why is it lo-
cated at the high point?

Reasoning The dark region is tungsten that vaporized from the filament of the
lightbulb and collected on the inner surface of the glass. Many lightbulbs contain a
gas that allows convection to occur within the bulb. The gas near the filament is at a
very high temperature, causing it to expand and float upward due to Archimedes’s
principle. As it floats upward, it carries the vaporized tungsten with it, and the tung-
sten collects on the surface at the top of the lightbulb. ■

ENERGY  BALANCE  FOR  THE  EARTH
Let us follow up on our discussion of energy transfer by radiation for the Earth
from Section 17.10. We will then perform an initial calculation of the temperature
of the Earth.

17.11

�net � �Ae(T 4 � T0 

4)

� � �AeT 4

558 ❚ CHAPTER 17 ENERGY IN THERMAL PROCESSES: THE FIRST LAW OF THERMODYNAMICS

y g p pp

■ Stefan’s law



ENERGY BALANCE FOR THE EARTH ❚ 559

y g p pp

As mentioned previously, energy arrives at the Earth by electromagnetic radia-
tion from the Sun.5 This energy is absorbed by the surface of the Earth and is rera-
diated out into space according to Stefan’s law, Equation 17.36. The only type of
energy in the system that can change due to radiation is internal energy. Let us as-
sume that any change in temperature of the Earth is so small over a time interval
that we can approximate the change in internal energy as zero. This assumption
leads to the following reduction of the continuity equation, Equation 6.20:

0 � TER

Two energy transfer mechanisms occur by electromagnetic radiation, so we can
write this equation as

[17.38]

where “in” and “out” refer to energy transfers across the boundary of the system of
the Earth. The energy coming into the system is from the Sun, and the energy
going out of the system is by thermal radiation emitted from the Earth’s surface.
Figure 17.23 depicts these energy exchanges. The energy coming in from the Sun
comes from only one direction, but the energy radiated out from the Earth’s
surface leaves in all directions. This distinction will be important in setting up our
calculation of the equilibrium temperature.

As mentioned in Section 17.10, the rate of energy transfer per unit area from
the Sun is approximately 1 370 W/m2 at the top of the atmosphere. The rate of en-
ergy transfer per area is called intensity, and the intensity of radiation from the Sun
at the top of the atmosphere is called the solar constant IS . A large amount of this
energy is in the form of visible radiation, to which the atmosphere is transparent.
The radiation emitted from the Earth’s surface, however, is not visible. For a radiat-
ing object at the temperature of the Earth’s surface, the radiation peaks in the in-
frared, with greatest intensity at a wavelength of about 10 �m. In general, objects
with typical household temperatures have wavelength distributions in the infrared,
so we do not see them glowing visibly. Only much hotter items emit enough radia-
tion to be seen visibly. An example is a household electric stove burner. When
turned off, it emits a small amount of radiation, mostly in the infrared. When
turned to its highest setting, its much higher temperature results in significant radi-
ation, with much of it in the visible. As a result, it appears to glow with a reddish
color and is described as red-hot.

0 � TER (in) 	 TER (out) : TER (in) � �TER (out)

5Some energy arrives at the surface of the Earth from the interior. The source of this energy is radioac-
tive decay (Chapter 30) deep underground. We will ignore this energy because its contribution is much
smaller than that due to electromagnetic radiation from the Sun.

Energy radiated
from the Earth into
space, TER (out) 

Energy coming
in from the
Sun, TER (in)  

Energy exchanges
by electromagnetic radiation for the
Earth. The Sun is far to the left of the
diagram and is not visible. When the
rates of energy transfer due to these
exchanges are equal, the temperature
of the Earth remains constant.

FIGURE 17.23
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Let us divide Equation 17.38 by the time interval �t during which the energy
transfer occurs, which gives us

[17.39]

We can express the rate of energy transfer into the top of the atmosphere of the
Earth in terms of the solar constant IS:

where Ac is the circular cross-sectional area of the Earth. Not all the radiation arriv-
ing at the top of the atmosphere reaches the ground. A fraction of it is reflected
from clouds and the ground and escapes back into space. For the Earth, this frac-
tion is about 30%, so only 70% of the incident radiation reaches the surface. Using
this fact, we modify the input power, assuming that 70.0% reaches the surface:

Stefan’s law can be used to express the outgoing power, assuming that the Earth
is a perfect emitter (e � 1):

In this expression, A is the surface area of the Earth and the negative sign indicates
that energy is leaving the Earth. Substituting the expressions for the input and out-
put power into Equation 17.39, we have

(0.700)IS Ac � � (� �AT 4)

Solving for the temperature of the Earth’s surface gives

Substituting the numbers, we find that

[17.40]

Measurements show that the average global temperature at the surface of the
Earth is 288 K, about 33 K warmer than the temperature from our calculation. This
difference indicates that a major factor was left out of our analysis. The major factor
is the thermodynamic effects of the atmosphere, which result in additional energy
from the Sun being “trapped” in the system of the Earth and raising the tempera-
ture. This effect is not included in the simple energy balance calculation we per-
formed. To evaluate it, we must incorporate into our model the principles of ther-
modynamics of gases for the air in the atmosphere. The details of this
incorporation are explored in the Context Conclusion.

T � � (0.700)(1  370 W/m2)(�RE  

2)
(5.67 � 10�8 W/m2�K4)(4�RE 

2) �
1/4

� 255 K

T � � (0.700)IS Ac

�A �
1/4

�ER (out) � ��AT 4

�ER (in) � (0.700)IS Ac

�ER (in) � IS Ac

�ER (in) � ��ER (out)

SUMMARY

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The internal energy E int of a system is the total of the kinetic
and potential energies of the system associated with its micro-
scopic components. Heat is a process by which energy is trans-
ferred as a consequence of a temperature difference. It is also
the amount of energy Q transferred by this process.

The energy required to change the temperature of a sub-
stance by �T is

Q � mc �T [17.3]

where m is the mass of the substance and c is its specific heat.
The energy required to change the phase of a pure sub-

stance of mass m is

Q � � mL [17.5]

www.pop4e.com
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The parameter L is called the latent heat of the substance and
depends on the nature of the phase change and the properties
of the substance.

A state variable of a system is a quantity that is defined for a
given condition of the system. State variables for a gas include
pressure, volume, temperature, and internal energy.

A quasi-static process is one that proceeds slowly enough to
allow the system to always be in a state of thermal equilibrium.

The work done on a gas as its volume changes from some
initial value Vi to some final value Vf is

[17.7]

where P is the pressure, which may vary during the process.
The first law of thermodynamics is a special case of the con-

tinuity equation for energy, relating the internal energy of a sys-
tem to energy transfer by heat and work:

�E int � Q 	 W [17.8]

where Q is the energy transferred across the boundary of the
system by heat and W is the work done on the system. Although
Q and W both depend on the path taken from the initial state
to the final state, internal energy is a state variable, so the quan-
tity �E int is independent of the path taken between given initial
and final states.

An adiabatic process is one in which no energy is
transferred by heat between the system and its surroundings 
(Q � 0). In this case, the first law gives �E int � W.

An isobaric process is one that occurs at constant pressure.
The work done on the gas in such a process is � P(Vf � Vi).

An isovolumetric process is one that occurs at constant vol-
ume. No work is done in such a process.

An isothermal process is one that occurs at constant temper-
ature. The work done on an ideal gas during an isothermal
process is

[17.12]

In a cyclic process (one that originates and terminates at
the same state), �E int � 0, and therefore Q � � W.

We define the molar specific heats of an ideal gas with the
following equations:

[17.13]

[17.14] Q � nCP �T  (constant pressure)

 Q � nCV �T  (constant volume)

W � �nRT ln � Vf

Vi
�

W � ��Vf

Vi

 P dV 

where CV is the molar specific heat at constant volume and CP
is the molar specific heat at constant pressure.

The change in internal energy of an ideal gas for any
process in which the temperature change is �T is

[17.18]

The molar specific heat at constant volume is related to inter-
nal energy as follows:

[17.19]

The molar specific heat at constant volume and molar specific
heat at constant pressure for all ideal gases are related as follows:

CP � CV � R [17.21]

For an ideal gas undergoing an adiabatic process, where

[17.22]

the pressure and volume are related as

[17.24]

The theorem of equipartition of energy can be used to predict
the molar specific heat at constant volume for various types of
gases. Monatomic gases can only store energy by means of
translational motion of the molecules of the gas. Diatomic and
polyatomic gases can also store energy by means of rotation
and vibration of the molecules. For a given molecule, the rota-
tional and vibrational energies are quantized, so their contribu-
tion does not enter into the internal energy until the tempera-
ture is raised to a sufficiently high value.

Thermal conduction is the transfer of energy by molecular
collisions. It is driven by a temperature difference, and the rate
of energy transfer is

[17.34]

where the constant k is called the thermal conductivity of the
material and dT/dx is the temperature gradient (the variation
of temperature with position).

Convection is energy transfer by means of a moving fluid.
All objects emit electromagnetic radiation continuously in

the form of thermal radiation, which depends on temperature
according to Stefan’s law:

[17.36]� � �AeT 4

� � kA � dT
dx � 

PV � � constant

� �
CP

CV

CV �
1
n

 
dE int

dT

�E int � nCV �T

� answer available in the Student Solutions Manual and
Study Guide

1. Clearly distinguish among temperature, heat, and internal
energy.

2. Ethyl alcohol has about half the specific heat of water.
Assuming that equal-mass samples of alcohol and water in
separate beakers are supplied with the same amount of

energy, compare the temperature increases of the two
liquids.

3. A small metal crucible is taken from a 200�C oven and im-
mersed in a tub full of water at room temperature (in a
process often referred to as quenching). What is the approx-
imate final equilibrium temperature?

4. What is a major problem that arises in measuring specific
heats if a sample with a temperature above 100�C is placed
in water?

QUESTIONS
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What is wrong with the statement, “Given any two objects,
the one with the higher temperature contains more heat”?

6. Why is a person able to remove a piece of dry aluminum
foil from a hot oven with bare fingers, whereas a burn re-
sults if there is moisture on the foil? 

The air temperature above coastal areas is profoundly influ-
enced by the large specific heat of water. One reason is that
the energy released when 1 m3 of water cools by 1�C will
raise the temperature of a much larger volume of air by 1�C.
Find this volume of air. The specific heat of air is approxi-
mately 1 kJ/kg � �C. Take the density of air to be 1.3 kg/m3.

8. When a sealed Thermos bottle full of hot coffee is shaken,
what are the changes, if any, in (a) the temperature of the
coffee and (b) the internal energy of the coffee?

Using the first law of thermodynamics, explain why the
total energy of an isolated system is always constant.

10. The U.S. penny was formerly made mostly of copper and is
now made of copper-coated zinc. Can a calorimetric exper-
iment be devised to test for the metal content in a collec-
tion of pennies? If so, describe the procedure you would
use.

11. A tile floor in a bathroom may feel uncomfortably cold to
your bare feet, but a carpeted floor in an adjoining room
at the same temperature will feel warm. Why?

12. Why can potatoes be baked more quickly when a metal
skewer has been inserted through them?

13. Why do heavy draperies over the windows help keep a
home cool in the summer as well as warm in the winter?

14. Pioneers stored fruits and vegetables in underground cel-
lars. Discuss the advantages of this choice for a storage site.

15. The pioneers referred to in the last question found that a
large tub of water placed in a storage cellar would prevent
their food from freezing on really cold nights. Explain why.

16. Why is it more comfortable to hold a cup of hot tea by the
handle rather than by wrapping your hands around the
cup itself?

17. You need to pick up a very hot cooking pot in your
kitchen. You have a pair of hot pads. To be able to pick up
the pot most comfortably, should you soak them in cold
water or keep them dry?

9.

7.

5. 18. Suppose you pour hot coffee for your guests, and one of
them wants to drink it with cream, several minutes later,
and then as warm as possible. To have the warmest coffee,
should the person add the cream just after the coffee is
poured or just before drinking? Explain.

19. A warning sign often seen on highways just before a bridge
is “Caution—Bridge surface freezes before road surface.”
Which of the three energy transfer processes discussed in
Section 17.10 is most important in causing a bridge surface
to freeze before a road surface on very cold days?

20. A professional physics teacher drops one marshmallow
into a flask of liquid nitrogen, waits for the most energetic
boiling to stop, fishes it out with tongs, shakes it off, pops it
into his mouth, chews it up, and swallows it. Clouds of ice
crystals issue from his mouth as he crunches noisily and
comments on the sweet taste. How can he do that without
injury? (Caution: Liquid nitrogen can be a dangerous sub-
stance and you should not try this experiment yourself. The
teacher might be badly injured if he did not shake the
marshmallow off, if he touched the tongs to a tooth, or if
he did not start with a mouthful of saliva.)

21. In 1801, Humphry Davy rubbed together pieces of ice in-
side an icehouse. He took care that nothing in his environ-
ment was at a higher temperature than the rubbed pieces.
He observed the production of drops of liquid water. Make
a table listing this and other experiments or processes to il-
lustrate each of the following situations. (a) A system can
absorb energy by heat, increase in internal energy, and in-
crease in temperature. (b) A system can absorb energy by
heat and increase in internal energy, without an increase
in temperature. (c) A system can absorb energy by heat
without increasing in temperature or in internal energy.
(d) A system can increase in internal energy and in tem-
perature, without absorbing energy by heat. (e) A system
can increase in internal energy without absorbing energy
by heat or increasing in temperature. (f) If a system’s
temperature increases, is it necessarily true that its internal
energy increases?

22. A liquid partially fills a container. Explain why the temper-
ature of the liquid decreases if the container is then par-
tially evacuated. (Using this technique, it is possible to
freeze water at temperatures above 0�C.)

PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 17.1 ■ Heat and Internal Energy
1. On his honeymoon, James Joule traveled from England to

Switzerland. He attempted to verify his idea of the inter-
convertibility of mechanical energy and internal energy by
measuring the increase in temperature of water that fell in
a waterfall. For the waterfall near Chamonix in the French
Alps, which has a 120-m drop, what maximum temperature
rise could Joule expect? He did not succeed in measuring
it, partly because evaporation cooled the falling water and
also because his thermometer was not sufficiently sensitive.

www.pop4e.com
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2. Consider Joule’s apparatus diagrammed in Figure P17.2.
The mass of each of the two blocks is 1.50 kg, and the insu-
lated tank is filled with 200 g of water. What is the increase
in the temperature of the water after the blocks fall
through a distance of 3.00 m?

decreases by 1.50�C per minute. At what rate is energy be-
ing removed by heat? Express your answer in watts.

7. An electric drill with a steel drill bit of mass 27.0 g and di-
ameter 0.635 cm is used to drill into a cubical steel block
of mass 240 g. Assume that steel has the same properties as
iron. The cutting process can be modeled as happening at
one point on the circumference of the bit. This point
moves in a helix at constant speed 40.0 m/s and exerts a
force of constant magnitude 3.20 N on the block. As shown
in Figure P17.7, a groove in the bit carries the chips up to
the top of the block, where they form a pile around the
hole. The block is held in a clamp made of material of low
thermal conductivity, and the drill bit is held in a chuck
also made of this material. We consider turning the drill
on for a time interval of 15.0 s. This time is sufficiently
short that the steel objects lose only a negligible amount of
energy by conduction, convection, and radiation into their
environment, but 15.0 s is long enough for conduction
within the steel to bring it all to a uniform temperature.
The temperature is promptly measured with a thermome-
ter probe, shown in the side of the block in the figure. 
(a) First suppose the drill bit is sharp and cuts three quar-
ters of the way through the block during 15.0 s. Find
the temperature change of the whole quantity of steel.
(b) Now suppose the drill bit is dull and cuts only one
eighth of the way through the block. Identify the tempera-
ture change of the whole quantity of steel in this case.

mm

Thermal
insulator

FIGURE P17.2 The falling weights rotate the paddles, causing the
temperature of the water to increase.

Section 17.2 ■ Specific Heat
3. A 50.0-g sample of copper is at 25.0�C. If 1 200 J of energy

is added to it by heat, what is the final temperature of the
copper?

4. Systematic use of solar energy can yield a large saving in
the cost of winter space heating for a typical house in the
north central United States. If the house has good insula-
tion, you may model it as losing energy by heat steadily at
the rate 6 000 W on a day in April when the average exte-
rior temperature is 4�C and when the conventional heating
system is not used at all. The passive solar energy collector
can consist simply of very large windows in a room facing
south. Sunlight shining in during the daytime is absorbed
by the floor, interior walls, and objects in the room, raising
their temperature to 38�C. As the sun goes down, insulat-
ing draperies or shutters are closed over the windows. Dur-
ing the period between 5:00 P.M. and 7:00 A.M., the temper-
ature of the house will drop and a sufficiently large
“thermal mass” is required to keep it from dropping too
far. The thermal mass can be a large quantity of stone
(with specific heat 850 J/kg � � C) in the floor and the inte-
rior walls exposed to sunlight. What mass of stone is re-
quired if the temperature is not to drop below 18�C
overnight?

A 1.50-kg iron horseshoe initially at 600�C is dropped into
a bucket containing 20.0 kg of water at 25.0�C. What is the
final temperature? (Ignore the heat capacity of the con-
tainer and assume that a negligible amount of water boils
away.)

6. An aluminum cup of mass 200 g contains 800 g of water in
thermal equilibrium at 80.0�C. The combination of cup
and water is cooled uniformly so that the temperature

5.

FIGURE P17.7

8. An aluminum calorimeter with a mass of 100 g contains
250 g of water. The calorimeter and water are in thermal
equilibrium at 10.0�C. Two metallic blocks are placed into
the water. One is a 50.0-g piece of copper at 80.0�C. The
other block has a mass of 70.0 g and is originally at a tem-
perature of 100�C. The entire system stabilizes at a final
temperature of 20.0�C. (a) Determine the specific heat of
the unknown sample. (b) Guess the material of the un-
known, using the data in Table 17.1.

9. A combination of 0.250 kg of water at 20.0�C, 0.400 kg of
aluminum at 26.0�C, and 0.100 kg of copper at 100�C is
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mixed in an insulated container and allowed to come to
thermal equilibrium. Ignore any energy transfer to or from
the container and determine the final temperature of the
mixture.

10. If water with a mass mh at temperature Th is poured into an
aluminum cup of mass mAl containing mass mc of water at
Tc , where Th > Tc, what is the equilibrium temperature of
the system?

Section 17.3 ■ Latent Heat and Phase Changes
11. How much energy is required to change a 40.0-g ice cube

from ice at �10.0�C to steam at 110�C?

12. A 50.0-g copper calorimeter contains 250 g of water at
20.0�C. How much steam must be condensed into the wa-
ter if the final temperature of the system is to reach
50.0�C?

A 3.00-g lead bullet at 30.0�C is fired at a speed of 240 m/s
into a large block of ice at 0�C, in which it becomes embed-
ded. What quantity of ice melts?

14. A 1.00-kg block of copper at 20.0�C is dropped into a large
vessel of liquid nitrogen at 77.3 K. How many kilograms of
nitrogen boil away by the time the copper reaches 77.3 K?
(The specific heat of copper is 0.092 0 cal/g � �C. The la-
tent heat of vaporization of nitrogen is 48.0 cal/g.)

In an insulated vessel, 250 g of ice at
0�C is added to 600 g of water at 18.0�C. (a) What is the fi-
nal temperature of the system? (b) How much ice remains
when the system reaches equilibrium?

16. Assume that a hailstone at 0�C falls through air at a uni-
form temperature of 0�C and lands on a sidewalk also at
this temperature. From what initial height must the hail-
stone fall to entirely melt on impact?

17. Review problem. Two speeding lead bullets, each of mass
5.00 g and at temperature 20.0�C, collide head-on at
speeds of 500 m/s each. Assuming a perfectly inelastic col-
lision and no loss of energy by heat to the atmosphere, de-
scribe the final state of the two-bullet system.

18. A resting adult of average size converts chemical en-
ergy in food into internal energy at the rate 120 W, called
her basal metabolic rate. To stay at constant temperature,
the body must put out energy at the same rate. Several
processes exhaust energy from your body. Usually, the
most important is thermal conduction into the air in con-
tact with your exposed skin. If you are not wearing a hat, a
convection current of warm air rises vertically from your
head like a plume from a smokestack. Your body also loses
energy by electromagnetic radiation, by your exhaling
warm air, and by evaporation of perspiration. In this prob-
lem, consider still another pathway for energy loss: mois-
ture in exhaled breath. Suppose you breathe out 22.0
breaths per minute, each with a volume of 0.600 L. Assume
that you inhale dry air and exhale air at 37�C containing
water vapor with a vapor pressure of 3.20 kPa. The vapor
came from evaporation of liquid water in your body. Model
the water vapor as an ideal gas. Assume that its latent heat
of evaporation at 37�C is the same as its heat of vaporiza-
tion at 100�C. Calculate the rate at which you lose energy
by exhaling humid air.

15.

13.

Section 17.4 ■ Work in Thermodynamic Processes
A sample of ideal gas is expanded to

twice its original volume of 1.00 m3 in a quasi-static process
for which P � �V 2, with � � 5.00 atm/m6, as shown in
Figure P17.19. How much work is done on the expanding
gas?

19.

20. (a) Determine the work done on a fluid that expands from
i to f as indicated in Figure P17.20. (b) How much work is
performed on the fluid if it is compressed from f to i along
the same path?

P

i

f

P = αV 2

V
2 m3 1 m3

α

FIGURE P17.19

6 × 106

P (Pa)

4 × 106

2 × 106

i

f

V (m3)
43210

FIGURE P17.20

21. An ideal gas is enclosed in a cylinder with a movable piston
on top of it. The piston has a mass of 8 000 g and an area
of 5.00 cm2 and is free to slide up and down, keeping the
pressure of the gas constant. How much work is done on
the gas as the temperature of 0.200 mol of the gas is raised
from 20.0�C to 300�C?

22. An ideal gas is enclosed in a cylinder that has a movable
piston on top. The piston has a mass m and an area A and
is free to slide up and down, keeping the pressure of the
gas constant. How much work is done on the gas as the
temperature of n mol of the gas is raised from T1 to T2?

Section 17.5 ■ The First Law of Thermodynamics
A thermodynamic system undergoes a process in which its
internal energy decreases by 500 J. At the same time, 220 J
of work is done on the system. Find the energy transferred
to or from it by heat.

24. A gas is taken through the cyclic process described in
Figure P17.24. (a) Find the net energy transferred to the
system by heat during one complete cycle. (b) If the cycle
is reversed—that is, the process follows the path ACBA—
what is the net energy input per cycle by heat?

23.
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25. Consider the cyclic process depicted in Figure P17.24. If Q
is negative for the process BC, and �E int is negative for the
process CA, what are the signs of Q , W, and �E int that are
associated with each process?

Section 17.6 � Some Applications of the First Law 
of Thermodynamics

26. One mole of an ideal gas does 3 000 J of work on its sur-
roundings as it expands isothermally to a final pressure of
1.00 atm and volume of 25.0 L. Determine (a) the initial
volume and (b) the temperature of the gas.

An ideal gas initially at 300 K undergoes an isobaric expan-
sion at 2.50 kPa. If the volume increases from 1.00 m3 to
3.00 m3 and 12.5 kJ is transferred to the gas by heat, what
are (a) the change in its internal energy and (b) its final
temperature?

28. A 1.00-kg block of aluminum is heated at atmospheric
pressure so that its temperature increases from 22.0�C to
40.0�C. Find (a) the work done on the aluminum, (b) the
energy added to it by heat, and (c) the change in its inter-
nal energy.

29. How much work is done on the steam when 1.00 mol of
water at 100�C boils and becomes 1.00 mol of steam at
100�C at 1.00 atm pressure? Assuming the steam to behave
as an ideal gas, determine the change in internal energy of
the material as it vaporizes.

30. An ideal gas initially at Pi, Vi, and Ti is taken through a cy-
cle as shown in Figure P17.30. (a) Find the net work done
on the gas per cycle. (b) What is the net energy added by
heat to the system per cycle? (c) Obtain a numerical value
for the net work done per cycle for 1.00 mol of gas initially
at 0�C.

27.

A 2.00-mol sample of helium gas initially at 300 K and
0.400 atm is compressed isothermally to 1.20 atm. Noting
that the helium behaves as an ideal gas, find (a) the
final volume of the gas, (b) the work done on the gas, and
(c) the energy transferred by heat. 

32. In Figure P17.32, the change in internal energy of a gas that
is taken from A to C is � 800 J. The work done on the gas
along path ABC is � 500 J. (a) How much energy must be
added to the system by heat as it goes from A through B to
C ? (b) If the pressure at point A is five times that of point C,
what is the work done on the system in going from C to D?
(c) What is the energy exchanged with the surroundings by
heat as the cycle goes from C to A along the green path? 
(d) If the change in internal energy in going from point D
to point A is � 500 J, how much energy must be added to
the system by heat as it goes from point C to point D?

31.
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FIGURE P17.24 Problems 17.24 and 17.25.
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FIGURE P17.32

Section 17.7 � Molar Specific Heats of Ideal Gases

Note: You may use data in Table 17.3 about particular gases.
Here we define a “monatomic ideal gas” to have molar spe-
cific heats CV � 3R/2 and CP � 5R/2, and a “diatomic ideal
gas” to have CV � 5R/2 and CP � 7R/2.

A 1.00-mol sample of hydrogen gas is
heated at constant pressure from 300 K to 420 K. Calculate
(a) the energy transferred to the gas by heat, (b) the in-
crease in its internal energy, and (c) the work done on the
gas.

34. Calculate the change in internal energy of 3.00 mol of he-
lium gas when its temperature is increased by 2.00 K.

35. In a constant-volume process, 209 J of energy is transferred
by heat to 1.00 mol of an ideal monatomic gas initially at
300 K. Find (a) the increase in internal energy of the gas,
(b) the work done on it, and (c) its final temperature.

36. A vertical cylinder with a heavy piston contains air at a tem-
perature of 300 K. The initial pressure is 200 kPa and the
initial volume is 0.350 m3. Take the molar mass of air as
28.9 g/mol and assume that CV � 5R/2. (a) Find the
specific heat of air at constant volume in units of J/kg � � C.
(b) Calculate the mass of the air in the cylinder. (c) Sup-
pose the piston is held fixed. Find the energy input
required to raise the temperature of the air to 700 K. 
(d) Assume again the conditions of the initial state and
that the heavy piston is free to move. Find the energy input
required to raise the temperature to 700 K.

33.
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37. A 1-L Thermos bottle is full of tea at 90�C. You pour out
one cup and immediately screw the stopper back on. Make
an order-of-magnitude estimate of the change in tempera-
ture of the tea remaining in the flask that results from the
admission of air at room temperature. State the quantities
you take as data and the values you measure or estimate for
them.

38. Review problem. This problem is a continuation of Prob-
lem 16.21 in Chapter 16. A hot-air balloon consists of an
envelope of constant volume 400 m3. Not including the air
inside, the balloon and cargo have mass 200 kg. The air
outside and originally inside is a diatomic ideal gas at
10.0�C and 101 kPa, with density 1.25 kg/m3. A propane
burner at the center of the spherical envelope injects en-
ergy into the air inside. The air inside stays at constant
pressure. Hot air, at just the temperature required to make
the balloon lift off, starts to fill the envelope at its closed
top, rapidly enough so that negligible energy flows by heat
to the cool air below it or out through the wall of the bal-
loon. Air at 10�C leaves through an opening at the bottom
of the envelope until the whole balloon is filled with hot
air at uniform temperature. Then the burner is shut off
and the balloon rises from the ground. (a) Evaluate the
quantity of energy the burner must transfer to the air
in the balloon. (b) The “heat value” of propane—the
internal energy released by burning each kilogram—is
50.3 MJ/kg. What mass of propane must be burned?

39. A 1.00-mol sample of a diatomic ideal gas has pressure P
and volume V. When the gas is heated, its pressure triples
and its volume doubles. This heating process includes two
steps, the first at constant pressure and the second at con-
stant volume. Determine the amount of energy transferred
to the gas by heat.

Section 17.8 ■ Adiabatic Processes for an Ideal Gas
40. During the compression stroke of a certain gasoline en-

gine, the pressure increases from 1.00 atm to 20.0 atm. If
the process is adiabatic and the fuel–air mixture behaves
as a diatomic ideal gas, (a) by what factor does the volume
change and (b) by what factor does the temperature
change? (c) Assuming that the compression starts with
0.016 0 mol of gas at 27.0�C, find the values of Q , W, and
�E int that characterize the process.

A 2.00-mol sample of a diatomic ideal gas expands slowly
and adiabatically from a pressure of 5.00 atm and a volume
of 12.0 L to a final volume of 30.0 L. (a) What is the final
pressure of the gas? (b) What are the initial and final tem-
peratures? (c) Find Q , W, and �E int.

42. Air in a thundercloud expands as it rises. If its initial tem-
perature is 300 K and no energy is lost by thermal conduc-
tion on expansion, what is its temperature when the initial
volume has doubled?

43. A 4.00-L sample of a diatomic ideal gas with specific heat
ratio 1.40, confined to a cylinder, is carried through a
closed cycle. The gas is initially at 1.00 atm and at 300 K.
First, its pressure is tripled under constant volume. Then,
it expands adiabatically to its original pressure. Finally,
the gas is compressed isobarically to its original volume.
(a) Draw a PV diagram of this cycle. (b) Determine the

41.

volume of the gas at the end of the adiabatic expansion.
(c) Find the temperature of the gas at the start of the adia-
batic expansion. (d) Find the temperature at the end of
the cycle. (e) What was the net work done on the gas for
this cycle?

44. How much work is required to compress 5.00 mol of air at
20.0�C and 1.00 atm to one tenth of the original volume
(a) by an isothermal process and (b) by an adiabatic
process? (c) What is the final pressure in each of these two
cases?

45. During the power stroke in a four-stroke automobile en-
gine, the piston is forced down as the mixture of combus-
tion products and air undergoes an adiabatic expansion
(Fig. P17.45). Assume that (1) the engine is running at
2 500 cycles/min; (2) the gauge pressure right before the
expansion is 20.0 atm; (3) the volumes of the mixture right
before and after the expansion are 50.0 and 400 cm3, re-
spectively; (4) the time interval for the expansion is one-
fourth that of the total cycle; and (5) the mixture behaves
like an ideal gas with specific heat ratio 1.40. Find the aver-
age power generated during the expansion stroke.

400 cm3

After

50.0 cm3

Before

FIGURE P17.45

Section 17.9 ■ Molar Specific Heats and the 
Equipartition of Energy

46. A certain molecule has f degrees of freedom. Show that an
ideal gas consisting of such molecules has the following
properties: (1) its total internal energy is fnRT/2, (2) its
molar specific heat at constant volume is f R/2, (3) its mo-
lar specific heat at constant pressure is ( f 	 2)R/2, (4) its
specific heat ratio is � � CP/CV � ( f 	 2)/f.

The heat capacity of a sample of a sub-
stance is the product of the mass of the sample and the
specific heat of the substance. Consider 2.00 mol of an
ideal diatomic gas. (a) Find the total heat capacity of the
gas at constant volume and at constant pressure, assuming
that the molecules rotate but do not vibrate. (b) Repeat
the problem, assuming that the molecules both rotate and
vibrate.

47.
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Section 17.10 ■ Energy Transfer Mechanisms 
in Thermal Processes

48. A box with a total surface area of 1.20 m2 and a wall thick-
ness of 4.00 cm is made of an insulating material. A 10.0-W
electric heater inside the box maintains the inside temper-
ature at 15.0�C above the outside temperature. Find the
thermal conductivity k of the insulating material.

A bar of gold is in thermal contact with a bar of silver of
the same length and area (Fig. P17.49). One end of the
compound bar is maintained at 80.0�C, and the opposite
end is at 30.0�C. When the energy transfer reaches steady
state, what is the temperature at the junction?

49.

50. A power transistor is a solid-state electronic device. Assume
that energy entering the device at the rate of 1.50 W by
electrical transmission causes the internal energy of the de-
vice to increase. The surface area of the transistor is so
small that it tends to overheat. To prevent overheating, the
transistor is attached to a larger metal heat sink with fins.
The temperature of the heat sink remains constant at
35.0�C under steady-state conditions. The transistor is elec-
trically insulated from the heat sink by a rectangular sheet
of mica measuring 8.25 mm by 6.25 mm, and 0.085 2 mm
thick. Assume the thermal conductivity of mica to be
0.075 3 W/m � � C. What is the operating temperature of
the transistor? 

51. The surface of the Sun has a temperature of about 5 800 K.
The radius of the Sun is 6.96 � 108 m. Calculate the total
energy radiated by the Sun each second. Assume that the
emissivity is 0.986.

52. The human body must maintain its core temperature
inside a rather narrow range around 37�C. Metabolic
processes, notably muscular exertion, convert chemical en-
ergy into internal energy deep in the interior. From the in-
terior, energy must flow out to the skin or lungs to be ex-
pelled to the environment. During moderate exercise, an
80-kg man can metabolize food energy at the rate 
300 kcal/h, do 60 kcal/h of mechanical work, and put out
the remaining 240 kcal/h of energy by heat. Most of the
energy is carried from the body interior out to the skin by
forced convection (as a plumber would say), whereby
blood is warmed in the interior and then cooled at the
skin, which is a few degrees cooler than the body core.
Without blood flow, living tissue is a good thermal insula-
tor, with thermal conductivity about 0.210 W/m � �C. Show
that blood flow is essential to cool the man’s body by calcu-
lating the rate of energy conduction in kcal/h through the
tissue layer under his skin. Assume that its area is 1.40 m2,
its thickness is 2.50 cm, and it is maintained at 37.0�C on
one side and at 34.0�C on the other side.

53. A student is trying to decide what to wear. His bedroom
is at 20�C. His skin temperature is 35�C. The area of his

exposed skin is 1.50 m2. People of all races have skin that is
dark in the infrared, with emissivity about 0.900. Find the
net energy loss from his body by radiation in 10.0 min.

Section 17.11 ■ Context Connection — Energy Balance 
for the Earth

54. At high noon, the Sun delivers 1 000 W to each square me-
ter of a blacktop road. If the hot asphalt loses energy only
by radiation, what is its equilibrium temperature?

55. The intensity of solar radiation reaching the top of the
Earth’s atmosphere is 1 370 W/m2. The temperature of
the Earth is affected by the so-called greenhouse effect of
the atmosphere. That effect makes our planet’s emissivity
for visible light higher than its emissivity for infrared light.
For comparison, consider a spherical object with no atmos-
phere, at the same distance from the Sun as the Earth.
Assume that its emissivity is the same for all kinds of elec-
tromagnetic waves and that its temperature is uniform over
its surface. Identify the projected area over which it ab-
sorbs sunlight and the surface area over which it radiates.
Compute its equilibrium temperature. Chilly, isn’t it? Your
calculation applies to (a) the average temperature of the
Moon, (b) astronauts in mortal danger aboard the crip-
pled Apollo 13 spacecraft, and (c) global catastrophe on the
Earth if widespread fires caused a layer of soot to accumu-
late throughout the upper atmosphere so that most of the
radiation from the Sun were absorbed there rather than at
the surface below the atmosphere.

56. A theoretical atmospheric lapse rate. Section 16.7 described ex-
perimental data on the decrease in temperature with alti-
tude in the Earth’s atmosphere. Model the troposphere as
an ideal gas, everywhere with equivalent molar mass M and
ratio of specific heats �. Absorption of sunlight at the
Earth’s surface warms the troposphere from below, so verti-
cal convection currents are continually mixing the air. As a
parcel of air rises, its pressure drops and it expands. The
parcel does work on its surroundings, so its internal energy
decreases and it drops in temperature. Assume that the
vertical mixing is so rapid as to be adiabatic. (a) Show that
the quantity TP(1��)/� has a uniform value through the
layers of the troposphere. (b) By differentiating with re-
spect to altitude y, show that the lapse rate is given by

(c) A lower layer of air must support the weight of the
layers above. From Equation 15.4, observe that mechanical
equilibrium of the atmosphere requires that the pressure
decrease with altitude according to dP/dy � � 
g. The
depth of the troposphere is small compared with the
radius of the Earth, so you may assume that the free-fall
acceleration is uniform. Proceed to prove that the lapse
rate is 

Problem 16.38 in Chapter 16 calls for evaluation of this
theoretical lapse rate on the Earth and on Mars and for
comparison with experimental results. 
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Additional Problems
57. For bacteriological testing of water supplies and in

medical clinics, samples must routinely be incubated for
24 h at 37�C. A standard constant-temperature bath with
electric heating and thermostatic control is not practical in
third-world locations without continuously operating elec-
tric power lines. Peace Corps volunteer and MIT engineer
Amy Smith invented a low-cost, low-maintenance incubator
to fill the need. It consists of a foam-insulated box contain-
ing several packets of a waxy material that melts at 37.0�C,
interspersed among tubes, dishes, or bottles containing the
test samples and growth medium (bacteria food). Outside
the box, the waxy material is first melted by a stove or solar
energy collector. Then it is put into the box to keep the
test samples warm as it solidifies. The heat of fusion of the
phase-change material is 205 kJ/kg. Model the insulation
as a panel with surface area 0.490 m2, thickness 4.50 cm,
and conductivity 0.012 0 W/m�C. Assume that the exterior
temperature is 23.0�C for 12.0 h and 16.0�C for 12.0 h.
(a) What mass of the waxy material is required to conduct
the bacteriological test? (b) Explain why your calculation
can be done without knowing the mass of the test samples
or of the insulation.

58. A 75.0-kg cross-country skier moves across the snow 
(Fig. P17.58). The coefficient of friction between the skis
and the snow is 0.200. Assume that all the snow beneath
his skis is at 0�C and that all the internal energy generated
by friction is added to the snow, which sticks to his skis un-
til it melts. How far would he have to ski to melt 1.00 kg of
snow?

half does not yet cool.) (b) If the upper end of the rod is
maintained at 300 K, what is the approximate boil-off rate
of liquid helium after the lower half has reached 4.20 K?
(Aluminum has thermal conductivity of 31.0 J/s � cm � K at
4.2 K; ignore its temperature variation. Aluminum has a
specific heat of 0.210 cal/g � �C and density of 2.70 g/cm3.
The density of liquid helium is 0.125 g/cm3.)

61. A flow calorimeter is an apparatus used to measure the spe-
cific heat of a liquid. The technique of flow calorimetry in-
volves measuring the temperature difference between the
input and output points of a flowing stream of the liquid
while energy is added by heat at a known rate. A liquid of
density 
 flows through the calorimeter with volume flow
rate R. At steady state, a temperature difference �T is es-
tablished between the input and output points when en-
ergy is supplied at the rate �. What is the specific heat of
the liquid?

62. One mole of an ideal gas is contained in a cylinder with a
movable piston. The initial pressure, volume, and tempera-
ture are Pi , Vi , and Ti , respectively. Find the work done on
the gas for the following processes and show each process
on a PV diagram: (a) an isobaric compression in which the
final volume is one-half the initial volume, (b) an isother-
mal compression in which the final pressure is four times
the initial pressure, (c) an isovolumetric process in which
the final pressure is three times the initial pressure.

63. Review problem. Continue the analysis of Problem 16.55
in Chapter 16. Following a collision between a large space-
craft and an asteroid, a copper disk of radius 28.0 m and
thickness 1.20 m, at a temperature of 850�C, is floating
in space, rotating about its axis with an angular speed of
25.0 rad/s. As the disk radiates infrared light, its tempera-
ture falls to 20.0�C. No external torque acts on the disk. 
(a) Find the change in kinetic energy of the disk. (b) Find
the change in internal energy of the disk. (c) Find the
amount of energy it radiates.

64. Review problem. A 670-kg meteorite happens to be com-
posed of aluminum. When it is far from the Earth, its tem-
perature is � 15�C and it moves with a speed of 14.0 km/s
relative to the Earth. As it crashes into the Earth, assume
that the resulting additional internal energy is shared
equally between the meteor and the planet, and that all
the material of the meteor rises momentarily to the same
final temperature. Find this temperature. Assume that
the specific heat of liquid and of gaseous aluminum is
1 170 J/kg � � C.

A solar cooker consists of a curved re-
flecting surface that concentrates sunlight onto the object
to be warmed (Fig. P17.65). The solar power per unit area
reaching the Earth’s surface at the location is 600 W/m2.
The cooker faces the Sun and has a diameter of 0.600 m.
Assume that 40.0% of the incident energy is transferred to
0.500 L of water in an open container, initially at 20.0�C.
How long does it take to completely boil away the water?
(Ignore the heat capacity of the container.)

66. An iron plate is held against an iron wheel so that a kinetic
friction force of 50.0 N acts between the two pieces of
metal. The relative speed at which the two surfaces slide
over each other is 40.0 m/s. (a) Calculate the rate at which

65.

FIGURE P17.58 A cross-country skier.

59. On a cold winter day, you buy roasted chestnuts from a
street vendor. Into the pocket of your down parka you put
the change he gives you: coins constituting 9.00 g of cop-
per at � 12.0�C. Your pocket already contains 14.0 g of sil-
ver coins at 30.0�C. A short time later the temperature of
the copper coins is 4.00�C and is increasing at a rate of
0.500�C/s. At this time, (a) what is the temperature of the
silver coins and (b) at what rate is it changing?

60. An aluminum rod 0.500 m in length and with a cross-sec-
tional area of 2.50 cm2 is inserted into a thermally insu-
lated vessel containing liquid helium at 4.20 K. The rod is
initially at 300 K. (a) If one half of the rod is inserted into
the helium, how many liters of helium boil off by the time
the inserted half cools to 4.20 K? (Assume that the upper
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mechanical energy is converted to internal energy. (b) The
plate and the wheel each have a mass of 5.00 kg, and each
receives 50.0% of the internal energy. If the system is run
as described for 10.0 s and each object is then allowed to
reach a uniform internal temperature, what is the resultant
temperature increase?

67. (a) In air at 0�C, a 1.60-kg copper block at 0�C is set sliding
at 2.50 m/s over a sheet of ice at 0�C. Friction brings the
block to rest. Find the mass of the ice that melts. To de-
scribe the process of slowing down, identify the energy in-
put Q , the work input W, the change in internal energy
�E int, and the change in mechanical energy �K for the
block and also for the ice. (b) A 1.60-kg block of ice at 0�C
is set sliding at 2.50 m/s over a sheet of copper at 0�C. Fric-
tion brings the block to rest. Find the mass of the ice that
melts. Identify Q , W, �E int, and �K for the block and for
the metal sheet during the process. (c) A thin, 1.60-kg slab
of copper at 20�C is set sliding at 2.50 m/s over an identi-
cal stationary slab at the same temperature. Friction
quickly stops the motion. Assuming that no energy is lost
to the environment by heat, find the change in tempera-
ture of both objects. Identify Q , W, �E int, and �K for each
object during the process.

68. A pond of water at 0�C is covered with a layer of ice 4.00 cm
thick. If the air temperature stays constant at � 10.0�C, how
long does it take for the ice thickness to increase to 
8.00 cm? (Suggestion: Use Equation 17.34 in the form

and note that the incremental energy dQ extracted from
the water through the thickness x of ice is the amount re-
quired to freeze a thickness dx of ice. That is, dQ � L
Adx,
where 
 is the density of the ice, A is the area, and L is the
latent heat of fusion.) 

69. The average thermal conductivity of the walls (including
the windows) and roof of the house depicted in Figure
P17.69 is 0.480 W/m � �C, and their average thickness is
21.0 cm. The house is heated with natural gas having a
heat of combustion (that is, the energy provided per cubic

dQ
dt

� kA 
�T
x

70. A student obtains the following data in a calorimetry ex-
periment designed to measure the specific heat of alu-
minum:

Initial temperature of water and calorimeter 70�C
Mass of water 0.400 kg
Mass of calorimeter 0.040 kg
Specific heat of calorimeter 0.63 kJ/kg � � C
Initial temperature of aluminum 27�C
Mass of aluminum 0.200 kg
Final temperature of mixture 66.3�C

Use these data to determine the specific heat of alu-
minum. Your result should be within 15% of the value
listed in Table 17.1.

71. The function E int � 3.50nRT describes the internal energy
of a certain ideal gas. A 2.00-mol sample of the gas always
starts at pressure 100 kPa and temperature 300 K. For each
one of the following processes, determine the final pres-
sure, volume, and temperature; the change in internal en-
ergy of the gas; the energy added to the gas by heat; and
the work done on the gas. (a) The gas is heated at constant
pressure to 400 K. (b) The gas is heated at constant vol-
ume to 400 K. (c) The gas is compressed at constant tem-
perature to 120 kPa. (d) The gas is compressed adiabati-
cally to 120 kPa.

72. A cylinder containing n mol of an ideal gas undergoes an
adiabatic process. (a) Starting with the expression

and using the condition PV � � constant,
show that the work done on the gas is

(b) Starting with the first law of thermodynamics in differ-
ential form, prove that the work done on the gas is also
equal to nCV (Tf � Ti). Show that this result is consistent
with the equation in part (a).

73. As a 1.00-mol sample of a monatomic ideal gas expands
adiabatically, the work done on it is � 2 500 J. The ini-
tial temperature and pressure of the gas are 500 K and
3.60 atm, respectively. Calculate (a) the final temperature
and (b) the final pressure. You may use the result of
Problem 17.72.

W � � 1
� � 1 �(PfVf � PiVi)

W � ��P dV

FIGURE P17.65

5.00 m

10.0 m8.00 m

37°

FIGURE P17.69

meter of gas burned) of 9 300 kcal/m3. How many cubic
meters of gas must be burned each day to maintain an in-
side temperature of 25.0�C if the outside temperature is
0.0�C? Disregard radiation and the energy lost by heat
through the ground.
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74. Smokin’! A pitcher throws a 0.142-kg baseball at 47.2 m/s
(Fig. P17.74). As it travels 19.4 m, the ball slows to
42.5 m/s because of air resistance. Find the change in tem-
perature of the air through which it passes. To find the
greatest possible temperature change, you may make the
following assumptions. Air has a molar specific heat of 
CP � 7R/2 and an equivalent molar mass of 28.9 g/mol.
The process is so rapid that the cover of the baseball acts as
thermal insulation, and the temperature of the ball itself
does not change. A change in temperature happens ini-
tially only for the air in a cylinder 19.4 m in length and
3.70 cm in radius. This air is initially at 20.0�C.

76. The rate at which a resting person converts food en-
ergy is called one’s basal metabolic rate (BMR). Assume
that the resulting internal energy leaves a person’s body by
radiation and convection of dry air. When you jog, most of
the food energy you burn above your BMR becomes inter-
nal energy that would raise your body temperature if it
were not eliminated. Assume that evaporation of perspira-
tion is the mechanism for eliminating this energy. Suppose
a person is jogging for “maximum fat burning,” converting
food energy at the rate 400 kcal/h above his BMR, and
putting out energy by work at the rate 60.0 W. Assume that
the heat of evaporation of water at body temperature is
equal to its heat of vaporization at 100�C. (a) Determine
the hourly rate at which water must evaporate from his
skin. (b) When you metabolize fat, the hydrogen atoms in
the fat molecule are transferred to oxygen to form water.
Assume that metabolism of 1 g of fat generates 9.00 kcal of
energy and produces 1 g of water. What fraction of the wa-
ter the jogger needs is provided by fat metabolism?

FIGURE P17.74 John Lackey, the first rookie to win a
World Series game 7 in 93 years, pitches for the
Anaheim Angels during the final game of the 2002
World Series.
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75. A sample of monatomic ideal gas occupies 5.00 L at atmos-
pheric pressure and 300 K. Its state is represented by point
A in Figure P17.75. It is heated at constant volume to 
3.00 atm (point B). Then it is allowed to expand isother-
mally to 1.00 atm (point C) and at last compressed iso-
barically to its original state. (a) Find the number of
moles in the sample. (b) Find the temperature at points B
and C and the volume at point C . (c) Assuming that the
specific heat does not depend on temperature, so that 

P (atm)

3

0 5 10 V (L)

B

A C

2

1

15

FIGURE P17.75

17.1 (a) Water, glass, iron. Because water has the highest spe-
cific heat (4 186 J/kg � � C), it undergoes the smallest
change in temperature. Glass is next (837 J/kg � � C), and
iron (448 J/kg � � C) is last. (b) Iron, glass, water. For a
given temperature increase, the energy transfer by heat is
proportional to the specific heat.

17.2 The figure on the next page shows a graphical represen-
tation of the internal energy of the ice in parts A to E as
a function of energy added. Notice that this graph looks

quite different from Figure 17.3 because it doesn’t have
the flat portions during the phase changes. Regardless
of how the temperature is varying in Figure 17.3, the in-
ternal energy of the system simply increases linearly with
energy input.

17.3 C, A, E. The slope is the ratio of the temperature change
to the amount of energy input. Thus, the slope is propor-
tional to the reciprocal of the specific heat. Liquid water,
which has the highest specific heat, has the lowest slope.

ANSWERS TO QUICK QUIZZES

E int � 3nRT/2, find the internal energy at points A, B, and
C . (d) Tabulate P , V , T , and E int at points A, B, and C. 
(e) Now consider the processes A : B, B : C, and C : A.
Describe just how to carry out each process experimentally.
(f) Find Q , W, and �E int for each of the processes. (g) For
the whole cycle A : B : C : A, find Q , W, and �E int.
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E int ( J)

Ice +
water

Water

0 500 1 000 1 500 2 000 2 500 3 000
3 1103 07081539662.7

Ice
Water +
steam

Energy added ( J)

Steam

17.4

Situation System Q W �E int

(a) Rapidly pumping Air in the pump 0 	 	

up a bicycle tire
(b) Pan of room- Water in the pan 	 0 	

temperature water
sitting on a hot stove

(c) Air quickly leaking Air originally in 0 � �

out of a balloon the balloon

(a) Because the pumping is rapid, no energy enters
or leaves the system by heat. Because W  0 when
work is done on the system, it is positive here. Thus, 
�E int � Q 	 W must be positive. The air in the pump is
warmer. (b) There is no work done either on or by the
system, but energy flows into the water by heat from the
hot burner, making both Q and �E int positive. (c) Again
no energy flows into or out of the system by heat, but the
air molecules escaping from the balloon do work on the
surrounding air molecules as they push them out of 
the way. Thus, W is negative and �E int is negative. The
decrease in internal energy is evidenced by the escaping
air becoming cooler.

17.5 Path A is isovolumetric, path B is adiabatic, path C is
isothermal, and path D is isobaric.

17.6 (i), (a). According to Equation 17.15, E int is a function
of temperature only. Because the temperature in-
creases, the internal energy increases. (ii), (c). Along an
isotherm, T is constant by definition. Therefore, the in-
ternal energy of the gas does not change.

17.7 (b). In parallel, the rods present a larger area through
which energy can transfer and a smaller length.



The first law of thermodynamics that we studied in Chapter
17 and the more general continuity equation for energy
(Eq. 6.20) are statements of the principle of conservation

of energy. This principle places no restrictions on the types of en-
ergy conversions that can occur. In reality, however, only certain
types of energy conversions are observed to take place. Consider
the following examples of processes that are consistent with the
principle of conservation of energy in either direction but that
proceed only in a particular direction in practice.

1. When two objects at different temperatures are placed in ther-
mal contact with each other, energy transfer by heat always 
occurs from the warmer to the cooler object. We never see 
energy transfer from the cooler object to the warmer object.

2. A rubber ball dropped to the ground bounces several times
and eventually comes to rest, the original gravitational poten-
tial energy having been transformed to internal energy in the
ball and the ground. A ball lying on the ground, however,

Heat Engines, Entropy, and the 
Second Law of Thermodynamics

C H A P T E R 18

This computer artwork shows the interior of
an automobile engine cylinder at the moment
the spark plug (upper left) fires and ignites the
air – fuel mixture. The expanding gases push
downward on the piston (lower right), ulti-
mately resulting in energy provided to the
drive wheels of the automobile. An automo-
bile engine is one example of a heat engine,
which we study in this chapter.

C H A P T E R  O U T L I N E
18.1 Heat Engines and the Second Law 

of Thermodynamics
18.2 Reversible and Irreversible Processes
18.3 The Carnot Engine
18.4 Heat Pumps and Refrigerators
18.5 An Alternative Statement of the 

Second Law
18.6 Entropy
18.7 Entropy and the Second Law 

of Thermodynamics
18.8 Entropy Changes in Irreversible

Processes
18.9 Context Connection — The Atmosphere 

as a Heat Engine
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never gathers internal energy up from the ground and begins bouncing on its
own.

3. If oxygen and nitrogen are maintained in separate halves of a container by a
membrane and the membrane is punctured, the oxygen and nitrogen mole-
cules mix together. We never see a mixture of oxygen and nitrogen sponta-
neously separate into different sides of the container.

These situations all illustrate irreversible processes; that is, they occur naturally in only
one direction. In this chapter, we investigate a new fundamental principle that
allows us to understand why these processes occur in one direction only.1 The
second law of thermodynamics, which is the primary focus of this chapter, estab-
lishes which natural processes do and which do not occur.

HEAT  ENGINES  AND  THE  SECOND  LAW 
OF  THERMODYNAMICS

One device that is very useful in understanding the second law of thermodynamics
is the heat engine. A heat engine is a device that takes in energy by heat2 and, oper-
ating in a cycle, expels a fraction of that energy by work. In a typical process for
producing electricity in a power plant, for instance, coal or some other fuel is
burned and the resulting internal energy is used to convert water to steam. This
steam is directed at the blades of a turbine, setting it into rotation. Finally, the me-
chanical energy associated with this rotation is used to drive an electric generator.
In another heat engine, the internal combustion engine in your automobile, en-
ergy enters the engine by matter transfer as the fuel is injected into the cylinder
and a fraction of this energy is converted to mechanical energy.

In general, a heat engine carries some working substance through cyclic
processes3 during which (1) the working substance absorbs energy by heat from an
energy reservoir at a high temperature, (2) work is done by the engine, and (3) en-
ergy is expelled by heat to a reservoir at a lower temperature. This output energy is
often called wasted energy, exhaust energy, or thermal pollution. As an example,
consider the operation of a steam engine in which the working substance is water.
The water in the engine is carried through a cycle in which it first evaporates into
steam in a boiler and then expands against a piston. After the steam is condensed
with cooling water, it is returned to the boiler, and the process is repeated.

It is useful to draw a heat engine schematically as in the pictorial representation
in Active Figure 18.1. The engine absorbs a quantity of energy Q h from the hot
reservoir.4 The engine does work Weng (so that negative work W � �Weng is done on
the engine), and then gives up energy Q c to the cold reservoir. Because the working
substance goes through a cycle, its initial and final internal energies are equal, so
�E int � 0. The engine can be modeled as a nonisolated system in steady state.
Hence, from the first law,

18.1
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Lord Kelvin ( 1824 – 1907)
Born William Thomson in Belfast,
British physicist and mathematician
Kelvin was the first to propose the use
of an absolute scale of temperature.
The Kelvin temperature scale is
named in his honor. Kelvin’s work in
thermodynamics led to the idea that
energy cannot pass spontaneously
from a colder object to a hotter object.
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1 As we shall see in this chapter, it is more proper to say that the set of events in the time-reversed sense
is highly improbable. From this viewpoint, events in one direction are vastly more probable than those
in the opposite direction.
2 We will use heat as our model for energy transfer into a heat engine. Other methods of energy 
transfer are also possible in the model of a heat engine, however. For example, as we shall show in 
Section 18.9, the Earth’s atmosphere can be modeled as a heat engine in which the input energy 
transfer is by means of electromagnetic radiation from the Sun. The output of the atmospheric heat
engine causes the wind structure in the atmosphere.
3 The automobile engine is not strictly a heat engine according to the cyclic process description 
because the substance (the air– fuel mixture) undergoes only one cycle and is then expelled through
the exhaust system.
4 We will adopt a simplification model in which we assume that the energy transfer from the reservoir is
by heat, but will realize that other transfer mechanisms are possible. For example, as mentioned earlier,
energy is brought into the cylinder of an automobile engine by matter transfer.

Hot reservoir at Th

Q h

Q c

Weng

Cold reservoir at Tc

Engine

Schematic representation of a heat
engine. The engine does work Weng.
The arrow at the top represents en-
ergy Q h � 0 entering the engine. At
the bottom, Q c � 0 represents energy
leaving the engine.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 18.1 to select the 
efficiency of the engine and observe
the transfer of energy.

ACTIVE FIGURE 18.1

www.pop4e.com


and we see that the work Weng done by a heat engine equals the net energy absorbed
by the engine. As we can see from Active Figure 18.1, Q net � &Q h& � &Q c&.
Therefore,

[18.1]

If the working substance is a gas, the net work done by the engine for a cyclic
process is the area enclosed by the curve representing the process on a PV diagram.
This area is shown for an arbitrary cyclic process in Figure 18.2.

The thermal efficiency e of a heat engine is defined as the ratio of the work
done by the engine to the energy absorbed at the higher temperature during one
cycle:

[18.2]

We can think of the efficiency as the ratio of what you gain (energy transfer by
work) to what you give (energy transfer from the high temperature reservoir).
Equation 18.2 shows that a heat engine has 100% efficiency (e � 1) only if Q c � 0
(i.e., if no energy is expelled to the cold reservoir). In other words, a heat engine
with perfect efficiency would have to expel all the input energy by mechanical
work.

The Kelvin–Planck statement of the second law of thermodynamics can be
stated as follows:

It is impossible to construct a heat engine that, operating in a cycle, pro-
duces no effect other than the absorption of energy by heat from a reservoir
and the performance of an equal amount of work. 

The essence of this form of the second law is that it is theoretically impossible to
construct an engine such as that in Figure 18.3 that works with 100% efficiency. All
engines must exhaust some energy Q c to the environment.

e �
Weng

� Q h �
�

� Q h � � � Q c �
� Q h �

� 1 �
� Q c �
� Q h �

Weng � � Q h � � � Q c �

�E int �   Q � W   :   Q net � � W � Weng
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P

V

Area = Weng

The PV diagram
for an arbitrary cyclic process. The net
work done by the engine equals the
area enclosed by the curve.

FIGURE 18.2

The energy input to an engine is 3.00 times greater than the work it
performs. (i) What is its thermal efficiency? (a) 3.00 (b) 1.00 (c) 0.333 (d) impossible
to determine (ii) For this engine, what fraction of the energy input is expelled to the
cold reservoir? (a) 0.333 (b) 0.667 (c) 1.00 (d) impossible to determine

QUICK QUIZ 18.1

Solution The work done is the difference between the 
input and output energies:

�

One cycle of this engine occurs in a time interval 
of 0.010 0 s. What is the power output of this engine?

Solution Power is defined as the rate of energy transfer 
per unit time interval:

5.00 � 104  W� �
W
�t

�
500 J

0.010 0 s
�

C

500 J

Weng  �   � Q h � � � Q c � � 2.00 � 103 J � 1.50 � 103 J

The Efficiency of an EngineEXAMPLE 18.1
An engine transfers 2.00 � 103 J of energy from a hot
reservoir during a cycle and transfers 1.50 � 103 J to a
cold reservoir.

Find the efficiency of the engine.

Solution The efficiency of the engine is calculated us-
ing Equation 18.2:

How much work does this engine do in one cycle?B

0.250, or 25.0%e � 1 �
� Q c �
� Q h �

� 1 �
1.50 � 103 J
2.00 � 103 J

�

A

The impossible engine

Q h

Cold reservoir at Tc

Engine

Hot reservoir at Th

Weng

Schematic repre-
sentation of a heat engine that ab-
sorbs energy Q h from a hot reservoir
and does an equivalent amount of
work. It is not possible to construct
such a perfect engine.

FIGURE 18.3



REVERSIBLE  AND  IRREVERSIBLE  PROCESSES
In the next section, we shall discuss a theoretical heat engine that is the most effi-
cient engine possible. To understand its nature, we must first examine the meaning
of reversible and irreversible processes. A reversible process is one for which the
system can be returned to its initial conditions along the same path and for which
every point along the path is an equilibrium state. A process that does not satisfy
these requirements is irreversible.

Most natural processes are known to be irreversible; the reversible process is an
idealization. The three processes described in the introduction to this chapter are
irreversible, and we see them proceed in only one direction. The free expansion
of a gas discussed in Section 17.6 is irreversible. When the membrane is removed,
the gas rushes into the empty half of the vessel and the environment is not
changed. No matter how long we watched, we would never see the gas in the full
volume spontaneously rush back into only half the volume. The only way we
could cause that to happen would be to interact with the gas, perhaps by pushing
it inward with a piston, but that method would result in a change in the
environment.

If a real process occurs very slowly so that the system is always very nearly in equi-
librium, the process can be modeled as reversible. For example, imagine compress-
ing a gas very slowly by dropping some grains of sand onto a frictionless piston as in
Figure 18.4. The pressure, volume, and temperature of the gas are well defined
during this isothermal compression. Each added grain of sand represents a small
change to a new equilibrium state. The process can be reversed by the slow removal
of grains of sand from the piston.

THE  CARNOT  ENGINE
In 1824, a French engineer named Sadi Carnot described a theoretical engine, now
called a Carnot engine, that is of great importance from both practical and
theoretical viewpoints. He showed that a heat engine operating in an ideal,
reversible cycle—called a Carnot cycle—between two energy reservoirs is the
most efficient engine possible. Such an ideal engine establishes an upper limit
on the efficiencies of all real engines. That is, the net work done by a working
substance taken through the Carnot cycle is the greatest amount of work
possible for a given amount of energy supplied to the substance at the upper
temperature.

To describe the Carnot cycle, we shall assume that the working substance in
the engine is an ideal gas contained in a cylinder with a movable piston at one
end. The cylinder walls and the piston are thermally nonconducting. Four stages of
the Carnot cycle are shown in Active Figure 18.5; Active Figure 18.6 is the PV diagram
for the cycle, which consists of two adiabatic and two isothermal processes, all
reversible.

In the Carnot cycle, the following processes take place:

• The process A : B is an isothermal expansion at temperature Th, in which the
gas is placed in thermal contact with an energy reservoir at temperature Th
(Active Fig. 18.5a). During the process, the gas absorbs energy Q h by heat from
the reservoir and does work WAB in raising the piston.

• In the process B : C , the base of the cylinder is replaced by a thermally noncon-
ducting wall and the gas expands adiabatically; that is, no energy enters or leaves
the system by heat (Active Fig. 18.5b). During the process, the temperature falls
from Th to Tc and the gas does work WBC in raising the piston.

• In the process C : D, the gas is placed in thermal contact with an energy
reservoir at temperature Tc (Active Fig. 18.5c) and is compressed isothermally at

18.3
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REAL PROCESSES ARE IRREVERSIBLE

The reversible process is an ideal-
ization. All real processes on Earth
are irreversible.

� PITFALL PREVENTION 18.1

Energy reservoir

Sand

A gas in thermal
contact with an energy reservoir is
compressed slowly as individual grains
of sand are dropped onto the piston.
The compression is isothermal and
reversible.

FIGURE 18.4

Sadi Carnot (1796–1832)
French physicist Carnot was the first
to show the quantitative relation-
ship between work and heat. In 1824,
he published his only work — Reflec-
tions on the Motive Power of Heat,
which reviewed the industrial, polit-
ical, and economic importance of
the steam engine. In it, he defined
work as “weight lifted through a
height.” 
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Cycle

(c)

Energy reservoir at Tc

C → D
Isothermal

compression

Q c

B → C

Adiabatic
expansion

Q = 0

(b)

Q = 0

(d)

Energy reservoir at Th

(a)

A → B

Isothermal
expansion

Q h

D → A

Adiabatic
compression

The Carnot cycle. (a) In process A : B, the gas expands isothermally while
in contact with an energy reservoir at Th. (b) In process B : C, the gas ex-
pands adiabatically (Q � 0). (c) In process C : D, the gas is compressed
isothermally while in contact with an energy reservoir at Tc � Th. (d) In
process D : A, the gas is compressed adiabatically. The arrows on the pis-
ton indicate the direction of its motion in each process.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 18.5. You can
observe the motion of the piston in the Carnot cycle while you also observe the cycle on the PV diagram
of Active Figure 18.6.

ACTIVE FIGURE 18.5

temperature Tc . During this time, the gas expels energy Q c to the reservoir and
the work done on the gas is WCD .

• In the final process D : A, the base of the cylinder is again replaced by a 
thermally nonconducting wall (Active Fig. 18.5d) and the gas is compressed 
adiabatically. The temperature of the gas increases to Th, and the work done on the
gas is WDA.

576 ❚ CHAPTER 18 HEAT ENGINES, ENTROPY, AND THE SECOND LAW OF THERMODYNAMICS

DON’T SHOP FOR A CARNOT ENGINE

The Carnot engine is an idealiza-
tion, so do not expect a Carnot
engine to be developed for com-
mercial use. If a Carnot engine
were developed in an effort to max-
imize the efficiency, it would have
zero power output because for all
the processes to be reversible, the
engine would have to run infinitesi-
mally slowly.

� PITFALL PREVENTION 18.2
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The PV diagram for the Carnot cy-
cle. The net work done Weng equals
the net energy transferred into the
Carnot engine in one cycle,
&Q h&�&Q c&. Note that � E int � 0
for the cycle.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 18.6. You can 
observe the Carnot cycle on the PV
diagram while you also observe the
motion of the piston in Active 
Figure 18.5.

ACTIVE FIGURE 18.6

Carnot showed that for this cycle,

[18.3]

Therefore, using Equation 18.2, the thermal efficiency of a Carnot engine is

[18.4]

From this result, we see that all Carnot engines operating between the same two
temperatures have the same efficiency.

Equation 18.4 can be applied to any working substance operating in a Carnot
cycle between two energy reservoirs. According to this result, the efficiency is
zero if Tc � Th, as one would expect. The efficiency increases as Tc is lowered
and as Th is increased. The efficiency can be unity (100%), however, only if
Tc � 0 K. It is impossible to reach absolute zero,5 so such reservoirs are not
available. Therefore, the maximum efficiency is always less than unity. In most
practical cases, the cold reservoir is near room temperature, about 300 K.
Therefore, one usually strives to increase the efficiency by raising the tempe-
rature of the hot reservoir. All real engines are less efficient than the Carnot
engine because they all operate irreversibly so as to complete a cycle in a
brief time interval.6 In addition to this theoretical limitation, real engines are
subject to practical difficulties, including friction, that reduce the efficiency
further.

e Carnot � 1 �
Tc

Th

� Q c �
� Q h �

�
Tc

Th
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V

P

Weng

D

B

Qh

Th

TcQ c

C

A

Three engines operate between reservoirs separated in temperature
by 300 K. The reservoir temperatures are as follows: engine A: Th � 1 000 K, Tc � 700 K;
engine B: Th � 800 K, Tc � 500 K; engine C: Th � 600 K, Tc � 300 K. Rank the engines
in order of theoretically possible efficiency, from highest to lowest.

QUICK QUIZ 18.2

ciency for any engine operating between these 
temperatures:

Note that this result is the highest theoretical efficiency
of the engine. In practice, the efficiency is considerably
lower.

0.400, or 40.0%e Carnot � 1 �
Tc

Th
� 1 �

300 K
500 K

�

The Steam EngineEXAMPLE 18.2
A steam engine has a boiler that operates at 500 K. The
energy resulting from the burning of the fuel changes
water to steam, and this steam then drives the piston.
The exhaust temperature is that of the outside air,
approximately 300 K. What is the maximum thermal
efficiency of this steam engine?

Solution From the expression for the efficiency of a
Carnot engine, we find the maximum thermal effi-

5 The inability to reach absolute zero is known as the third law of thermodynamics. It would require an
infinite amount of energy to lower the temperature of a substance to absolute zero.
6 For the processes in the Carnot cycle to be reversible, they must be carried out infinitesimally slowly.
Therefore, although the Carnot engine is the most efficient engine possible, it has zero power output
because it takes an infinite time interval to complete one cycle! For a real engine, the short time
interval for each cycle results in the working substance reaching a high temperature lower than that of
the hot reservoir and a low temperature higher than that of the cold reservoir. An engine undergoing a
Carnot cycle between this narrower temperature range was analyzed by F. L. Curzon and B. Ahlborn
(Am. J. Phys., 43(1):22, 1975), who found that the efficiency at maximum power output depends only
on the reservoir temperatures Tc and Th , and is given by eC -A � 1 � (Tc /Th)1/2. The Curzon–Ahlborn
efficiency eC -A provides a closer approximation to the efficiencies of real engines than does the Carnot
efficiency.
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Schematic representation of a heat
pump, which absorbs energy Q c from
a cold reservoir and expels energy Q h

to a hot reservoir. The work done on
the heat pump is W.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 18.7 to select the COP of
the heat pump and observe the
transfer of energy.

ACTIVE FIGURE 18.7

HEAT  PUMPS  AND  REFRIGERATORS
In a heat engine, the direction of energy transfer is from the hot reservoir to the
cold reservoir, which is the natural direction. The role of the heat engine is to
process the energy from the hot reservoir so as to do useful work. What if we
wanted to transfer energy by heat from the cold reservoir to the hot reservoir?
Because this direction is not the natural one, we must transfer some energy into a
device to cause it to occur. Devices that perform this task are called heat pumps or
refrigerators.

Active Figure 18.7 is a schematic representation of a heat pump. The cold reser-
voir temperature is Tc , the hot reservoir temperature is Th, and the energy ab-
sorbed by the heat pump is Q c . Energy is transferred into the system, which we
model as work7 W, and the energy transferred out of the pump is Q h.

Heat pumps have long been popular for cooling in homes, where they are
called air conditioners, and are now becoming increasingly popular for heating pur-
poses as well. In the heating mode, a circulating coolant fluid absorbs energy from
the outside air (the cold reservoir) and releases energy to the interior of the struc-
ture (the hot reservoir). The fluid is usually in the form of a low-pressure vapor
when in the coils of the exterior part of the unit, where it absorbs energy from ei-
ther the air or the ground by heat. This gas is then compressed into a hot, high-
pressure vapor and enters the interior part of the unit, where it condenses to a liq-
uid and releases its stored energy. An air conditioner is simply a heat pump
installed backward, with “exterior” and “interior” interchanged. The inside of the
home is the cold reservoir and the outside air is the hot reservoir.

The effectiveness of a heat pump is described in terms of a number called the
coefficient of performance COP. In the heating mode, the COP is defined as the
ratio of the energy transferred by heat into the hot reservoir to the work required
to transfer that energy:

[18.5]

As a practical example, if the outside temperature is �4°C (25°F) or higher, the
COP for a typical heat pump is about 4. That is, the energy transferred into the
house is about four times greater than the work done by the compressor in the heat
pump. As the outside temperature decreases, however, it becomes more difficult for
the heat pump to extract sufficient energy from the air, and the COP therefore
drops.

A Carnot cycle heat engine operating in reverse constitutes an ideal heat pump,
the heat pump with the highest possible COP for the temperatures between which
it operates. The maximum coefficient of performance is

Although heat pumps are relatively new products in heating, the refrigerator
has been a standard appliance in homes for decades. The refrigerator cools its inte-
rior by pumping energy from the food storage compartments into the warmer air

COPCarnot(heat pump) �
Th

Th � Tc
 

 �
� Q h �
W

COP (heat pump) �
energy transferred to hot reservoir 

work done on pump

18.4
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7 The traditional notation is to model the input energy as transferred by work, although most heat
pumps operate from electricity, so the more appropriate transfer mechanism into the device as the system
is electrical transmission. If we identify the refrigerant fluid in a heat pump as the system, the energy
transfers into the fluid by work done by a piston attached to a compressor operated electrically. In
keeping with tradition, we will schematicize the heat pump with input by work regardless of the choice
of system.

Q h

Q c

Cold reservoir at Tc

Heat pump

W

Hot reservoir at Th
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outside. During its operation, a refrigerator removes energy Q c from the interior of
the refrigerator, and in the process its motor does work W. The COP of a refrigera-
tor or of a heat pump used in its cooling cycle is

[18.6]

An efficient refrigerator is one that removes the greatest amount of energy from
the cold reservoir with the least amount of work. Therefore, a good refrigerator
should have a high coefficient of performance, typically 5 or 6.

The highest possible COP is again that of a refrigerator whose working sub-
stance is carried through the Carnot heat engine cycle in reverse:

As the difference between the temperatures of the two reservoirs approaches
zero, the theoretical coefficient of performance of a Carnot heat pump approaches
infinity. In practice, the low temperature of the cooling coils and the high tempera-
ture at the compressor limit the COP to values below 10.

COPCarnot (refrigerator) �
Tc

Th � Tc

COP (refrigerator) �
� Q c �
W
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The energy entering an electric heater by electrical transmission can
be converted to internal energy with an efficiency of 100%. By what factor does the cost
of heating your home change when you replace your electric heating system with an elec-
tric heat pump that has a COP of 4.00? Assume that the motor running the heat pump is
100% efficient. (a) 4.00 (b) 2.00 (c) 0.500 (d) 0.250

QUICK QUIZ 18.3

■ Thinking Physics 18.1
It is a sweltering summer day and your air-conditioning system is not operating. In
your kitchen, you have a working refrigerator and an ice chest full of ice. Which
should you open and leave open to cool the room more effectively?

Reasoning The high-temperature reservoir for your kitchen refrigerator is the air
in the kitchen. If the refrigerator door were left open, energy would be drawn from
the air in the kitchen, passed through the refrigeration system and transferred right
back into the air. The result would be that the kitchen would become warmer
because of the addition of the energy coming in by electricity to run the refrigera-
tion system. If the ice chest were opened, energy in the air would enter the ice,
raising its temperature and causing it to melt. The transfer of energy from the air
would cause its temperature to drop. Therefore, it would be more effective to open
the ice chest. ■

AN  ALTERNATIVE  STATEMENT  OF  THE  SECOND  LAW
Suppose you wish to cool off a hot piece of pizza by placing it on a block of ice. You
will certainly be successful because in every similar situation, energy transfer has al-
ways taken place from a hot object to a cooler one. Yet nothing in the first law of
thermodynamics says that this energy transfer could not proceed in the opposite di-
rection. (Imagine your astonishment if someday you place a piece of hot pizza on
ice and the pizza becomes warmer!) It is the second law that determines the direc-
tions of such natural phenomena.

An analogy can be made with the impossible sequence of events seen in a movie
film running backward, such as a person rising out of a swimming pool and landing
back on the diving board, an apple rising from the ground and latching onto the

18.5



branch of a tree, or a pot of hot water becoming colder as it rests over an open
flame. Such events occurring backward in time are impossible because they violate
the second law of thermodynamics. Real processes proceed in a preferred
direction.

The second law can be stated in several different ways, but all the statements can
be shown to be equivalent. Which form you use depends on the application you
have in mind. For example, if you were concerned about the energy transfer be-
tween pizza and ice, you might choose to concentrate on the Clausius statement of
the second law: Energy does not flow spontaneously by heat from a cold object to a
hot object. Figure 18.8 shows a heat pump that violates this statement of the second
law. Energy is transferring from the cold reservoir to the hot reservoir without an
input of work. At first glance, this statement of the second law seems to be radically
different from that in Section 18.1, but the two are, in fact, equivalent in all re-
spects. Although we shall not prove it here, it can be shown that if either statement
of the second law is false, so is the other.

ENTROPY
The zeroth law of thermodynamics involves the concept of temperature and
the first law involves the concept of internal energy. Temperature and internal
energy are both state variables; that is, they can be used to describe the thermody-
namic state of a system. Another state variable, this one related to the second
law of thermodynamics, is entropy S. In this section, we define entropy on a
macroscopic scale as German physicist Rudolf Clausius (1822–1888) first expressed
it in 1865.

Equation 18.3, which describes the Carnot engine, can be rewritten as

Thus, the ratio of the energy transfer by heat in a Carnot cycle to the (constant)
temperature at which the transfer takes place has the same magnitude for both
isothermal processes. To generalize the current discussion beyond heat engines,
let us drop the absolute value notation and revive our original sign convention,
in which Q c represents energy leaving the system of the gas and is therefore a
negative number. Therefore, we need an explicit negative sign to maintain the
equality:

We can write this equation as

[18.7]

We have not specified a particular Carnot cycle in generating this equation, so it
must be true for all Carnot cycles. Furthermore, by approximating a general re-
versible cycle with a series of Carnot cycles, we can show that this equation is true
for any reversible cycle, which suggests that the ratio Q /T may have some special
significance. Indeed it does, as we note in the following discussion.

Consider a system undergoing any infinitesimal process between two equilib-
rium states. If dQ r is the energy transferred by heat as the system follows a re-
versible path between the states, the change in entropy, regardless of the actual
path followed, is equal to this energy transferred by heat along the reversible path
divided by the absolute temperature of the system:

[18.8]dS �
dQ r

T

Q h

Th
�

Q c

Tc
� 0   :    � 

Q
T

� 0

�  
Q c

Tc
�

Q h

Th

� Q c �
Tc

�
� Q h �
Th
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■ Second law of thermodynamics;
Clausius statement

Hot reservoir at Th

Q h  = Q c

Q c

Cold reservoir at Tc

Heat pump

Impossible heat pump

Schematic diagram
of an impossible heat pump or refrig-
erator, that is, one that takes in energy
from a cold reservoir and expels an
equivalent amount of energy to a hot
reservoir without the input of energy
by work.

FIGURE 18.8

ENTROPY IS ABSTRACT Entropy is
one of the most abstract notions in
physics, so follow the discussion in
this and the subsequent sections
very carefully. Be sure that you do
not confuse energy and entropy;
even though the names sound
similar, they are very different.

� PITFALL PREVENTION 18.3

■ Change in entropy for an 
infinitesimal process



The subscript r on the term dQ r is a reminder that the heat is to be determined
along a reversible path, even though the system may actually follow some irre-
versible path. Therefore, we must model a nonreversible process by a reversible
process between the same initial and final states to calculate the entropy change. In
this case, the model might not be close to the actual process at all, but that is not a
concern because entropy is a state variable and the entropy change depends only
on the initial and final states. The only requirements are that the model process
must be reversible and must connect the given initial and final states.

When energy is absorbed by the system, dQ r is positive and hence the entropy
increases. When energy is expelled by the system, dQ r is negative and the entropy
decreases. Note that Equation 18.8 defines not entropy but rather the change in
entropy. Hence, the meaningful quantity in a description of a process is the change
in entropy.

With Equation 18.8, we have a mathematical representation of the change in
entropy, but we have developed no mental representation of what entropy means.
In this and the next few sections, we explore various aspects of entropy that will
allow us to gain a conceptual understanding of it.

Entropy originally found its place in thermodynamics, but its importance grew
tremendously as the field of physics called statistical mechanics developed because
this method of analysis provided an alternative way of interpreting entropy. In statis-
tical mechanics, a substance’s behavior is described in terms of the statistical behav-
ior of its large number of atoms and molecules. Kinetic theory, which we studied in
Chapter 16, is an excellent example of the statistical mechanics approach. A main
outcome of this treatment is the principle that isolated systems tend toward disor-
der, and entropy is a measure of that disorder.

To understand this notion, we introduce the distinction between microstates
and macrostates for a system. We can do so by looking at an example far removed
from thermodynamics, the throwing of dice at a craps table in a casino. For two
dice, a microstate is the particular combination of numbers on the upturned faces of
the dice; for example, 1–3 and 2–4 are two different microstates (Fig. 18.9). The
macrostate is the sum of the numbers. Therefore, the macrostates for the two exam-
ple microstates in Figure 18.9 are 4 and 6. Now, here is the central notion that we
will need to understand entropy: The number of microstates associated with a
given macrostate is not the same for all macrostates, and the most probable
macrostate is that with the largest number of possible microstates. A macrostate of
7 on our pair of dice has six possible microstates: 1–6, 2–5, 3–4, 4–3, 5–2, and
6–1 (Fig. 18.10a). For a macrostate of 2, there is only one possible microstate: 1–1
(Fig. 18.10b). Therefore, a macrostate of 7 has six times as many microstates as a
macrostate of 2 and is therefore six times as probable. In fact, the macrostate of 7 is
the most probable macrostate for two dice. The game of craps is built around these
probabilities of various macrostates.

Consider the low probability macrostate 2. The only way of achieving it is to have
a 1 on each die. We say that this macrostate has a high degree of order; we must have
a 1 on each die for this macrostate to exist. Considering the possible microstates for
a macrostate of 7, however, we see six possibilities. This macrostate is more disor-
dered because several microstates are possible that will result in the same macrostate.
Thus, we conclude that high-probability macrostates are disordered macrostates
and low-probability macrostates are ordered macrostates.

As a more physical example, consider the molecules in the air in your room. Let
us compare two possible macrostates. Macrostate 1 is the condition in which the
oxygen and nitrogen molecules are mixed evenly throughout the room. Macrostate
2 is that in which the oxygen molecules are in the front half of the room and the
nitrogen molecules are in the back half. From our everyday experience, it is
extremely unlikely for macrostate 2 to exist. On the other hand, macrostate 1 is what
we would normally expect to see. Let us relate this experience to the microstates,
which correspond to the possible positions of molecules of each type. For
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(b)

(a)

Two different mi-
crostates for a throw of two dice.
These correspond to two macrostates,
having values of (a) 4 and (b) 6.

FIGURE 18.9

(a)

(b)

Possible two-dice
microstates for a macrostate of 
(a) 7 and (b) 2. The macrostate of 7 is
more probable because there are
more ways of achieving it; more 
microstates are associated with a 7
than with a 2.

FIGURE 18.10



macrostate 2 to exist, every molecule of oxygen would have to be in one half of the
room and every molecule of nitrogen in the other half, which is a highly ordered and
unlikely situation. The probability of this occurrence is infinitesimal. For macrostate 1
to exist, both types of molecules are simply distributed evenly around the room, which
is a much lower level of order and a highly probable situation. Therefore, the mixed
state is much more likely than the separated state, and that is what we normally see.

Let us look now at the notion that isolated systems tend toward disorder. The
cause of this tendency toward disorder is easily seen. Let us assume that all mi-
crostates for the system are equally probable. When the possible macrostates associ-
ated with the microstates are examined, however, far more of them are disordered
macrostates with many microstates than ordered macrostates with few microstates.
Because each of the microstates is equally probable, it is highly probable that the
actual macrostate will be one of the highly disordered macrostates simply because
there are more microstates.

In physical systems, we are not talking about microstates of two entities like our
pair of dice; we are talking about a number on the order of Avogadro’s number of
molecules. If you imagine throwing Avogadro’s number of dice, the game of craps
would be meaningless. You could make an almost perfect prediction of the result
when the numbers on the faces are all added up (if the numbers on the face of the
dice were added once per second, more than 19 thousand trillion years would be
needed to tabulate the results for only one throw!) because you are dealing with the
statistics of a huge number of dice. We face these kinds of statistics with Avogadro’s
number of molecules. The macrostate can be well predicted. Even if a system starts
off in a very low probability state (e.g., the nitrogen and oxygen molecules separated
in a room by a membrane that is then punctured), it quickly develops into a high-
probability state (the molecules rapidly mix evenly throughout the room).

We can now present this as a general principle for physical processes: All physi-
cal processes tend toward more probable macrostates for the system and its
surroundings. The more probable macrostate is always one of higher disorder.
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(i) Suppose you select four cards at random from a standard deck of
playing cards and end up with a macrostate of four deuces. How many microstates are as-
sociated with this macrostate? (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f ) 6 (ii) Suppose
you pick up two cards and end up with a macrostate of two aces. From the same choices,
how many microstates are associated with this macrostate? (iii) Which macrostate is
more probable? (a) Four deuces are more probable. (b) Two aces are more probable.
(c) They are of equal probability.

QUICK QUIZ 18.4

Now, what does all this talk about dice and states have to do with entropy? To
answer this question, we can show that entropy is a measure of the disorder of a
state. Then, we shall use these ideas to generate a new statement of the second law
of thermodynamics.

As we have seen, entropy can be defined using the macroscopic concepts of heat
and temperature. Entropy can also be treated from a microscopic viewpoint
through statistical analysis of molecular motions. We can make a connection be-
tween entropy and the number of microstates associated with a given macrostate
with the following expression:8

[18.9]

where W is the number of microstates associated with the macrostate whose
entropy is S.

S � kB lnW

8 For a derivation of this expression, see Chapter 22 of R. A. Serway and J. W. Jewett Jr., Physics for
Scientists and Engineers, 6th ed. (Belmont, CA: 2004), Brooks-Cole.

■ Entropy (microscopic definition)



Because the more probable macrostates are the ones with larger numbers of
microstates and the larger numbers of microstates are associated with more
disorder, Equation 18.9 tells us that entropy is a measure of microscopic disorder.

ENTROPY AND THE SECOND LAW OF THERMODYNAMICS ❚ 583

y p g p pp

Let’s Play Marbles!EXAMPLE 18.3INTERACTIVE
disordered, macrostate—two red marbles and two green
marbles—corresponds to the largest number of mi-
crostates. The least likely, most ordered macrostates—
four red marbles or four green marbles—correspond to
the smallest number of microstates.

Suppose you have a bag of 100 marbles. Fifty of the
marbles are red and 50 are green. You are allowed to
draw four marbles from the bag according to the fol-
lowing rules. Draw one marble, record its color, and
return it to the bag. Shake the bag and then draw
another marble. Continue this process until you have
drawn and returned four marbles. What are the possi-
ble macrostates for this set of events? What is the most
likely macrostate? What is the least likely macrostate?

Solution Because each marble is returned to the bag
before the next one is drawn and because the bag is
shaken, the probability of drawing a red marble is always
the same as the probability of drawing a green one. All
the possible microstates and macrostates are shown in
Table 18.1. As this table indicates, there is only one way
to draw a macrostate of four red marbles, and so there is
only one microstate. There are, however, four possible
microstates that correspond to the macrostate of one
green marble and three red marbles, six microstates that
correspond to two green marbles and two red marbles,
four microstates that correspond to three green marbles
and one red marble, and one microstate that corre-
sponds to four green marbles. The most likely, and most

Possible Results of Drawing Four 
Marbles from a Bag

TABLE 18.1

Total Number 
Macrostate Possible Microstates of Microstates

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, 4

GRRR
2G, 2R RRGG, RGRG, GRRG, 6

RGGR, GRGR, GGRR
3G, 1R GGGR, GGRG, GRGG, 4

RGGG
All G GGGG 1

ENTROPY  AND  THE  SECOND  LAW  
OF  THERMODYNAMICS

Because entropy is a measure of disorder and physical systems tend toward disor-
dered macrostates, we can state that the entropy of the Universe increases in all
natural processes. This statement is yet another way of stating the second law of
thermodynamics.

To calculate the change in entropy for a finite process, we must recognize that T
is generally not constant. If dQ r is the energy transferred reversibly by heat when
the system is at temperature T, the change in entropy in an arbitrary reversible
process between an initial state and a final state is

(reversible path) [18.10]

The change in entropy of a system depends only on the properties of the initial and
final equilibrium states because entropy is a state variable, like internal energy,
which is consistent with the relationship of entropy to disorder. For a given
macrostate of a system, a given amount of disorder exists, measured by W (Eq.
18.9), the number of microstates corresponding to the macrostate. This number
does not depend on the path followed as a system goes from one state to another.

�S � �f

i
dS � �f

i

dQ r

T
 

18.7

■ Second law of thermodynamics;
entropy statement

■ Change in entropy for a 
finite process

Explore the generation of microstates and
macrostates by logging into PhysicsNow at www.pop4e.com
and going to Interactive Example 18.3.

www.pop4e.com


In the case of a reversible, adiabatic process, no energy is transferred by heat
between the system and its surroundings, and therefore �S � 0. Because no change
in entropy occurs, such a process is often referred to as an isentropic process.

Consider the changes in entropy that occur in a Carnot heat engine operating
between the temperatures Tc and Th. Equation 18.7 tells us that for a Carnot cycle,

�S � 0

Now consider a system taken through an arbitrary reversible cycle. Because entropy
is a state variable and hence depends only on the properties of a given equilibrium
state, we conclude that �S � 0 for any reversible cycle. In general, we can write this
condition in the mathematical form

[18.11]

where the symbol � indicates that the integration is over a closed path.

� 
dQ r

T
 � 0
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Which of the following is true for the entropy change of a system that
undergoes a reversible, adiabatic process? (a) �S � 0 (b) �S � 0 (c) �S � 0
QUICK QUIZ 18.5

An ideal gas is taken from an initial temperature Ti to a higher final
temperature Tf along two different reversible paths starting from the same point on a
PV diagram. Path A is at constant pressure, and path B is at constant volume. What is the
relation between the entropy changes of the gas for these paths? (a) �SA � �SB

(b) �SA � �SB (c) �SA � �SB

QUICK QUIZ 18.6

■ Thinking Physics 18.2
A box contains five gas molecules, spread throughout the box. At some time, all five
are in one half of the box, which is a highly ordered situation. Does this situation
violate the second law of thermodynamics? Is the second law valid for this system?

Reasoning Strictly speaking, this situation does violate the second law of thermody-
namics. In response to the second question, however, the second law is not valid for
small numbers of particles. The second law is based on collections of huge numbers
of particles for which disordered states have astronomically higher probabilities
than ordered states. Because the macroscopic world is built from these huge num-
bers of particles, the second law is valid as real processes proceed from order to dis-
order. In the five-molecule system, the general idea of the second law is valid in that
there are more disordered states than ordered ones, but the relatively high proba-
bility of the ordered states results in their existence from time to time. ■

constant and equal to Tm. Making use of Equation
18.10 and that the latent heat of fusion Q � mLf , 
(Eq. 17.5), we find that

Note that we are able to remove Tm from the integral
because the process is isothermal.

mLf

Tm
�S � � dQ r

T
 �

1
Tm

 �dQ �
Q
Tm

�

Change in Entropy — Melting ProcessEXAMPLE 18.4
A solid substance that has a latent heat of fusion Lf
melts at a temperature Tm. Calculate the change in
entropy when a mass m of this substance is melted.

Solution Let us assume that the melting process
occurs so slowly that it can be considered a reversible
process; we can reverse the process by extracting
energy very slowly to freeze the liquid into the solid
form. In this case, the temperature can be regarded as



ENTROPY  CHANGES  IN  IRREVERSIBLE  PROCESSES
So far, we have calculated changes in entropy using information about a reversible
path connecting the initial and final equilibrium states. We can calculate entropy
changes for irreversible processes by devising a reversible process (or a series of
reversible processes) between the same two equilibrium states and computing
�dQr �T for the reversible process. In irreversible processes, it is critically important
to distinguish between Q , the actual energy transfer in the process, and Q r , the en-
ergy that would have been transferred by heat along a reversible path between the
same states. Only the second value gives the correct entropy change. For example,
as we shall see, if an ideal gas expands adiabatically into a vacuum, Q � 0, but
�S � 0 because Q r � 0. The reversible path between the same two states is the re-
versible, isothermal expansion that gives �S � 0.

As we shall see in the following examples, the change in entropy for the system
plus its environment is always positive for an irreversible process. In general, the to-
tal entropy (and disorder) always increases in irreversible processes. From these
considerations, the second law of thermodynamics can be stated as follows: The
total entropy of an isolated system that undergoes a change cannot decrease.
Furthermore, if the process is irreversible, the total entropy of an isolated system
always increases. On the other hand, in a reversible process, the total entropy of an
isolated system remains constant.

When dealing with interacting objects that are not isolated from the environ-
ment, we must consider the change of entropy for the system and its environment.
When two objects interact in an irreversible process, the increase in entropy of one
part of the Universe is greater than the decrease in entropy of the other part.
Hence, we conclude that the change in entropy of the Universe must be greater
than zero for an irreversible process and equal to zero for a reversible process. Ulti-
mately, the entropy of the Universe should reach a maximum value. At this point,
the Universe will be in a state of uniform temperature and density. All physical,
chemical, and biological processes will cease because a state of perfect disorder im-
plies that no energy is available for doing work. This gloomy state of affairs is some-
times referred to as the “heat death” of the Universe.

18.8
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True or false: The entropy change in an adiabatic process must be
zero because Q � 0.
QUICK QUIZ 18.7

■ Thinking Physics 18.3
According to the entropy statement of the second law, the entropy of the Universe
increases in irreversible processes. This statement sounds very different from the
Kelvin–Planck and Clausius forms of the second law. Can these two statements be
made consistent with the entropy interpretation of the second law?

Reasoning These three forms are consistent. In the Kelvin–Planck statement, the
energy in the reservoir is disordered internal energy, the random motion of mole-
cules. Performing work results in ordered energy, such as pushing a piston through
a displacement. In this case, the motion of all molecules of the piston is in the same
direction. If a heat engine absorbed energy by heat and performed an equal
amount of work, it would have converted disorder into order, in violation of the en-
tropy statement. In the Clausius statement, we start with an ordered system: higher
temperature in the hot object, lower in the cold object. This separation of tempera-
tures is an example of order. Energy transferring spontaneously from the cold ob-
ject to the hot object, so that the temperatures spread even farther apart, would be
an increase in order, in violation of the entropy statement. ■



Entropy Changes in a Free Expansion
An ideal gas in an insulated container initially occupies a volume of Vi (Fig. 18.11).
A partition separating the gas from an evacuated region is broken so that the gas
expands (irreversibly) to the volume Vf . Let us find the change in entropy of the
gas and the Universe.

The process is neither reversible nor quasi-static. The work done on the gas is
zero, and because the walls are insulating, no energy is transferred by heat during
the expansion. That is, W � 0 and Q � 0. The first law tells us that the change in in-
ternal energy �E int is zero; therefore, E int,i � E int, f . Because the gas is ideal, E int
depends on temperature only, so we conclude that Ti � Tf .

To apply Equation 18.10, we must find Q r ; that is, we must find an equivalent re-
versible path that shares the same initial and final states. A simple choice is an
isothermal, reversible expansion in which the gas pushes slowly against a piston. Be-
cause T is constant in this process, Equation 18.10 gives

Because we are considering an isothermal process, �E int � 0, so the first law of
thermodynamics tells us that the energy input by heat is equal to the negative of
the work done on the gas, dQ r � �dW � P dV. Using this result, we find that

[18.12]

Because Vf � Vi, we conclude that �S is positive, and so both the entropy and the
disorder of the gas (and the Universe) increase as a result of the irreversible, adia-
batic expansion.

 �S � nR ln 
Vf

Vi

 �S �
1
T

 �dQ r �
1
T

 �P dV �
1
T

 � nRT
V

 dV � nR �Vf

Vi

dV
V

 

�S � � dQ r

T
�

1
T

 �f

i
dQ r 

586 ❚ CHAPTER 18 HEAT ENGINES, ENTROPY, AND THE SECOND LAW OF THERMODYNAMICS

The number of microstates associated with placing
one molecule of volume Vm into a space of volume V is
w � V/Vm. (The symbol w is used to represent the word
“way”; one microstate is one “way” of achieving a
macrostate.) The number of microstates associated 
with placing N molecules in this space is W � w NN �
(V/Vm)NN. Find the number of ways the molecules of
1 mol of an ideal gas can be distributed in an initial
volume Vi.

Solution The text of this part of the problem tells us to
now categorize the problem as a microscopic approach
to entropy change. To analyze the problem, as dis-
cussed in the text of the problem, the number of states
available to a single molecule in the initial volume Vi is
wi � (Vi/Vm). For 1 mol (NA molecules), the number
of available states is

� Vi

Vm
	

NA

Wi � wi 

NA �

B

R  ln 4�S � nR  ln 
Vf

Vi
� (1)R  ln � 4Vi

Vi
	 �

Free Expansion of an Ideal Gas, RevisitedEXAMPLE 18.5
Again consider the free expansion of an ideal gas. Let
us verify that the macroscopic and microscopic ap-
proaches lead to the same conclusion. Suppose 1 mol
of an ideal gas undergoes a free expansion to four
times its initial volume. The initial and final tempera-
tures are, as we have seen, the same.

Using a macroscopic approach, calculate the en-
tropy change of the gas.

Solution Let us conceptualize this situation from both
a macroscopic and a microscopic point of view. Macro-
scopically, the gas has become more disordered by
changing from a situation in which all molecules are in
a small space to one in which the molecules are distrib-
uted within a space four times as large. Microscopically,
there are more ways of placing the molecules in a large
volume than in a small volume. From either approach,
we see that the entropy of the gas must increase. The
text of this first part of the problem tells us to catego-
rize the problem as a macroscopic approach to entropy
change. To analyze the problem, Equation 18.12
gives us

A

VacuumVi

(a)

Vf

(b)

(a) A gas is initially
restricted to an available volume Vi

while the remainder of the volume is
evacuated. (b) During a free expan-
sion, the gas is allowed to expand into
the evacuated volume.

FIGURE 18.11



THE  ATMOSPHERE  AS  A  HEAT  ENGINE
In Chapter 17, we predicted a global temperature based on the notion of energy
balance between incoming visible radiation from the Sun and outgoing infrared
radiation from the Earth. This model leads to a global temperature that is well
below the measured temperature. This discrepancy results because atmospheric
effects are not included in our model. In this section, we shall introduce some of
these effects and show that the atmosphere can be modeled as a heat engine. In the
Context Conclusion, we shall use concepts learned in the thermodynamics chapters
to build a model that is more successful at predicting the correct temperature of
the Earth.

What happens to the energy that enters the atmosphere by radiation from the
Sun? Figure 18.12 helps answer this question by showing how the input energy un-
dergoes various processes. If we identify the incoming energy as 100%, we find that
30% of it is reflected back into space, as we mentioned in Chapter 17. This 30% in-
cludes 6% back-scattered from air molecules, 20% reflected from clouds, and 4%
reflected from the surface of the Earth. The remaining 70% is absorbed by either
the air or the surface. Before reaching the surface, 20% of the original radiation is
absorbed in the air; 4% by clouds; and 16% by water, dust particles, and ozone in

18.9
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To finalize the problem, note that this answer is the
same as that in part A, which dealt with macroscopic
parameters. This equality suggests that entropy can be
approached both macroscopically and microscopically
and the results should be the same.

R  ln 4 � kB ln(4)NA � NAkB ln 4 �

�S � kB ln Wf � kB ln Wi � kB ln � 4Vi

Vi
	

NAUsing the considerations of part B, calculate 
the change in entropy for the free expansion to four times
the initial volume and show that it agrees with part A.

Solution The number of states for all NA molecules in
the volume Vf � 4Vi is

From Equation 18.9, we obtain

� 4Vi

Vm
	

NA

Wf � wf 

NA � � Vf

Vm
	

NA

�

C

CONTEXT 
connection

Reflected
from

surface
4%

Reflected
from

clouds
20%

Back-
scattered

by air
6%

Incoming
solar radiation

100%

Infrared
emission

from water,
air, and

carbon dioxide
38%

Infrared
emission

from clouds
26%

Radiated to
space

from surface
6%

Output to space 64% 

Input to atmosphere 64% 

Absorbed by
clouds 4%

Absorbed by
water, dust,
ozone 16% 

Absorbed by
water and

carbon dioxide
14%

Carried
upward by
convection

6%

Carried
upward

with water
vapor as

latent heat
24%

70%

50%

Atmosphere

Ground

Energy input to
the atmosphere from the Sun is
divided into several components.
Only 50% of the incident radiation is
absorbed by the ground, and it is then
reradiated into the atmosphere. The
dashed line represents the atmos-
pheric heat engine that is shown
schematically in Figure 18.13.

FIGURE 18.12



the atmosphere. Of the original radiation striking the top of the atmosphere, the
ground absorbs 50%.

The ground emits radiation upward and transfers energy to the atmosphere by
several processes. Of the original 100% of the incoming energy, 6% simply passes
back through the atmosphere into space (at the right in Fig. 18.12). In addition,
14% of the original incoming energy emitted as radiation from the ground is ab-
sorbed by water and carbon dioxide molecules. The air warmed by the surface rises
upward by convection, carrying 6% of the original energy into the atmosphere. The
hydrological cycle results in 24% of the original energy being carried upward as wa-
ter vapor and released into the atmosphere when the water vapor condenses into
liquid water.

These processes result in a total of 64% of the original energy being absorbed in
the atmosphere, with another 6% from the surface passing back through into
space. Because the atmosphere is in steady state, this 64% is also emitted from the
atmosphere into space. The emission is divided into two types. The first is infrared
radiation from molecules in the atmosphere, including water vapor, carbon diox-
ide, and the nitrogen and oxygen molecules of the air, which accounts for emission
of 38% of the original energy. The remaining 26% is emitted as infrared radiation
from clouds.

Figure 18.12 accounts for all the energy; the amount of energy input equals the
amount of energy output, which is the premise used in the Context Connection of
Chapter 17. A major difference from our discussion in that chapter, however, is the
notion of absorption of the energy by the atmosphere. It is this absorption that
creates thermodynamic processes in the atmosphere to raise the surface temperature
above the value we determined in Chapter 17. We shall explore more about these
processes and the temperature profile of the atmosphere in the Context Conclusion.

To close this chapter, let us discuss one more process that is not included in
Figure 18.12. The various processes depicted in that figure result in a small amount
of work done on the air, which appears as the kinetic energy of the prevailing winds
in the atmosphere.

The amount of the original solar energy that is converted to kinetic energy of pre-
vailing winds is about 0.5%. The process of generating the winds does not change the
energy balance shown in Figure 18.12. The kinetic energy of the wind is converted to
internal energy as masses of air move past one another. This internal energy pro-
duces an increased infrared emission of the atmosphere into space, so the 0.5% is
only temporarily in the form of kinetic energy before being emitted as radiation.

We can model the atmosphere as a heat engine, which is indicated in Figure
18.12 by the dotted rectangle. A schematic diagram of this heat engine is shown in
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A schematic repre-
sentation of the atmosphere as a heat
engine.

FIGURE 18.13
Atmosphere and surface

Space

  64% (absorption by clouds, water,
dust, ozone, carbon dioxide, transfer
by convection, transfer as latent heat)

0.5% (prevailing winds)

63.5% (infrared emission from water,
   air, carbon dioxide, and clouds)

Atmosphere



Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

A heat engine is a device that takes in energy by heat and, oper-
ating in a cycle, expels a fraction of that energy by work. The
net work done by a heat engine is

[18.1]

where Q h is the energy absorbed from a hot reservoir and Q c is
the energy expelled to a cold reservoir.

The thermal efficiency e of a heat engine is defined as the
ratio of the net work done to the energy absorbed per cycle
from the higher temperature reservoir:

[18.2]

The Kelvin–Planck statement of the second law of thermo-
dynamics can be stated as follows: It is impossible to construct a
heat engine that, operating in a cycle, produces no effect other
than the absorption of energy by heat from a reservoir and the
performance of an equal amount of work.

A reversible process is one for which the system can be re-
turned to its initial conditions along the same path and for
which every point along the path is an equilibrium state. A
process that does not satisfy these requirements is irreversible.

The thermal efficiency of a heat engine operating in a
Carnot cycle is given by

[18.4]

where Tc is the absolute temperature of the cold reservoir and
Th is the absolute temperature of the hot reservoir.

No real heat engine operating between the temperatures Tc
and Th can be more efficient than an engine operating

eCarnot � 1 �
Tc

Th

e �
Weng

� Q h �
� 1 �

� Q c �
� Q h �

Weng � � Q h � � � Q c �

reversibly in a Carnot cycle between the same two tempera-
tures.

The Clausius statement of the second law states that energy
will not transfer spontaneously by heat from a cold object to a
hot object.

The second law of thermodynamics states that when real
(irreversible) processes occur, the degree of disorder in the
system plus the surroundings increases. The measure of disor-
der in a system is called entropy S.

The change in entropy dS of a system moving through an
infinitesimal process between two equilibrium states is

[18.8]

where dQ r is the energy transferred by heat in a reversible
process between the same states.

From a microscopic viewpoint, the entropy S associated with
a macrostate of a system is defined as

[18.9]

where kB is Boltzmann’s constant and W is the number of mi-
crostates corresponding to the macrostate whose entropy is S.
Therefore, entropy is a measure of microscopic disorder.
Because of the statistical tendency of systems to proceed toward
states of greater probability and greater disorder, all natural
processes are irreversible and result in an increase in entropy.

The change in entropy of a system moving between two gen-
eral equilibrium states is

[18.10]

The value of �S is the same for all paths connecting the initial
and final states.

The change in entropy for any reversible, cyclic process
is zero, and when such a process occurs, the entropy of the
Universe remains constant. In an irreversible process, the total
entropy of the Universe always increases. 

�S � �f

i
 
dQ r

T
 

S � kB ln W

dS �
dQ r

T

SUMMARY ❚ 589

y p g p pp

SUMMARY

Figure 18.13. The warm reservoir is the surface and the atmosphere, and the cold
reservoir is empty space. We can calculate the efficiency of the atmospheric engine
using Equation 18.2:

which is a very low efficiency. Keep in mind, however, that a tremendous amount of
energy enters the atmosphere from the Sun, so even a very small fraction of it can
create a very complex and powerful wind system.

Notice that the output energy in Figure 18.13 is less than that in Figure 18.12
by 0.5%. As noted previously, the 0.5% transferred to the atmosphere by generat-
ing winds is eventually transformed to internal energy in the atmosphere by
friction and then radiated into space as thermal radiation. We cannot separate the
heat engine and the winds in the atmosphere in a diagram because the atmos-
phere is the heat engine and the winds are generated in the atmosphere!

We now have all the pieces we need to put together the puzzle of the tempera-
ture of the Earth. We shall discuss this subject in the Context Conclusion. ■

e �
Weng

�Q h �
�

0.5%
64%

� 0.008 � 0.8%
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

What are some factors that affect the efficiency of automo-
bile engines?

2. Is it possible to construct a heat engine that creates
no thermal pollution? What does your answer tell us
about environmental considerations for an industrialized
society?

A steam-driven turbine is one major component of an
electric power plant. Why is it advantageous to have the
temperature of the steam as high as possible?

4. Does the second law of thermodynamics contradict or cor-
rect the first law? Argue for your answer.

5. “The first law of thermodynamics says you can’t really
win, and the second law says you can’t even break even.”
Explain how this statement applies to a particular device or
process; alternatively, argue against the statement.

6. In solar ponds constructed in Israel, the Sun’s energy
is concentrated near the bottom of a salty pond. With
the proper layering of salt in the water, convection is
prevented and temperatures of 100°C may be
reached. Can you estimate the maximum efficiency
with which useful energy can be extracted from the 
pond?

7. Can a heat pump have a coefficient of performance less
than unity? Explain.

8. Give various examples of irreversible processes that occur
in nature. Give an example of a process in nature that is
nearly reversible.

The device shown in Figure Q18.9, called a thermoelectric
converter, uses a series of semiconductor cells to convert in-
ternal energy to electric potential energy, which we will

9.

3.

1.

study in Chapter 20. In the left photograph, both legs of the
device are at the same temperature and no electric potential
energy is produced. When one leg is at a higher tempera-
ture than the other, however, as shown in the right photo-
graph, electric potential energy is produced as the device
extracts energy from the hot reservoir and drives a small
electric motor. (a) Why does the temperature differential
produce electric potential energy in this demonstration? 
(b) In what sense does this intriguing experiment demon-
strate the second law of thermodynamics?

10. A thermodynamic process occurs in which the entropy of a
system changes by �8.0 J/K. According to the second law
of thermodynamics, what can you conclude about the en-
tropy change of the environment?

Discuss the change in entropy of a gas that expands (a) at
constant temperature and (b) adiabatically.

12. How could you increase the entropy of 1 mol of a metal
that is at room temperature? How could you decrease its
entropy?

13. Suppose your roommate is “Mr. Clean” and tidies up your
messy room after a big party. Because your roommate is
creating more order, does this action represent a violation
of the second law of thermodynamics?

14. “Energy is the mistress of the Universe and entropy is her
shadow.” Writing for an audience of general readers, argue
for this statement with examples. Alternatively, argue for
the view that entropy is like a decisive hands-on executive
instantly determining what will happen, whereas energy is
like a wretched back-office bookkeeper telling us how little
we can afford.

15. If you shake a jar full of jelly beans of different sizes, the
larger beans tend to appear near the top and the smaller
ones tend to fall to the bottom. Why? Does this process vio-
late the second law of thermodynamics?

11.

FIGURE Q18.9
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PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 18.1 ■ Heat Engines and the Second Law 
of Thermodynamics

1. A heat engine takes in 360 J of energy from a hot reservoir
and performs 25.0 J of work in each cycle. Find (a) the effi-
ciency of the engine and (b) the energy expelled to the
cold reservoir in each cycle.

2. A multicylinder gasoline engine in an airplane, operating at
2 500 rev/min, takes in energy 7.89 � 103 J and exhausts
4.58 � 103 J for each revolution of the crankshaft. (a) How
many liters of fuel does it consume in 1.00 h of operation if
the heat of combustion is 4.03 � 107 J/L? (b) What is the
mechanical power output of the engine? Ignore friction and
express the answer in horsepower. (c) What is the torque ex-
erted by the crankshaft on the load? (d) What power must
the exhaust and cooling system transfer out of the engine?

A particular heat engine has a useful power output of
5.00 kW and an efficiency of 25.0%. In each cycle, the en-
gine expels 8 000 J of exhaust energy. Find (a) the energy
taken in during each cycle and (b) the time interval for
each cycle.

4. A gun is a heat engine. In particular, it is an internal com-
bustion piston engine that does not operate in a cycle but,
rather, comes apart during its adiabatic expansion process.
A certain gun consists of 1.80 kg of iron. It fires one 2.40-g
bullet at 320 m/s with an energy efficiency of 1.10%.
Assume that the body of the gun absorbs all the energy ex-
haust—the other 98.9%—and increases uniformly in tem-
perature for a short time interval before it loses any energy
by heat into the environment. Find its temperature increase.

Section 18.2 ■ Reversible and Irreversible Processes
Section 18.3 ■ The Carnot Engine

One of the most efficient heat engines ever built is a steam
turbine in the Ohio valley, operating between 430°C and
1 870°C on energy from West Virginia coal to produce elec-
tricity for the Midwest. (a) What is its maximum theoretical
efficiency? (b) The actual efficiency of the engine is 42.0%.
How much useful power does the engine deliver if it takes in
1.40 � 105 J of energy each second from its hot reservoir? 

6. A Carnot engine has a power output of 150 kW. The
engine operates between two reservoirs at 20.0°C and
500°C. (a) How much energy does it take in per hour?
(b) How much energy is lost per hour in its exhaust?

An ideal gas is taken through a Carnot
cycle. The isothermal expansion occurs at 250°C, and the

7.

5.

3.

isothermal compression takes place at 50.0°C. The gas
takes in 1 200 J of energy from the hot reservoir during the
isothermal expansion. Find (a) the energy expelled to the
cold reservoir in each cycle and (b) the net work done by
the gas in each cycle.

8. The exhaust temperature of a Carnot heat engine is
300°C. What is the intake temperature if the efficiency of
the engine is 30.0%?

9. A power plant operates at a 32.0% efficiency during the
summer when the sea water used for cooling is at 20.0°C.
The plant uses 350°C steam to drive turbines. If the plant’s
efficiency changes in the same proportion as the ideal effi-
ciency, what would be the plant’s efficiency in the winter,
when the sea water is at 10.0°C?

10. An electric power plant that would make use of the temper-
ature gradient in the ocean has been proposed. The system
is to operate between 20.0°C (surface water temperature)
and 5.00°C (water temperature at a depth of about 1 km).
(a) What is the maximum efficiency of such a system? (b) If
the useful power output of the plant is 75.0 MW, how much
energy is taken in from the warm reservoir per hour? (c) In
view of your answer to part (a), do you think such a system
is worthwhile? Note that the “fuel” is free.

11. Here is a clever idea. Suppose you build a two-engine
device such that the exhaust energy output from one heat
engine is the input energy for a second heat engine. We
say that the two engines are running in series. Let e1 and e2
represent the efficiencies of the two engines. (a) The over-
all efficiency of the two-engine device is defined as the
total work output divided by the energy put into the first
engine by heat. Show that the overall efficiency is given by

e � e1 � e 2 � e1e2

(b) Assume that the two engines are Carnot engines. Engine
1 operates between temperatures Th and Ti . The gas in en-
gine 2 varies in temperature between Ti and Tc . In terms of
the temperatures, what is the efficiency of the combination
engine? (c) What value of the intermediate temperature Ti
will result in equal work being done by each of the two en-
gines in series? (d) What value of Ti will result in each of the
two engines in series having the same efficiency?

12. At point A in a Carnot cycle, 2.34 mol of a monatomic
ideal gas has a pressure of 1 400 kPa, a volume of 10.0 L,
and a temperature of 720 K. It expands isothermally to
point B and then expands adiabatically to point C, where
its volume is 24.0 L. An isothermal compression brings it
to point D, where its volume is 15.0 L. An adiabatic process
returns the gas to point A. (a) Determine all the unknown
pressures, volumes, and temperatures as you fill in the
following table:

P V T

A 1 400 kPa 10.0 L 720 K
B
C 24.0 L
D 15.0 L
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(b) Find the energy added by heat, the work done by the
engine, and the change in internal energy for each of
the steps A : B, B : C, C : D, and D : A. (c) Calculate
the efficiency Wnet/Q h . Show that it is equal to 1 � TC/TA ,
the Carnot efficiency.

Section 18.4 ■ Heat Pumps and Refrigerators 
13. A refrigerator has a coefficient of performance equal to

5.00. The refrigerator takes in 120 J of energy from a cold
reservoir in each cycle. Find (a) the work required in each
cycle and (b) the energy expelled to the hot reservoir.

14. A refrigerator has a coefficient of performance of 3.00.
The ice tray compartment is at �20.0°C, and the room
temperature is 22.0°C. The refrigerator can convert 30.0 g
of water at 22.0°C to 30.0 g of ice at �20.0°C each minute.
What input power is required? Give your answer in watts.

15. In 1993, the U.S. government instituted a requirement
that all room air conditioners sold in the United States
must have an energy efficiency ratio (EER) of 10 or higher.
The EER is defined as the ratio of the cooling capacity of
the air conditioner, measured in British thermal units per
hour, or Btu/h, to its electrical power requirement in
watts. (a) Convert the EER of 10.0 to dimensionless form,
using the conversion 1 Btu � 1 055 J. (b) What is the
appropriate name for this dimensionless quantity? (c) In
the 1970s, it was common to find room air conditioners
with EERs of 5 or lower. Compare the operating costs for
10 000-Btu/h air conditioners with EERs of 5.00 and 10.0.
Assume that each air conditioner operates for 1 500 h
during the summer in a city where electricity costs 10.0¢
per kWh.

16. What is the coefficient of performance of a refrigerator
that operates with Carnot efficiency between temperatures
�3.00°C and �27.0°C?

An ideal refrigerator or ideal heat pump is equivalent to a
Carnot engine running in reverse. That is, energy Q c is
taken in from a cold reservoir and energy &Q h& is re-
jected to a hot reservoir. (a) Show that the work that must
be supplied to run the refrigerator or heat pump is

(b) Show that the coefficient of performance of the ideal
refrigerator is

18. What is the maximum possible coefficient of performance
of a heat pump that brings energy from outdoors at
�3.00°C into a 22.0°C house? Note that the work done to
run the heat pump is also available to warm up the house.

19. A heat pump, shown in Figure P18.19, is essentially an air
conditioner installed backward. It extracts energy from
colder air outside and deposits it in a warmer room. Suppose
the ratio of the actual energy entering the room to the work
done by the device’s motor is 10.0% of the theoretical maxi-
mum ratio. Determine the energy entering the room per
joule of work done by the motor, given that the inside tem-
perature is 20.0°C and the outside temperature is �5.00°C.

COP �
Tc

Th � Tc
 

W �
Th � Tc

Tc
Q c

17.

20. If a 35.0%-efficient Carnot heat engine (Active Fig. 18.1)
is run in reverse so as to form a refrigerator (Active Fig.
18.7), what would be this refrigerator’s coefficient of
performance?

How much work does an ideal Carnot
refrigerator require to remove 1.00 J of energy from he-
lium at 4.00 K and reject this energy to a room-tempera-
ture (293-K) environment?

22. Your father comes home to find that you have left a 400-W
color television set turned on in an empty living room. The
exterior temperature is 36°C. The room is cooled to 20°C
by an air conditioner with coefficient of performance 4.50.
The electric company charges you $0.150 per kilowatt-hour.
Your father gets angry, and his metabolic rate increases
from 120 W to 170 W. The excess internal energy he pro-
duces is carried away from his body into the room by con-
vection and radiation. (a) Calculate the direct cost per
minute of operating the television. (b) Calculate the per-
minute cost of additional air conditioning attributable to
the TV set before your father gets home. (c) Calculate the
per-minute surcharge for still more air conditioning that
your father blames on the TV set after he enters.

Section 18.6 ■ Entropy
Section 18.7 ■ Entropy and the Second Law 

of Thermodynamics
Calculate the change in entropy of 250 g of water warmed
slowly from 20.0°C to 80.0°C. (Suggestion: Note that
dQ � mc dT.)

24. An ice tray contains 500 g of liquid water at 0°C. Calculate
the change in entropy of the water as it freezes slowly and
completely at 0°C.

25. In making raspberry jelly, 900 g of raspberry juice is
combined with 930 g of sugar. The mixture starts at room
temperature, 23.0°C, and is slowly heated on a stove until it
reaches 220°F. It is then poured into heated jars and
allowed to cool. Assume that the juice has the same spe-
cific heat as water. The specific heat of sucrose is
0.299 cal/g 	 °C. Consider the heating process. (a) Which
of the following terms describe(s) this process: adiabatic,
isobaric, isothermal, isovolumetric, cyclic, reversible, isen-
tropic? (b) How much energy does the mixture absorb?
(c) What is the minimum change in entropy of the jelly
while it is heated?

23.

21.
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26. What change in entropy occurs when a 27.9-g ice cube at
�12°C is transformed into steam at 115°C?

27. If you toss two dice, what is the total number of ways in
which you can obtain (a) a 12 and (b) a 7?

28. You toss a quarter, a dime, a nickel, and a penny into the
air simultaneously and then record the results of your
tosses in terms of the numbers of heads and tails that re-
sult. Prepare a table listing each macrostate and each of
the microstates included in it. For example, the two mi-
crostates HHTH and HTHH, together with some others,
are included in the macrostate of three heads and one tail.
(a) On the basis of your table, what is the most probable
result recorded for a toss? In terms of entropy, (b) what is
the most ordered macrostate and (c) what is the most dis-
ordered?

A bag contains 50 red marbles and 50 green marbles. 
(a) You draw a marble at random from the bag, notice its
color, return it to the bag, and repeat the process for a to-
tal of three draws. You record the result as the number of
red marbles and the number of green marbles in the set of
three. Construct a table listing each possible macrostate
and the number of microstates within it. For example,
RRG, RGR, and GRR are the three microstates constituting
the macrostate 1G,2R. (b) Construct a table for the case in
which you draw five marbles instead of three. 

Section 18.8 ■ Entropy Changes in Irreversible Processes
30. The temperature at the surface of the Sun is approxi-

mately 5 700 K, and the temperature at the surface of the
Earth is approximately 290 K. What entropy change occurs
when 1 000 J of energy is transferred by radiation from the
Sun to the Earth?

A 1 500-kg car is moving at 20.0 m/s.
The driver brakes to a stop. The brakes cool off to the tem-
perature of the surrounding air, which is nearly constant at
20.0°C. What is the total entropy change?

32. A 1.00-kg iron horseshoe is taken from a forge at 900°C
and dropped into 4.00 kg of water at 10.0°C. Assuming
that no energy is lost by heat to the surroundings,
determine the total entropy change of the horseshoe-plus-
water system.

33. How fast are you personally making the entropy of 
the Universe increase right now? Compute an order-of-
magnitude estimate, stating what quantities you take as
data and the values you measure or estimate for them.

34. A 1.00-mol sample of H2 gas is contained in the left-hand
side of the container shown in Figure P18.34, which has
equal volumes left and right. The right-hand side is evacu-
ated. When the valve is opened, the gas streams into the
right-hand side. What is the final entropy change of the
gas? Does the temperature of the gas change? Assume that

31.

29.

the container is so large that the hydrogen behaves as an
ideal gas.

35. A 2.00-L container has a center partition that divides it
into two equal parts, as shown in Figure P18.35. The left
side contains H2 gas, and the right side contains O2 gas.
Both gases are at room temperature and at atmospheric
pressure. The partition is removed and the gases are al-
lowed to mix. What is the entropy increase of the system?
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0.044 mol
O2

0.044 mol
H2

FIGURE P18.35

Section 18.9 ■ Context Connection — The Atmosphere
as a Heat Engine 

36. We found the efficiency of the atmospheric heat engine to
be about 0.8%. Taking the intensity of incoming solar radi-
ation to be 1 370 W/m2 and assuming that 64% of this en-
ergy is absorbed in the atmosphere, find the “wind power,”
that is, the rate at which energy becomes available for
driving the winds.

37. (a) Find the kinetic energy of the moving air in a hurri-
cane, modeled as a disk 600 km in diameter and 11 km
thick, with wind blowing at a uniform speed of 60 km/h.
(b) Consider sunlight with an intensity of 1 000 W/m2

falling perpendicularly on a circular area 600 km in diame-
ter. During what time interval would the sunlight deliver
the amount of energy computed in part (a)?

Additional Problems
38. A firebox is at 750 K, and the ambient temperature is 300 K.

The efficiency of a Carnot engine doing 150 J of work as it
transports energy between these constant-temperature
baths is 60.0%. The Carnot engine must take in energy
150 J/0.600 � 250 J from the hot reservoir and must put
out 100 J of energy by heat into the environment. To fol-
low Carnot’s reasoning, suppose some other heat engine
S could have efficiency 70.0%. (a) Find the energy input
and wasted energy output of engine S as it does 150 J of
work. (b) Let engine S operate as in part (a) and run the
Carnot engine in reverse. Find the total energy the firebox
puts out as both engines operate together and the total en-
ergy transferred to the environment. Show that the Clausius
statement of the second law of thermodynamics is violated.
(c) Find the energy input and work output of engine S as it
puts out exhaust energy of 100 J. (d) Let engine S operate
as in part (c) and contribute 150 J of its work output to run-
ning the Carnot engine in reverse. Find the total energy the
firebox puts out as both engines operate together, the total
work output, and the total energy transferred to the envi-
ronment. Show that the Kelvin–Planck statement of the sec-
ond law is violated. Thus, our assumption about the effi-
ciency of engine S must be false. (e) Let the engines operate



together through one cycle as in part (d). Find the change
in entropy of the Universe. Show that the entropy statement
of the second law is violated.

A house loses energy through the exte-
rior walls and roof at a rate of 5 000 J/s � 5.00 kW when
the interior temperature is 22.0°C and the outside temper-
ature is �5.00°C. Calculate the electric power required to
maintain the interior temperature at 22.0°C for the follow-
ing two cases. (a) The electric power is used in electric
resistance heaters (which convert all the energy trans-
ferred in by electrical transmission into internal energy).
(b) Assume instead that the electric power is used to drive
an electric motor that operates the compressor of a heat
pump, which has a coefficient of performance equal to
60.0% of the Carnot-cycle value.

40. Every second at Niagara Falls (Fig. P18.40), some 5 000 m3

of water falls a distance of 50.0 m. What is the increase in
entropy per second due to the falling water? Assume that
the mass of the surroundings is so great that its tempera-
ture and that of the water stay nearly constant at 20.0°C.
Suppose a negligible amount of water evaporates.

39.

(a) Find the work input required to compress the gas.
(b) Assume that the flywheel is a solid disk of mass 5.10 kg
and radius 8.50 cm, turning freely without friction between
the power stroke and the compression stroke. How fast
must the flywheel turn immediately after the power stroke?
This situation represents the minimum angular speed at
which the engine can operate because it is on the point of
stalling. (c) When the engine’s operation is well above the
point of stalling, assume that the flywheel puts 5.00% of its
maximum energy into compressing the next charge of fuel
and air. Find its maximum angular speed in this case.

In 1816, Robert Stirling, a Scottish cler-
gyman, patented the Stirling engine, which has found a wide
variety of applications ever since. Fuel is burned externally
to warm one of the engine’s two cylinders. A fixed quantity
of inert gas moves cyclically between the cylinders, expand-
ing in the hot one and contracting in the cold one. Figure
P18.43 represents a model for its thermodynamic cycle.
Consider n mol of an ideal monatomic gas being taken
once through the cycle, consisting of two isothermal
processes at temperatures 3Ti and Ti and two constant-
volume processes. Determine, in terms of n, R, and Ti,
(a) the net energy transferred by heat to the gas and
(b) the efficiency of the engine. A Stirling engine is easier
to manufacture than an internal combustion engine or a
turbine. It can run on burning garbage. It can run on the
energy of sunlight and produce no material exhaust.

43.
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FIGURE P18.40 Niagara Falls, a popular tourist attraction.
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41. How much work is required, using an ideal Carnot refrig-
erator, to change 0.500 kg of tap water at 10.0°C into ice at
�20.0°C? Assume that the freezer compartment is held at
�20.0°C and that the refrigerator exhausts energy into a
room at 20.0°C.

42. Review problem. This problem complements Problem
10.18 in Chapter 10. In the operation of a single-cylinder
internal combustion piston engine, one charge of fuel ex-
plodes to drive the piston outward in the so-called power
stroke. Part of the energy output is stored in a turning fly-
wheel. This energy is then used to push the piston inward
to compress the next charge of fuel and air. In this com-
pression process, assume that an original volume of 0.120 L
of a diatomic ideal gas at atmospheric pressure is com-
pressed adiabatically to one-eighth of its original volume.

Isothermal
processes

P

V
Vi 2Vi

Ti

3Ti

FIGURE P18.43

44. A heat engine operates between two reservoirs at T2 �
600 K and T1 � 350 K. It takes in 1 000 J of energy from
the higher-temperature reservoir and performs 250 J of
work. Find (a) the entropy change of the Universe �SU
for this process and (b) the work W that could have
been done by an ideal Carnot engine operating
between these two reservoirs. (c) Show that the difference
between the amounts of work done in parts (a) and
(b) is T1 �SU.

45. A power plant, having a Carnot efficiency, produces
1 000 MW of electrical power from turbines that take in
steam at 500 K and reject water at 300 K into a flowing river.
The water downstream is 6.00 K warmer because of the out-
put of the power plant. Determine the flow rate of the river.

46. A power plant, having a Carnot efficiency, produces elec-
tric power � from turbines that take in energy from
steam at temperature Th and discharge energy at temper-
ature Tc through a heat exchanger into a flowing river.
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The water downstream is warmer by �T because of the
output of the power plant. Determine the flow rate of
the river.

47. On the PV diagram for an ideal gas, one isothermal curve
and one adiabatic curve pass through each point. Prove
that the slope of the adiabat is steeper than the slope of
the isotherm by the factor 
. 

48. An athlete whose mass is 70.0 kg drinks 16 ounces
(453.6 g) of refrigerated water. The water is at a tempera-
ture of 35.0°F. (a) Ignoring the temperature change of the
human body that results from the water intake (so that the
human body is regarded as a reservoir always at 98.6°F),
find the entropy increase of the entire system. (b) Assume
instead that the entire human body is cooled by the drink
and that the average specific heat of a person is equal to
the specific heat of liquid water. Ignoring any other energy
transfers by heat and any metabolic energy release, find the
athlete’s temperature after she drinks the cold water, given
an initial body temperature of 98.6°F. Under these
assumptions, what is the entropy increase of the entire
system? Compare this result with the one you obtained in
part (a).

49. A 1.00-mol sample of an ideal monatomic gas is taken
through the cycle shown in Figure P18.49. The process
A : B is a reversible isothermal expansion. Calculate
(a) the net work done by the gas, (b) the energy added to
the gas by heat, (c) the energy exhausted from the gas by
heat, and (d) the efficiency of the cycle.

entering the system by heat per cycle, (b) the total energy
leaving the system by heat per cycle, (c) the efficiency of
an engine operating in this cycle, and (d) the efficiency of
an engine operating in a Carnot cycle between the same
temperature extremes.

5
Isothermal
process

1

10 50
V (liters)

B
C

A

P (atm)

FIGURE P18.49

50. A biology laboratory is maintained at a constant tempera-
ture of 7.00°C by an air conditioner, which is vented to the
air outside. On a typical hot summer day, the outside tem-
perature is 27.0°C and the air-conditioning unit emits en-
ergy to the outside at a rate of 10.0 kW. Model the unit as
having a coefficient of performance equal to 40.0% of the
coefficient of performance of an ideal Carnot device.
(a) At what rate does the air conditioner remove energy
from the laboratory? (b) Calculate the power required for
the work input. (c) Find the change in entropy produced
by the air conditioner in 1.00 h. (d) The outside tempera-
ture increases to 32.0°C. Find the fractional change in the
coefficient of performance of the air conditioner.

A 1.00-mol sample of a monatomic ideal gas is taken
through the cycle shown in Figure P18.51. At point A, the
pressure, volume, and temperature are Pi , Vi , and Ti , re-
spectively. In terms of R and Ti , find (a) the total energy

51.
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D
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Vi 2Vi
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Q2

Q4

Q3Q1
2Pi

FIGURE P18.51

52. A sample consisting of n mol of an ideal gas undergoes a
reversible isobaric expansion from volume Vi to volume
3Vi . Find the change in entropy of the gas by calculating

, where dQ � nCP dT.

A system consisting of n mol of an ideal gas undergoes two
reversible processes. It starts with pressure Pi and volume
Vi, expands isothermally, and then contracts adiabatically
to reach a final state with pressure Pi and volume 3Vi .
(a) Find its change in entropy in the isothermal process.
The entropy does not change in the adiabatic process.
(b) Explain why the answer to part (a) must be the same as
the answer to Problem 18.52. 

54. Suppose you are working in a patent office and an
inventor comes to you with the claim that her heat engine,
which employs water as a working substance, has a
thermodynamic efficiency of 0.61. She explains that it
operates between energy reservoirs at 4°C and 0°C. It is a
very complicated device, with many pistons, gears, and pul-
leys, and the cycle involves freezing and melting. Does
her claim that e � 0.61 warrant serious consideration?
Explain.

55. A 1.00-mol sample of an ideal gas (
 � 1.40) is carried
through the Carnot cycle described in Active Figure 18.6.
At point A, the pressure is 25.0 atm and the temperature is
600 K. At point C, the pressure is 1.00 atm and the temper-
ature is 400 K. (a) Determine the pressures and volumes at
points A, B, C, and D. (b) Calculate the net work done per
cycle. (c) Determine the efficiency of an engine operating
in this cycle.

56. An ideal (Carnot) freezer in a kitchen has a constant tem-
perature of 260 K, whereas the air in the kitchen has a con-
stant temperature of 300 K. Suppose the insulation for the
freezer is not perfect but, rather, conducts energy into the
freezer at a rate of 0.150 W. Determine the average power
required for the freezer’s motor to maintain the constant
temperature in the freezer. 

57. Calculate the increase in entropy of the Universe when you
add 20.0 g of 5.00°C cream to 200 g of 60.0°C coffee.
Assume that the specific heats of cream and coffee are
both 4.20 J/g 	 °C.

53.

� f
i dQ/T




 characterizes both the fuel–air mixture and the
exhaust gases after combustion. Prove that the efficiency
of the engine is 1 � r 1�
.
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58. The Otto cycle in Figure P18.58 models the operation of
the internal combustion engine in an automobile. A
mixture of gasoline vapor and air is drawn into a cylinder
as the piston moves down during the intake stroke
O : A. The piston moves up toward the closed end of
the cylinder to compress the mixture adiabatically in
process A : B. The ratio r � V1/V2 is the compression ratio
of the engine. At B, the gasoline is ignited by the spark
plug and the pressure rises rapidly as it burns in process
B : C. In the power stroke C : D, the combustion prod-
ucts expand adiabatically as they drive the piston down.
The combustion products cool further in an isovolumet-
ric process D : A and in the exhaust stroke A : O,
when the exhaust gases are pushed out of the cylinder.
Assume that a single value of the specific heat ratio

P

V
V1V2

A

B
D

C

O

Q h

Q c

Adiabatic
processes

FIGURE P18.58

ANSWERS TO QUICK QUIZZES
18.1 (i), (c). The efficiency is the ratio of the work to the

input energy, which is the inverse of the given value of
3.00. (ii), (b). The work represents one third of the
input energy. The remainder, two thirds, must be
expelled to the cold reservoir.

18.2 C, B, A. Although all three engines operate over a 300-K
temperature difference, the efficiency depends on the
ratio of temperatures, not on the difference.

18.3 (d). The COP of 4.00 for the heat pump means that the
energy leaving the heat pump is four times as much as
the energy entering by electrical transmission. With four
times as much energy per unit of energy from electricity,
you need only one-fourth as much electricity.

18.4 (i), (a). The only microstate is all four deuces. (ii), (f).
The six microstates for two aces are club–diamond,
club–heart, club–spade, diamond–heart, diamond–
spade, and heart–spade. (iii), (b). The macrostate of two
aces is more probable because this particular macrostate
has six times as many microstates as the macrostate of
four deuces. Therefore, in a hand of poker, two aces is

less valuable than four deuces, even though a single ace
is ranked higher than a single deuce.

18.5 (b). Because the process is reversible and adiabatic,
Q r � 0; therefore, �S � 0.

18.6 (a). From the first law of thermodynamics, for these two
reversible processes, Q r � �E int � W. During the con-
stant-volume process, W � 0; the work W is nonzero and
negative during the constant-pressure expansion. There-
fore, Q r is larger for the constant-pressure process, lead-
ing to a larger value for the change in entropy. In terms
of entropy as disorder, the gas must expand during the
constant–pressure process. The increase in volume re-
sults in more ways of locating the molecules of the gas in
a container and consequently a larger increase in en-
tropy.

18.7 False. The determining factor for the entropy change is
Q r , not Q. If the adiabatic process is not reversible, the
entropy change is not necessarily zero because a re-
versible path between the same initial and final states
may involve energy transfer by heat.
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C O N T E X T CONCLUSION5

Predicting the Earth’s Surface 
Temperature
Now that we have investigated the principles of thermodynamics, we respond to our
central question for the Context on global warming:

What factors determine the average temperature at the Earth’s surface?

We discussed some of these factors—the energy input from the Sun and the en-
ergy output by thermal radiation from the surface of the Earth—in Chapter 17. In
Chapter 18, we introduced the role of the atmosphere in absorbing radiation by
means of various molecules. In the following discussion, we explore how the atmos-
phere modifies the temperature calculation performed in Chapter 17, which leads
to a structural model that predicts a temperature in agreement with observations.

Modeling the Atmosphere
We first ask if the temperature of 255 K that we found in Chapter 17 is valid and, if
so, what does it represent? The answer to the first question is yes. The energy bal-
ance concept is certainly valid, and the Earth, as a system, must emit energy at the
same rate as it absorbs energy. The temperature of 255 K is representative of the ra-
diation leaving the atmosphere. A space traveler outside our atmosphere who takes
a reading of radiation from the Earth would determine that the temperature repre-
senting this radiation is indeed 255 K. This temperature is the one associated with
radiation leaving the top of the atmosphere, however. It is not the temperature at
the surface of the Earth.

As we have mentioned, the atmosphere is almost transparent to the visible radia-
tion from the Sun but not to the infrared radiation emitted by the surface of the
Earth. Let us build a model in which we assume that all radiation with wavelengths
less than about 5 �m is allowed to pass
through the atmosphere. Thus, almost
all incoming radiation from the Sun
(except for the 30% reflected) reaches
the Earth’s surface. In addition, let us
assume that all radiation above about
5 �m (which is infrared radiation, includ-
ing that emitted by the Earth surface) is
absorbed by the atmosphere.

We can identify two layers to the at-
mosphere in our model (Fig. 1). The
lower part of the atmosphere is the tro-
posphere. In this layer, the density of the
air is relatively high so that the probabil-
ity of absorption of infrared radiation
from the surface by molecules in the air
is large. This absorption warms parcels of
air near the surface, which then rise
upward. As a parcel rises, it expands and
its temperature drops. Therefore, the

Stratosphere

Tropopause

Troposphere

In our structural model of the atmosphere, we consider two layers. The up-
per layer is the stratosphere, in which the temperature is modeled as con-
stant. The lower layer is the troposphere, in which the temperature increases
linearly from the tropopause to the ground.

FIGURE 1
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troposphere is the convective region in which the temperature decreases with
height according to the lapse rate, as discussed in Section 16.7. It is also the region
of the atmosphere in which our familiar weather occurs. Above the troposphere is
the stratosphere. In this layer, the density of the air is relatively low so that the proba-
bility of absorption of infrared radiation is small. As a result, infrared radiation
tends to pass through into space with little absorption. Without this absorption, the
temperature in the stratosphere remains approximately constant with height.
Between these two layers is the tropopause, which is about 11 km from the Earth’s
surface.1 In reality, the tropopause is a thin region in which the primary energy
transfer mechanism changes continuously from convection to radiation. In our
model, we imagine the tropopause to be a sharp boundary.

The first task is to find the temperature, assumed constant, of the stratosphere.
We appeal again to Stefan’s law and consider the energy transfer into and out of
the stratosphere, as indicated in Figure 2. Radiation from the troposphere (to
which we assign an effective average temperature of Tt � 255 K so that it is the tem-
perature associated with the radiation coming through the stratosphere to our
imagined outer space observer) passes through the stratosphere, with a fraction as
absorbed. The stratosphere, at temperature Ts, radiates both upward and down-
ward, according to its emissivity es. Thus, because the stratosphere is in steady state,
the power balance equation for the stratosphere is

where the factor of 2 arises from the output radiation of the stratosphere from both
top and bottom surfaces. We can solve for the temperature of the stratosphere:

where we have used that the absorptivity and the emissivity of the stratosphere are
the same number.

Now, we have all the pieces: the temperature of the stratosphere, the height of
the tropopause, and the lapse rate. We simply need to extrapolate, using the lapse
rate, from the temperature at the tropopause, which is the temperature of the
stratosphere, to that at the Earth’s surface.

If the tropopause is 11 km from the surface and the lapse rate is �6.5°C/km
(Section 16.7), the net change in temperature from the surface to the tropopause is

Because the tropopause temperature is 214 K, we can now find the surface temper-
ature:

which agrees with the measured average temperature of 288 K discussed in Chapter
17 to within less than 1%! Figure 3 shows a graphical representation (height versus
temperature) of the temperature in the troposphere.

 �72 K � 214 K � Tsurface :  Tsurface � 286 K

 �T � Ttropopause � Tsurface 

 � �72�C � �72 K

�T � Ttropopause � Tsurface � � �T
�y � �y � (�6.5�C/km)(11 km)

Ts � � as�T t
4

2es�
�

1/4
� � as

2es
�

1/4
 Tt � (1

2)
1/4

 (255 K) � 214 K

 as�ATt
4 � 2es�ATs

4

�ER (in) � � �ER (out)

1The tropopause height of 11 km that we assume here is a simplification model in our structural
model. In reality, the tropopause height varies with latitude and with season. At various latitudes and at
different times of the year, the tropopause height can vary from less than 8 km to more than 17 km.
The height of 11 km is a reasonable average for all latitudes over an entire year.

Stratosphere

Troposphere

Earth’s surface

ATt
4σ

es  ATs
4σ

Tt = 255 K
(effective)

es  ATs
4σ

(1 – as)  ATt
4σ

A portion of the
stratosphere of area A is modeled as
an object with a temperature,
emitting thermal radiation from both
upper and lower surfaces. The input
of energy to the stratosphere is a 
portion of the radiation passing
through it from the troposphere.

FIGURE 2



The absorption of infrared radiation from the Earth’s surface is dependent on
molecules in the atmosphere. Our industrialized society is changing the
atmospheric concentrations of molecules such as water, carbon dioxide, and
methane. As a result, we are altering the energy balance and putting the Earth at
risk of a change in temperature. Some data taken since the mid-19th century show
a temperature increase of 0.5 to 1.0°C in the last 150 years. Although this increase
may seem small, a slightly warmer Earth results in some melting of the polar ice
caps and subsequent rises in the level of the oceans. Measured ocean levels show
rises by as much as 50 cm in the 20th century. Further rises will cause severe prob-
lems for coastal populations. In addition, changes in temperature will have major
effects on balanced ecosystems in various parts of the Earth.

The model we have described in this Context is successful in predicting the sur-
face temperature. If we extend the model to predict changes in the surface temper-
ature as we add more carbon dioxide to the atmosphere, we find that the predic-
tions are not in agreement with more sophisticated models. The atmosphere is a
very complicated entity, and the models used by atmospheric scientists are far more
sophisticated than the one we have studied here. For our purposes, however, our
successful prediction of the surface temperature is sufficient.

Problems
1. A simple model of absorption in the atmosphere shows that doubling the

amount of carbon dioxide in the future will raise the altitude of the tropopause
from 11 km to about 13 km. If the stratospheric temperature and the lapse rate
remain the same, what is the surface temperature in this case? The result you
obtain is much larger than the temperature predicted by sophisticated com-
puter models. This disagreement displays a weakness in our simple model.

2. The stratosphere of Venus has a temperature of about 200 K. The lapse rate in
the Venutian troposphere is about �8.8�C/km. The measured temperature on
the surface of Venus is 732 K. What is the altitude of the Venutian tropopause?

3. Another atmospheric model is based on splitting the atmosphere into N layers
of gas. We assume that the atmosphere is transparent to visible light from the
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A graphical representation of the temperature variation with altitude in our model 
atmosphere. The predicted surface temperature agrees with measurements to
within 1%.
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Sun but is quite opaque to the infrared light that the planet emits. We choose
the depth of each atmospheric layer to be one radiation thickness. That is, the
probability of absorption of infrared radiation in the layer is just 100%. Because
the density of the gas and therefore the probability of absorption vary with alti-
tude, the layers have different geometrical thicknesses. We assume that each
layer has uniform temperature Ti, where i runs from 1 for the top layer to N for
the layer in contact with the planet surface. Each intermediate layer emits ther-
mal radiation from its top and bottom surfaces and absorbs radiation from the
layers above and below it. The lowest layer emits radiation from its bottom 
surface into the surface of the planet, of temperature Ts, and also absorbs radia-
tion from the planet. The highest layer emits into space from its upper surface
but does not have a higher layer from which to absorb infrared radiation. 
(a) The Earth absorbs 70% of the incident solar radiation, which has an inten-
sity of 1 370 W/m2. Show that the temperature T1 of the top layer is 255 K.
(b) For an atmosphere with N layers, show that the surface temperature is

. (c) Consider the troposphere and stratosphere of Earth as
a two-layer system. What surface temperature does this model predict? (d) Why
is this prediction so bad for the Earth? (e) Consider the atmosphere of Venus,
from which 77% of incident radiation is reflected. What is the temperature T1 of
the top layer of the Venutian atmosphere? (f) Given that the surface tempera-
ture of Venus is 732 K, how many layers are in the Venutian atmosphere? (g) Do
you think that the multilayer model will be more successful in describing the
atmosphere of Venus than that of the Earth? Why?

Ts � (N � 1)1/4 T1
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charge, called a stepped leader, moving
toward the ground at a typical speed of
105 m/s. The term stepped leader is used
because the movement occurs in dis-
crete steps of length about 50 m, with a
delay of about 50 �s before the next
step. A step occurs whenever the air be-
comes randomly ionized with sufficient
free electrons in a short length of air to
conduct electricity. The stepped leader
is only faintly luminous and is not the
bright flash we ordinarily think of as
lightning. The radius of the channel of
charge carried by the stepped leader is
typically several meters.

As the tip of the stepped leader ap-
proaches the ground, it can initiate an

y p g p pp

C O N T E X T

Lightning
Lightning occurs all over the world, but
more often in some places than others.
Florida, for example, experiences
lightning storms very often, but light-
ning is rare in Southern California. We
begin this Context by looking at the
details of a flash of lightning in a quali-
tative way. As we continue deeper into
the Context, we will return to this
description and attach more quantita-
tive structure to it.

In general, we shall consider a flash
of lightning to be an electric discharge
occurring between a charged cloud and
the ground or, in other words, an enor-
mous spark. Lightning, however, can
occur in any situation in which a large
electric charge (which we discuss in
Chapter 19) can result in electrical
breakdown of the air, including
snowstorms, sandstorms, and erupting
volcanoes. If we consider lightning
associated with clouds, we observe
cloud-to-ground discharge, cloud-to-
cloud discharge, intracloud discharge,
and cloud-to-air discharge. In this Con-
text, we shall consider only the most
commonly described discharge, cloud to
ground. Intracloud discharge actually
occurs more often than cloud-to-ground
discharge, but it is not the type of light-
ning that we regularly observe.

Because a flash of lightning occurs
in a very short time, the structure of the
process is hidden from normal human
observation. A flash of lightning is com-
prised of a number of individual strokes
of lightning, separated by tens of mil-
liseconds. A typical number of strokes
is 3 or 4, although as many as 26 strokes
(for a total duration of 2 s) have been
measured in a flash.

Although a stroke of lightning may
appear as a sudden, single event, sev-
eral steps are involved in the process.
The process begins with an electrical
breakdown in the air near the cloud
that results in a column of negative

6

Lightning electrically connects a cloud and the ground. In this
Context, we shall learn about the details of such a lightning flash and
find out how many lightning flashes occur on the Earth in a typical day.

FIGURE 1
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electrical breakdown in the air near the
ground, often at the tip of a pointed
object. Negative charges in the ground
are repelled by the approaching tip of
the column of negative charge in the
stepped leader. As a result, the electri-
cal breakdown in the air near the
ground results in a column of positive
charge beginning to move upward
from the ground. (Electrons move
downward in this column, which is
equivalent to positive charges moving
upward.) This process is the beginning
of the return stroke. At 20 to 100 m above
the ground, the return stroke meets
the stepped leader, producing an effec-
tive short circuit between the cloud and
the ground. Electrons pour downward
into the ground at high speed, resulting
in a very large electric current moving
through a channel with a radius mea-
sured in centimeters. This high current
rapidly raises the temperature of the air,
ionizing atoms and providing the bright
light flash we associate with lightning.
Emission spectra of lightning show
many spectral lines from oxygen and
nitrogen, the major components of air.

After the return stroke, the conduct-
ing channel retains its conductivity for
a short time (measured in tens of mil-
liseconds). If more negative charge
from the cloud is made available at the
top of the conducting channel, this
charge can move downward and result
in a new stroke. In this case, because
the conducting channel is “open,” the
leader does not move in a stepped fash-
ion but, rather, moves downward
smoothly and quickly. For this reason, it
is called a dart leader. Once again, as the
dart leader approaches the ground, a
return stroke is initiated and a bright
flash of light occurs.

Just after the current has passed
through the conducting channel, the

air is turned into a plasma at a typical
temperature of 30 000 K. As a result,
there is a sudden increase of pressure
causing a rapid expansion of the
plasma and generating a shock wave in
the surrounding gas. This shock wave is
the origin of the thunder associated with
lightning.

Having taken this first qualitative step
into the understanding of lightning, let
us now seek more details. After investi-
gating the physics of lightning, we shall
respond to our central question:
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During an eruption of
the Sakurajima volcano in Japan,
lightning is prevalent in the charged
atmosphere above the volcano.
Although lightning is possible in this
as well as many other situations, in
this Context we shall study the famil-
iar lightning that occurs in a thunder-
storm.

FIGURE 2 This photograph shows a light-
ning stroke as well as the individual components
of the stroke. The bright channel represents a
lightning stroke in progress, just after a stepped
leader and a return stroke have connected and
the channel becomes conducting. Several stepped
leaders can be seen at the top of the photograph,
branching off from the bright channel. They are
less luminous than the bright channel because
they have not yet connected with return strokes. A
return stroke can be seen, just to the left of the
bright channel, moving upward from the tree in
search of a stepped leader. Another very faint re-
turn stroke can be seen leaving the top of the
power pole at the left of the photograph.

FIGURE 3
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How can we determine the number of lightning flashes on the Earth in
a typical day?



This chapter is the first of three on electricity. You are proba-
bly familiar with electrical effects, such as the static cling
between articles of clothing removed from the dryer. You

may also be familiar with the spark that jumps from your finger
to a doorknob after you have walked across a carpet. Much of
your daily experience involves working with devices that operate
on energy transferred to the device by means of electrical trans-
mission and provided by the electric power company. Even your
own body is an electrochemical machine that uses electricity
extensively. Nerves carry impulses as electrical signals, and
electric forces are involved in the flow of materials across cell
membranes.

This chapter begins with a review of some of the basic proper-
ties of the electrostatic force that we introduced in Chapter 5 as
well as some properties of the electric field associated with
stationary charged particles. Our study of electrostatics then
continues with the concept of an electric field that is associated
with a continuous charge distribution and the effect of this field

Electric Forces and Electric Fields

Mother and daughter are both enjoy-
ing the effects of electrically charging
their bodies. Each individual hair on
their heads becomes charged and ex-
erts a repulsive force on the other
hairs, resulting in the “stand-up” hair-
dos that you see here.

C H A P T E R  O U T L I N E
19.1 Historical Overview
19.2 Properties of Electric Charges
19.3 Insulators and Conductors
19.4 Coulomb’s Law
19.5 Electric Fields
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Electric Field
19.8 Electric Flux
19.9 Gauss’s Law
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on other charged particles. In these studies, we shall apply the models of a particle
in a field and a particle under a net force that we have seen in earlier chapters.

HISTORICAL  OVERVIEW
The laws of electricity and magnetism play a central role in the operation of devices
such as radios, televisions, electric motors, computers, high-energy particle acceler-
ators, and a host of electronic devices used in medicine. More fundamental,
however, is that the interatomic and intermolecular forces responsible for the for-
mation of solids and liquids are electric in origin. Furthermore, such forces as the
pushes and pulls between objects in contact and the elastic force in a spring arise
from electric forces at the atomic level.

Chinese documents suggest that magnetism was recognized as early as about
2000 B.C. The ancient Greeks observed electric and magnetic phenomena possibly
as early as 700 B.C. They found that a piece of amber, when rubbed, attracted pieces
of straw or feathers. The existence of magnetic forces was known from observations
that pieces of a naturally occurring stone called magnetite (Fe3O4) were attracted to
iron. (The word electric comes from the Greek word for amber, elektron. The word
magnetic comes from Magnesia, a city on the coast of Turkey where magnetite was
found.)

In 1600, Englishman William Gilbert discovered that electrification was not
limited to amber but was a general phenomenon. Scientists went on to electrify a
variety of objects, including people! 

It was not until the early part of the 19th century that scientists established that
electricity and magnetism are related phenomena. In 1820, Hans Oersted discov-
ered that a compass needle, which is magnetic, is deflected when placed near an
electric current. In 1831, Michael Faraday in England and, almost simultaneously,
Joseph Henry in the United States showed that when a wire loop is moved near a
magnet (or, equivalently, when a magnet is moved near a wire loop) an electric
current is observed in the wire. In 1873, James Clerk Maxwell used these observa-
tions and other experimental facts as a basis for formulating the laws of electromag-
netism as we know them today. Shortly thereafter (around 1888), Heinrich Hertz
verified Maxwell’s predictions by producing electromagnetic waves in the labora-
tory. This achievement was followed by such practical developments as radio and
television.

Maxwell’s contributions to the science of electromagnetism were especially sig-
nificant because the laws he formulated are basic to all forms of electromagnetic
phenomena. His work is comparable in importance to Newton’s discovery of the
laws of motion and the theory of gravitation.

PROPERTIES  OF  ELECTRIC  CHARGES
A number of simple experiments demonstrate the existence of electrostatic forces.
For example, after running a comb through your hair, you will find that the comb
attracts bits of paper. The attractive electrostatic force is often strong enough to sus-
pend the bits. The same effect occurs with other rubbed materials, such as glass or
rubber.

Another simple experiment is to rub an inflated balloon with wool or across
your hair (Fig. 19.1). On a dry day, the rubbed balloon will stick to the wall of a
room, often for hours. When materials behave this way, they are said to have
become electrically charged. You can give your body an electric charge
by walking across a wool rug or by sliding across a car seat. You can then
feel, and remove, the charge on your body by lightly touching another person or
object. Under the right conditions, a visible spark is seen when you touch and a
slight tingle is felt by both parties. (Such an experiment works best on a dry day

19.2

19.1
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Rubbing a balloon
against your hair on a dry day causes
the balloon and your hair to become
electrically charged. 

FIGURE 19.1
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because excessive moisture in the air can provide a pathway for charge to leak off a
charged object.)

Experiments also demonstrate that there are two kinds of electric charge, given
the names positive and negative by Benjamin Franklin (1706–1790). Figure 19.2
illustrates the interactions of the two kinds of charge. A hard rubber (or plastic) rod
that has been rubbed with fur (or an acrylic material) is suspended by a piece of
thread. When a glass rod that has been rubbed with silk is brought near the rubber
rod, the rubber rod is attracted toward the glass rod (Fig. 19.2a). If two charged rub-
ber rods (or two charged glass rods) are brought near each other, as in Figure 19.2b,
the force between them is repulsive. This observation demonstrates that the rubber
and glass have different kinds of charge. We use the convention suggested by
Franklin; the electric charge on the glass rod is called positive and that on the rubber
rod is called negative. On the basis of such observations, we conclude that charges of
the same sign repel each other and charges with opposite signs attract each other.

We know that only two kinds of electric charge exist because any unknown
charge that is found experimentally to be attracted to a positive charge is also
repelled by a negative charge. No one has ever observed a charged object that is
repelled by both a positive and a negative charge or that is attracted to both.

Attractive electric forces are responsible for the behavior of a wide variety of
commercial products. For example, the plastic in many contact lenses, etafilcon, is
made up of molecules that electrically attract the protein molecules in human
tears. These protein molecules are absorbed and held by the plastic so that the lens
ends up being primarily composed of the wearer’s tears. Therefore, the lens does
not behave as a foreign object to the wearer’s eye and can be worn comfortably.
Many cosmetics also take advantage of electric forces by incorporating materials
that are electrically attracted to skin or hair, causing the pigments or other chemi-
cals to stay put once they are applied.

Another important characteristic of electric charge is that the net charge in an
isolated system is always conserved. This represents the electric charge version of
the isolated system model. We first introduced isolated system models in Chapter 7
when we discussed conservation of energy; we now see a principle of conservation
of electric charge for an isolated system. When two initially neutral objects are
charged by being rubbed together, charge is not created in the process. The objects
become charged because electrons are transferred from one object to the other. One
object gains some amount of negative charge from the electrons transferred to it
while the other loses an equal amount of negative charge and hence is left with a
positive charge. For the isolated system of the two objects, no transfer of charge
occurs across the boundary of the system. The only change is that charge has been
transferred between two members of the system. For example, when a glass rod is
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(a) A negatively
charged rubber rod, suspended by 
an insulating thread, is attracted to a
positively charged glass rod. (b) A
negatively charged rubber rod is re-
pelled by another negatively charged 
rubber rod.

FIGURE 19.2
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rubbed with silk, as in Figure 19.3, the silk obtains a negative charge that is equal in
magnitude to the positive charge on the glass rod as negatively charged electrons
are transferred from the glass to the silk. Likewise, when rubber is rubbed with fur,
electrons are transferred from the fur to the rubber. An uncharged object contains an
enormous number of electrons (on the order of 1023). For every negative electron,
however, a positively charged proton is also present; hence, an uncharged object
has no net charge of either sign.

Another property of electric charge is that the total charge on an object is
quantized as integral multiples of the elementary charge e. We first saw this charge
e � 1.60 � 10�19 C in Chapter 5. The quantization results because the charge on
an object must be due to an integral number of excess electrons or a deficiency of
an integral number of electrons.
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When a glass rod is
rubbed with silk, electrons are trans-
ferred from the glass to the silk.
Because of conservation of charge,
each electron adds negative charge to
the silk, and an equal positive charge
is left behind on the rod. Also,
because the charges are transferred 
in discrete bundles, the charges on
the two objects are � e or �2e or � 3e,
and so on.

FIGURE 19.3

Three objects are brought close to one another, two at a time.  When
objects A and B are brought together, they repel.  When objects B and C are brought
together, they also repel. Which of the following statements are true? (a) Objects A and C
possess charges of the same sign. (b) Objects A and C possess charges of opposite sign. 
(c) All three objects possess charges of the same sign. (d) One of the objects is neutral. 
(e) We need to perform additional experiments to determine the signs of the charges.

QUICK QUIZ 19.1

INSULATORS  AND  CONDUCTORS
We have discussed the transfer of charge from one object to another. It is 
also possible for electric charges to move from one location to another within an ob-
ject; such motion of charge is called electrical conduction. It is convenient to classify
substances in terms of the ability of charges to move within the  substance:

Conductors are materials in which electric charges move relatively freely and
insulators are materials in which electric charges do not move freely.

Materials such as glass, rubber, and Lucite are insulators. When such materials
are charged by rubbing, only the rubbed area becomes charged; the charge
does not tend to move to other regions of the material. In contrast, materials
such as copper, aluminum, and silver are good conductors. When such materials are
charged in some small region, the charge readily distributes itself over the entire
surface of the material. If you hold a copper rod in your hand and rub it with wool
or fur, it will not attract a small piece of paper, which might suggest that a metal can-
not be charged. If you hold the copper rod by an insulating handle and then rub,
however, the rod remains charged and attracts the piece of paper. In the first case,
the electric charges produced by rubbing readily move from the copper through
your body, which is a conductor, and finally to the Earth. In the second case, the in-
sulating handle prevents the flow of charge to your hand.

Semiconductors are a third class of materials, and their electrical properties are
somewhere between those of insulators and those of conductors. Charges can move
somewhat freely in a semiconductor, but far fewer charges are moving through a
semiconductor than in a conductor. Silicon and germanium are well-known
examples of semiconductors that are widely used in the fabrication of a variety of
electronic devices. The electrical properties of semiconductors can be changed
over many orders of magnitude by adding controlled amounts of certain foreign
atoms to the materials.

Charging by Induction
When a conductor is connected to the Earth by means of a conducting wire or pipe,
it is said to be grounded. For present purposes, the Earth can be modeled as an infi-
nite reservoir for electrons, which means that it can accept or supply an unlimited
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number of electrons. In this context, the Earth serves a purpose similar to our en-
ergy reservoirs introduced in Chapter 17. With that in mind, we can understand
how to charge a conductor by a process known as charging by induction.

To understand how to charge a conductor by induction, consider a neutral
(uncharged) metallic sphere insulated from the ground as shown in Figure 19.4a.
There are an equal number of electrons and protons in the sphere if the charge on
the sphere is exactly zero. When a negatively charged rubber rod is brought near
the sphere, electrons in the region nearest the rod experience a repulsive force and
migrate to the opposite side of the sphere. This migration leaves the side of the
sphere near the rod with an effective positive charge because of the diminished
number of electrons as in Figure 19.4b. (The left side of the sphere in Figure 19.4b
is positively charged as if positive charges moved into this region, but in a metal it is
only electrons that are free to move.) This migration occurs even if the rod never
actually touches the sphere. If the same experiment is performed with a
conducting wire connected from the sphere to the Earth (Fig. 19.4c), some of the
electrons in the conductor are so strongly repelled by the presence of the negative
charge in the rod that they move out of the sphere through the wire and into the
Earth. The symbol at the end of the wire in Figure 19.4c indicates that 
the wire is connected to ground, which means a reservoir such as the Earth. If the
wire to ground is then removed (Fig. 19.4d), the conducting sphere contains an ex-
cess of induced positive charge because it has fewer electrons than it needs to cancel
out the positive charge of the protons. When the rubber rod is removed from the
vicinity of the sphere (Fig. 19.4e), this induced positive charge remains on the un-
grounded sphere. Note that the rubber rod loses none of its negative charge dur-
ing this process.

Charging an object by induction requires no contact with the object inducing the
charge. This behavior is in contrast to charging an object by rubbing, which does
require contact between the two objects.

A process similar to the first step in charging by induction in conductors takes
place in insulators. In most neutral atoms and molecules, the average position of
the positive charge coincides with the average position of the negative charge. In
the presence of a charged object, however, these positions may shift slightly because
of the attractive and repulsive forces from the charged object, resulting in more
positive charge on one side of the molecule than on the other. This effect is known
as polarization. The polarization of individual molecules produces a layer of charge
on the surface of the insulator as shown in Figure 19.5a, in which a charged bal-
loon on the left is placed against a wall on the right. In the figure, the negative
charge layer in the wall is closer to the positively charged balloon than the positive
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Charging a metal-
lic object by induction; that is, the two
objects never touch each other. (a) A
neutral metallic sphere, with equal
numbers of positive and negative
charges. (b) The electrons on the
neutral sphere are redistributed when
a charged rubber rod is placed near
the sphere. (c) When the sphere is
grounded, some of its electrons leave
through the ground wire. (d) When the
ground connection is removed, the
sphere has excess positive charge that
is nonuniformly distributed. (e) When
the rod is removed, the remaining
electrons redistribute uniformly and
there is a net uniform distribution of
positive charge on the sphere.

FIGURE 19.4
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(a) The charged balloon on the left induces a charge distribution on the wall’s sur-
face due to realignment of charges in the molecules. (b) A charged comb attracts bits
of paper because charges in the paper’s molecules are realigned.

FIGURE 19.5
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charges at the other ends of the molecules. Therefore, the attractive force between
the positive and negative charges is larger than the repulsive force between the pos-
itive charges. The result is a net attractive force between the charged balloon and
the neutral insulator. It is this polarization effect that explains why a comb that has
been rubbed through hair attracts bits of neutral paper (Fig. 19.5b) or why a
balloon that has been rubbed against your hair can stick to a neutral wall.
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Three objects are brought close to one another, two at a time. When
objects A and B are brought together, they attract. When objects B and C are brought
together, they repel. From this experiment, what can we conclude? (a) Objects A and C
possess charges of the same sign. (b) Objects A and C possess charges of opposite sign. 
(c) All three of the objects possess charges of the same sign. (d) One of the objects is neu-
tral. (e) We need to perform additional experiments to determine information about the
charges on the objects.

QUICK QUIZ 19.2

COULOMB’S  LAW
Electric forces between charged objects were measured quantitatively by Charles
Coulomb using the torsion balance, which he invented (Fig. 19.6). Coulomb con-
firmed that the electric force between two small charged spheres is proportional to
the inverse square of their separation distance r, that is, Fe � 1/r 2. The operating
principle of the torsion balance is the same as that of the apparatus used by Sir
Henry Cavendish to measure the gravitational constant (Section 11.1), with the
electrically neutral spheres replaced by charged ones. The electric force between
charged spheres A and B in Figure 19.6 causes the spheres to either attract or repel
each other, and the resulting motion causes the suspended fiber to twist. Because
the restoring torque of the twisted fiber is proportional to the angle through which
it rotates, a measurement of this angle provides a quantitative measure of the elec-
tric force of attraction or repulsion. Once the spheres are charged by rubbing, the
electric force between them is very large compared with the gravitational attraction,
and so the gravitational force can be ignored.

In Chapter 5, we introduced Coulomb’s law, which describes the magnitude of
the electrostatic force between two charged particles with charges q1 and q2 and
separated by a distance r :

[19.1]

where ke (� 8.99 � 109 N � m2/C2) is the Coulomb constant and the force is in
newtons if the charges are in coulombs and if the separation distance is in meters.
The constant ke is also written as

where the constant �0, known as the permittivity of free space, has the value

�0 � 8.854 2 � 10�12 C2/N � m2

Note that Equation 19.1 gives only the magnitude of the force. The direction of the
force on a given particle must be found by considering where the particles are
located with respect to one another and the sign of each charge. Therefore, a picto-
rial representation of a problem in electrostatics is very important in analyzing the
problem.

The charge of an electron is q � � e � �1.60 � 10�19 C, and the proton has
a charge of q � 	 e � 1.60 � 10�19 C; therefore, 1 C of charge is equal to the

ke �
1

4
�0

Fe � ke
� q1 �� q2 �

r 2

19.4

Suspension
head

Fiber

B

A

Coulomb’s torsion
balance, which was used to establish
the inverse-square law for the electro-
static force between two charges.

FIGURE 19.6

Charles Coulomb (1736 – 1806)
French physicist Coulomb’s major
contributions to science were in the
areas of electrostatics and magnet-
ism. During his lifetime, he also inves-
tigated the strengths of materials
and determined the forces that affect
objects on beams, thereby contribut-
ing to the field of structural mechan-
ics. In the field of ergonomics, his
research provided a fundamental
understanding of the ways in which
people and animals can best do work.
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magnitude of the charge of (1.60 � 10�19)�1 � 6.25 � 1018 electrons. (The ele-
mentary charge e was introduced in Section 5.5.) Note that 1 C is a substantial
amount of charge. In typical electrostatic experiments, where a rubber or glass rod
is charged by friction, a net charge on the order of 10�6 C (� 1 �C) is obtained. In
other words, only a very small fraction of the total available electrons (on the order
of 1023 in a 1-cm3 sample) are transferred between the rod and the rubbing mater-
ial. The experimentally measured values of the charges and masses of the electron,
proton, and neutron are given in Table 19.1.

When dealing with Coulomb’s law, remember that force is a vector quantity
and must be treated accordingly. Furthermore, Coulomb’s law applies exactly only
to particles.1 The electrostatic force exerted by q1 on q2, written , can be expressed
in vector form as2

[19.2]

where is a unit vector directed from q1 toward q2 as in Active Figure 19.7a. Equa-
tion 19.2 can be used to find the direction of the force in space, although a carefully
drawn pictorial representation is needed to clearly identify the direction of . From
Newton’s third law, we see that the electric force exerted by q2 on q1 is equal in magni-
tude to the force exerted by q1 on q2 and in the opposite direction; that is,

. From Equation 19.2, we see that if q1 and q2 have the same sign, the
product q1q2 is positive and the force is repulsive as in Active Figure 19.7a. The force
on q2 is in the same direction as and is directed away from q1. If q1 and q2 are of op-
posite sign as in Active Figure 19.7b, the product q1q2 is negative and the force is attrac-
tive. In this case, the force on q2 is in the direction opposite to , directed toward q1.

When more than two charged particles are present, the force between any pair
is given by Equation 19.2. Therefore, the resultant force on any one particle equals
the vector sum of the individual forces due to all other particles. This principle of
superposition as applied to electrostatic forces is an experimentally observed fact
and simply represents the traditional vector sum of forces introduced in Chapter 4.
As an example, if four charged particles are present, the resultant force on particle
1 due to particles 2, 3, and 4 is given by the vector sum

F
:

1 � F
:

21 	 F
:

31 	 F
:

41

r̂12

r̂12

F
:

21 � �F
:

12

r12ˆ

r̂12

F
:

12 � ke  
q1q2

r 2  r̂12

F
:

12
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1Coulomb’s law can also be used for larger objects to which the particle model can be applied.
2Notice that we use “q2” as shorthand notation for  “the particle with charge q2.” This usage is common
when discussing charged particles, similar to the use in mechanics of “m2” for “the particle with mass
m2.” The context of the sentence will tell you whether the symbol represents an amount of charge or a
particle with that charge.

Charge and Mass of the Electron, Proton, and NeutronTABLE 19.1

Particle Charge (C) Mass (kg)

Electron (e) �1.602 176 5 � 10�19 9.109 38 � 10�31

Proton (p) 	1.602 176 5 � 10�19 1.672 62 � 10�27

Neutron (n) 0 1.674 93 � 10�27

–

+
r

(a)F21

F12

q1

q2

(b)

F21

F12

q1

q2

r12ˆ

+

+

Two point charges separated by a dis-
tance r exert a force on each other
given by Coulomb’s law. Note that the
force exerted by q2 on q1 is equal
in magnitude and opposite in direc-
tion to the force exerted by q1

on q2 . (a) When the charges are of
the same sign, the force is repulsive. 
(b) When the charges are of opposite
signs, the force is attractive.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 19.7 to move the
charges to any position in two-
dimensional space and observe the
electric forces on them.

F
:

12

F
:

21

ACTIVE FIGURE 19.7

(i) Object A has a charge of 	2 �C, and object B has a charge of
	6 �C. Which of the following statements is true about the electric forces on the objects?
(a) FAB � �3FBA (b) FAB � � FBA (c) 3FAB � � FBA (d) FAB � 3FBA (e) FAB � FBA

(f ) 3FAB � FBA (ii) Which of the following statements is true about the electric forces on
the objects? (a) (b) (c) (d)
(e) (f ) 3F

:
AB � F

:
BAF

:
AB � F

:
BA

F
:

AB � 3F
:

BA3F
:

AB � � F
:

BAF
:

AB � � F
:

BAF
:

AB � � 3F
:

BA

QUICK QUIZ 19.3
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Where Is the Resultant Force Zero?EXAMPLE 19.1INTERACTIVE
If we let x be the coordinate of q3, the forces 

and can be written as

where we have recognized that for the force
due to q1 because q1 is to the right of q3. (Remember
that q3 is negative, so will be in the positive direction
as shown in Figure 19.8 and will be in the negative
direction.) We now add these two forces and set the re-
sultant equal to zero:

Because ke and q3 are common to both terms, they can-
cel, and we can solve for x:

which simplifies to

9.00x2 	 24.0x � 24.0 � 0

Solving this quadratic equation for x, we find that 
x � Why is the negative root not acceptable?

By logging into PhysicsNow at www.pop4e.com
and going to Interactive Example 19.1, you can predict where
on the x axis the electric force is zero for random values of q1

and q2.

0.775 m.

 (4.00 � 4.00x 	 x2)(6.00 � 10�6 C) � x2(15.0 � 10�6 C)

 
q1

(2.00 � x)2 �
q2

x2

 � F
:

� F
:

13 	 F
:

23 � � ke 
q1q3

(2.00 � x)2   î 	 ke 
q2q3

x 2   î � 0

F
:

23

F
:

13

r̂13 � � î

 F
:

23 � ke  
q2q3

x2  r̂23 � ke  
q2q3

x2   î

F
:

13 � ke 
q1q3

(2.00 � x)2   r̂13 � � ke 
q1q3

(2.00 � x)2   î

F
:

23

F
:

13Three charged particles lie along the x axis as in Figure
19.8. The particle with charge q1 � 	 15.0 �C 
is at x � 2.00 m, and the particle with charge 
q2 � 	 6.00 �C is at the origin. Where on the x axis
can a particle with negative charge q3 be placed such
that the resultant force on it is zero?

Using Newton’s law of universal gravitation (Section 5.5)
and Table 19.1 for the particle masses, we find that the
magnitude of the gravitational force is

Fg � G 
memp

r 2

The Hydrogen AtomEXAMPLE 19.2
The electron and proton of a hydrogen atom are sepa-
rated (on average) by a distance of approximately 
5.3 � 10�11 m. Find the magnitudes of the electrostatic
force and the gravitational force that either particle ex-
erts on the other.

Solution From Coulomb’s law, we find that the magni-
tude of the attractive electrostatic force is

� 8.2 � 10�8 N

Fe � ke  
e 2

r 2 � (8.99 � 109 N�m2/C2) 
(1.60 � 10�19 C)2

(5.3 � 10�11 m)2

� 3.6 � 10�47 N

� (6.67 � 10�11 N �m2/kg2) 
(9.11 � 10�31 kg)(1.67 � 10�27 kg)

(5.3 � 10�11 m)2

The ratio Fg/Fe � 4 � 10�40. Therefore, the gravitational
force between charged atomic particles is negligible com-
pared with the electric force.

2.00 m

x

q1

x
q3

–
q2 F13F23

2.00 – x

+ +

(Interactive Example 19.1) Three point charges
are placed along the x axis. If the net force on q3 is
zero, the force exerted by q1 on q3 must be
equal in magnitude and opposite in direction to
the force exerted by q2 on q3.F

:
23

F
:

13

FIGURE 19.8

Solution The requested resultant force of zero indicates
that q3 is a particle in equilibrium, so the two forces on q3
cancel. Because q3 is negative and both q1 and q2 are
positive, the forces and are both attractive. To
cancel, the forces on q3 must be in opposite directions.
If q3 is placed to the left of q2 or to the right of q1, the
two forces on q3 will be in the same direction. There-
fore, the only possibility of having forces in opposite
directions is to place q3 between q1 and q2, as indicated
in Figure 19.8.

F
:

23F
:

13
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ELECTRIC  FIELDS
The gravitational field at a point in space was defined in Section 11.1 to be equal
to the gravitational force acting on a test particle of mass m0 divided by the mass
of the test particle: . It represents the gravitational version of the model
of a particle in a field. In a similar manner, an electric field at a point in space can
be defined in terms of the electric force acting on a test particle with charge q0
placed at that point. Because charge exists in two varieties, we must choose a
convention for our test particle. We choose the convention that a test particle
always carries a positive electric charge. With this convention, we can introduce the
electric version of the particle in a field model. The electric field at a point in
space is defined as the electric force acting on a test particle placed at that point
divided by the charge q0 of the test particle:

[19.3]

Therefore, an electric field exists at a point if a charged test particle placed at rest at
that point experiences an electric force. Because force is a vector, the electric field is
also a vector. Note that is the field produced by some charged particle(s) separate
from the test particle; it is not the field produced by the test particle. We call the parti-
cle(s) creating the electric field the source particle(s). The electric field set up by a
source charge is analogous to the gravitational field set up by some massive object such
as the Earth. This gravitational field exists whether a test particle of mass m0 is present
or not. Similarly, the electric field of the source particles is present whether or not we
introduce a test particle into the field. The test particle is used only to measure the
force and thus detect the existence of the field and evaluate its strength.

When using Equation 19.3, we must assume that the test charge q0 is small
enough that it does not disturb the charge distribution responsible for the electric
field. If a vanishingly small test charge q0 is placed near a uniformly charged
metallic sphere as in Figure 19.9a, the charge on the metallic sphere remains uni-
formly distributed. If the test charge is large enough (q0�  q0) as in Figure 19.9b,
the charge on the metallic sphere is redistributed and the ratio of the force to the
test charge is different: (Fe�/q0� � Fe /q0). That is, because of this redistribution
of charge on the metallic sphere, the electric field it sets up is different from the
field it sets up in the presence of the much smaller q0.

The vector has the SI units of newtons per coulomb (N/C), analogous to the
units newtons per kilogram (N/kg) for the gravitational field. The direction of is
the same as the direction of because we have used the convention of a positive
charge on the test particle.

Once the electric field is known at some point, the force on any particle with charge
q placed at that point can be calculated from a rearrangement of Equation 19.3:

[19.4]

Once the electric force on a particle is evaluated, its motion can be determined from
the particle under a net force model or the particle in equilibrium model (the elec-
tric force may have to be combined with other forces acting on the particle), and the
techniques of earlier chapters can be used to find the motion of the particle.

Consider a point charge3 q located a distance r from a test particle with charge
q0. According to Coulomb’s law, the force exerted on the test particle by q is

F
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� Definition of electric field

(a) (b)

q0+ q ′0 >> q0+

–

–

– – – –
–

–
––

–
–

–
–

–
–

–
––

–
–

–
–

(a) For a small
enough test charge q0, the charge
distribution on the sphere is undis-
turbed. (b) If the test charge q0� were
larger, the charge distribution on the
sphere would be disturbed as a result
of the proximity of q0�.

FIGURE 19.9

3We have used the phrase “charged particle” so far. The phrase “point charge” is somewhat misleading
because charge is a property of a particle, not a physical entity. It is similar to misleading phrasing in
mechanics such as “a mass m is placed . . .” (which we have avoided) rather than “a particle with mass m
is placed. . . .” This phrase is so ingrained in physics usage, however, that we will use it and hope that
this footnote suffices to clarify its use.

PARTICLES ONLY Keep in mind that
Equation 19.4 is only valid for a
charged particle, an object of zero
size. For a charged object of finite
size in an electric field, the field
may vary in magnitude and direc-
tion over the size of the object, so
the corresponding force equation
would be more complicated.

� PITFALL PREVENTION 19.1



where is a unit vector directed from q toward q0. This force in Active Figure 19.10a
is directed away from the source charge q. Because the electric field at P, the position
of the test charge, is defined by , we find that at P, the electric field cre-
ated by q is

[19.5]

If the source charge q is positive, Active Figure 19.10b shows the situation with the
test charge removed; the source charge sets up an electric field at point P, directed
away from q. If q is negative as in Active Figure 19.10c, the force on the test charge
is toward the source charge, so the electric field at P is directed toward the source
charge as in Active Figure 19.10d.

To calculate the electric field at a point P due to a group of point charges, we
first calculate the electric field vectors at P individually using Equation 19.5 and
then add them vectorially. In other words, the total electric field at a point in space
due to a group of charged particles equals the vector sum of the electric fields at
that point due to all the particles. This superposition principle applied to fields
follows directly from the vector addition property of forces. Therefore, the electric
field at point P of a group of source charges can be expressed as

[19.6]

where ri is the distance from the ith charge qi to the point P (the location at which
the field is to be evaluated) and is a unit vector directed from qi toward P.r̂i
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� Electric field due to a point
charge

A test charge of 	 3 �C is at a point P where an external electric field
is directed to the right and has a magnitude of 4 � 106 N/C. If the test charge is replaced
with another charge of � 3 �C, the external electric field at P (a) is unaffected, 
(b) reverses direction, or (c) changes in a way that cannot be determined.

QUICK QUIZ 19.4

(b)

E

q

P

r̂

+

P

(a)

Fe

q

q0

r
P

r̂

+ –
(c)

Feq

q0

P

r̂

–
(d)

E

q

r̂

A test charge q0 at point P is a distance r
from a point charge q. (a) If q is positive,
the force on the test charge is directed away
from q. (b) For the positive source charge,
the electric field at P points radially outward
from q. (c) If q is negative, the force on the
test charge is directed toward q. (d) For the
negative source charge, the electric field at
P points radially inward toward q.

Log into PhysicsNow
at www.pop4e.com and go to Active Fig-
ure 19.10 to move point P to any position
in two-dimensional space and observe the
electric field due to q.

ACTIVE FIGURE 19.10

� Electric field due to a finite
number of point charges

atoms and molecules behave as dipoles when placed in
an external electric field. Furthermore, many mole-
cules, such as HCl, are permanent dipoles. (HCl can be

Electric Field of a DipoleEXAMPLE 19.3
An electric dipole consists of a point charge q and a
point charge�q separated by a distance of 2a as in 
Figure 19.11. As we shall see in later chapters, neutral

www.pop4e.com


Electric Field Due to Continuous Charge Distributions
In most practical situations (e.g., an object charged by rubbing), the average sepa-
ration between source charges is small compared with their distances from the
point at which the field is to be evaluated. In such cases, the system of source
charges can be modeled as continuous. That is, we imagine that the system of closely
spaced charges is equivalent to a total charge that is continuously distributed
through some volume or over some surface.

To evaluate the electric field of a continuous charge distribution, the following
procedure is used. First, we divide the charge distribution into small elements, each
of which contains a small amount of charge �q as in Figure 19.12. Next, modeling
the element as a point charge, we use Equation 19.5 to calculate the electric field

at a point P due to one of these elements. Finally, we evaluate the total field at P
due to the charge distribution by performing a vector sum of the contributions of
all the charge elements (i.e., by applying the superposition principle).

�E
:
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The y components of and are equal in magni-
tude and opposite in sign, so they cancel. The x compo-
nents are equal and add because they have the same
sign. The total field is therefore parallel to the x axis
and has a magnitude

From the geometry in Figure 19.11 we see that 
cos � � a/r � a/(y2 	 a2)1/2. Therefore,

� 

Find the electric field for points y  a far from
the dipole.

Solution The preceding equation gives the value of the
electric field on the y axis at all values of y. For points
far from the dipole, for which y  a, we can ignore a2

in the denominator and write

Therefore, we see that along the y axis the field of a 
dipole at a distant point varies as 1/r 3, whereas the
more slowly varying field of a point charge varies as
1/r 2. (Note: In the geometry of this example, r � y.) At
distant points, the fields of the two charges in the dipole
almost cancel each other. The 1/r 3 variation in E for the
dipole is also obtained for a distant point along the x
axis (Problem 19.16) and for a general distant point.
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 E � 2ke  
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(y2 	 a2)1/2
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E
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E
:

2E
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1

E1 � E2 � ke  
q
r 2 � ke  

q
y2 	 a2

effectively modeled as an H	 ion combined with a Cl�

ion.) The effect of such dipoles on the behavior of
materials subjected to electric fields is discussed in
Chapter 20.

Find the electric field due to the dipole along
the y axis at the point P, which is a distance y from the
origin.

E
:A

P E
θ

θ

y

E1

E2
y

r

θ

a
q

θ

a
–q
– x+

(Example 19.3) The total electric field at P due
to two equal and opposite charges (an electric di-
pole) equals the vector sum . The field 
is due to the positive charge q, and is the field
due to the negative charge�q.

E
:

2

E
:

1E
:

1 	 E
:

2

E
:FIGURE 19.11

Solution At P, the fields and due to the two
particles are equal in magnitude because P is equidis-
tant from the two charges. The total field at P is

, where the magnitudes of the fields areE
:

� E
:

1 	 E
:

2

E
:

2E
:

1



The electric field at P due to one element of charge �qi is given by

where the index i refers to the ith element in the distribution, ri is the distance
from the element to point P, and is a unit vector directed from the element to-
ward P. The total electric field at P due to all elements in the charge distribution
is approximately

Now, we apply the model in which the charge distribution is continuous, and we let
the elements of charge become infinitesimally small. With this model, the total
field at P in the limit �qi : 0 becomes

[19.7]

where dq is an infinitesimal amount of charge and the integration is over all the
charge creating the electric field. The integration is a vector operation and must be
treated with caution. It can be evaluated in terms of individual components, or
perhaps symmetry arguments can be used to reduce it to a scalar integral. We shall
illustrate this type of calculation with several examples in which we assume that the
charge is uniformly distributed on a line or a surface or throughout some volume.
When performing such calculations, it is convenient to use the concept of a charge
density along with the following notations:

• If a total charge Q is uniformly distributed throughout a volume V, the volume
charge density � is defined by

[19.8]

where � has units of coulombs per cubic meter.
• If Q is uniformly distributed on a surface of area A, the surface charge density �

is defined by

[19.9]

where � has units of coulombs per square meter.
• If Q is uniformly distributed along a line of length �, the linear charge density �

is defined by

[19.10]

where � has units of coulombs per meter.

� �  
Q
�

�  �  
Q
A

�  �  
Q
V

E
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�qi
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2  r̂i  � ke � 
dq
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� ke  �
i

�qi

ri 

2  r̂i 
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�E
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�qi
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∆q
r̂

P

∆E

The electric field 
at P due to a continuous charge distri-
bution is the vector sum of the fields

due to all the elements  �q of the
charge distribution.
�E

:

E
:FIGURE 19.12

� Surface charge density

� Volume charge density

� Linear charge density

The following procedure is recommended for solving problems
that involve the determination of an electric field due to indi-
vidual charges or a charge distribution:

1. Conceptualize Think carefully about the individual
charges or the charge distribution that you have in the prob-
lem. Imagine what type of electric field they would create and

establish the mental representation.  Appeal to any symmetry
in the arrangement of charges to help you visualize the electric
field.

2. Categorize Are you analyzing a group of individual
charges or a continuous charge distribution?  The answer to
this question will tell you how to proceed in the Analyze step.

Calculating the Electric FieldPROBLEM-SOLVING STRATEGY
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3. Analyze
(a) If you are analyzing a group of individual charges, use the su-

perposition principle. When several point charges are pre-
sent, the resultant field at a point in space is the vector sum of
the individual fields due to the individual charges (Eq. 19.6).
Example 19.3 demonstrated this procedure. Be very careful
in the manipulation of vector quantities. It may be useful to
review the material on vector addition in Chapter 1. 

(b) If you are analyzing a continuous charge distribution, replace
the vector sums for evaluating the total electric field from
individual charges by vector integrals. The charge distribu-
tion is divided into infinitesimal pieces, and the vector sum
is carried out by integrating over the entire charge distrib-
ution (Eq. 19.7). Examples 19.4 and 19.5 demonstrate
such procedures.

Symmetry. Whenever dealing with either a distribution of
point charges or a continuous charge distribution, take
advantage of any symmetry in the system that you ob-
served in the Conceptualize step to simplify your calcula-
tions. The cancellation of field components parallel to 
the y axis in Example 19.3 and perpendicular to the axis
in Example 19.5 is an example of the application of 
symmetry.

4. Finalize Once you have determined your result, check to
see if your field is consistent with the mental representation
and that it reflects any symmetry that you noted previously.
Imagine varying parameters such as the distance of the
observation point from the charges or the radius of any circu-
lar or spherical objects to see if the mathematical result
changes in a reasonable way.

The field due to this segment at the point P is in the
negative x direction, and its magnitude is

Each element of the charge distribution produces a
field at P in the negative x direction, so the vector sum
of their contributions reduces to an algebraic sum. The
total field at P due to all segments of the rod, which are
at different distances from P, is given by Equation 19.7,
which in this case becomes

where the limits on the integral extend from one end
of the rod (x � a) to the other (x � � 	 a). Because ke
and � are constants, they can be removed from the in-
tegral. Therefore, we find that

where we have used that the linear charge density is
� � Q /�.

To finalize, note that E decreases as a increases, as
we expected from our mental representation. If point P
is very far from the rod (a  �), we can ignore the � in
the denominator, and E � keQ /a2. This result is just the
form you would expect for a point charge. Therefore, at
large values of a, the charge distribution appears to be a
point charge of magnitude Q as you should expect.

keQ
a(� 	 a)

 � ke � � 1
a

�
1

� 	 a � �

 E � ke � �� 	a

a
  

dx
x 2   � ke � 	� 

1
x 


� 	a

a

E � ��	a

a
ke � 

dx
x2  

dE � ke  
dq
x2 � ke 

� dx
x 2

d E
:

The Electric Field Due to a Charged RodEXAMPLE 19.4
A rod of length � has a uniform linear charge density �
and a total charge Q . Calculate the electric field at a
point P along the axis of the rod, a distance a from one
end (Fig. 19.13).

Solution Figure 19.13 helps us visualize the source of
the electric field and conceptualize what the field
might look like. We expect the field to be symmetric
around the horizontal dimension of the rod and would
expect the field to decrease for increasing values of a.
We categorize this problem as one involving a continu-
ous distribution of charge on the rod rather than a col-
lection of individual charges. To analyze the problem,
we choose an infinitesimal element of the charge distri-
bution as indicated by the blue portion in Figure 19.13.
Let us use dx to represent the length of one small seg-
ment of the rod and let dq be the charge on the seg-
ment. We express the charge dq of the element in terms
of the other variables within the integral (in this exam-
ple, there is one variable, x). The charge dq on the
small segment is dq � � dx.

x

y

�
a

P
x

dx
dq =   dx

E

�

(Example 19.4) The electric field at P due to a
uniformly charged rod lying along the x axis. The
field at P due to the segment of charge dq is
ke dq/x 2. The total field at P is the vector sum over
all segments of the rod.

FIGURE 19.13



ELECTRIC  FIELD  LINES
A convenient specialized pictorial representation for visualizing electric field pat-
terns is created by drawing lines showing the direction of the electric field vector at
any point. These lines, called electric field lines, are related to the electric field in
any region of space in the following manner:

• The electric field vector is tangent to the electric field line at each point.
• The number of electric field lines per unit area through a surface that is per-

pendicular to the lines is proportional to the magnitude of the electric field in
that region. Therefore, E is large where the field lines are close together and
small where they are far apart.

These properties are illustrated in Figure 19.15. The density of lines through
surface A is greater than the density of lines through surface B. Therefore, the
magnitude of the electric field on surface A is larger than on surface B. Further-
more, the field drawn in Figure 19.15 is nonuniform because the lines at different
locations point in different directions.

E
:

19.6
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axis. Because r � (x2 	 a2)1/2 and cos � � x/r, we find
that

We integrate this expression to find the total field at P.
In this case, all segments of the ring give the same con-
tribution to the field at P because they are all equidis-
tant from this point. Therefore,

� 

This result shows that the field is zero at the center
point of the ring, x � 0. Does that surprise you?

kex
(x2 	 a2)3/2  Q

 Ex � � kex
(x2 	 a2)3/2  dq �

kex
(x2 	 a2)3/2  �dq 

dEx � dE cos � � �ke  
dq
r 2 � � x

r � �
kex

(x2 	 a2)3/2  dq

The Electric Field of a Uniform Ring of ChargeEXAMPLE 19.5
A ring of radius a has a uniform positive charge per
unit length, with a total charge Q. Calculate the electric
field at a point P on the axis of the ring at a distance x
from the center of the ring (Fig. 19.14a).

Solution The magnitude of the electric field at P due
to the segment of charge dq is

This field has an x component dEx � dE cos � along the
axis of the ring and a component dE⊥ perpendicular to
the axis. The perpendicular component of any element
is canceled by the perpendicular component of an
element on the opposite side of the ring, as for the ele-
ments 1 and 2 in Figure 19.14b. Therefore, the perpen-
dicular components of the field for the entire ring sum
to zero and the resultant field at P must lie along the x

dE � ke  
dq
r 2

(a)

+ +

+

+

+
+

+

+
+ +

++
++

++

θ P dEx

dE
dE⊥

x x

r

dq

a

(b)

+ +

+

+

+
+

+

+
+

+

++

+
+ +

+

θ

dE2

1

dE1

2

(Example 19.5) A uniformly charged ring of radius a. (a) The field at P on the x axis
due to an element of charge dq. (b) The total electric field at P is along the x axis.
The perpendicular component of the electric field at P due to segment 1 is canceled
by the perpendicular component due to segment 2.

FIGURE 19.14

B
A

Electric field lines
penetrating two surfaces. The magni-
tude of the field is greater on surface
A than on surface B.

FIGURE 19.15



Some representative electric field lines for a single positive point charge are
shown in Figure 19.16a. Note that in this two-dimensional drawing we show only
the field lines that lie in the plane of the page. The lines are actually directed
radially outward in all directions from the charge, somewhat like the needles of a
porcupine. Because a positively charged test particle placed in this field would be
repelled by the charge q, the lines are directed radially away from q. Similarly, the
electric field lines for a single negative point charge are directed toward the charge
(Fig. 19.16b). In either case, the lines are radial and extend to infinity. Note that
the lines are closer together as they come nearer to the charge, indicating that the
magnitude of the field is increasing.

Is this visualization of the electric field in terms of field lines consistent with
Equation 19.5? To answer this question, consider an imaginary spherical surface of
radius r, concentric with the charge. From symmetry, we see that the magnitude of
the electric field is the same everywhere on the surface of the sphere. The number
of lines N emerging from the charge is equal to the number penetrating the spheri-
cal surface. Hence, the number of lines per unit area on the sphere is N/4
r 2

(where the surface area of the sphere is 4
r 2). Because E is proportional to the
number of lines per unit area, we see that E varies as 1/r 2. This result is consistent
with that obtained from Equation 19.5; that is, E � keq/r 2.

The rules for drawing electric field lines for any charge distribution are as
follows:

• The lines for a group of point charges must begin on positive charges and end
on negative ones. In the case of an excess of one type of charge, some lines will
begin or end infinitely far away.

• The number of lines drawn beginning on a positive charge or ending on a nega-
tive one is proportional to the magnitude of the charge.

• Field lines cannot intersect.

Because charge is quantized, the number of lines leaving any positively charged
object must be 0, ae, 2ae, . . . , where a is an arbitrary (but fixed) proportionality
constant chosen by the person drawing the lines. Once a is chosen, the number of
lines is no longer arbitrary. For example, if object 1 has charge Q 1 and object 2 has
charge Q 2, the ratio of the number of lines connected to object 2 to those con-
nected to object 1 is N 2/N 1 � Q 2/Q 1.

The electric field lines for two point charges of equal magnitude but opposite
signs (the electric dipole) are shown in Figure 19.17. In this case, the number of
lines that begin at the positive charge must equal the number that terminate at the
negative charge. At points very near the charges, the lines are nearly radial. The
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The electric field lines for a point charge. (a) For a positive point charge, the lines are
directed radially outward. (b) For a negative point charge, the lines are directed
radially inward. Note that the figures show only those field lines that lie in the plane
containing the charge. (c) The dark areas are small particles suspended in oil, which
align with the electric field produced by a small charged conductor at the center.

FIGURE 19.16

ELECTRIC FIELD LINES ARE NOT PATHS

OF PARTICLES Electric field lines
represent the field at various
locations. Except in very special
cases, they do not represent the path
of a charged particle released in an
electric field.

� PITFALL PREVENTION 19.2

(a)

+ –

(c)

(b)

(a) The electric
field lines for two charges of equal
magnitude and opposite sign (an elec-
tric dipole). Note that the number of
lines leaving the positive charge
equals the number terminating at the
negative charge. (b) Small particles
suspended in oil align with the
electric field.

FIGURE 19.17
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high density of lines between the charges indicates a region of strong electric
field. The attractive nature of the force between the particles is also suggested by
Figure 19.17, with the lines from one particle ending on the other particle.

Figure 19.18 shows the electric field lines in the vicinity of two equal positive
point charges. Again, close to either charge the lines are nearly radial. The same
number of lines emerges from each particle because the charges are equal in
magnitude. At great distances from the particles, the field is approximately equal to
that of a single point charge of magnitude 2q. The repulsive nature of the electric
force between particles of like charge is suggested in the figure in that no lines
connect the particles and that the lines bend away from the region between the
charges.

Finally, we sketch the electric field lines associated with a positive point charge
	2q and a negative point charge �q in Active Figure 19.19. In this case, the num-
ber of lines leaving 	2q is twice the number terminating on �q. Hence, only half
the lines that leave the positive charge end at the negative charge. The remaining
half terminate on hypothetical negative charges we assume to be located
infinitely far away. At large distances from the particles (large compared with the
particle separation), the electric field lines are equivalent to those of a single point
charge 	q.
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(a) The electric
field lines for two positive point
charges. (The locations A, B, and C
are discussed in Quick Quiz 19.5.)
(b) Small particles suspended in oil
align with the electric field.

FIGURE 19.18
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(b)

Rank the magnitudes of the electric field at points A, B, and C in
Figure 19.18a, largest magnitude first.
QUICK QUIZ 19.5

MOTION  OF  CHARGED  PARTICLES  
IN  A  UNIFORM  ELECTRIC  FIELD

When a particle of charge q and mass m is placed in an electric field , the electric
force exerted on the charge is given by Equation 19.4, . If this force is the
only force exerted on the particle, it is the net force. According to the particle un-
der a net force model from Chapter 4, the net force causes the particle to acceler-
ate. In this case, Newton’s second law applied to the particle gives

The acceleration of the particle is therefore

[19.11]

If is uniform (i.e., constant in magnitude and direction), the acceleration is con-
stant. If the particle has a positive charge, its acceleration is in the direction of the
electric field. If the particle has a negative charge, its acceleration is in the direction
opposite the electric field.

E
:

a: �
q E

:

m

F
:

e � q E
:

� ma:

F
:

e � qE
:

E
:
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+2q – –q+

The electric field lines for a point
charge 	 2q and a second point
charge �q. Note that two lines leave
the charge 	 2q for every one that 
terminates on � q.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 19.19 to choose
the values and signs for the two
charges and observe the electric field
lines for the configuration that you
have chosen.

ACTIVE FIGURE 19.19

ELECTRIC FIELD LINES ARE NOT REAL

Electric field lines are not material
objects. They are used only as a
pictorial representation to provide
a qualitative description of the
electric field. One problem with
this representation is that one
always draws a finite number of
lines from each charge, which
makes it appear as if the field were
quantized and exists only in certain
parts of space. The field, in fact, is
continuous, existing at every point.
Another problem with this
representation is the danger of
obtaining the wrong impression
from a two-dimensional drawing of
field lines used to describe a three-
dimensional situation.

� PITFALL PREVENTION 19.3

www.pop4e.com


The electric field in the region between two oppositely charged flat metal plates
is approximately uniform (Active Fig. 19.21). Suppose an electron of charge �e is
projected horizontally into this field with an initial velocity . Because the electric
field in Active Figure 19.21 is in the positive y direction, the acceleration of the
electron is in the negative y direction. That is,

[19.12]a: � �
eE
me

  ĵ

E
:

vi  î
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particle under constant acceleration and use the equa-
tions of kinematics in one dimension (from Chapter 2):

Choosing xi � 0 and vi � 0 gives

The kinetic energy of the particle after it has moved a
distance x � xf � xi is

This result can also be obtained by identifying the parti-
cle as a nonisolated system and applying the noniso-
lated system model. Energy is transferred from the envi-
ronment (the electric field) by work, so the
work–kinetic energy theorem gives the same result as
the calculation above. Try it!

K � 1
2mv2 � 1

2m  � 2qE
m �  x � qEx

 vf 

2 � 2axf � � 2qE
m � x f

 vf � at �
qE
m

 t

 x f � 1
2 at 2 �

qE
2m

 t 2

 vf 

2 � vi 

2 	 2a(xf � xi)

 vf � vi 	 at

 xf � xi 	 vit 	 1
2at 2

An Accelerating Positive ChargeEXAMPLE 19.6
A particle with positive charge q and mass m is released
from rest in a uniform electric field directed along
the x axis as in Figure 19.20. Describe its motion.

E
:

–

–

–

–

–

–

+

+

+

+

+

+

E

vv = 0
q

x

+ +

(Example 19.6) A positive point charge q in a uni-
form electric field undergoes constant
acceleration in the direction of the field.

E
:

FIGURE 19.20

Solution The acceleration is constant and is given by 
q /m (Eq. 19.11). The motion is simple linear motion
along the x axis. We can therefore apply the model of a

E
:

An electron is projected horizontally
into a uniform electric field produced
by two charged plates. The electron un-
dergoes a downward acceleration
(opposite ), and its motion is para-
bolic while it is between the plates.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 19.21 to choose the
magnitude of the electric field and the
mass and charge of the projected 
particle.

E
:

ACTIVE FIGURE 19.21
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Because the acceleration is constant, we can apply the kinematic equations from
Chapter 3 with vxi � vi and vyi � 0. At time t, the components of the velocity of the
electron are

[19.13]

[19.14]

Its position coordinates at time t are

[19.15]

[19.16]

Substituting the value t � xf/vi from Equation 19.15 into Equation 19.16, we see
that yf is proportional to xf

2. Hence, the trajectory of the electron is a parabola.
The trajectory of the electron in a uniform electric field under the action of a
constant force of magnitude qE has the same shape as that of a particle in a uni-
form gravitational field under the action of a constant force of magnitude mg.
After the electron leaves the field, it continues to move in a straight line, obeying
Newton’s first law, with a speed v  vi.

Note that we have ignored the gravitational force on the electron. This approxi-
mation is valid when dealing with atomic particles. For an electric field of 104 N/C,
the ratio of the magnitude of the electric force eE to the magnitude of the gravita-
tional force mg is on the order of 1014 for an electron and on the order of 1011 for a
proton.

g:

E
:

 yf � 1
2 ayt 2 � �1

2 
eE
me

 t 2

 xf � vit

 vy � ayt � �
eE
me

 t

 vx � vi � constant
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An Accelerated ElectronEXAMPLE 19.7INTERACTIVE
we find that the time interval spent in the electric 
field is

What is the vertical displacement �y of the elec-
tron while it is in the field?

Solution Modeling the electron as a particle under
constant acceleration in the vertical direction and using
the results from parts A and B, we find that

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 19.7, you
can predict, for random values of the electric field, the re-
quired initial velocity for the exiting electron to just miss the
right edge of the lower plate in Active Figure 19.21.

�1.95 cm� �0.0195 m �

 � � 1
2(3.51 � 1013 m/s2)(3.33 � 10�8 s)2

 �y � yf � yi � 1
2ayt2

C

3.33 � 10�8 s�t �
�

vi
�

0.100 m
3.00 � 106 m/s

�

An electron enters the region of a uniform electric
field as in Active Figure 19.21, with vi � 3.00 � 106 m/s
and E � 200 N/C. The horizontal length of the plates
is � � 0.100 m.

Find the acceleration of the electron while it is in
the electric field.

Solution The charge on the electron is �e and its mass
is me � 9.11 � 10�31 kg. Therefore, Equation 19.12
gives

�

Find the time interval required for the electron to
travel through the field.

Solution The horizontal distance through the field 
is � � 0.100 m. Modeling the electron as a particle 
under constant velocity in the horizontal direction, 

B

�3.51 � 1013
 j ̂

 
m/s2

 a: � �
eE
me

  ĵ � �
(1.60 � 10�19 C)(200 N/C)

9.11 � 10�31 kg
  ĵ

A
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The Cathode-Ray Tube
The previous example describes a portion of a cathode-ray tube (CRT). This tube,
illustrated in Figure 19.22, is commonly used to obtain a visual display of electronic
information in oscilloscopes, radar systems, television receivers, and computer
monitors. The CRT is a vacuum tube in which a beam of electrons is accelerated
and deflected under the influence of electric or magnetic fields. The electron
beam is produced by an electron gun located in the neck of the tube. The electrons
travel through the control grid, which determines the number of electrons
passing through (and therefore the brightness of the display). The focusing anode
focuses the beam of electrons to a small spot on the display screen. The fluorescent
screen is coated with a material that emits visible light when bombarded with
electrons.

In an oscilloscope, the electrons are deflected in various directions by two sets of
plates placed perpendicularly to each other in the neck of the tube. (A television
CRT steers the beam with a magnetic field, which we will discuss in Chapter 22.) An
external electric circuit is used to control the amount of charge present on the
plates. Placing positive charge on one horizontal deflection plate and negative
charge on the other creates an electric field between the plates and allows
the beam to be steered from side to side. The vertical deflection plates act in the
same way, except that changing the charge on them deflects the beam vertically.

ELECTRIC  FLUX
Now that we have described the concept of electric field lines qualitatively, let us
use a new concept, electric flux, to approach electric field lines on a quantitative
basis. Electric flux is a quantity proportional to the number of electric field lines
penetrating some surface. (We can define only a proportionality because the num-
ber of lines we choose to draw is arbitrary.)

First consider an electric field that is uniform in both magnitude and direction
as in Figure 19.23. The field lines penetrate a plane rectangular surface of area A,
which is perpendicular to the field. Recall that the number of lines per unit area is
proportional to the magnitude of the electric field. The number of lines penetrat-
ing the surface of area A is therefore proportional to the product EA. The product
of the electric field magnitude E and a surface area A perpendicular to the field is
called the electric flux �E :

�E � EA [19.17]

From the SI units of E and A, we see that electric flux has the units N � m2/C.
If the surface under consideration is not perpendicular to the field, the number

of lines through it must be less than that given by Equation 19.17. This concept can

19.8
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Vertical
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Schematic diagram of a
cathode-ray tube. Electrons leaving the hot
cathode C are accelerated to the anode A. In
addition to accelerating electrons, the electron
gun is also used to focus the beam of electrons,
and the plates deflect the beam.

FIGURE 19.22

Area = A

E

Field lines of a uni-
form electric field penetrating a plane
of area A perpendicular to the field.
The electric flux �E through this area
is equal to EA.

FIGURE 19.23



be understood by considering Figure 19.24, where the normal to the surface of
area A is at an angle of � to the uniform electric field. Note that the number of
lines that cross this area is equal to the number that cross the projected area A�,
which is perpendicular to the field. From Figure 19.24, we see that the two areas are
related by A� � A cos �. Because the flux through area A equals the flux through
A�, we conclude that the desired flux is

�E � EA cos � [19.18]

From this result, we see that the flux through a surface of fixed area has the
maximum value EA when the angle � between the normal to the surface and
the electric field is zero. This situation occurs when the normal is parallel to
the field and the surface is perpendicular to the field. The flux is zero
when the surface is parallel to the field because the angle � in Equation 19.18 is
then 90°.

In more general situations, the electric field may vary in both magnitude and di-
rection over the surface in question. Unless the field is uniform, our definition of
flux given by Equation 19.18 therefore has meaning only over a small element of
area. Consider a general surface divided up into a large number of small elements,
each of area �A. The variation in the electric field over the element can be ignored
if the element is small enough. It is convenient to define a vector whose mag-
nitude represents the area of the ith element and whose direction is defined to be
perpendicular to the surface as in Figure 19.25. The electric flux ��E through this
small element is

where we have used the definition of the scalar product of two vectors
( ). By summing the contributions of all elements, we obtain the to-
tal flux through the surface. If we let the area of each element approach zero, the
number of elements approaches infinity and the sum is replaced by an integral.
The general definition of electric flux is therefore

[19.19]

Equation 19.19 is a surface integral, which must be evaluated over the surface in
question. In general, the value of �E depends both on the field pattern and on the
specified surface.

We shall often be interested in evaluating electric flux through a closed surface. A
closed surface is defined as one that completely divides space into an inside region
and an outside region so that movement cannot take place from one region to the
other without penetrating the surface. This definition is similar to that of the
system boundary in system models, in which the boundary divides space into a
region inside the system and the outer region, the environment. The surface of a
sphere is an example of a closed surface, whereas a drinking glass is an open
surface.

�E  �  lim
�Ai : 0

 � E
:

i � � A
:

i � �
surface

E
:

� dA
:

  

A
:

� B
:

� AB cos �

��E � Ei �Ai cos �i � E
:

i � � A
:

i

� A
:

i
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A

θ

θ

A′ = A cos 

E

Normal

θ

Field lines for a uniform
electric field through an area A whose normal
is at an angle � to the field. Because the num-
ber of lines that go through the shaded area
A� is the same as the number that go through
A, we conclude that the total flux through A�

is equal to the flux through A and is given by
�E � EA cos �.

FIGURE 19.24

∆A i

E i
θi

A small element of
a surface of area �Ai . The electric
field makes an angle �i with the nor-
mal to the surface (the direction of

), and the flux through the ele-
ment is equal to Ei �Ai cos �i .
� A

:
i

FIGURE 19.25

� Electric flux



Consider the closed surface in Active Figure 19.26. Note that the vectors 
point in different directions for the various surface elements. At each point, these
vectors are perpendicular to the surface and, by convention, always point outward
from the inside region. At the element labeled �, is outward and �i � 90°;
hence, the flux through this element is positive. For element �, the
field lines graze the surface (perpendicular to the vector ); therefore, �i � 90°
and the flux is zero. For elements such as �, where the field lines are crossing the
surface from the outside to the inside, 180°  �i  90° and the flux is negative
because cos �i is negative. The net flux through the surface is proportional to
the net number of lines penetrating the surface, where the net number means the
number leaving the volume surrounded by the surface minus the number entering
the volume. If more lines are leaving the surface than entering, the net flux is posi-
tive. If more lines enter than leave the surface, the net flux is negative. Using the
symbol � to represent an integral over a closed surface, we can write the net flux
�E through a closed surface as

[19.20]

where En represents the component of the electric field normal to the surface.
Evaluating the net flux through a closed surface can be very cumbersome. If the

field is perpendicular or parallel to the surface at each point and constant in
magnitude, however, the calculation is straightforward. The following example il-
lustrates this point.

�E �  � E
:

� dA
:

�  � En dA

� A
:

i

��E � E
:

� � A
:

i

E
:

� A
:

i
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∆A1

∆A3

∆A2 �
�

�

�
�

�

θ
Eθ

En

En
E

E

A closed surface in an electric field.
The area vectors are, by conven-
tion, normal to the surface and point
outward. The flux through an area
element can be positive (element �),
zero (element �), or negative
(element �).

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 19.26 to select a
segment on the surface and see the
relationship between the electric field
vector and the area vector .� A

:
iE

:

� A
:

i

ACTIVE FIGURE 19.26

is perpendicular to on these faces. In particular, the
orientation of is perpendicular to for the faces la-
beled � and � in Figure 19.27. Therefore, � � 90°, so

� E dA cos 90° � 0. The flux through each face
parallel to the xy plane is also zero for the same reason.

Now consider the faces labeled � and �. The net
flux through these faces is

E
:

� d A
:

E
:

dA
:

dA
:

Flux Through a CubeEXAMPLE 19.8

Consider a uniform electric field directed along the
	 x axis. Find the net electric flux through the surface
of a cube of edges � oriented as shown in Figure 19.27.

Solution The net flux can be evaluated by summing up
the fluxes through each face of the cube. First, note
that the flux through four of the faces is zero because E

:

E
:
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GAUSS’S  LAW
In this section, we describe a general relation between the net electric flux
through a closed surface and the charge enclosed by the surface. This relation,
known as Gauss’s law, is of fundamental importance in the study of electrostatic
fields.

First, let us consider a positive point charge q located at the center of a spherical
surface of radius r as in Figure 19.28. The field lines radiate outward and hence are
perpendicular (or normal) to the surface at each point. That is, at each point on
the surface, is parallel to the vector representing the local element of area
�Ai. Therefore, at all points on the surface,

and, from Equation 19.20, we find that the net flux through the surface is

because E is constant over the surface. From Equation 19.5, we know that the mag-
nitude of the electric field everywhere on the surface of the sphere is E � keq/r 2.
Furthermore, for a spherical surface, A � 4
r 2 (the surface area of a sphere).
Hence, the net flux through the surface is

Recalling that ke � 1/4
 �0, we can write this expression in the form

[19.21]

This result, which is independent of r, says that the net flux through a spherical sur-
face is proportional to the charge q at the center inside the surface. This result

�E �
q
�0

�E � EA � � keq
r 2 � (4
r 2) � 4
keq

�E � � En dA � � E dA � E � dA � EA

E
:

� � A
:

i � En �Ai � E �Ai

� A
:

iE
:

19.9
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For face �, is constant and inward, whereas is
outward (� � 180°), so the flux through this face is

dA
:

E
:

�E � �
1

E
:

� dA
:

 	 �
2  

E
:

� dA
:

y

z �

�

�
x

E

dA2

dA1

dA3

�

�

�

� dA4

(Example 19.8) A hypothetical surface in the
shape of a cube in a uniform electric field parallel
to the x axis. The net flux through the surface is
zero. Side � is the bottom of the cube and side 
� is opposite side �.

FIGURE 19.27

� 

1
 E
:

�dA
:

 � � 

1
 E dA cos 180� � �E �

1
 dA � �EA � �E �2

because the area of each face is A � �2.
Likewise, for �, is constant and outward and in

the same direction as (� � 0°), so the flux through
this face is

Hence, the net flux over all faces is zero because

�E � � E�2 	 E�2 � 0

� 

2
E
:

� dA
:

 � �
2
 E dA cos 0� � E �

2
 dA � 	 EA � E �2

dA
:

E
:

Spherical
surface

r

q

�A

E
+ i

A spherical surface
of radius r surrounding a point
charge q. When the charge is at the
center of the sphere, the electric field
is normal to the surface and constant
in magnitude everywhere on the
surface.

FIGURE 19.28



mathematically represents that (1) the net flux is proportional to the number of
field lines, (2) the number of field lines is proportional to the charge inside the sur-
face, and (3) every field line from the charge must pass through the surface. That
the net flux is independent of the radius is a consequence of the inverse-square de-
pendence of the electric field given by Equation 19.5. That is, E varies as 1/r 2, but
the area of the sphere varies as r 2. Their combined effect produces a flux that is
independent of r.

Now consider several closed surfaces surrounding a charge q as in Figure
19.29. Surface S1 is spherical, whereas surfaces S2 and S3 are nonspherical. The
flux that passes through surface S1 has the value q/�0 . As we discussed in Section
19.8, the flux is proportional to the number of electric field lines passing
through that surface. The construction in Figure 19.29 shows that the number of
electric field lines through the spherical surface S1 is equal to the number of
electric field lines through the nonspherical surfaces S2 and S3. It is therefore
reasonable to conclude that the net flux through any closed surface is indepen-
dent of the shape of that surface. (One can prove that conclusion using 
E � 1/r 2.) In fact, the net flux through any closed surface surrounding the point
charge q is given by q/�0. Because we could choose a spherical surface surround-
ing the charge such that the charge is not at the center of the surface, the flux
through the surface is independent of the position of the charge within the
surface.

Now consider a point charge located outside a closed surface of arbitrary shape
as in Figure 19.30. As you can see from this construction, electric field lines
enter the surface and then leave it. Therefore, the number of electric field lines
entering the surface equals the number leaving the surface. Consequently, we con-
clude that the net electric flux through a closed surface that surrounds no net
charge is zero. If we apply this result to Example 19.8, we see that the net flux
through the cube is zero because there was no charge inside the cube. If there were
charge in the cube, the electric field could not be uniform throughout the cube as
specified in the example.

Let us extend these arguments to the generalized case of many point charges.
We shall again make use of the superposition principle. That is, we can express the
net flux through any closed surface as

where is the total electric field at any point on the surface and , , . . . are
the fields produced by the individual charges at that point. Consider the system of
charges shown in Active Figure 19.31. The surface S surrounds only one charge,
q1; hence, the net flux through S is q1/�0. The flux through S due to the charges
outside it is zero because each electric field line from these charges that enters S at
one point leaves it at another. The surface S� surrounds charges q2 and q3; hence,
the net flux through S � is (q2 	 q3)/�0. Finally, the net flux through surface S � is
zero because no charge exists inside this surface. That is, all electric field lines that
enter S � at one point leave S � at another. Notice that charge q4 does not
contribute to the net flux through any of the surfaces because it is outside all the
surfaces.

Gauss’s law, which is a generalization of the foregoing discussion, states that the
net flux through any closed surface is

[19.22]�E � � E
:

� d A
:

 �
q in

�0

E
:

2E
:

1E
:

�  E
:

� d A
:

� � (E
:

1 	 E
:

2 	 � � �) � d A
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S3

S2

S1

q

Closed surfaces of
various shapes surrounding a charge
q. The net electric flux through each
surface is the same.

FIGURE 19.29

q

A point charge
located outside a closed surface. The
number of lines entering the surface
equals the number leaving the
surface.

FIGURE 19.30

ZERO FLUX IS NOT ZERO FIELD

In this discussion, we see two
possibilities in which there is zero
flux through a closed surface:
either no charged particles are
enclosed by the surface, or charged
particles are enclosed but the net
charge is zero. For either possibility,
do not fall into the trap of saying
that because the flux is zero, the
electric field is zero at the surfaces.
Remember that Gauss’s law states
that the electric flux is proportional
to the enclosed charge, not the
electric field.

� PITFALL PREVENTION 19.4



where q in represents the net charge inside the surface and represents the electric
field at any point on the surface. In words, Gauss’s law states that the net
electric flux through any closed surface is equal to the net charge inside the
surface divided by �0. The closed surface used in Gauss’s law is called a gaussian
surface.

Gauss’s law is valid for the electric field of any system of charges or continuous
distribution of charge. In practice, however, the technique is useful for calculating
the electric field only in situations where the degree of symmetry is high. As we
shall see in the next section, Gauss’s law can be used to evaluate the electric field
for charge distributions that have spherical, cylindrical, or plane symmetry. We do
so by choosing an appropriate gaussian surface that allows to be removed from
the integral in Gauss’s law and performing the integration. Note that a gaussian
surface is a mathematical surface and need not coincide with any real physical
surface.

E
:

E
:
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For a gaussian surface through which the net flux is zero, the follow-
ing four statements could be true. Which of the statements must be true? (a) No charges are
inside the surface. (b) The net charge inside the surface is zero. (c) The electric field is
zero everywhere on the surface. (d) The number of electric field lines entering the sur-
face equals the number leaving the surface.

QUICK QUIZ 19.6

Consider the charge distribution shown in Active Figure 19.31.  
(i) What are the charges contributing to the total electric flux through surface S�? (a) q1 only
(b) q4 only (c) q2 and q3 (d) all four charges (e) none of the charges (ii) What are the
charges contributing to the total electric field at a chosen point on the surface S�? (a) q1 only
(b) q4 only (c) q2 and q3 (d) all four charges (e) none of the charges

QUICK QUIZ 19.7

� Thinking Physics 19.1
A spherical gaussian surface surrounds a point charge q. Describe what happens to
the net flux through the surface if (a) the charge is tripled, (b) the volume of the
sphere is doubled, (c) the surface is changed to a cube, and (d) the charge is
moved to another location inside the surface.

Reasoning (a) If the charge is tripled, the flux through the surface is also
tripled because the net flux is proportional to the charge inside the surface.
(b) The net flux remains constant when the volume changes because the surface
surrounds the same amount of charge, regardless of its volume. (c) The net flux
does not change when the shape of the closed surface changes. (d) The net flux
through the closed surface remains unchanged as the charge inside the surface
is moved to another location as long as the new location remains inside the
surface. �

APPLICATION  OF  GAUSS’S  LAW  TO  SYMMETRIC
CHARGE  DISTRIBUTIONS

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution has a high degree of symmetry. The following examples show
ways of choosing the gaussian surface over which the surface integral given by
Equation 19.22 can be simplified and the electric field determined. The surface
should always be chosen to take advantage of the symmetry of the charge distribu-
tion so that we can remove E from the integral and solve for it. The crucial step in

19.10

S

q1

q2

q3 S ′

S ′′

q4

The net electric flux through any
closed surface depends only on the
charge inside that surface. The net
flux through surface S is q l/�0, 
the net flux through surface S� is 
(q2 	 q3)/�0, and the net flux
through surface S � is zero. Charge q4

does not contribute to the flux
through any surface because it is out-
side all surfaces.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 19.31 to change
the size and shape of the surface and
see the effect on the electric flux of
surrounding different combinations
of charge with a gaussian surface.

ACTIVE FIGURE 19.31
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applying Gauss’s law is to determine a useful gaussian surface. Such a surface
should be a closed surface for which each portion of the surface satisfies one or
more of the following conditions:

1. The value of the electric field can be argued by symmetry to be constant over
the portion of the surface.

2. The dot product in Equation 19.22 can be expressed as a simple algebraic prod-
uct E dA because and are parallel.

3. The dot product in Equation 19.22 is zero because and are perpendicular.
4. The field can be argued to be zero everywhere on the portion of the surface.

Note that different portions of the gaussian surface can satisfy different condi-
tions as long as every portion satisfies at least one condition. We will see all
four of these conditions used in the examples through the remainder of this
chapter.

d A
:

E
:

d A
:

E
:
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The electric field of a positive point charge is radial
outward by symmetry and is therefore normal to 
the surface at every point. As in condition 2, is 
therefore parallel to at each point on the surface,
so and Gauss’s law gives

By symmetry, E is constant everywhere on the surface,
which satisfies condition 1, and so it can be removed
from the integral. Therefore,

where we have used that the surface area of a sphere is
4
r 2. We now solve for the electric field:

which is the familiar electric field of a point charge that
we developed from Coulomb’s law earlier in this chapter.

ke  
q

r 2E �
q

4
�0r 2 �

� E  dA � E  � dA � E(4
r 2) �
q
�0

�E � � E
:

� d A
:

 � � E dA �
q
�0

E
:

� dA
:

� E dA
d A

:
E
:

The Electric Field Due to a Point ChargeEXAMPLE 19.9
Starting with Gauss’s law, calculate the electric field due
to an isolated point charge q.

Solution A single charge is the simplest possible charge
distribution, and we will use this familiar example to
show the technique of solving for the electric field with
Gauss’s law. We choose a spherical gaussian surface of
radius r centered on the point charge as in Figure 19.32.

Gaussian
surface

r

q

dA

E
+

(Example 19.9) The point charge q is at the center
of the spherical gaussian surface, and is parallel
to at every point on the surface.d A

:
E
:

FIGURE 19.32

A Spherically Symmetric Charge DistributionEXAMPLE 19.10INTERACTIVE
as they were for the point charge in Example 19.9.
Following the line of reasoning given in Example 19.9,
we find that

Note that this result is identical to that obtained for a
point charge. We therefore conclude that, for a uni-
formly charged sphere, the field in the region external
to the sphere is equivalent to that of a point charge
located at the center of the sphere.

 (for r  a)ke  
Q
r 2E �

An insulating solid sphere of radius a has a uniform
volume charge density � and carries a total positive
charge Q (Fig. 19.33). 

Calculate the magnitude of the electric field at a
point outside the sphere.

Solution Because the charge distribution is spherically
symmetric, we again select a spherical gaussian surface
of radius r, concentric with the sphere, as in Figure
19.33a. For this choice, conditions 1 and 2 are satisfied,

A
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Solving for E gives

Because by definition and ke � 1/4
�0,
this expression for E can be written as

This result for E differs from that obtained in part
A. It shows that E : 0 as r : 0. A plot of E versus r is
shown in Figure 19.34. Note that the expressions for
parts A and B match when r � a.

(for r � a)
keQ
a 3  rE �

Qr
4
�0a3 �

� � Q /4
3
a 3

E �
q in

4
�0r 2 �
�(4

3
r 3)
4
�0r 2 �

�

3�0
 r

Find the magnitude of the electric field at a point
inside the sphere.

Solution In this case, we select a spherical gaussian sur-
face having radius r � a, concentric with the insulating
sphere (Fig. 19.33b). Let us denote the volume of this
smaller sphere by V �. To apply Gauss’s law in this situa-
tion, it is important to recognize that the charge q in
within the gaussian surface of volume V � is less than Q.
To calculate q in, we use that q in � �V �:

By symmetry, the magnitude of the electric field is con-
stant everywhere on the spherical gaussian surface and
the field is normal to the surface at each point, so both
conditions 1 and 2 are satisfied. Gauss’s law in the re-
gion r � a therefore gives

� E dA � E  � dA � E(4
r 2) �
q in

�0

q in � �V � � �(4
3
r 3)

B

(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

(Interactive Example 19.10) A uniformly charged
insulating sphere of radius a and total charge Q .
(a) For points outside the sphere, a large, spheri-
cal gaussian surface is drawn concentric with the
sphere. In diagrams such as this one, the dotted
line represents the intersection of the gaussian sur-
face with the plane of the page. (b) For points in-
side the sphere, a spherical gaussian surface
smaller than the sphere is drawn.

FIGURE 19.33

a

E

a r

E =
keQ
r2

E =
keQ
a3 r

(Interactive Example 19.10) A plot of E versus r for
a uniformly charged insulating sphere. The electric
field inside the sphere (r � a) varies linearly with r.
The electric field outside the sphere (r  a) is the
same as that of a point charge Q located at r � 0.

FIGURE 19.34

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 19.10, you
can investigate the electric field inside and outside the
sphere.

Furthermore, the flux through the ends of the gaussian
cylinder is zero because is parallel to these surfaces
(and therefore perpendicular to ), which is the first
application we have seen of condition 3.

The surface integral in Gauss’s law is taken over the
entire gaussian surface. Because of the zero value of

for the ends of the cylinder, however, we can
restrict our attention to only the curved surface of the
cylinder.

The total charge inside our gaussian surface is
q in � ��. Applying Gauss’s law and applying conditions
1 and 2, we find, for the curved surface, that

E
:

� d A
:

dA
:

E
:

A Cylindrically Symmetric Charge DistributionEXAMPLE 19.11
Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit
length � (Fig. 19.35a).

Solution The symmetry of the charge distribution re-
quires that must be perpendicular to the line charge
and directed outward as in Figure 19.35. To reflect the
symmetry of the charge distribution, we select a cylin-
drical gaussian surface of radius r and length � that is
coaxial with the line charge. For the curved part of
this surface, is constant in magnitude and perpendic-
ular to the surface at each point (conditions 1 and 2).

E
:

E
:
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Gaussian
surface

+
+
+

+
+
+

E

dA�

r

(a)

E

(b)

(Example 19.11) (a) An infinite line of charge
surrounded by a cylindrical gaussian surface con-
centric with the line charge. (b) An end view
shows that the electric field on the cylindrical sur-
face is constant in magnitude and perpendicular
to the surface.

FIGURE 19.35

Therefore, we see that the electric field of a cylindri-
cally symmetric charge distribution varies as 1/r,
whereas the field external to a spherically symmetric
charge distribution varies as 1/r 2. Equation 19.23 can
also be obtained using Equation 19.7; the mathematical
techniques necessary for this calculation, however, are
more cumbersome.

If the line charge in this example were of finite
length, the result for E is not that given by Equation
19.23. A finite line charge does not possess sufficient
symmetry to use Gauss’s law because the magnitude
of the electric field is no longer constant over the sur-
face of the gaussian cylinder; the field near the ends
of the line would be different from that far from the
ends. Therefore, condition 1 is not satisfied in this sit-
uation. Furthermore, is not perpendicular to the
cylindrical surface at all points; the field vectors near
the ends would have a component parallel to the line.
Condition 2 is not satisfied. When the symmetry in
the charge distribution is insufficient, as in this 
situation, it is necessary to calculate using 
Equation 19.7.

For points close to a finite line charge and far from
the ends, Equation 19.23 gives a good approximation
of the value of the field.

It is left as a problem (Problem 19.39) to show 
that the electric field inside a uniformly charged rod 
of finite thickness and infinite length is proportional
to r.

E
:

E
:

The area of the curved surface is A � 2
r�. Therefore,
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A Nonconducting Plane Sheet of ChargeEXAMPLE 19.12
Find the electric field due to a nonconducting, infinite
plane with uniform surface charge density �.

Solution Symmetry tells us that must be perpendicu-
lar to the plane and that the field will have the same
magnitude at points on opposite sides of the plane and
equidistant from it. That the direction of is away
from positive charges tells us that the direction of on
one side of the plane must be opposite its direction on
the other side as in Figure 19.36. A gaussian surface
that reflects the symmetry is a small cylinder whose axis
is perpendicular to the plane and whose ends each
have an area A and are equidistant from the plane.
Because is parallel to the curved surface and 
therefore perpendicular to everywhere on the 
surface, condition 3 is satisfied and the curved surface
makes no contribution to the surface integral. For the
flat ends of the cylinder, conditions 1 and 2 are 
satisfied. The flux through each end of the cylinder 
is EA; hence, the total flux through the entire gaussian
surface is just that through the ends, �E � 2EA.

Noting that the total charge inside the surface is 
q in � �A, we use Gauss’s law to obtain

d A
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E
:

E
:

E
:

E
:

E
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+ + + + + +

+ + +

+ +
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+

+ + +

+ + + + +

+ + + + + + +

A

Gaussian
surface

E

(Example 19.12) A cylindrical gaussian surface
penetrating an infinite sheet of charge. The flux is
E A through each end of the gaussian surface and
zero through its curved surface.

FIGURE 19.36



CONDUCTORS  IN  ELECTROSTATIC  EQUILIBRIUM
A good electrical conductor, such as copper, contains charges (electrons) that are
not bound to any atom and are free to move about within the material. When no
motion of charge occurs within the conductor, the conductor is in electrostatic
equilibrium. In this situation, every charge in the conductor is a particle in equilib-
rium, experiencing zero net force. As we shall see, an isolated conductor (one that
is insulated from ground) in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. If the isolated conductor carries a net charge, the net charge resides entirely on

its surface.
3. The electric field just outside the charged conductor is perpendicular to the

conductor surface and has a magnitude �/�0, where � is the surface charge
density at that point.

4. On an irregularly shaped conductor, the surface charge density is highest at
locations where the radius of curvature of the surface is smallest.

We will verify the first three properties in the following discussion. The fourth
property is presented here so that we have a complete list of properties for conduc-
tors in electrostatic equilibrium. The verification of it, however, requires concepts
from Chapter 20, so we will postpone its verification until then.

The first property can be understood by considering a conducting slab placed in
an external field (Fig. 19.37). The electric field inside the conductor must be zero
under the assumption that we have electrostatic equilibrium. If the field were not
zero, free charges in the conductor would accelerate under the action of the elec-
tric force. This motion of electrons, however, would mean that the conductor is not
in electrostatic equilibrium. Therefore, the existence of electrostatic equilibrium is
consistent only with a zero field in the conductor.

Let us investigate how this zero field is accomplished. Before the external field is
applied, free electrons are uniformly distributed throughout the conductor. When
the external field is applied, the free electrons accelerate to the left in Figure 19.37,
causing a plane of negative charge to be present on the left surface. The movement
of electrons to the left results in a plane of positive charge on the right surface.
These planes of charge create an additional electric field inside the conductor that
opposes the external field. As the electrons move, the surface charge density in-
creases until the magnitude of the internal field equals that of the external field,
giving a net field of zero inside the conductor.

We can use Gauss’s law to verify the second property of a conductor in electro-
static equilibrium. Figure 19.38 shows an arbitrarily shaped conductor. A gaussian
surface is drawn just inside the conductor and can be as close to the surface as we
wish. As we have just shown, the electric field everywhere inside a conductor in elec-
trostatic equilibrium is zero. Therefore, the electric field must be zero at every
point on the gaussian surface (condition 4 in Section 19.10). From this result and
Gauss’s law, we conclude that the net charge inside the gaussian surface is zero. Be-
cause there can be no net charge inside the gaussian surface (which is arbitrarily
close to the conductor’s surface), any net charge on the conductor must reside on

E
:
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charge density �, with one plane positively charged and
the other negatively charged (Problem 19.62). In this
situation, the electric fields from the two planes add in
the region between the planes, resulting in a field with
a magnitude of �/�0, and cancel to give a field of zero
elsewhere.

Because the distance of the flat end of the cylinder
from the plane does not appear in Equation 19.24, we
conclude that E � �/2�0 at any distance from the
plane. That is, the field is uniform everywhere.

An important charge configuration related to this
example is two parallel planes each with a surface
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E E

A conducting slab
in an external electric field . The
charges induced on the surfaces of the
slab produce an electric field that op-
poses the external field, giving a resul-
tant field of zero inside the conductor.

E
:

FIGURE 19.37

Gaussian
surface

An isolated con-
ductor of arbitrary shape. The broken
line represents a gaussian surface just
inside the physical surface of the
conductor.

FIGURE 19.38



its surface. Gauss’s law does not tell us how this excess charge is distributed on the
surface, only that it must reside on the surface.

Conceptually, we can understand the location of the charges on the surface by
imagining placing many charges at the center of the conductor. The mutual repul-
sion of the charges causes them to move apart. They will move as far as they can,
which is to various points on the surface.

To verify the third property, we can also use Gauss’s law. We draw a gaussian
surface in the shape of a small cylinder having its end faces parallel to the surface
(Fig. 19.39). Part of the cylinder is just outside the conductor and part is inside.
The field is normal to the surface because the conductor is in electrostatic equilib-
rium. If had a component parallel to the surface, an electric force would be
exerted on the charges parallel to the surface, free charges would move along the
surface, and so the conductor would not be in equilibrium. Therefore, we satisfy
condition 3 in Section 19.10 for the curved part of the cylinder in that no flux
exists through this part of the gaussian surface because is parallel to this part of
the surface. No flux exists through the flat face of the cylinder inside the conductor
because � 0 (condition 4). Hence, the net flux through the gaussian surface is
the flux through the flat face outside the conductor where the field is perpendicu-
lar to the surface. Using conditions 1 and 2 for this face, the flux is EA, where E is
the electric field just outside the conductor and A is the area of the cylinder’s face.
Applying Gauss’s law to this surface gives

where we have used that q in � �A. Solving for E gives

[19.25]

� Thinking Physics 19.2
Suppose a point charge 	 Q is in empty space. We surround the charge with a
spherical, uncharged conducting shell so that the charge is at the center of the
shell. What effect does that have on the field lines from the charge?

Reasoning When the spherical shell is placed around the charge, the free charges
in the shell adjust so as to satisfy the rules for a conductor in equilibrium and
Gauss’s law. A net charge of � Q moves to the interior surface of the conductor, so
the electric field within the conductor is zero (a spherical gaussian surface totally
within the shell encloses no net charge). A net charge of 	Q resides on the outer
surface, so a gaussian surface outside the sphere encloses a net charge of 	Q , just
as if the shell were not there. Therefore, the only change in the field lines from the
initial situation is the absence of field lines over the thickness of the conducting
shell. �

THE  ATMOSPHERIC  ELECTRIC  FIELD
In this chapter, we discussed the electric field due to various charge distributions.
On the surface of the Earth and in the atmosphere, a number of processes create
charge distributions, resulting in an electric field in the atmosphere. These
processes include cosmic rays entering the atmosphere, radioactive decay at the
Earth’s surface, and lightning, the focus of our study in this Context.

The result of these processes is an average negative charge distributed over
the surface of the Earth of about 5 � 105 C, which is a tremendous amount of
charge. (The Earth is neutral overall; the positive charges corresponding to this
negative surface charge are spread through the atmosphere, as we shall discuss in
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A gaussian surface
in the shape of a small cylinder is used
to calculate the electric field just out-
side a charged conductor. The flux
through the gaussian surface is EA.
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Chapter 20.) We can calculate the average surface charge density over the surface
of the Earth:

Throughout this Context, we will be adopting a number of simplification models.
Consequently, we will consider our calculations to be order-of-magnitude estimates
of the actual values, as suggested by the  sign above.

The Earth is a good conductor. Therefore, we can use the third property of con-
ductors in Section 19.11 to find the average magnitude of the electric field at the
surface of the Earth:

which is a typical value of the fair-weather electric field that exists in the absence of
a thunderstorm. The direction of the field is downward because the charge on the
Earth’s surface is negative. During a thunderstorm, the electric field under the
thundercloud is significantly higher than the fair-weather electric field, because of
the charge distribution in the thundercloud.

Figure 19.40 shows a typical charge distribution in a thundercloud. The charge
distribution can be modeled as a tripole, although the positive charge at the bottom
of the cloud tends to be smaller than the other two charges. The mechanism of
charging in thunderclouds is not well understood and continues to be an active
area of research.

It is this high concentration of charge in the thundercloud that is responsible
for the very strong electric fields that cause lightning discharge between the
cloud and the ground. Typical electric fields during a thunderstorm are as high as
25 000 N/C. The distribution of negative charges in the center of the cloud in
Figure 19.40 is the source of negative charge that moves downward in a lightning
strike.

Atmospheric electric fields can be measured with an instrument called a field
mill. Figure 19.41 shows the operation of the field mill. In Figure 19.41a, a metallic

E avg �
�avg
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�
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Q
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�
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4
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4
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plate is connected to the ground by a wire. A meter measures the flow of charge
through the wire. Because the ground is negatively charged, electrons will flow
from the ground into the metal plate. These electrons represent the ends of some
of the electric field lines in the atmosphere.

Now, as shown in Figure 19.41b, this plate is covered with a second plate also at-
tached to the ground. The electric field lines that previously ended on the lower
plate now end on the upper plate. The charges on the lower plate are repelled by
those in the upper plate and pass through the meter into the ground. The meter
measures the amount of charge flowing through the wire. This charge is related to
how much charge is on the lower plate, which, in turn, is related to the magnitude
of the electric field. Therefore, the meter can be calibrated to measure the atmos-
pheric electric field. In operation, the plates are similar to the blades of a fan. As
one set of blades rotates over a second stationary set, charge pulses back and forth
through the meter.

In this chapter, we have analyzed the atmosphere in terms of the electric field.
In Chapter 20, we shall learn about electric potential and analyze the atmosphere
again in terms of this new parameter. �
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E

A field mill for
measuring the atmospheric electric
field. When the upper plate is moved
over the lower plate, charges move
through the meter.

FIGURE 19.41

SUMMARY
Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

Electric charges have the following important properties:

1. Two kinds of charges exist in nature, positive and negative,
with the property that charges of opposite sign attract each
other and charges of the same sign repel each other.

2. The force between charged particles varies as the inverse
square of their separation distance.

3. Charge is conserved.
4. Charge is quantized.

Conductors are materials in which charges move relatively
freely. Insulators are materials in which charges do not move
freely.

www.pop4e.com


Coulomb’s law states that the electrostatic force between
two stationary, charged particles separated by a distance r has
the magnitude

[19.1]

where the Coulomb constant ke � 8.99 � 109 N � m2/C2. The
vector form of Coulomb’s law is

[19.2]

An electric field exists at a point in space if a positive test
charge q0 placed at that point experiences an electric force.
The electric field is defined as

[19.3]

The force on a particle with charge q placed in an electric field
is

[19.4]

The electric field due to the point charge q at a distance r from
the charge is

[19.5]

where is a unit vector directed from the charge toward the
point in question. The electric field is directed radially outward
from a positive charge and is directed toward a negative charge.

The electric field due to a group of charges can be obtained
using the superposition principle. That is, the total electric
field equals the vector sum of the electric fields of all the
charges at some point:

[19.6]

Similarly, the electric field of a continuous charge distribu-
tion at some point is

[19.7]E
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where dq is the charge on one element of the charge distribu-
tion and r is the distance from the element to the point in
question.

Electric field lines are useful for describing the electric field
in any region of space. The electric field vector is always
tangent to the electric field lines at every point. Furthermore,
the number of lines per unit area through a surface perpendic-
ular to the lines is proportional to the magnitude of in that
region.

Electric flux is proportional to the number of electric field
lines that penetrate a surface. If the electric field is uniform
and makes an angle of � with the normal to the surface, the
electric flux through the surface is

�E � EA cos � [19.18]

In general, the electric flux through a surface is defined by the
expression

[19.19]

Gauss’s law says that the net electric flux �E through any
closed gaussian surface is equal to the net charge inside the sur-
face divided by �0:

[19.22]

Using Gauss’s law, one can calculate the electric field due to
various symmetric charge distributions.

A conductor in electrostatic equilibrium has the following
properties:

1. The electric field is zero everywhere inside the conductor.
2. If the isolated conductor carries a net charge, the net

charge resides entirely on its surface.
3. The electric field just outside the charged conductor is 

perpendicular to the conductor surface and has a magni-
tude �/�0, where � is the surface charge density at that
point.

4. On an irregularly shaped conductor, the surface charge
density is highest at locations where the radius of curvature
of the surface is smallest.
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. Explain what is meant by the term “a neutral atom.” Ex-
plain what “a negatively charged atom” means.

2. Sparks are often seen or heard on a dry day when fabrics
are removed from a clothes dryer in dim light. Explain.

3. Hospital personnel must wear special conducting
shoes while working around oxygen in an operating room.
Why? Contrast with what might happen if people wore rub-
ber-soled shoes.

4. Explain the similarities and differences between Newton’s
law of universal gravitation and Coulomb’s law.

A balloon is negatively charged by rubbing and then clings
to a wall. Does that mean that the wall is positively
charged? Why does the balloon eventually fall?

6. Is it possible for an electric field to exist in empty space?
Explain. Consider point A in Figure 19.18a. Does charge
exist at this point? Does a force exist at this point? Does a
field exist at this point?

7. When is it valid to approximate a charge distribution by a
point charge?

8. Figure 19.11 shows three electric field vectors at the same
point. With a little extrapolation, Figure 19.16a would
show many electric field lines at the same point. Is it really

5.



true that “no two field lines can cross”? Are the diagrams
drawn correctly? Explain your answers. 

Would life be different if the electron were positively
charged and the proton were negatively charged? Does the
choice of signs have any bearing on physical and chemical
interactions? Explain.

10. Consider two equal point charges separated by some dis-
tance d. At what point (other than �) would a third test
charge experience no net force?

11. Consider two electric dipoles in empty space. Each dipole
has zero net charge. Does an electric force exist between
the dipoles? That is, can two objects with zero net charge
exert electric forces on each other? If so, is the force one
of attraction or of repulsion?

12. A particle with negative charge � q is placed at the point P
near the positively charged ring shown in Figure 19.14 (Ex-
ample 19.5). Assuming that x is much less than a, describe
the motion of the point charge after it is released from rest.

13. If more electric field lines leave a gaussian surface than en-
ter it, what can you conclude about the net charge en-
closed by that surface?

14. A uniform electric field exists in a region of space in which
there are no charges. What can you conclude about the
net electric flux through a gaussian surface placed in this
region of space?

If the total charge inside a closed surface is known but the
distribution of the charge is unspecified, can you use
Gauss’s law to find the electric field? Explain.

15.

9.

16. On the basis of the repulsive nature of the force between
like charges and the freedom of motion of charge within a
conductor, explain why excess charge on an isolated con-
ductor must reside on its surface.

A person is placed in a large, hollow, metallic sphere that is
insulated from ground. If a large charge is placed on the
sphere, will the person be harmed upon touching the in-
side of the sphere? Explain what will happen if the person
also has an initial charge whose sign is opposite that of the
charge on the sphere.

18. Two solid spheres, both of radius R, carry identical
total charges Q. One sphere is a good conductor, whereas
the other is an insulator. If the charge on the insulating
sphere is uniformly distributed throughout its interior
volume, how do the electric fields outside these two
spheres compare? Are the fields identical inside the two
spheres?

A common demonstration involves charging a rubber
balloon, which is an insulator, by rubbing it on your hair
and then touching the balloon to a ceiling or wall, which
is also an insulator. The electrical attraction between the
charged balloon and the neutral wall results in the bal-
loon sticking to the wall. Imagine now that we have two
infinitely large, flat sheets of insulating material. One is
charged and the other is neutral. If these sheets
are brought into contact, will an attractive force exist
between them, as there was for the balloon and the 
wall?

19.

17.
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PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem
� paired numerical and symbolic problems
� biomedical application

Section 19.2 � Properties of Electric Charges
1. (a) Find to three significant digits the charge and the mass

of an ionized hydrogen atom, represented as H	. (Sugges-
tion: Begin by looking up the mass of a neutral atom on the
periodic table of the elements in Appendix C.) (b) Find
the charge and the mass of Na	, a singly ionized sodium
atom. (c) Find the charge and the average mass of a
chloride ion Cl� that joins with the Na	 to make one mol-
ecule of table salt. (d) Find the charge and the mass of
Ca		 � Ca2	, a doubly ionized calcium atom. (e) You can
model the center of an ammonia molecule as an N3� ion.
Find its charge and mass. (f) The plasma in a hot star
contains quadruply ionized nitrogen atoms, N 4	. Find

their charge and mass. (g) Find the charge and the mass of
the nucleus of a nitrogen atom. (h) Find the charge and
the mass of the molecular ion H2O�.

2. (a) Calculate the number of electrons in a small, electri-
cally neutral silver pin that has a mass of 10.0 g. Silver has
47 electrons per atom, and its molar mass is 107.87 g/mol.
(b) Electrons are added to the pin until the net negative
charge is 1.00 mC. How many electrons are added for
every 109 electrons already present?

Section 19.4 � Coulomb’s Law
Nobel laureate Richard Feynman once said that if two
persons stood at arm’s length from each other and each
person had 1% more electrons than protons, the force
of repulsion between them would be enough to lift
a “weight” equal to that of the entire Earth. Carry out
an order-of-magnitude calculation to substantiate this
assertion.

4. Two protons in an atomic nucleus are typically separated
by a distance of 2 � 10�15 m. The electric repulsion force
between the protons is huge, but the attractive nuclear
force is even stronger and keeps the nucleus from bursting
apart. What is the magnitude of the electric force between
two protons separated by 2.00 � 10�15 m?

3.

www.pop4e.com


Three point charges are located at the corners of an equi-
lateral triangle as shown in Figure P19.5. Calculate the
resultant electric force on the 7.00-�C charge.

5. 12. Two point charges are located on the x axis. The first is a
charge 	 Q at x � � a. The second is an unknown charge
located at x � 	 3a. The net electric field these charges
produce at the origin has a magnitude of 2keQ /a2. What
are the two possible values of the unknown charge?

13. Three point charges are arranged as shown in Figure
P19.13. (a) Find the vector electric field that the 6.00-nC
and � 3.00-nC charges together create at the origin.
(b) Find the vector force on the 5.00-nC charge.
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6. A charged particle A exerts a force of 2.62 �N to the right
on charged particle B when the particles are 13.7 mm
apart. Particle B moves straight away from A to make the
distance between them 17.7 mm. What vector force does it
then exert on A?

7. Two identical conducting small spheres are placed with their
centers 0.300 m apart. One is given a charge of 12.0 nC and
the other a charge of �18.0 nC. (a) Find the electric force
exerted by one sphere on the other. (b) Next, the spheres
are connected by a conducting wire. Find the electric force
between the two after they have come to equilibrium.

8. Two small beads having positive charges 3q and q are fixed
at the opposite ends of a horizontal, insulating rod, ex-
tending from the origin to the point x � d. As shown in
Figure P19.8, a third small, charged bead is free to slide on
the rod. At what position is the third bead in equilibrium?
Can it be in stable equilibrium?

d

+3q +q

FIGURE P19.8

9. Review problem. In the Bohr theory of the hydrogen
atom, an electron moves in a circular orbit about a proton,
where the radius of the orbit is 0.529 � 10�10 m. (a) Find
the magnitude of the electric force each exerts on the
other. (b) If this force causes the centripetal acceleration
of the electron, what is the speed of the electron?

Section 19.5 � Electric Fields
10. What are the magnitude and direction of the electric field

that will balance the weight of (a) an electron and (b) a
proton? (You may use the data in Table 19.1.)

11. In Figure P19.11, determine the point (other than infinity)
at which the electric field is zero.

1.00 m

–2.50 µC 6.00 µCµ µ

FIGURE P19.11

0.100 m

x

–3.00 nC

5.00 nC
0.300 m

6.00 nC

y

FIGURE P19.13

14. Two 2.00-�C point charges are located on the x axis.
One is at x � 1.00 m, and the other is at x � � 1.00 m.
(a) Determine the electric field on the y axis at
y � 0.500 m. (b) Calculate the electric force on a � 3.00-�C
charge placed on the y axis at y � 0.500 m.

15. Four point charges are at the corners of a square of side a
as shown in Figure P19.15. (a) Determine the magnitude
and direction of the electric field at the location of charge
q. (b) What is the resultant force on q ?

a a

a

a

q

3q 4q

2q

FIGURE P19.15

16. Consider the electric dipole shown in Figure P19.16. Show
that the electric field at a distant point on the 	 x axis is
Ex � 4keqa /x 3.

2a

x
–q q

y

FIGURE P19.16

17. A rod 14.0 cm long is uniformly charged and has a
total charge of � 22.0 �C. Determine the magnitude and



direction of the electric field along the axis of the rod at a
point 36.0 cm from its center.

18. A continuous line of charge lies along the x axis, extending
from x � 	 x0 to positive infinity. The line carries charge
with a uniform linear charge density �0. What are the mag-
nitude and direction of the electric field at the origin?

19. A uniformly charged ring of radius 10.0 cm has a total
charge of 75.0 �C. Find the electric field on the axis of the
ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and (d) 100 cm
from the center of the ring.

20. Show that the maximum magnitude E max of the electric
field along the axis of a uniformly charged ring occurs at

(see Fig. 19.14) and has the value 

A uniformly charged insulating rod of
length 14.0 cm is bent into the shape of a semicircle as
shown in Figure P19.21. The rod has a total charge of
� 7.50 �C. Find the magnitude and direction of the elec-
tric field at O, the center of the semicircle.

21.

Q/(6√3
� 0a 2).x � a/√2

(b) carries charge with the same uniform density on its
curved lateral surface only. The third (c) carries charge
with uniform density 500 nC/m3 throughout the plastic.
Find the charge of each cylinder.

Section 19.6 � Electric Field Lines
24. Figure P19.24 shows the electric field lines for two point

charges separated by a small distance. (a) Determine the
ratio q1/q2. (b) What are the signs of q1 and q2?
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FIGURE P19.21 Problems 19.21 and 20.27.

22. A thin rod of length � and uniform charge per unit length
� lies along the x axis as shown in Figure P19.22. (a) Show
that the electric field at P, a distance y from the rod along
its perpendicular bisector, has no x component and is
given by E � 2ke � sin �0/y. (b) Using your result to part
(a), show that the field of a rod of infinite length is
E � 2ke �/y. (Suggestion: First, calculate the field at P due to
an element of length dx, which has a charge � dx. Then,
change variables from x to �, using the relationships
x � y tan � and dx � y sec2� d�, and integrate over �.)

y

y

dx
x

P

O
�

θθ0θ

FIGURE P19.22

23. Three solid plastic cylinders all have radius 2.50 cm and
length 6.00 cm. One (a) carries charge with uniform
density 15.0 nC/m2 everywhere on its surface. Another

q2

q1

FIGURE P19.24

A negatively charged rod of finite length carries charge
with a uniform charge per unit length. Sketch the electric
field lines in a plane containing the rod.

26. Three equal positive charges q are at the corners of an equi-
lateral triangle of side a as shown in Figure P19.26. (a) As-
sume that the three charges together create an electric
field. Sketch the field lines in the plane of the charges. Find
the location of a point (other than �) where the electric
field is zero. (b) What are the magnitude and direction of
the electric field at P due to the two charges at the base?

25.

qq
a

q

a a

P +

+ +

FIGURE P19.26 Problems 19.26 and 20.17.

Section 19.7 � Motion of Charged Particles in a Uniform
Electric Field

A proton accelerates from rest in a uniform electric field of
640 N/C. At some later instant, its speed is 1.20 � 106 m/s
(nonrelativistic, because v is much less than the speed
of light). (a) Find the acceleration of the proton. (b) After
what time interval does the proton reach this speed?
(c) How far does the proton move in this time interval?
(d) What is its kinetic energy at the end of this time
interval?

28. The electrons in a particle beam each have a kinetic
energy K . What are the magnitude and direction of the
electric field that will stop these electrons in a distance d ?

27.



29. A proton moves at 4.50 � 105 m/s in the horizontal direc-
tion. It enters a uniform vertical electric field with a magni-
tude of 9.60 � 103 N/C. Ignoring any gravitational effects,
find (a) the time interval required for the proton to travel
5.00 cm horizontally, (b) its vertical displacement during
the time interval in which it travels 5.00 cm horizontally,
and (c) the horizontal and vertical components of its ve-
locity after it has traveled 5.00 cm horizontally.

Section 19.8 � Electric Flux
30. A vertical electric field of magnitude 2.00 � 104 N/C ex-

ists above the Earth’s surface on a day when a thunder-
storm is brewing. A car covers a rectangle measuring 6.00 m
by 3.00 m on the roadway below it, which is built on dry
fill. The roadway slopes downward at 10.0°. Determine the
electric flux through the bottom of the car.

A 40.0-cm-diameter loop is rotated in a uniform electric
field until the position of maximum electric flux is 
found. The flux in this position is measured to be 
5.20 � 105 N � m2/C. What is the magnitude of the electric
field?

Section 19.9 � Gauss’s Law
32. The electric field everywhere on the surface of a thin

spherical shell of radius 0.750 m is measured to be 
890 N/C and points radially toward the center of the
sphere. (a) What is the net charge within the sphere’s sur-
face? (b) What can you conclude about the nature and dis-
tribution of the charge inside the spherical shell?

A point charge Q is located just above
the center of the flat face of a hemisphere of radius R as
shown in Figure P19.33. What is the electric flux (a) through
the curved surface and (b) through the flat face?

33.

31.

on its surface. What is the charge per unit area on the
plastic sheet?

37. A cylindrical shell of radius 7.00 cm and length 240 cm has
its charge uniformly distributed on its curved surface. The
magnitude of the electric field at a point 19.0 cm radially
outward from its axis (measured from the midpoint of
the shell) is 36.0 kN/C. Find (a) the net charge on the shell
and (b) the electric field at a point 4.00 cm from the axis,
measured radially outward from the midpoint of the shell.

38. Consider a thin spherical shell of radius 14.0 cm with a to-
tal charge of 32.0 �C distributed uniformly on its surface.
Find the electric field (a) 10.0 cm and (b) 20.0 cm from
the center of the charge distribution. 

Consider a long cylindrical charge distri-
bution of radius R with a uniform charge density �. Find
the electric field at distance r from the axis where r � R.

40. An insulating solid sphere of radius a has a uniform vol-
ume charge density and carries a total positive charge Q. A
spherical gaussian surface of radius r, which shares a com-
mon center with the insulating sphere, is inflated starting
from r � 0. (a) Find an expression for the electric flux
passing through the surface of the gaussian sphere as a
function of r for r � a. (b) Find an expression for the elec-
tric flux for r  a. (c) Plot the flux versus r.

41. In nuclear fission, a nucleus of uranium-238, which con-
tains 92 protons, can divide into two smaller spheres, each
having 46 protons and a radius of 5.90 � 10�15 m. What is
the magnitude of the repulsive electric force pushing the
two spheres apart?

Section 19.11 � Conductors in Electrostatic Equilibrium
42. A long, straight metal rod has a radius of 5.00 cm and a

charge per unit length of 30.0 nC/m. Find the electric
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the
axis of the rod, where distances are measured perpendicu-
lar to the rod.

43. A very large, thin, flat plate of aluminum of area A has a to-
tal charge Q uniformly distributed over its surfaces. Assum-
ing that the same charge is spread uniformly over the
upper surface of an otherwise identical glass plate, compare
the electric fields just above the center of the upper sur-
face of each plate.

44. A square plate of copper with 50.0-cm sides has no net
charge and is placed in a region of uniform electric field of
80.0 kN/C directed perpendicularly to the plate. Find
(a) the charge density of each face of the plate and (b) the
total charge on each face.

45. A solid conducting sphere of radius 2.00 cm has a charge
8.00 �C. A conducting spherical shell of inner radius
4.00 cm and outer radius 5.00 cm is concentric with the solid
sphere and has a total charge � 4.00 �C. Find the electric
field at (a) r � 1.00 cm, (b) r � 3.00 cm, (c) r � 4.50 cm,
and (d) r � 7.00 cm from the center of this charge
configuration.

46. The electric field on the surface of an irregularly shaped
conductor varies from 56.0 kN/C to 28.0 kN/C. Calculate
the local surface charge density at the point on the surface
where the radius of curvature of the surface is (a) greatest
and (b) smallest.

39.
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34. A charge of 170 �C is at the center of a cube of edge
80.0 cm. (a) Find the total flux through each face of the
cube. (b) Find the flux through the whole surface of the
cube. (c) Would your answers to parts (a) or (b) change if
the charge were not at the center? Explain.

Section 19.10 � Application of Gauss’s Law to Symmetric
Charge Distributions

35. A solid sphere of radius 40.0 cm has a total positive charge of
26.0 �C uniformly distributed throughout its volume. Calcu-
late the magnitude of the electric field (a) 0 cm, (b) 10.0 cm,
(c) 40.0 cm, and (d) 60.0 cm from the center of the sphere.

36. A 10.0 -g piece of Styrofoam carries a net charge of
� 0.700 �C and floats above the center of a large hori-
zontal sheet of plastic that has a uniform charge density



47. A long, straight wire is surrounded by a hollow metal cylin-
der whose axis coincides with that of the wire. The wire has
a charge per unit length of �, and the cylinder has a net
charge per unit length of 2�. From this information, use
Gauss’s law to find (a) the charge per unit length on the
inner and outer surfaces of the cylinder and (b) the elec-
tric field outside the cylinder, a distance r from the axis.

48. Consider an electric field that is uniform in direction
throughout a certain volume. Can it be uniform in magni-
tude? Must it be uniform in magnitude?  Answer these
questions (a) assuming that the volume is filled with an in-
sulating material carrying charge described by a volume
charge density and (b) assuming the volume is empty
space.  State reasoning to prove your answers.

A thin, square conducting plate 50.0 cm
on a side lies in the xy plane. A total charge of 4.00 � 10�8 C
is placed on the plate. Find (a) the charge density on the
plate, (b) the electric field just above the plate, and (c) the
electric field just below the plate. You may assume that the
charge density is uniform.

Section 19.12 � Context Connection — The Atmospheric
Electric Field

50. In fair weather, the electric field in the air at a particular
location just above the Earth’s surface is 120 N/C directed
downward. (a) What is the surface charge density on the
ground surface? Is it positive or negative? (b) If the
weather were fair everywhere and the surface charge den-
sity were uniform, what would be the charge of the whole
surface of the Earth? How many excess electrons (or pro-
tons) would be on the entire surface of the Earth to pro-
duce an atmospheric field of 120 N/C down?

51. In the air over a particular region, at an altitude of 500 m
above the ground, the electric field is 120 N/C directed
downward. At 600 m above the ground, the electric field is
100 N/C downward. What is the average volume charge
density in the layer of air between these two elevations? Is
it positive or negative?

52. The electric field in the Earth’s atmosphere suggests that
the solid and liquid surface of the Earth has a charge of
about � 5 � 105 C. Imagine that the planet as a whole had
a charge of � 5.00 � 105 C and that the Moon, with 27.3%
of the radius of the Earth, had a charge of � 1.37 � 105 C.
(a) Find the electric force that the Earth would then exert
on the Moon. (b) Compare the answer to part (a) with the
gravitational force that the Earth exerts on the Moon. As
your calculation suggests, for the purpose of accounting
for astronomical motions, we may treat the actual forces as
purely gravitational. We may say that astronomical objects
have negligible total charges.

Additional Problems
53. Two known charges, � 12.0 �C and 45.0 �C, and an

unknown charge are located on the x axis. The charge
� 12.0 �C is at the origin, and the charge 45.0 �C is at 
x � 15.0 cm. The unknown charge is to be placed so
that each charge is in equilibrium under the action of the
electric forces exerted by the other two charges. Is this situ-
ation possible? Is it possible in more than one way? Find
the required location, magnitude, and sign of the un-
known charge.

49.

54. A small, 2.00-g plastic ball is suspended by a 20.0-cm-long
string in a uniform electric field as shown in Figure P19.54.
If the ball is in equilibrium when the string makes a 15.0°
angle with the vertical, what is the net charge on the ball?
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55. Four identical point charges (q � 	 10.0 �C) are located
on the corners of a rectangle as shown in Figure P19.55.
The dimensions of the rectangle are L � 60.0 cm and
W � 15.0 cm. Calculate the magnitude and direction of
the resultant electric force exerted on the charge at the
lower left corner by the other three charges.

q q

q
q

y

x
L

W

FIGURE P19.55 Problems 19.55 and 20.10.

56. Inez is putting up decorations for her sister’s quinceañera
(fifteenth birthday party). She ties three light silk ribbons to-
gether to the top of a gateway and hangs a rubber balloon
from each ribbon (Fig. P19.56). To include the effects of

FIGURE P19.56



the gravitational and buoyant forces on it, each balloon
can be modeled as a particle of mass 2.00 g, with its center
50.0 cm from the point of support. Inez wishes to show off
the colors of the balloons.  She rubs the whole surface of
each balloon with her woolen scarf to make them hang
separately with gaps between them. The centers of the
hanging balloons form a horizontal equilateral triangle
with sides 30.0 cm long. What is the common charge each
balloon carries?

57. Two identical metallic blocks resting on a frictionless
horizontal surface are connected by a light metallic
spring having the spring constant 100 N/m and an
unstretched length of 0.300 m as shown in Figure
P19.57a. A total charge of Q is slowly placed on the
system, causing the spring to stretch to an equilib-
rium length of 0.400 m as shown in Figure P19.57b.
Determine the value of Q , assuming that all the charge
resides on the blocks and modeling the blocks as point
charges.

61. Consider the charge distribution shown in Figure P19.61.
(a) Show that the magnitude of the electric field at the
center of any face of the cube has a value of 2.18keq/s2.
(b) What is the direction of the electric field at the center
of the top face of the cube?
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58. Two identical metallic blocks resting on a frictionless hori-
zontal surface are connected by a light metallic spring
having a spring constant k and an unstretched length Li
as shown in Figure P19.57a. A total charge Q is slowly
placed on the system, causing the spring to stretch to an
equilibrium length L as shown in Figure P19.57b.
Determine the value of Q , assuming that all the charge
resides on the blocks and modeling the blocks as point
charges.

Two small spheres of mass m are suspended from strings of
length � that are connected at a common point. One
sphere has charge Q , and the other has charge 2Q. The
strings make angles �1 and �2 with the vertical. 
(a) How are �1 and �2 related? (b) Assume that �1 and �2
are small. Show that the distance r between the spheres is
given by

60. Three charges of equal magnitude q are fixed in posi-
tion at the vertices of an equilateral triangle (Fig. P19.60).
A fourth charge Q is free to move along the positive x axis
under the influence of the forces exerted by the three
fixed charges. Find a value for s for which Q is in equilib-
rium. You will need to solve a transcendental equation.

r � � 4keQ2�

mg �
1/3

59.

x
+Q

+q

+q

–q

a
2
–

a
2
–

s

ra

θ

y

a   3
2
√

FIGURE P19.60

x

y

z

q

q q

q

q
q

q

q

s

s

s

FIGURE P19.61

62. Two infinite, nonconducting sheets of charge are parallel
to each other as shown in Figure P19.62. The sheet on the
left has a uniform surface charge density �, and the one on
the right has a uniform charge density ��. Calculate the
electric field at points (a) to the left of, (b) in between,
and (c) to the right of the two sheets.

σ

–σ

FIGURE P19.62



Repeat the calculations for Problem 19.62 when both
sheets have positive uniform surface charge densities of
value �.

64. A line of charge with uniform density 35.0 nC/m lies along
the line y � �15.0 cm, between the points with coordi-
nates x � 0 and x � 40.0 cm. Find the electric field it cre-
ates at the origin.

A solid, insulating sphere of radius a has
a uniform charge density � and a total charge Q. Concen-
tric with this sphere is an uncharged, conducting hollow
sphere whose inner and outer radii are b and c as shown in
Figure P19.65. (a) Find the magnitude of the electric field
in the regions r � a, a � r � b, b � r � c, and r  c.
(b) Determine the induced charge per unit area on the in-
ner and outer surfaces of the hollow sphere.

65.

63. the ring has a total positive charge Q as shown in Example
19.5. The particle, confined to move along the x axis, is dis-
placed a small distance x along the axis (where x �� a)
and released. Show that the particle oscillates in simple
harmonic motion with a frequency given by

67. A sphere of radius 2a is made of a nonconducting material
that has a uniform volume charge density �. (Assume that
the material does not affect the electric field.) A spherical
cavity of radius a is now removed from the sphere as shown
in Figure P19.67. Show that the electric field within the
cavity is uniform and is given by Ex � 0 and E y � �a/3�0.
(Suggestion: The field within the cavity is the superposition
of the field due to the original uncut sphere plus the field
due to a sphere the size of the cavity with a uniform nega-
tive charge density � �.)

f �
1

2
 � keqQ
ma 3 �

1/2
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66. Review problem. A negatively charged particle � q is
placed at the center of a uniformly charged ring, where

y

x

2a

a

FIGURE P19.67

ANSWERS TO QUICK QUIZZES
19.1 (a), (c), and (e). The experiment shows that objects A

and B have charges of the same sign, as do objects B and
C. Therefore, all three objects have charges of the same
sign.  We cannot determine from this information, how-
ever, whether the charges are positive or negative.

19.2 (e). In the first experiment, objects A and B may have
charges with opposite signs or one of the objects may be
neutral.  The second experiment shows that objects B
and C have charges with opposite signs, so object B must
be charged. We still do not know if object A is charged or
neutral, however.

19.3 (i), (e). From Newton’s third law, the electric force ex-
erted by object B on object A is equal in magnitude to
the force exerted by object A on object B. (ii), (b). From
Newton’s third law, the electric force exerted by object B
on object A is equal in magnitude to the force exerted by
object A on object B and in the opposite direction.

19.4 (a). There is no effect on the electric field if we assume
that the source charge producing the field is not dis-

turbed by our actions. Remember that the electric field is
created by source charge(s) (unseen in this case), not
the test charge(s).

19.5 A, B, and C. The field is greatest at point A because that
is where the field lines are closest together. The absence
of lines near point C indicates that the electric field there
is zero.

19.6 (b) and (d). Statement (a) is not necessarily true because
an equal number of positive and negative charges could
be present inside the surface. Statement (c) is not neces-
sarily true as can be seen from Figure 19.30 because a
nonzero electric field exists everywhere on the surface,
but the charge is not enclosed within the surface. Thus,
the net flux is zero.

19.7 (i), (c). The charges q1 and q4 are outside the surface
and contribute zero net flux through S�. (ii), (d). We
don’t need the surfaces to realize that any given point in
space will experience an electric field due to all local
source charges.



The concept of potential energy was introduced in Chapter 7
in connection with such conservative forces as gravity and
the elastic force of a spring. By using the principle of

conservation of mechanical energy in an isolated system, we are
often able to avoid working directly with forces when solving
mechanical problems. In this chapter, we shall use the energy
concept in our study of electricity. Because the electrostatic force
(given by Coulomb’s law) is conservative, electrostatic phenom-
ena can conveniently be described in terms of an electric potential
energy function. This concept enables us to define a quantity
called electric potential, which is a scalar quantity and which there-
fore leads to a simpler means of describing some electrostatic
phenomena than the electric field method. As we shall see in
subsequent chapters, the concept of electric potential is of great
practical value in many applications.

This chapter also addresses the properties of capacitors, devices
that store charge. The ability of a capacitor to store charge is
measured by its capacitance. Capacitors are used in common

Electric Potential and Capacitance

C H A P T E R 20

This device is a variable capacitor, used to tune
radios to a selected station. When one set of
metal plates is rotated so as to lie between a
fixed set of plates, the capacitance of the
device changes. Capacitance is a parameter
that depends on electric potential, the primary
topic of this chapter.
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applications such as frequency tuners in radio receivers, filters in power supplies,
dampers to eliminate unwanted sparking in automobile ignition systems, and
energy-storing devices in electronic flash units.

POTENTIAL  DIFFERENCE  AND  ELECTRIC  POTENTIAL
When a point charge q0 is placed in an electric field , the electric force on the
particle is (Eq. 19.4). This force is the vector sum of the individual forces
exerted on q0 by the various source charges producing the field . It follows that the
force is conservative because the individual forces governed by Coulomb’s law
are conservative. (See Section 7.3 for a review of conservative forces.) Let us con-
sider a system consisting of the point charge and all the source charges creating the
electric field. Because the field represents the effect of the source charges, we can
also consider the system to be the electric field and the charge q0 that we place in
the field, without referring specifically to the source charges. When the point
charge moves in response to the electric force within the electric field, work is done
on the particle by the field. For an infinitesimal displacement of a point charge
q0, the work done by the electric field on the charge is 

The work done by the field on a point charge is similar to the work done by a
gravitational field on a falling object. We found in Chapter 7 that the gravitational
potential energy of an isolated object–field system changes by an amount equal to
the negative of the work done within the system by the field on the object (Eq. 7.3).
Similarly, the work done within the system by the electric field on a charged particle
changes the potential energy of the isolated charge–field system by an amount
dU � � dW � . For a finite displacement of a test particle of charge q0
between points A and B, the change in potential energy of the charge–field system is

[20.1]

The integral in Equation 20.1 is performed over the path along which the parti-
cle moves from A to B. It is called either a path integral or a line integral. Because
the force is conservative, this integral does not depend on the path taken
between A and B.

In Chapter 19, we recognized that the force between a test charge and a distrib-
ution of source charges depends on all the charges, whereas the electric field is de-
fined as a quantity established only by the source charges. We do something similar
in this discussion. The potential energy of the system of a test charge q0 in an elec-
tric field depends on the test charge and all the source charges establishing the
electric field. Let us remove the effect of the test charge by dividing the potential
energy of the system by the test charge. The potential energy U of the system per
unit charge q0 is independent of the value of q0 and has a unique value at every
point in an electric field. The quantity U/q0 is called the electric potential V (or
simply the potential):

[20.2]

Because potential energy is a scalar, electric potential is also a scalar quantity. Note
that potential is not a property of the charge–field system because we have divided
the potential energy of the system by the charge. It is a property only of the field.
Therefore, in the physical situation, we can imagine removing the test charge from
the field. The potential still exists at the point the test charge occupied and is due
to the source charges that establish the electric field.

The potential difference �V � VB � VA between the points A and B is defined as
the change in potential energy of the charge–field system when the test particle is

V �  
U
q0

E
:

q0E
:

�U � UB � UA � �q0 �B

A
 E
:

� d s: 

� q0E
:

� d s:

F
:

e � d s: � q0E
:

� d s:.
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■ Change in potential energy for a
charge – field system

■ Definition of electric potential

POTENTIAL AND POTENTIAL ENERGY

The potential is characteristic of the field
only, independent of a charged test
particle that may be placed in the
field. Potential energy is characteristic
of the charge–field system due to an
interaction between the field and a
charged particle placed in the field.

� PITFALL PREVENTION 20.1



moved between the points divided by the charge q0 on the test particle:

[20.3]

Potential difference should not be confused with potential energy difference. The
potential difference between two points in an electric field is proportional to the
potential energy difference of the charge–field system when the charge is at the
two points, and we see from Equation 20.3 that the two are related by �U � q0 �V.

Equation 20.3 defines potential difference only. The potential is often taken to
be zero at some convenient point, sometimes called a ground. We usually set the po-
tential due to one or more source charges at zero for a point at infinity (i.e., a point
infinitely remote from the source charges producing the electric field). With this
choice, we can say that the electric potential at an arbitrary point due to source
charges equals the work required by an external agent to bring a test particle from
infinity to that point divided by the charge on the test particle. Therefore, if we take
VA � 0 at infinity in Equation 20.3, the potential at any point P is

[20.4]

where is the electric field established by the source charges. In reality, VP repre-
sents the potential difference between the point P and a point at infinity. (Note that
Eq. 20.4 is a special case of Eq. 20.3.) When discussing potentials in an electric
circuit, we shall set V � 0 at some selected point in the circuit.

Because potential is a measure of energy per unit charge, the SI units of poten-
tial are joules per coulomb, called the volt (V):

That is, if we release a particle with a charge of 1 C in an electric field and it moves
from a point of high potential to a point of low potential through a potential differ-
ence of � 1 V, it will have 1 J of work done on it by the field and therefore will attain
a kinetic energy of 1 J. (From the continuity equation for energy, Eq. 6.20, for the
system of the particle, W � �K.) Alternatively, 1 J of work must be done by an
external agent to take a particle with a charge of 1 C through a potential difference
of � 1 V at constant velocity. (From the continuity equation for energy, for the
particle–field system, W � �U.) Equation 20.3 shows that the potential difference
also has the same units as the product of electric field and displacement. It there-
fore follows that the SI units of electric field, newtons per coulomb, can be
expressed as volts per meter:

which suggests that the electric field can be interpreted as the rate of change in
space of the electric potential. A strong electric field corresponds to a potential that
changes rapidly in space, whereas a weak field represents a slowly changing
potential.

As we learned in Section 9.7, a unit of energy commonly used in physics is the
electron volt (eV):

[20.5]

One eV is the kinetic energy gained by a particle with charge e being accelerated by
an electric field through a potential difference of magnitude 1 V. Equation 20.5 can
be used to convert any energy in joules to electron volts. For instance, an electron in
the beam of a typical T V picture tube may have a speed of 3.0 � 107 m/s. This speed
corresponds to a kinetic energy of 4.1 � 10�16 J, which is equivalent to 2.6 � 103 eV.
Such an electron has to be accelerated from rest through a potential difference of
2.6 kV to reach this speed.

1 eV � (1e)(1 V) � (1.60 � 10�19 C)(1 J/C) � 1.60 � 10�19 J

1 N/C � 1 V/m

1 V � 1 J/C

E
:

VP � ��P

�
  E
:

� d s: 

�V �
�U
q0

� ��B

A
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:
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■ Potential difference between 
two points in an electric field

VOLTAGE In practice, a variety of
phrases are used to describe the 
potential difference between two
points, the most common being
voltage, arising from the unit for
potential. A voltage applied to a de-
vice, such as a television, or across a
device has the same meaning as the
potential difference across the 
device. For example, if we say that
the voltage applied to a lightbulb is
120 V, we mean that the potential
difference between the two electrical
contacts on the lightbulb is 120 V.

� PITFALL PREVENTION 20.2

■ The electron volt



POTENTIAL  DIFFERENCES  IN  A  UNIFORM  
ELECTRIC  FIELD

In this section, we describe the potential difference between any two points in a
uniform electric field. Consider a uniform electric field directed along the negative
y axis as in Figure 20.1a. Let us calculate the potential difference between two
points A and B, separated by a distance d, where d is measured parallel to the field
lines. If we apply Equation 20.3 to this situation, we have

Because the field is uniform, the magnitude E of the field is a constant and can be
removed from the integral, giving

[20.6]

The negative sign results because point B is at a lower potential than point A; that
is, VB � VA. In general, electric field lines always point in the direction of decreas-
ing electric potential.

Now suppose a test particle with charge q0 moves from A to B. The change in
the electric potential energy of the charge–field system can be found from Equa-
tions 20.3 and 20.6:

[20.7]

From this result, we see that if q0 is positive, �U is negative. Thus, when a posi-
tive charge moves in the direction of the electric field, the electric potential energy
of the charge–field system decreases. This situation is analogous to the change in
gravitational potential energy � mgd of an object–field system when an object with
mass m falls through a height d in a uniform gravitational field, as suggested in
Figure 20.1b. If a particle with a positive charge q0 is released from rest in the
electric field, it experiences an electric force in the direction of (downward in
Fig. 20.1a). Therefore, it accelerates downward, gaining kinetic energy. As the
charged particle gains kinetic energy, the charge–field system loses an equal
amount of potential energy. This familiar result is similar to what we have seen for
gravitational situations (Fig. 20.1b). The statement is simply the principle of conser-
vation of mechanical energy in the isolated system model for electric fields.

If q0 is negative, �U in Equation 20.7 is positive and the situation is reversed. If a
negatively charged particle is released from rest in the field , it accelerates in a
direction opposite the electric field. The charge–field system loses electric potential

E
:

E
:

q0 E
:

�U � q0 �V � �q0 Ed

�V � �E �B

A
ds � �Ed

VB � VA � �V � ��B

A
 E: � d s: � ��B

A
 E cos 0� ds � ��B

A
 E ds 
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d

B

A

q

E

(a) (b)

g

d

B

A

m

(a) When the elec-
tric field is directed downward,
point B is at a lower electric potential
than point A. When a positive test
charge moves from A to B, the charge–
field system loses electric potential 
energy. (b) A gravitational analogy:
When an object with mass m moves
downward in the direction of the 
gravitational field , the object –field
system loses gravitational potential 
energy.

g:

E
:

FIGURE 20.1

■ Potential difference between 
two points in a uniform electric
field



energy when a negative charge moves in the direction opposite to the electric field.
We have no analog for this situation in the gravitational case because no negative
mass has been observed.

Now consider the more general case of a charged particle moving between any
two points in a uniform electric field as in Figure 20.2. If represents the dis-
placement vector between points A and B, Equation 20.3 gives

[20.8]

where again we are able to remove from the integral because the electric field is
uniform. Furthermore, the change in electric potential energy of the charge–field
system is

[20.9]

Finally, our results show that all points in a plane perpendicular to a uniform
electric field are at the same potential as can be seen in Figure 20.2, where the
potential difference VB � VA � � � �E �r cos	 � �Ed � VC � VA. There-
fore, VB � VC . The name equipotential surface is given to any surface consisting of
a continuous distribution of points having the same electric potential. Note that
because �U � q0 �V, no work is required to move a test particle between any two
points on an equipotential surface. The equipotential surfaces of a uniform electric
field consist of a family of planes, all perpendicular to the field. Equipotential sur-
faces for fields with other symmetries will be described in later sections.

E
:

� � r:

�U � q0 �V � �q0  E
:

� � r:

E
:

�V � ��B

A
 E

:
� d s: � �E

:
��B

A
d s: � � E

:
� � r:
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E

B

CA

∆r

θ d

A particle is moved
in a uniform electric field. Point B is
at a lower potential than point A.
Points B and C are at the same
potential.

FIGURE 20.2

we do not consider points near the edges of the plates.)
Find the magnitude of the electric field between the
plates.

Solution The electric field is directed from the positive
plate A toward the negative plate B. The positive plate
is at a higher potential than the negative plate. Note
that the potential difference between plates must equal
the potential difference between the battery terminals. 
This requirement can be understood by recognizing
that all points on a conductor in equilibrium are at 
the same potential.1 Hence, no potential difference
occurs between a terminal of the battery and any
portion of the plate to which it is connected. The mag-
nitude of the uniform electric field between the plates
is therefore

This configuration, which is called a parallel-plate
capacitor, is examined in more detail later in this
chapter.

4.0 � 103 V/mE �
� VB � VA �

d
�

12 V
0.30 � 10�2 m

�

The Electric Field Between Two Parallel Plates of Opposite ChargeEXAMPLE 20.1
A 12-V battery is connected between two parallel plates
as in Figure 20.3. The separation between the plates is
0.30 cm, and the electric field is assumed to be
uniform. (This simplification model is reasonable if the
plate separation is small relative to the plate size and if

+ –
∆V = 12 V

A

B

d

(Example 20.1) A 12-V battery connected to two
parallel plates. The electric field between the plates
has a magnitude given by the potential difference
�V divided by the plate separation d.

FIGURE 20.3

1The electric field vanishes within a conductor in electrostatic equilibrium, and so the path integral
between any two points within the conductor must be zero. A fuller discussion of this point is

given in Section 20.6.
�E

:
� d s:



ELECTRIC  POTENTIAL  AND  ELECTRIC  POTENTIAL
ENERGY  DUE  TO  POINT  CHARGES

In establishing the concept of electric potential, we imagined placing a test particle
in an electric field set up by some undescribed source charges. As a simplification
model, the field was assumed to be uniform in Section 20.2 so as to firmly plant the
idea of electric potential in our minds. Let us now focus our attention on point
charges, which we know set up electric fields that are not uniform.

Consider an isolated positive point charge q (Fig. 20.5). Recall that such a
charge is a source of an electric field that is directed radially outward from the
charge. To find the electric potential at a distance of r from the charge, we begin
with the general expression for potential difference, Equation 20.3:

Because the electric field due to the point charge is given by (Eq.
19.5), where is a unit vector directed from the charge toward the field point, the
quantity can be expressed as

The dot product � ds cos 	, where 	 is the angle between and as in
Figure 20.5. Furthermore, note that ds cos	 is the projection of onto , sor:d s:

d s:r̂r̂ � d s:

E
:

� d s: � ke  
q
r 2  r ˆ � d s:

E
:

� d s:
r̂

E
:

� keq r̂/r 2

VB � VA � ��B

A
 E

:
� d s: 
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Motion of a Proton in a Uniform Electric FieldEXAMPLE 20.2INTERACTIVE

A proton is released from rest in a uniform electric 
field of magnitude 8.0 � 104 V/m directed along the 
positive x axis (Fig. 20.4). The proton undergoes a 
displacement of magnitude d � 0.50 m in the 
direction of .

Find the difference in the electric potential 
between the points A and B.

Solution The difference in electric potential does not 
depend on the presence of the proton. From Equation 
20.6, we have

� 

This negative result tells us that the electric potential 
decreases between points A and B.

Find the change in potential energy of the 
charge–field system for this displacement.

Solution From Equation 20.3, we have

The negative sign here means that the potential energy of
the system decreases as the proton moves in the direction

�6.4 � 10�15 J� (1.6 � 10�19 C)(�4.0 � 104 V) �

�U � q �V � e �V

B

�4.0 � 104 V

�V � �Ed � �(8.0 � 104 V/m)(0.50 m)

A

E
:

d

B
A

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

vBvA = 0

E

(Interactive Example 20.2) A proton accelerates
from A to B in the direction of the electric field.

FIGURE 20.4

of the electric field. This decrease is consistent with con-
servation of energy in an isolated system: as the proton
accelerates in the direction of the field, it gains kinetic
energy and at the same time the system loses electric 
potential energy. The increase in kinetic energy of a
charged particle in an electric field is exploited in many
devices, including electron guns for TV picture tubes
and particle accelerators for research in particle physics.

Log into PhysicsNow at www.pop4e.com
and go to Interactive Example 20.2 to predict and observe
the speed of the proton as it arrives at the negative plate for
random values of the electric field.

dr d
θ

r

A

rB

B

q

r

rA

ˆ

s

The potential 
difference between points A and B
due to a point charge q depends only
on the initial and final radial coordi-
nates rA and rB. The two dashed 
circles represent cross-sections of
spherical equipotential surfaces.

FIGURE 20.5

www.pop4e.com


ds cos 	 � dr. With these substitutions, we find that � (keq/r 2) dr, so the
expression for the potential difference becomes

[20.10]

The line integral of is independent of the path between A and B, as it must be,
because the electric field of a point charge is conservative.2 Furthermore, Equation
20.10 expresses the important result that the potential difference between any two
points A and B depends only on the radial coordinates rA and rB . As we learned in
Section 20.1, it is customary to choose the reference of potential to be zero at
rA � �. With this choice, the electric potential due to a point charge at any distance
r from the charge is

[20.11]

From this expression we see that V is constant on a spherical surface of radius r cen-
tered on the point charge. Hence, we conclude that the equipotential surfaces for
an isolated point charge consist of a family of spheres concentric with the charge as
shown in Figure 20.5. Note that the equipotential surfaces are perpendicular to the
electric field lines, as is the case for a uniform electric field.

The electric potential at a point in space due to two or more point charges is
obtained by applying the superposition principle. That is, the total potential at some
point P due to multiple point charges is the sum of the potentials at P due to the indi-
vidual charges. For a group of charges, we can write the total potential at P in the form

[20.12]

where the potential is again taken to be zero at infinity and ri is the distance from
point P to the charge qi. Note that the sum in Equation 20.12 is an algebraic sum of
scalars rather than a vector sum (which is used to calculate the electric field of a
group of charges, as in Eq. 19.6). Therefore, it is much easier to evaluate V for
multiple charges than to evaluate .

We now consider the potential energy of a system of two charged particles. If V2
is the electric potential at a point P due to charge q2, the work an external agent
must do to bring a second charge q1 from infinity to P without acceleration is q1V2.
This work represents a transfer of energy into the system, and the energy appears in
the system as potential energy U when the particles are separated by a distance r12
(Active Fig. 20.6a). We can therefore express the electric potential energy of a pair
of point charges as

[20.13]

Note that if the charges are of the same sign, U is positive, which is consistent
because positive work must be done by an external agent on the system to bring the
two charges near one another (because charges of the same sign repel). If the
charges are of opposite sign, U is negative. Therefore, negative work is done by an
external agent against the attractive force between the charges of opposite sign as
they are brought near each other because a force must be applied opposite to the
displacement to prevent q1 from accelerating toward q2.

U � q1V2 � k e 
q1q2

r12

E
:

V � ke � 

i

qi

ri
 

V � ke   
q
r

E
:


d s:

 � k eq � 1
rB

�
1
rA
�

 VB � VA � ��rB

rA

 ke  
q

r 2  dr � �k eq �rB
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r 2  �
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2A conservative field is one that exerts a conservative force on an object placed within it. Both
gravitational and electric fields are conservative.

SIMILAR EQUATION WARNING Be sure
to avoid confusion between Equa-
tion 20.11 for the electric potential
of a point charge and Equation 19.5
for the electric field of a point
charge. The equations look very
similar, but potential is propor-
tional to 1/r, whereas the field is
proportional to 1/r 2. The effect of
a charge on the space surrounding
it can be described in two ways. The
charge sets up a vector electric field

, which is related to the force ex-
perienced by a test charge placed in
the field. It also sets up a scalar po-
tential V, which is related to the po-
tential energy of the two-charge sys-
tem when a test charge is placed in
the field.

E
:

� PITFALL PREVENTION 20.3

(a)

q1

q2r12

(b)

q2r12

V  = ke
q2
r12

P

(a) If two point charges are sepa-
rated by a distance r12, the potential
energy of the pair of charges is given
by keq1q2/r12. (b) If charge q1 is re-
moved, a potential keq2/r12 exists at
point P due to charge q2.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 20.6. You can
move charge q1 or point P and see
the result on the electric potential
energy of the system for part (a) and
the electric potential due to charge
q2 for part (b).

ACTIVE FIGURE 20.6

www.pop4e.com


In Active Figure 20.6b, we have removed the charge q1. At the position that this
charge previously occupied, point P, we can use Equations 20.2 and 20.13 to define
a potential due to charge q2 as V � U/q1 � ke q2/r 12.

If the system consists of more than two charged particles, the total electric
potential energy can be obtained by calculating U for every pair of charges and
summing the terms algebraically. The total electric potential energy of a system of
point charges is equal to the work required to bring the charges, one at a time,
from an infinite separation to their final positions.
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A spherical balloon contains a positively charged object at its center.
(i) As the balloon is inflated to a greater volume while the charged object remains at the
center, does the electric potential at the surface of the balloon (a) increase, (b) decrease,
or (c) remain the same? (ii) Does the electric flux through the surface of the balloon
(a) increase, (b) decrease, or (c) remain the same?

QUICK QUIZ 20.1

In Active Figure 20.6a, take q1 to be a negative source charge and q2

to be the test charge. (i) If q2 is initially positive and is replaced with a charge of the same
magnitude but negative, does the potential at the position of q2 due to q1 (a) increase, 
(b) decrease, or (c) remain the same? (ii) When q2 is changed from positive to negative,
does the potential energy of the two-charge system (a) increase, (b) decrease, or 
(c) remain the same?

QUICK QUIZ 20.2

The Electric Potential Due to Two Point ChargesEXAMPLE 20.3INTERACTIVE

In this example, q1 � 2.00 �C, r1 � 4.00 m, 
q2 � � 6.00 �C, and r2 � 5.00 m. Therefore, VP re-
duces to

� � 6.29 � 103 V

� � 2.00 � 10�6 C
4.00 m

�
� 6.00 � 10�6 C

5.00 m �
VP � (8.99 � 109 N 
 m2/C2)

VP � ke � q1

r1
�

q2

r2
�A 2.00-�C point charge is located at the origin, and 

a second point charge of �6.00 �C is located on the 
y axis at the position (0, 3.00) m as in Figure 20.7a.

Find the total electric potential due to these
charges at point P, whose coordinates are 
(4.00, 0) m.

Solution For two point charges, the sum in Equation
20.12 gives

A

(a)

4.00 m

x

–6.00   C

y

2.00   C

(b)

x

–6.00   C

y

2.00   C 3.00   C

P

3.00 m 3.00 m

4.00 m

µ

µ

µ

µ µ

(Interactive Example 20.3) (a) The electric potential at point P due to the two point
charges q1 and q2 is the algebraic sum of the potentials due to the individual charges.
(b) How much work is done to bring a 3.00-�C charge from infinity to point P ?

FIGURE 20.7



OBTAINING  ELECTRIC  FIELD  FROM
ELECTRIC POTENTIAL

The electric field and the electric potential V are related by Equation 20.4, which
shows how to find the potential if the electric field is known. We now show how to
calculate the electric field if the electric potential is known in a certain region.

From Equation 20.3, we can express the potential difference dV between two
points a distance ds apart as

[20.14]

If the electric field has only one component — Ex , for example—then �
Ex dx . Therefore, Equation 20.14 becomes dV � �Ex dx, or

That is, the electric field is equal to the negative of the derivative of the electric po-
tential with respect to some coordinate. The potential change is zero for any dis-
placement perpendicular to the electric field, which is consistent with the notion
that equipotential surfaces are perpendicular to the field as in Figure 20.8a.

Ex � �
dV
dx

E
:

� d s:
dV � �E

:
� d s:

E
:

20.4
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infinity, so the external agent does not have to do
anything to cause them to move together. To keep the
charge from accelerating, however, the agent must
apply a force away from point P. Therefore, the force
exerted by the agent is opposite the displacement of
the charge, leading to a negative value of the work.
Positive work would have to be done by an external
agent to remove the charge from P back to infinity.

Log into PhysicsNow at www.pop4e.com and
go to Interactive Example 20.3 to explore the value of the
electric potential at point P and the electric potential energy
of the system in Figure 20.7b.

How much work is required to bring a 3.00-�C
point charge from infinity to the point P (Fig. 20.7b)?

Solution The work done is equal to the change in the
system potential energy given by Equation 20.3:

�

The negative sign is because the 3.00-�C charge is
attracted to the combination of q1 and q2, which has a
net negative charge. The 3.00-�C charge would natu-
rally move toward the other charges if released from

�18.9 � 10�3 J

 � (3.00 � 10�6 C)(� 6.29 � 103 V)

 W � �U � q3 �V � q3(VP � 0)

B

■ Relation between electric field
and electric potential

(a)

E

(b)

q

(c)

+

Equipotential surfaces (dashed blue lines) and electric field lines (brown lines) 
for (a) a uniform electric field produced by an infinite sheet of charge, (b) a point
charge, and (c) an electric dipole. In all cases, the equipotential surfaces are 
perpendicular to the electric field lines at every point.

FIGURE 20.8

www.pop4e.com


If the charge distribution has spherical symmetry such that the charge density de-
pends only on the radial distance r, the electric field is radial. In this case, 
Er dr, and we can express dV as dV � �Er dr. Therefore,

[20.15]

For example, the potential of a point charge is V � keq/r. Because V is a function of
r only, the potential function has spherical symmetry. Applying Equation 20.15, we
find that the magnitude of the electric field due to the point charge is Er � keq/r 2,
a familiar result. Note that the potential changes only in the radial direction, not in
a direction perpendicular to r. Therefore, V (like Er) is a function only of r. Again,
that is consistent with the idea that equipotential surfaces are perpendicular to
field lines. In this case, the equipotential surfaces are a family of spheres concentric
with the spherically symmetric charge distribution (Fig. 20.8b). The equipotential
surfaces for the electric dipole are sketched in Figure 20.8c.

In general, the electric potential is a function of all three spatial coordinates. If
V is given in terms of rectangular coordinates, the electric field components Ex, Ey,
and Ez can be found from V (x, y, z) as the partial derivatives

[20.16]

For example, if V � 3x2y � y2 � yz,

 Ez � �
�V
�z

� �
�

�z
 (3x2y � y2 � yz) � �

�

�z
 (yz) � �y 

d
dz

 (z) � �y

 � � 3x2 � 2y � z

 Ey � �
�V
�y

� �
�

�y
 (3x2y � y2 � yz) � ��3x2 

d
dy

 (y) �
d
dy

 (y2) � z 
d
dy

 (y)�

 Ex � �
�V
�x

� �
�

�x
 (3x2y � y2 � yz) � �

�

�x
 (3x 2y) � �3y 

d
dx

 (x 2) � �6xy

Ex � �
�V
�x

     Ey � �
�V
�y

     Ez � �
�V
�z

Er � �
dV
dr

E
:

� d s: �
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(i) In a certain region of space, the electric potential is zero every-
where along the x axis. From this information, we can conclude that the x component of
the electric field in this region is (a) zero, (b) in the � x direction, or (c) in the �x direc-
tion. (ii) In a certain region of space, the electric field is zero. From this information, we
can conclude that the electric potential in this region is (a) zero, (b) constant, (c) positive,
or (d) negative.

QUICK QUIZ 20.3

in Figure 20.9. The dipole is along the x axis and is 
centered at the origin.

Calculate the electric potential at any point P
along the x axis.

Solution Using Equation 20.12, we have

Calculate the electric field on this axis at points
very far from the dipole.

B

2keqa
x2 � a2V � ke � 

i

qi

ri
 � ke � q

x � a
�

�q
x � a � �

A

The Electric Potential of a DipoleEXAMPLE 20.4
An electric dipole consists of two charges of opposite
sign but equal magnitude separated by a distance 2a as

aa

q

P

x

x

y

–q

(Example 20.4) An electric dipole located on the x axis.FIGURE 20.9



ELECTRIC  POTENTIAL  DUE  TO  CONTINUOUS
CHARGE  DISTRIBUTIONS

The electric potential due to a continuous charge distribution can be calculated in
two ways. If the charge distribution is known, we can start with Equation 20.11 for
the potential of a point charge. We then consider the potential due to a small
charge element dq, modeling this element as a point charge (Fig. 20.10). The
potential dV at some point P due to the charge element dq is

[20.17]

where r is the distance from the charge element to P. To find the total potential at
P, we integrate Equation 20.17 to include contributions from all elements of the
charge distribution. Because each element is, in general, at a different distance
from P and because ke is a constant, we can express V as

[20.18]

In effect, we have replaced the sum in Equation 20.12 with an integral.
The second method for calculating the potential of a continuous charge distrib-

ution makes use of Equation 20.3. This procedure is useful when the electric field is
already known from other considerations, such as Gauss’s law. In this case, we sub-
stitute the electric field into Equation 20.3 to determine the potential difference
between any two points. We then choose V to be zero at some convenient point. We
shall illustrate both methods with examples.

V � ke � 
dq
r

 

dV � ke  
dq
r

20.5
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field far from the dipole. In the previous example, we
were looking at the field along a line perpendicular to
the line connecting the charges. As we see in Figure
19.11, the vertical components of the field cancel
because the point at which we evaluate the field is
equidistant from both charges. Therefore, only the
very small horizontal components of the individual
fields contribute to the total field. In this example, we
are looking at the field along an extension of the line
connecting the charges. For points along this line, the
field vectors have components only along the line and
the field vectors are in opposite directions. The point
at which we evaluate the field, however, is necessarily
closer to one charge than the other. As a result, the
field is larger than that along the perpendicular direc-
tion by a factor of 2.

Solution Using Equation 20.16 and the result from part
A, we calculate the electric field at P :

If P is far from the dipole so that x  a, then a2 can be
ignored in the term x2 � a2 and Ex becomes

(x  a)

Comparing this result to that from Example 19.3, we
see a factor of 2 difference between the results for the

4keqa
x 3Ex 	

4keqax
x 4 �

 �
4keqax

(x 2 � a2)2

 � (�2ke qa)(�1)(x2 � a2)�2
 (2x)

 Ex � � 
�V
�x

� �
d
dx

 � 2keqa
x 2 �a2 �� �2keqa 

d
dx

 (x 2�a2)�1

r

P

dq

The electric poten-
tial at point P due to a continuous
charge distribution can be calculated
by dividing the charge distribution
into elements of charge dq and sum-
ming the potential contributions over
all elements.

FIGURE 20.10

The following procedure is recommended for solving problems
that involve the determination of an electric potential due to a
charge distribution:

1. Conceptualize Think carefully about the individual
charges or the charge distribution that you have in the prob-
lem and imagine what type of potential they would create so

that you can establish the mental representation. Appeal to any
symmetry in the arrangement of charges to help you visualize
the potential.

2. Categorize Are you analyzing a group of individual
charges or a continuous charge distribution? The answer to
this question will tell you how to proceed in the Analyze step.

Calculating Electric PotentialPROBLEM-SOLVING STRATEGY
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3. Analyze When working problems involving electric poten-
tial, remember that potential is a scalar quantity, so there are no
vector components to consider. Therefore, when using the
superposition principle to evaluate the electric potential at a
point, simply take the algebraic sum of the potentials due to
each charge. You must keep track of signs, however.

As with potential energy in mechanics, only changes in elec-
tric potential are significant; hence, the point where the poten-
tial is set at zero is arbitrary. When dealing with point charges
or a finite-sized charge distribution, we usually define V � 0 to
be at a point infinitely far from the charges. If the charge distri-
bution itself extends to infinity, however, some other nearby
point must be selected as the reference point.

(a) If you are analyzing a group of individual charges: Use the 
superposition principle. When several point charges are
present, the resultant potential at a point in space is the
algebraic sum of the individual potentials due to the individ-
ual charges (Eq. 20.12). Example 20.4 demonstrated this
procedure.

(b) If you are analyzing a continuous charge distribution: Replace the
sums for evaluating the total potential at some point P from
individual charges by integrals (Eq. 20.18). The charge 
distribution is divided into infinitesimal elements of charge

dq located at a distance of r from point P, and the sum is car-
ried out by integrating over the entire charge distribution.
An element is then treated as a point charge, so the poten-
tial at P due to the element is dV � ke (dq/r). The total po-
tential at P is obtained by integrating dV over the entire
charge distribution. For many problems, it is possible in 
performing the integration to express dq and r in terms of a
single variable. To simplify the integration, it is important to
give careful consideration to the geometry involved in the
problem. Example 20.5 demonstrates such a procedure.

Another method that can be used to obtain the poten-
tial due to a finite continuous charge distribution is to
start with the definition of the potential difference given
by Equation 20.3. If is known or can be obtained easily
(e.g., from Gauss’s law), the line integral of can be
evaluated. Example 20.6 uses this method.

4. Finalize Once you have determined your result, check to
see if your potential is consistent with the mental representa-
tion and that it reflects any symmetry that you noted previously.
Imagine varying parameters such as the distance of the observa-
tion point from the charges or the radius of any circular or
spherical objects to see if the mathematical result changes in a 
reasonable way.

E
:

� d s:
E
:

problem, let us take P to be at a distance x from the
center of the ring as in Figure 20.11. The charge ele-
ment dq is at a distance equal to from
point P. Hence, using Equation 20.18, we can 
express V as

In this case, each element dq is at the same distance
from P. The term can therefore be removed
from the integral, and V reduces to

Let us now address the electric field. The only variable
in the expression for V is x. From the symmetry, we see
that along the x axis can have only an x component.
We can therefore use Equation 20.16 to find the 
magnitude of the electric field at P :

� 
keQx

(x2 � a2)3/2

 � � keQ(� 1
2)(x 2 � a2)�3/2(2x)

 Ex � �
�V
�x

� �k eQ 
d
dx

 (x 2 � a 2)�1/2

E
:

keQ

√x 2 � a2
V �

ke

√x 2 � a2
 � dq �  

√x2 � a2

V � ke � 
dq
r

 � ke � 
dq

√x 2 � a2
 

r � √x 2 � a2

Potential Due to a Uniformly Charged RingEXAMPLE 20.5
Find the electric potential and electric field at a point P
located on the axis of a uniformly charged ring of
radius a and total charge Q . The plane of the ring is
chosen perpendicular to the x axis (Fig. 20.11).

Solution Figure 20.11 helps us visualize the source of
the potential and conceptualize what the potential
might look like. We expect the potential to be symme-
tric around the x axis and to decrease for increasing
values of x . We categorize this problem as one involving
a continuous distribution of charge on the ring rather
than a collection of individual charges. To analyze the

P
x

√x2 + a2

dq

a

(Example 20.5) A uniformly charged ring of 
radius a, whose plane is perpendicular to the x
axis. All elements dq of the ring are at the same
distance from any point P on the x axis.

FIGURE 20.11
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expect for a point charge. At large values of x, there-
fore, the charge distribution appears to be a point
charge of magnitude Q as you should expect. Also 
notice that this result for the electric field agrees with
that obtained by direct integration (see Example 19.5).

To finalize, note that V decreases as x increases, as we
expected from our mental representation. If the point
P is very far from the ring (x  a), then a in the de-
nominator of the expression for V can be ignored and
V 	 keQ /x. This expression is just the one you would

for E into Equation 20.4. Because � Er dr in this
case, we have

� 

Note that the result is identical to that for the electric
potential due to a point charge. Because the potential
must be continuous at r � R, we can use this expression
to obtain the potential at the surface of the sphere.
That is, the potential at a point such as C in Figure
20.12a is

Find the potential at a point inside the charged
sphere, that is, for r � R.

Solution In Example 19.8, we found that the electric
field inside a uniformly charged sphere is

We can use this result and Equation 20.3 to evaluate the
potential difference VD � VC , where D is an interior
point:

Substituting VC � keQ /R into this expression and solv-
ing for VD, we find that

At r � R, this expression gives a result for the potential
that agrees with the potential VC at the surface. A plot
of V versus r for this charge distribution is given in 
Figure 20.12b.

 (for r � R)
keQ
2R

 �3 �
r 2
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R
 Er dr � �

keQ
R3  �r
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 r dr �
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 (for r  R)ke  
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�
Er dr � �keQ �r
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r 2  

E
:

� d  s:
Potential of a Uniformly Charged SphereEXAMPLE 20.6

An insulating solid sphere of radius R has a total charge
of Q , which is distributed uniformly throughout the
volume of the sphere (Fig. 20.12a).

Find the electric potential at a point outside the
sphere, that is, for r  R. Take the potential to be zero
at r � �.

Solution In Example 19.8, we found from Gauss’s law
that the magnitude of the electric field outside a
spherically symmetric charge distribution is

where the field is directed radially outward when Q is
positive. To obtain the potential at an exterior point,
such as B in Figure 20.12a, we substitute this expression

Er � ke
Q
r 2    (for r  R)

A

R

r
Q

D
C

B

(a)

V

V0

V0
2
3

R r

VB =
keQ

r

VD =
keQ
2R

  3 –
r 2

R2( )
V0 =

3keQ
2R

(b)

(Example 20.6) (a) A uniformly charged insulat-
ing sphere of radius R and total charge Q. The
electric potential at points B and C is equivalent to
that of a point charge Q located at the center of
the sphere. (b) A plot of the electric potential V
versus the distance r from the center of a uni-
formly charged, insulating sphere of radius R . The
curve for VD inside the sphere is parabolic and
joins smoothly with the curve for VB outside the
sphere, which is a hyperbola. The potential has a
maximum value V0 at the center of the sphere.

FIGURE 20.12



ELECTRIC  POTENTIAL  OF  A  CHARGED  CONDUCTOR
In Chapter 19, we found that when a solid conductor in electrostatic equilibrium
carries a net charge, the charge resides on the outer surface of the conductor.
Furthermore, we showed that the electric field just outside the surface of a conduc-
tor in equilibrium is perpendicular to the surface, whereas the field inside the
conductor is zero.

We shall now show that every point on the surface of a charged conductor in
electrostatic equilibrium is at the same electric potential. Consider two points A and
B on the surface of a charged conductor as in Figure 20.13. Along a surface path
connecting these points, is always perpendicular to the displacement ; there-
fore, � 0. Using this result and Equation 20.3, we conclude that the poten-
tial difference between A and B is necessarily zero. That is,

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium, so such a surface is an
equipotential surface. Furthermore, because the electric field is zero inside the
conductor, we conclude that the potential is constant everywhere inside the con-
ductor and equal to its value at the surface. It follows that no work is required to
move a test charge from the interior of a charged conductor to its surface.

For example, consider a solid metal sphere of radius R and total positive charge
Q as in Figure 20.14a. The electric field outside the sphere has magnitude keQ /r 2

and points radially outward. Following Example 20.6, we see that the potential at
the interior and surface of the sphere must be keQ /R relative to infinity. The po-
tential outside the sphere is keQ /r. Figure 20.14b is a plot of the potential as a func-
tion of r, and Figure 20.14c shows the variations of the electric field with r.

When a net charge resides on a spherical conductor, the surface charge density
is uniform as indicated in Figure 20.14a. If, however, the conductor is nonspherical
as in Figure 20.13, the surface charge density is not uniform. To determine how the
charge distributes on a nonspherical conductor, imagine a simplification model in
which a nonspherical conductor is represented by the system shown in Figure
20.15. The system consists of two charged conducting spheres of radii r1 and r2,
where r1  r2, connected by a thin conducting wire. Imagine that the spheres are
so far apart that the electric field of one does not influence the other (much far-
ther apart than shown in Fig. 20.15). As a result, the electric field of each sphere
can be modeled as that due to a spherically symmetric distribution of charge, which
is the same as that due to a point charge.

Because the spheres are connected by a conducting wire, the entire system is a sin-
gle conductor and all points must be at the same potential. In particular, the poten-
tials at the surfaces of the two spheres must be equal. Using Equation 20.11 for the
potential of a point charge, we set the potentials at the surfaces of the spheres equal:

Therefore, the larger sphere has the larger amount of charge. Let us compare the
surface charge densities on the two spheres, however:

Therefore, although the larger sphere has the larger total charge, the smaller
sphere has the larger surface charge density, which leads to the fourth property
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An arbitrarily
shaped conductor with an excess
positive charge. When the conductor
is in electrostatic equilibrium, all the
charge resides at the surface, � 0
inside the conductor, and the electric
field just outside the conductor is per-
pendicular to the surface. The poten-
tial is constant inside the conductor
and is equal to the potential at the
surface. The surface charge density is
nonuniform.
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(a) The excess
charge on a conducting sphere of 
radius R is uniformly distributed on its
surface. (b) Electric potential versus 
distance r from the center of the charged
conducting sphere. (c) Electric field
versus distance r from the center of the
charged conducting sphere.

FIGURE 20.14



listed in Section 19.11. Equation 19.25 tells us that the electric field near the sur-
face of a conductor is proportional to the surface charge density. Therefore, the
field near the smaller sphere is larger than the field close to the larger sphere.

We generalize this result by stating that the electric field due to a charged con-
ductor is large near convex surfaces of the conductor having small radii of curva-
ture and is small near convex surfaces of the conductor having large radii of
curvature. A sharp point on a conductor is a region with an extremely small radius
of curvature, so the field is very high near points on conductors.

■ Thinking Physics 20.1
Why is the end of a lightning rod pointed?

Reasoning The role of a lightning rod is to serve as a location at which the light-
ning strikes so that the charge delivered by the lightning will pass safely to the
ground. If the lightning rod is pointed, the electric field due to charges moving
between the rod and the ground is very strong near the point because the radius of
curvature of the conductor is very small. This large electric field will greatly
increase the likelihood that the return stroke will occur near the tip of the light-
ning rod rather than elsewhere. ■

A Cavity Within a Conductor in Equilibrium
Now consider a conductor of arbitrary shape containing a cavity as in Figure 20.16.
Let us assume that no charges are inside the cavity. We shall show that the electric
field inside the cavity must be zero, regardless of the charge distribution on the out-
side surface of the conductor. Furthermore, the field in the cavity is zero even if an
electric field exists outside the conductor.

To prove this point, we remember that every point on the conductor is at the
same potential and therefore any two points A and B on the surface of the cavity
must be at the same potential. Now imagine that a field exists in the cavity and
evaluate the potential difference VB � VA, defined by the expression

where the path from A to B is within the cavity. Because VB � VA � 0, however, the
integral must be zero regardless of the path chosen for the integration from A to B.
The only way that the integral on the right side of the equation can be equal to
zero for all possible paths within the cavity is for to be equal to zero at all points
inside the cavity. Therefore, we conclude that a cavity surrounded by conducting
walls is a field-free region as long as no charges are inside the cavity.

This result has some interesting applications. For example, it is possible to
shield an electronic device or even an entire laboratory from external fields by sur-
rounding it with conducting walls. Shielding is often necessary during highly sensi-
tive electrical measurements. During a thunderstorm, the safest location is inside
an automobile. Even if lightning strikes the car, the metal body guarantees that you
will not receive a shock inside, where � 0.

CAPACITANCE
As we continue with our discussion of electricity and, in later chapters, magnetism,
we shall build circuits consisting of circuit elements. A circuit generally consists of a
number of electrical components (circuit elements) connected together by con-
ducting wires and forming one or more closed loops. These circuits can be consid-
ered as systems that exhibit a particular type of behavior. The first circuit element
we shall consider is a capacitor.

20.7
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r1

q1

r2

q2

Two charged
spherical conductors connected by a
conducting wire. The spheres are at
the same potential V.

FIGURE 20.15

A

B

A conductor in
electrostatic equilibrium containing
an empty cavity. The electric field in
the cavity is zero, regardless of the
charge on the conductor.

FIGURE 20.16



In general, a capacitor consists of two conductors of any shape. Consider two
conductors having a potential difference of �V between them. Let us assume that
the conductors have charges of equal magnitude and opposite sign as in Figure
20.17. This situation can be accomplished by connecting two uncharged conduc-
tors to the terminals of a battery. Once that is done and the battery is disconnected,
the charges remain on the conductors. We say that the capacitor stores charge.

The potential difference �V across the capacitor is the magnitude of the poten-
tial difference between the two conductors. This potential difference is propor-
tional to the charge Q on the capacitor, which is defined as the magnitude of the
charge on either of the two conductors. The capacitance C of a capacitor is defined
as the ratio of the charge on the capacitor to the magnitude of the potential differ-
ence across the capacitor:

[20.19]

By definition, capacitance is always a positive quantity. Because the potential differ-
ence is proportional to the charge, the ratio Q /�V is constant for a given capacitor.
Equation 20.19 tells us that the capacitance of a system is a measure of the amount
of charge that can be stored on the capacitor for a given potential difference.

From Equation 20.19, we see that capacitance has the SI units coulombs per
volt, which is called a farad (F) in honor of Michael Faraday. The farad is a very
large unit of capacitance. In practice, typical devices have capacitances ranging
from microfarads to picofarads.

C �  
Q

�V
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–Q
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A capacitor
consists of two conductors electrically
isolated from each other and their
surroundings. Once the capacitor is
charged, the two conductors carry
charges of equal magnitude but
opposite sign.

FIGURE 20.17

CAPACITANCE IS A CAPACITY To help
you understand the concept of
capacitance, think of similar no-
tions that use a similar word. The
capacity of a milk carton is the vol-
ume of milk it can store. The heat
capacity of an object is the amount
of energy an object can store per
unit of temperature difference. The
capacitance of a capacitor is the
amount of charge the capacitor can
store per unit of potential difference.

� PITFALL PREVENTION 20.4

POTENTIAL DIFFERENCE IS �V, NOT V
We use the symbol �V for the 
potential difference across a circuit
element or a device because this 
notation is consistent with our defi-
nition of potential difference and
with the meaning of the delta sign.
It is a common but confusing prac-
tice to use the symbol V without the
delta sign for a potential difference.
Keep that in mind if you consult
other texts.

� PITFALL PREVENTION 20.5

A capacitor stores charge Q at a potential difference �V. If the volt-
age applied by a battery to the capacitor is doubled to 2 �V, (a) the capacitance falls to
half its initial value and the charge remains the same, (b) the capacitance and the charge
both fall to half their initial values, (c) the capacitance and the charge both double, or 
(d) the capacitance remains the same and the charge doubles.

QUICK QUIZ 20.4

The capacitance of a device depends on the geometric arrangement of the
conductors. To illustrate this point, let us calculate the capacitance of an isolated
spherical conductor of radius R and charge Q. (Based on the shape of the field
lines from a single spherical conductor, we can model the second conductor as a
concentric spherical shell of infinite radius.) Because the potential of the sphere is
simply keQ /R (and V � 0 for the shell of infinite radius), the capacitance of the
sphere is

[20.20]

(Remember from Section 19.4 that the Coulomb constant ke � 1/4��0.) Equation
20.20 shows that the capacitance of an isolated charged sphere is proportional to
the sphere’s radius and is independent of both the charge and the potential
difference.

The capacitance of a pair of oppositely charged conductors can be calculated
in the following manner. A convenient charge of magnitude Q is assumed, and
the potential difference is calculated using the techniques described in Section
20.5. One then uses C � Q /�V to evaluate the capacitance. As you might expect,
the calculation is relatively straightforward if the geometry of the capacitor is
simple.

Let us illustrate with two familiar geometries: parallel plates and concentric
cylinders. In these examples, we shall assume that the charged conductors are sepa-
rated by a vacuum. (The effect of a material between the conductors will be treated
in Section 20.10.)

C �
Q

�V
�

Q
keQ /R

�
R
ke

� 4��0R



The Parallel-Plate Capacitor
A parallel-plate capacitor consists of two parallel plates of equal area A separated by
a distance d as in Figure 20.18. If the capacitor is charged, one plate has charge Q
and the other, charge �Q . The magnitude of the charge per unit area on either
plate is � � Q /A. If the plates are very close together (compared with their length
and width), we adopt a simplification model in which the electric field is uniform
between the plates and zero elsewhere, as we discussed in Example 19.12. Accord-
ing to Example 19.12, the magnitude of the electric field between the plates is

Because the field is uniform, the potential difference across the capacitor can be
found from Equation 20.6. Therefore,

Substituting this result into Equation 20.19, we find that the capacitance is

[20.21]

That is, the capacitance of a parallel-plate capacitor is proportional to the area of
its plates and inversely proportional to the plate separation.

As you can see from the definition of capacitance, C � Q /�V, the amount of
charge a given capacitor can store for a given potential difference across its plates in-
creases as the capacitance increases. It therefore seems reasonable that a capacitor
constructed from plates having large areas should be able to store a large charge.

A careful inspection of the electric field lines for a parallel-plate capacitor re-
veals that the field is uniform in the central region between the plates, but is
nonuniform at the edges of the plates. Figure 20.19 shows a drawing and a photo-
graph of the electric field pattern of a parallel-plate capacitor, showing the nonuni-
form field lines at the plates’ edges. As long as the separation between the plates is
small compared with the dimensions of the plates (unlike Fig. 20.19b), the edge ef-
fects can be ignored and we can use the simplification model in which the electric
field is uniform everywhere between the plates.

C �
�0A
d

 C �
Q

�V
�

Q
Qd/�0A

�V � Ed �
Qd
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Area = A

+ –

A parallel-plate
capacitor consists of two parallel
conducting plates, each of area A,
separated by a distance d. When the
capacitor is charged by connecting
the plates to the terminals of a
battery, the plates carry charges of
equal magnitude but opposite sign.

FIGURE 20.18

+Q

–Q

(a) (b)

(a) The electric field between the plates of a parallel-plate capacitor is uniform near
the center but nonuniform near the edges. (b) Electric field pattern of two oppositely
charged conducting parallel plates. Small particles on an oil surface align with the
electric field.

FIGURE 20.19
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Active Figure 20.20 shows a battery connected to a single parallel-plate ca-
pacitor with a switch in the circuit. Let us identify the circuit as a system. When
the switch is closed, the battery establishes an electric field in the wires and
charges flow between the wires and the capacitor. As that occurs, energy is
transformed within the system. Before the switch is closed, energy is stored as
chemical energy in the battery. This type of energy is associated with chemical
bonds and is transformed during the chemical reaction that occurs within
the battery when it is operating in an electric circuit. When the switch is
closed, some of the chemical energy in the battery is converted to electric
potential energy related to the separation of positive and negative charges
on the plates. As a result, we can describe a capacitor as a device that stores
energy as well as charge. We will explore this energy storage in more detail in
Section 20.9.
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(b)
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∆V

Chemical
energy in
battery is
reduced

Electric
field in
wire

Electric
field in
wire

Electric
field between
plates

E

Electrons
move
from the
wire to
the plate

Separation
of charges
represents
potential
energyElectrons move

from the plate
to the wire,
leaving the plate
positively
charged

+ –

(a)

∆V

(a) A circuit consisting of a capaci-
tor, a battery, and a switch. (b)
When the switch is closed, the bat-
tery establishes an electric field in
the wire that causes electrons to
move from the left plate into the
wire and into the right plate from
the wire. As a result, a separation of
charge exists on the plates, which
represents an increase in electric po-
tential energy of the system. This en-
ergy in the system of the circuit has
been transformed from chemical
energy in the battery.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 20.20 to adjust
the battery voltage and see the
result on the charge on the plates
and the electric field between the
plates.

ACTIVE FIGURE 20.20

1.77 pF�  1.77 � 10�12 F �

C �
�0A

d
� (8.85 � 10�12 C2/N 
m2) � 2.00 � 10�4 m2

1.00 � 10�3 m �
Parallel-Plate CapacitorEXAMPLE 20.7

A parallel-plate capacitor has an area A � 2.00 � 10�4 m2

and a plate separation d � 1.00 mm. Find its capacitance.

Solution From Equation 20.21, we find that

The Cylindrical Capacitor
A cylindrical capacitor consists of a cylindrical conductor of radius a and charge Q
coaxial with a larger cylindrical shell of radius b and charge �Q (Fig. 20.21a). Let
us find the capacitance of this device if its length is �. If we assume that � is large
compared with a and b, we can adopt a simplification model in which we ignore
end effects. In this case, the field is perpendicular to the axis of the cylinders and is

www.pop4e.com


confined to the region between them (Fig. 20.21b). We first calculate the potential
difference between the two cylinders, which is given in general by

where is the electric field in the region a � r � b. In Chapter 19, using Gauss’s law,
we showed that the electric field of a cylinder with charge per unit length � has the
magnitude E � 2ke �/r. The same result applies here because the outer cylinder does
not contribute to the electric field inside it. Using this result and noting that the di-
rection of is radially away from the inner cylinder in Figure 20.21b, we find that

Substituting this result into Equation 20.19 and using that � � Q /�, we find that

[20.22]

where the magnitude of the potential difference between the cylinders is �V �
�Va � Vb � � 2ke� ln(b/a), a positive quantity. Our result for C shows that the capaci-
tance is proportional to the length of the cylinders. As you might expect, the capac-
itance also depends on the radii of the two cylindrical conductors. As an example, a
coaxial cable consists of two concentric cylindrical conductors of radii a and b sepa-
rated by an insulator. The cable carries currents in opposite directions in the inner
and outer conductors. Such a geometry is especially useful for shielding an electri-
cal signal from external influences. From Equation 20.22, we see that the capaci-
tance per unit length of a coaxial cable is

COMBINATIONS  OF  CAPACITORS
Two or more capacitors are often combined in electric circuits in different ways.
The equivalent capacitance of certain combinations can be calculated using meth-
ods described in this section.

In studying electric circuits, we use a specialized simplified pictorial representa-
tion called a circuit diagram. Such a diagram uses circuit symbols to represent
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(a) A cylindrical
capacitor consists of a solid cylindrical
conductor of radius a and length �
surrounded by a coaxial cylindrical
shell of radius b. (b) End view. The
dashed line represents the end of the
cylindrical gaussian surface of radius r.

FIGURE 20.21



various circuit elements. The circuit symbols are connected by straight lines that
represent the wires between the circuit elements. Figure 20.22 shows the circuit
symbols for a capacitor, a battery, and an open switch. Notice that the circuit symbol
for a capacitor consists of two parallel lines of equal length, representing the plates
in a parallel-plate capacitor, and the lines in the battery symbol are of different
lengths. The positive terminal of the battery is at the higher potential and is repre-
sented by the longer line in the battery symbol.

Parallel Combination
Two capacitors connected as shown in the pictorial representation in Active
Figure 20.23a are known as a parallel combination of capacitors. Active Figure
20.23b shows the circuit diagram for this configuration. The left plates of both
capacitors are connected by a conducting wire to the positive terminal of the
battery, and both plates are therefore at the same potential as that of the battery
terminal. Likewise, the right plates are connected to the negative terminal of
the battery and are at the same potential as that terminal. The voltage applied
across the combination is therefore the terminal voltage of the battery.3 Further-
more, the voltage across each capacitor is the same as the terminal voltage of the
battery.

When the capacitors are first connected in the circuit, electrons are transferred
between the wires and the plates, causing the left plates to become positively
charged and the right plates to become negatively charged. The flow of charge
ceases when the voltage across the capacitors is equal to that across the battery ter-
minals. At this point, the capacitors have reached their maximum charge. Let us
call the maximum charges on the two capacitors Q1 and Q 2. Then the total charge Q
stored by the two capacitors is

[20.23]Q � Q 1 � Q 2
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Capacitor
symbol

Battery
symbol

symbol
Switch

+–

Circuit symbols for
a capacitor, a battery, and an open
switch. Note that capacitors are in
blue, and batteries and switches are in
red.

FIGURE 20.22

3In some situations, the parallel combination may be in a circuit with other circuit elements so that the
potential difference across the combination is not that of a battery in the circuit, but must be
determined by analyzing the entire circuit.

(a)

+ –

C2

+ –

C1

+ –

(b)

∆V

+ –

Q2

C2

Q1

C1

∆V1 = ∆V2 = ∆V

∆V

+ –

Ceq = C1 + C2

(c)

∆V

(a) A parallel combination of two capacitors connected
to a battery. (b) The circuit diagram for the parallel
combination. The potential difference is the same
across each capacitor. (c) The equivalent capacitance is
Ceq � C1 � C2.

Log into PhysicsNow at
www.pop4e.com and go to Active Figure 20.23 to adjust
the battery voltage and the individual capacitances and
see the resulting charges and voltages on the capacitors.
You can combine up to four capacitors in parallel.

ACTIVE FIGURE 20.23
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Suppose we wish to replace the two capacitors in Active Figure 20.23b with one
equivalent capacitor having the capacitance Ceq. This equivalent capacitor (Active
Fig. 20.23c) must have exactly the same result in the circuit as the original two. That
is, it must store charge Q when connected to the battery. From Active Figure 20.23c,
we see that the voltage across the equivalent capacitor is �V. Therefore, we have

and, for the individual capacitors,

Substitution of these relations into Equation 20.23 gives

or

[20.24]

If we extend this treatment to three or more capacitors connected in parallel,
the equivalent capacitance is

(parallel combination) [20.25]

Therefore, we see that the equivalent capacitance of a parallel combination of
capacitors is the algebraic sum of the individual capacitances and is larger than any
of the individual capacitances.

Series Combination
Now consider two capacitors connected in series as illustrated in Active Figure
20.24a. Active Figure 20.24b shows the circuit diagram. For this series combination
of capacitors, the magnitude of the charge is the same on all the plates.

Ceq � C1 � C2 � C3 � 
 
 


Ceq � C1 � C2  (parallel combination)

Ceq �V � C1 �V � C2 �V

Q1 � C1 �V   Q 2 � C2 �V

Q � Ceq �V
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■ Equivalent capacitance of several
capacitors in parallel

(a)

+ –

C2

∆V

C1
∆V1 ∆V2

+Q –Q +Q –Q

(b)

∆V

Q1 = Q2 = Q
C1 C2

C2

∆V1 ∆V2

–+ + –

(c)

∆V

Ceq    C1    
1 1 1=       +

(a) A series combination of two capacitors connected to a battery. (b) The
circuit diagram for the series combination. The charge on each capacitor
is the same. (c) The equivalent capacitance can be calculated from the
relationship

Log into PhysicsNow at www.pop4e.com and go to Active Figure 20.24 to adjust
the battery voltage and the individual capacitances and see the resulting charges and voltages on the
capacitors. You can combine up to four capacitors in series.

1
Ceq

�
1

C 1
�

1
C 2

ACTIVE FIGURE 20.24
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To see why that is true, let us consider the charge transfer process in some
detail. We start with uncharged capacitors and follow what happens just after a bat-
tery is connected to the circuit. When the connection is made, the right plate of C1
and the left plate of C 2 form an isolated conductor. Therefore, whatever negative
charge enters one plate from the connecting wire must be equal to the positive
charge of the other plate so as to maintain neutrality of the isolated conductor: that
is the electric charge version of the isolated system model. As a result, both capaci-
tors must have the same charge Q.

Suppose we wish to determine the capacitance of an equivalent capacitor that
has the same effect in the circuit as the series combination. That is, as the equiva-
lent capacitor is being charged, charge � Q must enter its right plate from the wires
and the charge on its left plate must be � Q. By applying the definition of capaci-
tance to the circuit shown in Active Figure 20.24c, we have

[20.26]

where �V is the potential difference between the terminals of the battery and Ceq is
the equivalent capacitance.

Because the right plate of C1 and the left plate of C 2 in Active Figure 20.24a
form an isolated conductor, both plates are at the same potential Vi, where the i
stands for the isolated conductor. The notation Vleft represents the potential of the
left plate of C 1, and Vright represents the potential of the right plate of C2. Because
these latter two plates are connected directly to the battery, the potential difference
between them must be

If we add and subtract Vi to this equation, we have

which we can write as

[20.27]

where �V1 and �V2 are the potential differences across capacitors C1 and C 2. In
general, the potential difference across any number of capacitors in series is
equal to the sum of the potential differences across the individual capacitors.
Because Q � C �V can be applied to each capacitor, the potential difference
across each is

Substituting these expressions into Equation 20.27 and using Equation 20.26 to re-
place �V, we have

Canceling Q , we arrive at the relationship

[20.28]

If this analysis is applied to three or more capacitors connected in series, the equiv-
alent capacitance is found to be given by

(series combination) [20.29]
1

Ceq
�

1
C1

�
1

C2
�

1
C3

� 
 
 


1
Ceq

�
1

C1
�

1
C2

  (series combination)

Q
Ceq

�
Q
C1

�
Q
C2

�V1 �
Q
C1

  �V2 �
Q
C2

�V � �V1 � �V2

�V � (Vleft � Vi) � (Vi � Vright)

�V � V left � Vright

�V �
Q

Ceq
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which shows that the inverse of the equivalent capacitance is the algebraic sum of
the inverses of the individual capacitances and that the equivalent capacitance of a
series combination is always less than any individual capacitance in the combination.
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Two capacitors are identical. They can be connected in series or in
parallel. (i) If you want the smallest equivalent capacitance for the combination, (a) do you
connect them in series, (b) do you connect them in parallel, or (c) do the combinations
have the same capacitance? (ii) Each capacitor is charged to a voltage of 10 V. If you want
the largest combined potential difference across the combination, (a) do you connect
them in series, (b) do you connect them in parallel, or (c) do the combinations have the
same potential difference?

QUICK QUIZ 20.5

Equivalent CapacitanceEXAMPLE 20.8INTERACTIVE

Likewise, the lower branch in Figure 20.25b consists of
two 8.0-�F capacitors in series, which give an equivalent
of 4.0 �F. Finally, the 2.0-�F and 4.0-�F capacitors in Fig-
ure 20.25c are in parallel and have an equivalent capaci-
tance of 6.0 �F. Hence, the equivalent capacitance 
of the circuit is as shown in Figure 20.25d.

Log into PhysicsNow at www.pop4e.com
and go to Interactive Example 20.8 to practice reducing a
combination of capacitors to a single equivalent capacitor.

6.0 �F

 Ceq � 2.0 �F

 
1

Ceq
�

1
C1

�
1

C2
�

1
4.0 �F

�
1

4.0 �F
�

1
2.0 �F

Find the equivalent capacitance between a and b for
the combination of capacitors shown in Figure 20.25a.
All capacitances are in microfarads.

Solution Using Equations 20.25 and 20.29, we 
reduce the combination step by step as indicated in
the figure. The 1.0-�F and 3.0-�F capacitors are in
parallel and combine according to C eq � C 1 � C 2.
Their equivalent capacitance is 4.0 �F. Likewise, 
the 2.0 -�F and 6.0-�F capacitors are also in parallel
and have an equivalent capacitance of 8.0 �F. 
The upper branch in Figure 20.25b now consists 
of two 4.0-�F capacitors in series, which combine
according to

4.0
4.0

8.0
8.0

ba

(b)

4.0

ba

(c)

2.0

6.0 ba

(d)

4.0

8.0

ba

(a)

2.0

6.0

3.0

1.0
(Interactive Example 20.8) To find

the equivalent combination of the capacitors in (a), the
various combinations are reduced in steps as indicated
in (b), (c), and (d), using the series and parallel rules
described in the text. All capacitance values are in
microfarads.

FIGURE 20.25

ENERGY  STORED  IN  A  CHARGED  CAPACITOR
Almost everyone who works with electronic equipment has at some time verified
that a capacitor can store energy. If the plates of a charged capacitor are connected
by a conductor, such as a wire, charge transfers between the plates and the wire un-
til the two plates are uncharged. The discharge can often be observed as a visible
spark. If you accidentally touch the opposite plates of a charged capacitor, your
fingers act as pathways by which the capacitor discharges, resulting in an electric
shock. The degree of shock depends on the capacitance and the voltage applied to
the capacitor. When high voltages are present, such as in the power supply of a
television set, the shock can be fatal.

20.9

www.pop4e.com


Consider a parallel-plate capacitor that is initially uncharged so that the initial
potential difference across the plates is zero. Now imagine that the capacitor is con-
nected to a battery and develops a charge of Q. The final potential difference
across the capacitor is �V � Q /C.

To calculate the energy stored in the capacitor, imagine charging the capacitor in
a different way that achieves the same result. An external agent reaches in and grabs
small bits of charge and transfers them from one plate to the other. Suppose q is the
charge on the capacitor at some instant during this charging process. At the same in-
stant, the potential difference across the capacitor is �V � q/C. Now imagine that
the external agent transfers an additional increment of charge dq from the plate of
charge � q to the plate of charge q (which is at the higher potential) by applying a
force on the charge dq to move it through the electric field between the plates. The
work required to transfer an increment of charge dq from one plate to the other is

Therefore, the total work required to charge the capacitor from q � 0 to the final
charge q � Q is

The capacitor can be modeled as a nonisolated system for this discussion. The
work done by the external agent on the system in charging the capacitor appears as
potential energy U stored in the capacitor. In reality, of course, this energy is not
the result of mechanical work done by an external agent moving charge from one
plate to the other, but is due to transformation of chemical energy in the battery.
We have used a model of work done by an external agent that gives us a result that
is also valid for the actual situation. Using Q � C �V, the energy stored in a charged
capacitor can be expressed in the following alternative forms:

[20.30]

This result applies to any capacitor, regardless of its geometry. In practice, the
maximum energy (or charge) that can be stored is limited because electric
discharge ultimately occurs between the plates of the capacitor at a sufficiently
large value of �V. For this reason, capacitors are usually labeled with a maximum
operating voltage.

For an object on an extended spring, the elastic potential energy can be modeled
as being stored in the spring. Internal energy of a substance associated with its
temperature is located throughout the substance. Where is the energy in a capacitor
located? The energy stored in a capacitor can be modeled as being stored in the
electric field between the plates of the capacitor. For a parallel-plate capacitor, the potential
difference is related to the electric field through the relationship �V � Ed. Further-
more, the capacitance is C � �0A/d. Substituting these expressions into Equation
20.30 gives

[20.31]

Because the volume of a parallel-plate capacitor that is occupied by the electric
field is Ad, the energy per unit volume u � U/Ad, called the energy density, is

[20.32]

Although Equation 20.32 was derived for a parallel-plate capacitor, the expression is
generally valid. That is, the energy density in any electric field is proportional to the
square of the magnitude of the electric field at a given point.

u � 1
2�0E 2

U � 1
2 � �0A

d �(Ed )2 � 1
2(�0Ad)E 2

U �
Q2

2C
� 1

2 Q �V � 1
2C(�V )2

W �  �Q

0
 

q
C

 dq �
Q 2

2C

dW � �V dq �
q
C

 dq
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■ Energy density in an electric field



■ Thinking Physics 20.2
You charge a capacitor and then remove it from the battery. The capacitor consists
of large movable plates, with air between them. You pull the plates farther apart a
small distance. What happens to the charge on the capacitor? To the potential dif-
ference? To the energy stored in the capacitor? To the capacitance? To the electric
field between the plates? Is work done in pulling the plates apart?

Reasoning Because the capacitor is removed from the battery, charges on the
plates have nowhere to go. Therefore, the charge on the capacitor remains the
same as the plates are pulled apart. Because the electric field of large plates is inde-
pendent of distance for uniform fields, the electric field remains constant. Because
the electric field is a measure of the rate of change of potential with distance, the
potential difference between the plates increases as the separation distance
increases. Because the same charge is stored at a higher potential difference, the
capacitance decreases. Because energy stored is proportional to both charge and
potential difference, the energy stored in the capacitor increases. This energy must
be transferred into the system from somewhere; the plates attract each other, so
work is done by you on the system of two plates when you pull them apart. ■
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You have three capacitors and a battery. In which of the following
combinations of the three capacitors will the maximum possible energy be stored when
the combination is attached to the battery? (a) When in series the maximum amount is
stored. (b) When parallel the maximum amount is stored. (c) Both combinations will
store the same amount of energy.

QUICK QUIZ 20.6

Rewiring Two Charged CapacitorsEXAMPLE 20.9INTERACTIVE
charges on the left-hand plates before the switches are
closed are

The negative sign for Q 2i is necessary because the
charge on the left plate of capacitor C2 is negative. The
total charge Q in the system is

(1) 

After the switches are closed, the electric charge
version of the isolated system model tells us that the
total charge on the left-hand plates remains the same:

(2)

The charges will redistribute on the left-hand plates
until the entire conductor in the system is at the same
potential V left. Similarly, charges will distribute on the
two right-hand plates until the entire conductor in this
system is at the same potential Vright. Therefore, the
final potential difference across
both capacitors is the same. To satisfy this requirement,
the charges on the capacitors after the switches are
closed are

(3)

(4) Q 2f � C 2 �Vf

Q1f � C1 �Vf

�Vf � � V left � Vright �

Q � Q 1f � Q 2f

Q � Q 1i � Q 2i � (C1 � C2)�Vi

Q 1i � C1 �Vi  and  Q 2i � �C2 �Vi

Two capacitors with capacitances C 1 and C 2 (where 
C 1  C 2) are charged to the same potential difference
�Vi . The charged capacitors are removed from the bat-
tery, and their plates are connected as shown in Figure
20.26a. The switches S1 and S2 are then closed as in
Figure 20.26b.

Find the final potential difference �Vf between a
and b after the switches are closed.

Solution Let us identify the left-hand plates of the
capacitors as an isolated system because they are not
connected to the right-hand plates by conductors. The

A

+ –

Q1i
+

ba

(a)

–
C1

Q 2i
– +

C2

S1 S2

+

ba

(b)

–

S1 S2

Q1f
C1

Q 2f C2

(Interactive Example 20.9) Two capacitors are con-
nected with plates of opposite charge in contact.

FIGURE 20.26



CAPACITORS  WITH  DIELECTRICS
A dielectric is an insulating material such as rubber, glass, or waxed paper. When a di-
electric material is inserted between the plates of a capacitor, the capacitance in-
creases. If the dielectric completely fills the space between the plates, the capacitance
increases by the dimensionless factor �, called the dielectric constant of the material.

The following experiment can be performed to illustrate the effect of a dielec-
tric in a capacitor. Consider a parallel-plate capacitor of charge Q0 and capacitance
C 0 in the absence of a dielectric. The potential difference across the capacitor as
measured by a voltmeter is �V0 � Q 0/C0 (Fig. 20.27a). Notice that the capacitor
circuit is open; that is, the plates of the capacitor are not connected to a battery and
charge cannot flow through an ideal voltmeter. Hence, there is no path by which
charge can flow and alter the charge on the capacitor. If a dielectric is now inserted
between the plates as in Figure 20.27b, it is found that the voltmeter reading
decreases by a factor of � to the value �V, where

Because �V � �V0, we see that �  1.

�V �
�V0

�

20.10
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Dividing these equations, we have

(5)

Combining (2) and (5) gives

(6)

Using (5) and (6) to find Q1f , we have

Finally, we use (3) and (4) to find the voltage across
each capacitor:

Notice that �V1f � �V2f � �Vf , which is the expected
result.

Find the total energy stored in the capacitors
before and after the switches are closed and the ratio of
the final energy to the initial energy.

Solution Before the switches are closed, the total
energy stored in the capacitors is

B

Q

C1 � C2
�V2 f �

Q 2 f

C2
�

Q � C2

C1 � C2
�

C2
�

Q

C1 � C2
�V1f �

Q 1f

C1
�

Q � C1

C1 � C2
�

C1
�

Q1f �
C1

C2
 �Q  � C2

C1 � C 2
�� � Q  � C1

C1 � C 2
�

Q 2 f � Q  � C2

C1 � C2
�

Q �
C1

C2
 Q 2f � Q 2f � Q 2f  �1 �

C1

C2
�

Q 1f

Q 2f
�

C1 �Vf

C2 �Vf
 �

C1

C2
  :  Q 1f �

C1

C2
 Q 2f

After the switches are closed, the total energy stored in
the capacitors is

Using (1), this expression can be written as

Therefore, the ratio of the final energy stored to the
initial energy stored is

which shows that the final energy is less than the 
initial energy. Therefore, even though we correctly
used an isolated system model for electric charge in
this problem, we see that it is not an isolated system 
for energy. That begs the question as to how energy 
is transferred out of the system. The transfer
mechanism is electromagnetic radiation, which 
may not be clear to you at this point but which 
will become clearer once we study the material in
Chapter 24.

Log into PhysicsNow at www.pop4e.com
and go to Interactive Example 20.9 to explore this situation
for various initial values of the voltage and the capacitance.

� C1 � C 2

C1 � C 2
�

2Uf

Ui
�

�1
2 

(C1 � C2)2(�Vi)2

C1 � C2
�

1
2(C1 � C2)(�Vi)2

�

Uf � 1
2 

(C 1 � C 2)2(�Vi)2

C1 � C 2

 12 
Q 2

C1 � C2
� 1

2(C1 � C2) � Q
C1 � C2

�
2

�

Uf � 1
2C1(�Vf)2 � 1

2 C2(�Vf)2 � 1
2(C1 � C2)(�Vf )2

Ui � 1
2 C1(�Vi)2 � 1

2 C2(�Vi)2 � 1
2(C1 � C2)(�Vi)2
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Because the charge Q 0 on the capacitor does not change, we conclude that the
capacitance must change to the value

[20.33]

where C0 is the capacitance in the absence of the dielectric. That is, the capacitance
increases by the factor � when the dielectric completely fills the region between the
plates.4 For a parallel-plate capacitor, where C0 � �0A/d, we can express the capaci-
tance when the capacitor is filled with a dielectric as

[20.34]

From this result, it would appear that the capacitance could be made very large
by decreasing d, the distance between the plates. In practice, however, the lowest
value of d is limited by the electric discharge that could occur through the dielec-
tric medium separating the plates. For any given separation d, the maximum volt-
age that can be applied to a capacitor without causing a discharge depends on the
dielectric strength (maximum electric field) of the dielectric, which for dry air is
equal to 3 � 106 V/m. If the electric field in the medium exceeds the dielectric
strength, the insulating properties break down and the medium begins to conduct.
Most insulating materials have dielectric strengths and dielectric constants greater
than those of air, as Table 20.1 indicates. Therefore, we see that a dielectric pro-
vides the following advantages:

• It increases the capacitance of a capacitor.
• It increases the maximum operating voltage of a capacitor.
• It may provide mechanical support between the conducting plates.

We can understand the effects of a dielectric by considering the polarization of
molecules that we discussed in Section 19.3. Figure 20.28a shows polarized mole-
cules of a dielectric in random orientations in the absence of an electric field. Fig-
ure 20.28b shows the polarization of the molecules when the dielectric is placed be-
tween the plates of the charged capacitor and the polarized molecules tend to line
up parallel to the field lines. The plates set up an electric field in a direction toE

:
0

C � � 
�0A
d

 C � �C0

C �
Q 0

�V
�

Q 0

�V0/�
� �  

Q 0

�V0
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4If another experiment is performed in which the dielectric is introduced while the potential difference
is held constant by means of a battery, the charge increases to the value Q � �Q0. The additional
charge is transferred from the connecting wires, and the capacitance still increases by the factor �.

C0 Q 0

+
–

C Q 0

Dielectric

∆V∆V0

+
–

(a) (b)

A charged capaci-
tor (a) before and (b) after insertion
of a dielectric between the plates. The
charge on the plates remains un-
changed, but the potential difference
decreases from �V0 to �V � �V0/�.
Therefore, the capacitance increases
from C0 to �C0. 

FIGURE 20.27

IS THE CAPACITOR CONNECTED TO A

BATTERY? In problems in which you
are modifying a capacitor (by inser-
tion of a dielectric, for example),
you must note whether modifica-
tions to the capacitor are being
made while the capacitor is con-
nected to a battery or after it is dis-
connected. If the capacitor remains
connected to the battery, the volt-
age across the capacitor necessarily
remains the same. If you disconnect
the capacitor from the battery be-
fore making any modifications to
the capacitor, the capacitor is an
isolated system and its charge
remains the same.

� PITFALL PREVENTION 20.7



the right in Figure 20.28b. In the body of the dielectric, a general homogeneity of
charge exists, but look along the edges. There is a layer of negative charge along
the left edge of the dielectric and a layer of positive charge along the right edge.
These layers of charge can be modeled as additional charged parallel plates, as in
Figure 20.28c. Because the polarity is opposite that of the real plates, these charges
set up an induced electric field directed to the left in the diagram that partially
cancels the electric field due to the real plates. Therefore, for the charged capaci-
tor removed from a battery, the electric field and hence the voltage between the
plates is reduced by the introduction of the dielectric. The charge on the plates is
stored at a lower potential difference, so the capacitance increases.

Types of Capacitors
Commercial capacitors are often made using metal foil interlaced with a dielectric
such as thin sheets of paraffin-impregnated paper. These alternating layers of metal
foil and dielectric are then rolled into the shape of a cylinder to form a small pack-
age (Fig. 20.29a). High-voltage capacitors commonly consist of interwoven metal
plates immersed in silicone oil (Fig. 20.29b). Small capacitors are often constructed
from ceramic materials. Variable capacitors (typically 10–500 pF) usually consist of

E
:

ind
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Approximate Dielectric Constants and Dielectric 
Strengths of Various Materials at Room Temperature

TABLE 20.1

Material Dielectric Constant � Dielectric Strengtha (106 V/m)

Air (dry) 1.000 59 3
Bakelite 4.9 24
Fused quartz 3.78 8
Mylar 3.2 7
Neoprene rubber 6.7 12
Nylon 3.4 14
Paper 3.7 16
Paraffin-impregnated paper 3.5 11
Polystyrene 2.56 24
Polyvinyl chloride 3.4 40
Porcelain 6 12
Pyrex glass 5.6 14
Silicone oil 2.5 15
Strontium titanate 233 8
Teflon 2.1 60
Vacuum 1.000 00 —
Water 80 —
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aThe dielectric strength equals the maximum electric field that can exist in a dielectric
without electrical breakdown. Note that these values depend strongly on the presence of
impurities and flaws in the materials. 

(a) Polar mole-
cules are randomly oriented in the ab-
sence of an external electric field. 
(b) When an external electric field is
applied, the molecules partially align
with the field. (c) The charged edges
of the dielectric can be modeled as an
additional pair of parallel plates estab-
lishing an electric field in the di-
rection opposite to that of .E

:
0

E
:

ind

FIGURE 20.28



two interwoven sets of metal plates, one fixed and the other movable, with air as the
dielectric.

An electrolytic capacitor is often used to store large amounts of charge at relatively
low voltages. This device, shown in Figure 20.29c, consists of a metal foil in contact
with an electrolyte, a solution that conducts electricity by virtue of the motion of
ions contained in the solution. When a voltage is applied between the foil and the
electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil, and this
layer serves as the dielectric. Very large capacitance values can be attained because
the dielectric layer is very thin.

When electrolytic capacitors are used in circuits, they must be installed with
the proper polarity. If the polarity of the applied voltage is opposite what is
intended, the oxide layer will be removed and the capacitor will not be able to
store charge.
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Metal foil

Paper

Plates

Oil

Electrolyte

Case

Metallic foil + oxide layer

Contacts

(a) (b) (c)

Three commercial capacitor designs. (a) A tubular capacitor whose plates are
separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor
consists of many parallel plates separated by insulating oil. (c) An electrolytic
capacitor.

FIGURE 20.29

If you have ever tried to hang a picture, you know it can be difficult
to locate a wooden stud in which to anchor your nail or screw. A carpenter’s electric stud
finder will locate the studs in a wall. It consists of a parallel-plate capacitor, with the plates
next to each other, as shown in Figure 20.30. Does the capacitance increase or decrease
when the device is moved over a stud?

QUICK QUIZ 20.7

Capacitor
plates

Stud finder

Wallboard

Stud
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A collection of capacitors used in a
variety of applications. ■
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(Quick Quiz 20.7) An electric stud finder. (a) The materials between the plates of
the capacitor are the wallboard and air. (b) When the capacitor moves across a
stud in the wall, the materials between the plates are wallboard and wood. The
change in the dielectric constant causes a signal light to illuminate.

FIGURE 20.30
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What is the maximum charge that can be placed
on the capacitor?

Solution From Table 20.1, we see that the dielectric
strength of paper is 16 � 106 V/m. Because the thick-
ness of the paper is 1.0 mm, the maximum voltage that
can be applied before breakdown is

Hence, the maximum charge is

 � 16 � 103 V

�Vmax � Emaxd � (16 � 106 V/m)(1.0 � 10�3 m)

B

A Paper-Filled CapacitorEXAMPLE 20.10
A parallel-plate capacitor has plates of dimensions 
2.0 cm � 3.0 cm separated by a 1.0-mm thickness of 
paper.

Find the capacitance of this device.

Solution Because � � 3.7 for paper (see Table 20.1),
we have

20 pF� 20 � 10�12 F �

 � 3.7(8.85 � 10�12 C2/N 
 m2) � 6.0 � 10�4 m2

1.0 � 10�3 m �
C � �

�0A
d

A

0.32 �CQ max � C  �Vmax � (20 � 10�12 F)(16 � 103 V) �

The capacitance in the presence of the dielectric,
however, is given by C � �C0, so U becomes

Because �  1, we see that the final energy is less than
the initial energy by the factor 1/�.

U0

�
U �

Q 0 

2

2�C0
�

Energy Stored Before and AfterEXAMPLE 20.11
A parallel-plate capacitor is charged with a battery 
to a charge Q 0 as in Figure 20.31a. The battery is then
removed and a slab of material that has a dielectric
constant � is inserted between the plates as in Figure
20.31b. Find the energy stored in the capacitor before
and after the dielectric is inserted.

Solution From Equation 20.30, the energy stored in
the capacitor in the absence of the dielectric is

After the battery is removed and the dielectric is in-
serted between the plates, the charge on the capacitor
remains the same because the unconnected capacitor is
an isolated system. Hence, the energy stored in the
presence of the dielectric is

U �
Q 0 

2

2C

Q 0 

2

2C0
U0 �

–+

Q 0
C 0

∆V 0

(a)

Dielectric

–+
Q 0

(b)

(Example 20.11) (a) A battery charges up a
parallel-plate capacitor. (b) The battery is removed
and a slab of dielectric material is inserted be-
tween the plates.

FIGURE 20.31

+Q –Q
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+–

+–

+–

+–

+–

(Example 20.11) When a dielectric approaches an
empty capacitor, the charge distributions induced
on the edges cause an attraction between the di-
electric and the capacitor.

FIGURE 20.32



THE  ATMOSPHERE  AS  A  CAPACITOR
In the Context Connection of Chapter 19, we mentioned some processes occurring
on the surface of the Earth and in the atmosphere that result in charge distribu-
tions. These processes result in a negative charge on the Earth’s surface and posi-
tive charges distributed throughout the air.

This separation of charge can be modeled as a capacitor. The surface of the
Earth is one plate and the positive charge in the air is the other plate. The
positive charge in the atmosphere is not all located at one height but is
spread throughout the atmosphere. Therefore, the position of the upper
plate must be modeled, based on the charge distribution. Models of the
atmosphere show that an appropriate effective height of the upper plate is
about 5 km from the surface. The model atmospheric capacitor is shown in
Figure 20.33.

Considering the charge distribution on the surface of the Earth to be spherically
symmetric, we can use the result from Example 20.6 to claim that the potential at a
point above the Earth’s surface is

where Q is the charge on the surface. The potential difference between the plates
of our atmospheric capacitor is

where RE is the radius of the Earth and h � 5 km. From this expression, we can
calculate the capacitance of the atmospheric capacitor:

Substituting the numerical values, we have

	 0.9 F

�1000 m
1 km ��

4�(8.85 � 10�12 C2/N 
m2)(6.4 � 103 km)(6.4 � 103 km � 5 km)
5 km

C �
4��0RE(RE � h)

h

C �
Q

�V
�

Q

Q
4��0

 � h
RE(RE � h) �

�
4��0RE(RE � h)

h

 �
Q

4��0
 � 1

RE
�

1
RE � h � �

Q
4��0

 � h
RE(RE � h) �

�V �
Q

4��0
 � 1

rsurface
�

1
rupper plate

�

V � ke 
Q
r

20.11
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the other side and exhibiting oscillatory motion. If an
external agent such as your hand holds the dielectric,
allowing it to move into the plates at constant speed,
the agent is doing negative work on the system. The dis-
placement of the dielectric is into the plates, but the
applied force is away from the plates. This work repre-
sents a decrease in energy for the system, so the energy
change is �U � U � U0. Therefore, the unconnected
capacitor and dielectric form an isolated system for
electric charge, but when considering energy, it is a
nonisolated system.

This missing energy can be accounted for as fol-
lows. We identify the system as the capacitor and the di-
electric. As the dielectric is brought near the capacitor
so that electric field lines from the plates pass through
the dielectric, the molecules of the dielectric become
polarized. The edges of the dielectric take on a charge
opposite to the plate nearest the edge as in Figure
20.32. Therefore, an attractive force exists between the
dielectric and the plates. If the dielectric were released,
it would be pulled into the plates and would pass
through the plates with a kinetic energy, emerging on

CONTEXT 
connection

Positive plate
Negative plate

(Earth’s surface)
(charges in
atmosphere)

The atmospheric
capacitor. The Earth’s surface serves
as the negative plate, and the positive
plate is modeled at a height in 
the atmosphere that represents posi-
tive charges spread through the 
atmosphere.

FIGURE 20.33



This result is extremely large, compared with the picofarads and microfarads that are
typical values for capacitors in electrical circuits, especially for a capacitor having
plates that are 5 km apart! We shall use this model of the atmosphere as a capacitor
in our Context Conclusion, in which we calculate the number of lightning strikes
on the Earth in one day.
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SUMMARY
Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

When a positive test charge q0 is moved between points A and
B in an electric field , the change in potential energy of the
charge–field system is

[20.1]

The potential difference �V between points A and B in an
electric field is defined as the change in potential energy di-
vided by the test charge q0:

[20.3]

where electric potential V is a scalar and has the units joules
per coulomb, defined as 1 volt (V).

The potential difference between two points A and B in a
uniform electric field is

[20.8]

where is the displacement vector between A and B.
Equipotential surfaces are surfaces on which the electric po-

tential remains constant. Equipotential surfaces are perpendicu-
lar to electric field lines.

The electric potential due to a point charge q at a distance r
from the charge is

[20.11]

The electric potential due to a group of point charges is ob-
tained by summing the potentials due to the individual
charges. Because V is a scalar, the sum is a simple algebraic op-
eration.

The electric potential energy of a pair of point charges sepa-
rated by a distance r12 is

[20.13]

which represents the work required to bring the charges
from an infinite separation to the separation r12. The
potential energy of a distribution of point charges is ob-
tained by summing terms like Equation 20.13 over all pairs
of particles.

If the electric potential is known as a function of coordi-
nates x, y, and z, the components of the electric field can be ob-
tained by taking the negative derivative of the potential with re-
spect to the coordinates. For example, the x component of an
electric field in the x direction is

U � ke 
q1q2

r12

V � ke 
q
r

� r:

�V � � E
:

� � r:

E
:

�V �
�U
q0

� ��B

A
E
:


d s: 

E
:

�U � �q0 �B

A
E
:

� d s: 

E
:

[20.16]

The electric potential due to a continuous charge distribu-
tion is

[20.18]

Every point on the surface of a charged conductor in elec-
trostatic equilibrium is at the same potential. Furthermore, the
potential is constant everywhere inside the conductor and is
equal to its value at the surface.

A capacitor is a device for storing charge. A charged capaci-
tor consists of two equal and oppositely charged conductors
with a potential difference �V between them. The capacitance
C of any capacitor is defined as the ratio of the magnitude of
the charge Q on either conductor to the magnitude of the po-
tential difference �V :

[20.19]

The SI units of capacitance are coulombs per volt, or the
farad (F), and 1 F � 1 C/V.

If two or more capacitors are connected in parallel, the po-
tential differences across them must be the same. The equiva-
lent capacitance of a parallel combination of capacitors is

[20.25]

If two or more capacitors are connected in series, the
charges on them are the same and the equivalent capacitance
of the series combination is given by

[20.29]

Energy is required to charge a capacitor because the charg-
ing process is equivalent to transferring charges from one con-
ductor at a lower potential to another conductor at a higher
potential. The electric potential energy U stored in the capaci-
tor is

[20.30]

When a dielectric material is inserted between the plates
of a capacitor, the capacitance generally increases by 
the dimensionless factor �, called the dielectric constant.
That is,

[20.33]

where C 0 is the capacitance in the absence of the dielectric.

C � �C0

U �
Q 2

2C
� 1

2Q �V � 1
2C(�V )2

1
Ceq

�
1

C1
�

1
C2

�
1

C3
� 
 
 


Ceq � C1 � C2 � C3 � 
 
 


C �
Q

�V

V � ke � 
dq
r

Ex � �
�V
�x
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� answer available in the Student Solutions Manual and
Study Guide

1. Distinguish between electric potential and electric poten-
tial energy.

2. A negative charge moves in the direction of a uniform
electric field. Does the potential energy of the
charge–field system increase or decrease? Does the charge
move to a position of higher or lower potential?

Give a physical explanation showing that the potential en-
ergy of a pair of charges with the same sign is positive,
whereas the potential energy of a pair of charges with op-
posite signs is negative.

4. Explain why, under static conditions, all points in a con-
ductor must be at the same electric potential.

5. Why is it important to avoid sharp edges or points on con-
ductors used in high-voltage equipment?

6. How would you shield an electronic circuit or laboratory
from stray electric fields? Why does that method work?

7. Study Figure 19.4 and the accompanying text discussion of
charging by induction. When the grounding wire is
touched to the rightmost point on the sphere in Figure
19.4c, electrons are drained away from the sphere to leave
the sphere positively charged. Instead, suppose the
grounding wire is touched to the leftmost point on the
sphere. Will electrons still drain away, moving closer to the
negatively charged rod as they do so? What kind of charge,
if any, will remain on the sphere?

8. The plates of a capacitor are connected to a battery. What
happens to the charge on the plates if the connecting
wires are removed from the battery? What happens to the
charge if the wires are removed from the battery and con-
nected to each other?

3.

9. One pair of capacitors is connected in parallel, whereas an
identical pair is connected in series. Which pair would be
more dangerous to handle after being connected to the
same battery? Explain.

10. If you are given three different capacitors C1, C 2, C3, how
many different combinations of capacitance can you pro-
duce?

If the potential difference across a capacitor is doubled, by
what factor does the energy stored change?

12. Because the charges on the plates of a parallel-plate capaci-
tor are opposite in sign, they attract each other. Hence, it
would take positive work to increase the plate separation.
What type of energy in the system changes due to the ex-
ternal work done in this process?

13. It is possible to obtain large potential differences by first
charging a group of capacitors connected in parallel and
then activating a switch arrangement that in effect
disconnects the capacitors from the charging source and
from each other and reconnects them in a series
arrangement. The group of charged capacitors is then
discharged in series. What is the maximum potential
difference that can be obtained in this manner by using
ten capacitors each of 500 �F and a charging source
of 800 V?

14. Assume that you want to increase the maximum operating
voltage of a parallel-plate capacitor. Describe how you can
do so for a fixed plate separation.

If you were asked to design a capacitor in which small size
and large capacitance were required, what factors would
be important in your design?

16. Explain why a dielectric increases the maximum operating
voltage of a capacitor although the physical size of the ca-
pacitor does not change.

15.

11.
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QUESTIONS

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions
Manual and Study Guide

� coached problem with hints available
at www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 20.1 ■ Potential Difference and Electric 
Potential

(a) Calculate the speed of a proton that is accelerated
from rest through a potential difference of 120 V.
(b) Calculate the speed of an electron that is accelerated
through the same potential difference.

1.

2. How much work is done (by a battery, generator, or some
other source of potential difference) in moving Avo-
gadro’s number of electrons from an initial point where
the electric potential is 9.00 V to a point where the poten-
tial is � 5.00 V? (The potential in each case is measured
relative to a common reference point.)

Section 20.2 ■ Potential Differences in a Uniform 
Electric Field

3. A uniform electric field of magnitude 250 V/m is di-
rected in the positive x direction. A � 12.0-�C charge
moves from the origin to the point (x, y) � (20.0 cm,
50.0 cm). (a) What is the change in the potential energy
of the charge–field system? (b) Through what potential
difference does the charge move?

4. The difference in potential between the accelerating
plates in the electron gun of a TV picture tube is about

www.pop4e.com


25 000 V. If the distance between these plates is 1.50 cm,
what is the magnitude of the uniform electric field in this
region?

An electron moving parallel to the x axis
has an initial speed of 3.70 � 106 m/s at the origin. Its speed
is reduced to 1.40 � 105 m/s at the point x � 2.00 cm.
Calculate the potential difference between the origin and
that point. Which point is at the higher potential?

6. Review problem. A block having mass m and positive
charge Q is connected to an insulating spring having con-
stant k. The block lies on a frictionless, insulating horizon-
tal track, and the system is immersed in a uniform electric
field of magnitude E, directed as shown in Figure P20.6. If
the block is released from rest when the spring is un-
stretched (at x � 0), (a) by what maximum amount does
the spring expand? (b) What is the equilibrium position of
the block? (c) Show that the block’s motion is simple
harmonic and determine its period. (d) Repeat part (a),
assuming that the coefficient of kinetic friction between
block and surface is �k .

5.

the rectangle are L � 60.0 cm and W � 15.0 cm. Calculate
the change in electric potential energy of the system as the
charge at the lower left corner in Figure P19.55 is brought
to this position from infinitely far away. Assume that the
other three charges remain fixed in position.

The three charges in Figure P20.11 are at the vertices of an
isosceles triangle. Calculate the electric potential at the
midpoint of the base, taking q � 7.00 �C.

11.
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k
m, Q

E

x = 0

FIGURE P20.6

Section 20.3 ■ Electric Potential and Electric Potential
Energy Due to Point Charges

Note: Unless stated otherwise, assume that the reference
level of potential is V � 0 at r � � .

7. (a) Find the potential at a distance of 1.00 cm from a pro-
ton. (b) What is the potential difference between two
points that are 1.00 cm and 2.00 cm from a proton? (c) Re-
peat parts (a) and (b) for an electron.

8. Given two 2.00-� C charges as shown in Figure P20.8 and a
positive test charge q � 1.28 � 10�18 C at the origin,
(a) what is the net force exerted by the two 2.00-�C charges
on the test charge q? (b) What is the electric field at the ori-
gin due to the two 2.00-�C charges? (c) What is the electri-
cal potential at the origin due to the two 2.00-�C charges?

2.00
y

q

0 x = 0.800 mx = –0.800 m
x

C Cµ 2.00 µ

FIGURE P20.8

9. A charge � q is at the origin. A charge � 2q is at x � 2.00 m
on the x axis. (a) For what finite value(s) of x is the electric
field zero? (b) For what finite value(s) of x is the electric
potential zero?

10. Compare this problem with Problem 19.55. Four identical point
charges (q � �10.0 �C) are located on the corners of a
rectangle as shown in Figure P19.55. The dimensions of

2.00 cm

4.00 cm

q

–q –q

FIGURE P20.11

12. Compare this problem with Problem 19.14. Two point charges
each of magnitude 2.00 �C are located on the x axis. One
is at x � 1.00 m and the other is at x � � 1.00 m. (a) De-
termine the electric potential on the y axis at y � 0.500 m.
(b) Calculate the change in electric potential energy of the
system as a third charge of � 3.00 �C is brought from infi-
nitely far away to a position on the y axis at y � 0.500 m.

Show that the amount of work required
to assemble four identical point charges of magnitude Q at
the corners of a square of side s is 5.41keQ2/s.

14. Two charged particles create influences at the origin, de-
scribed by the expressions

and

(a) Identify the locations of the particles and the charges
on them. (b) Find the force on a �16.0-nC charge placed
at the origin and (c) the work required to move this third
charge to the origin from a very distant point.

15. Review problem. Two insulating spheres have radii 0.300 cm
and 0.500 cm, masses 0.100 kg and 0.700 kg, and uni-
formly distributed charges �2.00 �C and 3.00 �C. They
are released from rest when their centers are separated by

8.99 � 109 N 
m2/C2 � 7.00 � 10�9 C
0.070  0 m

�
8.00 � 10�9 C

0.030  0 m �

�
7.00 � 10�9 C
(0.070 0 m)2  sin 70.0� ĵ �

8.00 � 10�9 C
(0.030  0 m)2 ĵ�

8.99 � 109 N 
m2/C2  �� 7.00 � 10�9 C
(0.070 0 m)2  cos 70.0� î

13.



1.00 m. (a) How fast will each be moving when they col-
lide? (Suggestion: Consider conservation of energy and of
linear momentum.) (b) If the spheres were conductors,
would the speeds be greater or less than those calculated
in part (a)? Explain.

16. Review problem. Two insulating spheres have radii r1 and
r2, masses m1 and m2, and uniformly distributed charges
�q1 and q2. They are released from rest when their centers
are separated by a distance d. (a) How fast is each moving
when they collide? (Suggestion: Consider conservation of
energy and conservation of linear momentum.) (b) If the
spheres were conductors, would their speeds be greater or
less than those calculated in part (a)? Explain. 

17. Compare this problem with Problem 19.26. Three equal positive
charges q are at the corners of an equilateral triangle of
side a as shown in Figure P19.26. (a) At what point, if any,
in the plane of the charges is the electric potential zero?
(b) What is the electric potential at the point P due to the
two charges at the base of the triangle?

18. Two particles, with charges of 20.0 nC and � 20.0 nC, 
are placed at the points with coordinates (0, 4.00 cm) 
and (0, �4.00 cm) as shown in Figure P20.18. A particle
with charge 10.0 nC is located at the origin. (a) Find 
the electric potential energy of the configuration of the
three fixed charges. (b) A fourth particle, with a mass of
2.00 � 10�13 kg and a charge of 40.0 nC, is released 
from rest at the point (3.00 cm, 0). Find its speed after 
it has moved freely to a very large distance away.

they scattered alpha particles from thin sheets of gold. An al-
pha particle, having charge � 2e and mass 6.64 � 10�27 kg,
is a product of certain radioactive decays. The results of
the experiment led Rutherford to the idea that most of the
mass of an atom is in a very small nucleus, with electrons in
orbit around it, in his planetary model of the atom.
Assume that an alpha particle, initially very far from a gold
nucleus, is fired with a velocity of 2.00 � 107 m/s directly
toward the nucleus (charge � 79e). How close does the al-
pha particle get to the nucleus before turning around?
Assume that the gold nucleus remains stationary.

Section 20.4 ■ Obtaining Electric Field From Electric 
Potential

21. The potential in a region between x � 0 and x � 6.00 m is
V � a � bx, where a � 10.0 V and b � � 7.00 V/m. Deter-
mine (a) the potential at x � 0, 3.00 m, and 6.00 m; and
(b) the magnitude and direction of the electric field at 
x � 0, 3.00 m, and 6.00 m.

22. The electric potential inside a charged spherical conduc-
tor of radius R is given by V � keQ /R and outside the po-
tential is given by V � keQ /r. Using Er � �dV/dr, derive
the electric field (a) inside and (b) outside this charge dis-
tribution.

Over a certain region of space, the elec-
tric potential is V � 5x � 3x2y � 2yz2. Find the expressions
for the x, y, and z components of the electric field over this
region. What is the magnitude of the field at the point P
that has coordinates (1, 0, � 2) m?

Section 20.5 ■ Electric Potential Due to Continuous
Charge Distributions

24. Consider a ring of radius R with the total charge Q spread
uniformly over its perimeter. What is the potential differ-
ence between the point at the center of the ring and a
point on its axis a distance 2R from the center?

A rod of length L (Fig. P20.25) lies along the x axis with its
left end at the origin. It has a nonuniform charge density
� � �x, where � is a positive constant. (a) What are the
units of �? (b) Calculate the electric potential at A.

25.

23.
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20.0 nC

10.0 nC

–20.0 nC

40.0 nC

4.00 cm

3.00 cm

4.00 cm

FIGURE P20.18

19. Review problem. A light, unstressed spring has length d.
Two identical particles, each with charge q , are connected
to the opposite ends of the spring. The particles are held
stationary a distance d apart and are then released at the
same time. The system then oscillates on a horizontal fric-
tionless table. The spring has a bit of internal kinetic fric-
tion, so the oscillation is damped. The particles eventually
stop vibrating when the distance between them is 3d. Find
the increase in internal energy that appears in the spring
during the oscillations. Assume that the system of the
spring and two charges is isolated.

20. In 1911, Ernest Rutherford and his assistants Hans Geiger
and Ernest Marsden conducted an experiment in which

b

B
y

x

L

d

A

FIGURE P20.25 Problems 20.25 and 20.26.

26. For the arrangement described in Problem 20.25, calculate
the electric potential at point B that lies on the perpendic-
ular bisector of the rod a distance b above the x axis.

27. Compare this problem with Problem 19.21. A uniformly charged
insulating rod of length 14.0 cm is bent into the shape of a



semicircle as shown in Figure P19.21. The rod has a total
charge of � 7.50 �C. Find the electric potential at O, the
center of the semicircle.

Section 20.6 ■ Electric Potential of a Charged Conductor
28. How many electrons should be removed from an initially

uncharged spherical conductor of radius 0.300 m to pro-
duce a potential of 7.50 kV at the surface?

A spherical conductor has a radius of
14.0 cm and charge of 26.0 �C. Calculate the electric field
and the electric potential (a) r � 10.0 cm, (b) r � 20.0 cm,
and (c) r � 14.0 cm from the center.

30. Electric charge can accumulate on an airplane in flight.
You may have observed needle-shaped metal extensions
on the wing tips and tail of an airplane. Their purpose is
to allow charge to leak off before much of it accumulates.
The electric field around the needle is much larger than
around the body of the airplane and can become large
enough to produce dielectric breakdown of the air, dis-
charging the airplane. To model this process, assume that
two charged spherical conductors are connected by a
long conducting wire and that a charge of 1.20 �C is
placed on the combination. One sphere, representing
the body of the airplane, has a radius of 6.00 cm, and the
other, representing the tip of the needle, has a radius of
2.00 cm. (a) What is the electric potential of each sphere?
(b) What is the electric field at the surface of each
sphere?

Section 20.7 ■ Capacitance
31. (a) How much charge is on each plate of a 4.00-�F capaci-

tor when it is connected to a 12.0-V battery? (b) If this
same capacitor is connected to a 1.50-V battery, what
charge is stored?

32. Two conductors having net charges of � 10.0 �C and
� 10.0 �C have a potential difference of 10.0 V between
them. (a) Determine the capacitance of the system.
(b) What is the potential difference between the two con-
ductors if the charges on each are increased to � 100 �C
and � 100 �C?

33. An isolated charged conducting sphere of radius 12.0 cm
creates an electric field of 4.90 � 104 N/C at a distance
21.0 cm from its center. (a) What is its surface charge den-
sity? (b) What is its capacitance?

34. A variable air capacitor used in a radio tuning circuit is made
of N semicircular plates each of radius R and positioned a

29.

distance d from its neighbors, to which it is electrically con-
nected. As shown in the opening photograph on page 642
and modeled in Figure P20.34, a second identical set of
plates is enmeshed with its plates halfway between those of
the first set. The second set can rotate as a unit. Determine
the capacitance as a function of the angle of rotation 	,
where 	 � 0 corresponds to the maximum capacitance.

An air-filled capacitor consists of two parallel plates, each
with an area of 7.60 cm2, separated by a distance of
1.80 mm. A 20.0-V potential difference is applied to these
plates. Calculate (a) the electric field between the plates,
(b) the surface charge density, (c) the capacitance, and
(d) the charge on each plate.

36. A 50.0-m length of coaxial cable has an inner conductor
that has a diameter of 2.58 mm and carries a charge of
8.10 �C. The surrounding conductor has an inner diame-
ter of 7.27 mm and a charge of �8.10 �C. (a) What is the
capacitance of this cable? (b) What is the potential differ-
ence between the two conductors? Assume that the region
between the conductors is air.

37. A small object of mass m carries a charge q and is sus-
pended by a thread between the vertical plates of a 
parallel-plate capacitor. The plate separation is d. If the
thread makes an angle 	 with the vertical, what is the po-
tential difference between the plates?

38. A spherical capacitor consists of a spherical conducting shell
of radius b and charge � Q that is concentric with a smaller
conducting sphere of radius a and charge � Q (Fig.
P20.38). (a) Show that its capacitance is

(b) Show that as b approaches infinity, the capacitance ap-
proaches the value a/ke � 4��0a.

C �
ab

ke(b � a)

35.
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FIGURE P20.38

Section 20.8 ■ Combinations of Capacitors
39. Two capacitors, C1 � 5.00 �F and C 2 � 12.0 �F, are con-

nected in parallel, and the resulting combination is con-
nected to a 9.00-V battery. (a) What is the equivalent ca-
pacitance of the combination? What are (b) the potential
difference across each capacitor and (c) the charge stored
on each capacitor?

40. The two capacitors of Problem 20.39 are now connected in
series and to a 9.00-V battery. Find (a) the equivalent
capacitance of the combination, (b) the potential differ-
ence across each capacitor, and (c) the charge on each
capacitor.



Four capacitors are connected as shown
in Figure P20.41. (a) Find the equivalent capacitance be-
tween points a and b. (b) Calculate the charge on each ca-
pacitor, taking �Vab � 15.0 V.

41. one circuit is being constructed, the inexpensive but
durable capacitor installed between these two points is
found to have capacitance 34.8 �F. To meet the specifica-
tion, one additional capacitor can be placed between the
two points. Should it be in series or in parallel with the
34.8-�F capacitor? What should be its capacitance?
(b) The next circuit comes down the assembly line with
capacitance 29.8 �F between A and B. What additional
capacitor should be installed in series or in parallel in that
circuit to meet the specification?

46. Find the equivalent capacitance between points a and b in
the combination of capacitors shown in Figure P20.46.
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µ

FIGURE P20.41

42. Two capacitors when connected in parallel give an equiva-
lent capacitance of Cp and an equivalent capacitance of Cs
when connected in series. What is the capacitance of each
capacitor?

Consider the circuit shown in Figure P20.43, where
C1 � 6.00 �F, C2 � 3.00 �F, and �V � 20.0 V. Capacitor
C1 is first charged by the closing of switch S1. Switch S1 is
then opened, and the charged capacitor is connected to
the uncharged capacitor by the closing of S2. Calculate the
initial charge acquired by C1 and the final charge on each
capacitor.

43.

C1 C2

S2S1

∆V

FIGURE P20.43

44. Three capacitors are connected to a battery as shown in
Figure P20.44. Their capacitances are C1 � 3C , C2 � C ,
and C 3 � 5C. (a) What is the equivalent capacitance of
this set of capacitors? (b) State the ranking of the capaci-
tors according to the charge they store, from largest to
smallest. (c) Rank the capacitors according to the potential
differences across them, from largest to smallest. (d) If
now C 3 is increased, what happens to the charge stored by
each of the capacitors? 

C2 C3

C1

FIGURE P20.44

45. According to its design specification, the timer circuit de-
laying the closing of an elevator door is to have a capaci-
tance of 32.0 �F between two points A and B. (a) When

ba

6.0 µF

5.0 µF

7.0 µF

4.0 µFµ

µ

µ

µ

FIGURE P20.46

Section 20.9 ■ Energy Stored in a Charged Capacitor
47. (a) A 3.00-�F capacitor is connected to a 12.0-V battery.

How much energy is stored in the capacitor? (b) If the ca-
pacitor had been connected to a 6.00-V battery, how much
energy would have been stored?

48. The immediate cause of many deaths is ventricular fib-
rillation, an uncoordinated quivering of the heart as op-
posed to proper beating. An electric shock to the chest can
cause momentary paralysis of the heart muscle, after which
the heart will sometimes start organized beating again. A
defibrillator (Fig. P20.48) is a device that applies a strong
electric shock to the chest over a time interval of a few mil-
liseconds. The device contains a capacitor of several micro-
farads, charged to several thousand volts. Electrodes called
paddles, about 8 cm across and coated with conducting
paste, are held against the chest on both sides of the heart.

FIGURE P20.48 A defibrillator in use.
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Their handles are insulated to prevent injury to the opera-
tor, who calls “Clear!” and pushes a button on one paddle
to discharge the capacitor through the patient’s chest. As-
sume that an energy of 300 J is to be delivered from a 
30.0-�F capacitor. To what potential difference must it be
charged?

49. Two capacitors, C1 � 25.0 �F and C2 � 5.00 �F, are con-
nected in parallel and charged with a 100-V power supply.
(a) Draw a circuit diagram and calculate the total energy
stored in the two capacitors. (b) What potential difference
would be required across the same two capacitors con-
nected in series so that the combination stores the same
energy as in part (a)? Draw a circuit diagram of this circuit.

50. As a person moves about in a dry environment, elec-
tric charge accumulates on the person’s body. Once it is at
high voltage, either positive or negative, the body can dis-
charge via sometimes noticeable sparks and shocks. Con-
sider a human body well separated from ground, with the
typical capacitance 150 pF. (a) What charge on the body
will produce a potential of 10.0 kV? (b) Sensitive elec-
tronic devices can be destroyed by electrostatic discharge
from a person. A particular device can be destroyed by a
discharge releasing an energy of 250 �J. To what voltage
on the body does this energy correspond?

A parallel-plate capacitor has a charge Q and plates of
area A. What force acts on one plate to attract it toward
the other plate? Because the electric field between the
plates is E � Q /A�0 , you might think that the force is F �
QE � Q 2/A�0. This conclusion is wrong because the field
E includes contributions from both plates, and the field
created by the positive plate cannot exert any force on the
positive plate. Show that the force exerted on each plate is
actually F � Q 2/2�0A. (Suggestion: Let C � �0A/x for an
arbitrary plate separation x ; then require that the work
done in separating the two charged plates be W � F dx.)
The force exerted by one charged plate on another is
sometimes used in a machine shop to hold a workpiece
stationary.

52. A uniform electric field E � 3 000 V/m exists within a cer-
tain region. What volume of space contains an energy
equal to 1.00 � 10�7 J? Express your answer in cubic me-
ters and in liters.

Section 20.10 ■ Capacitors with Dielectrics
53. Determine (a) the capacitance and (b) the maximum po-

tential difference that can be applied to a Teflon-filled par-
allel-plate capacitor having a plate area of 1.75 cm2 and
plate separation of 0.040 0 mm.

54. (a) How much charge can be placed on a capacitor with
air between the plates before it breaks down if the area of
each of the plates is 5.00 cm2? (b) Find the maximum
charge assuming polystyrene is used between the plates in-
stead of air.

55. A commercial capacitor is to be constructed as shown in
Figure 20.29a. This particular capacitor is made from two
strips of aluminum foil separated by a strip of paraffin-
coated paper. Each strip of foil and paper is 7.00 cm wide.
The foil is 0.004 00 mm thick, and the paper is 0.025 0 mm
thick and has a dielectric constant of 3.70. What length

�

51.

should the strips have if a capacitance of 9.50 � 10�8 F is
desired before the capacitor is rolled up? (Adding a sec-
ond strip of paper and rolling the capacitor effectively dou-
bles its capacitance by allowing charge storage on both
sides of each strip of foil.)

56. The supermarket sells rolls of aluminum foil, of plastic
wrap, and of waxed paper. Describe a capacitor made from
supermarket materials. Compute order-of-magnitude esti-
mates for its capacitance and its breakdown voltage.

57. A parallel-plate capacitor in air has a plate separation of
1.50 cm and a plate area of 25.0 cm2. The plates are
charged to a potential difference of 250 V and discon-
nected from the source. The capacitor is then immersed
in distilled water. Determine (a) the charge on the plates
before and after immersion, (b) the capacitance and 
potential difference after immersion, and (c) the change
in energy of the capacitor. Assume that the liquid is an 
insulator.

Section 20.11 ■ Context Connection — The Atmosphere
as a Capacitor

58. Lightning can be studied with a Van de Graaff generator,
essentially consisting of a spherical dome on which charge
is continuously deposited by a moving belt. Charge can be
added until the electric field at the surface of the dome be-
comes equal to the dielectric strength of air (3 � 106 V/m).
Any more charge leaks off in sparks as shown in Figure
P20.58. Assume that the dome has a diameter of 30.0 cm
and is surrounded by dry air. (a) What is the maximum
potential of the dome? (b) What is the maximum charge
on the dome?
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59. Review problem. A certain storm cloud has a potential of
1.00 � 108 V relative to a tree. If, during a lightning storm,
50.0 C of charge is transferred through this potential dif-
ference and 1.00% of the energy is absorbed by the tree,
how much sap in the tree can be boiled away? Model the
sap as water initially at 30.0° C. Water has a specific heat of
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4 186 J/kg 
 ° C, a boiling point of 100 °C, and a latent heat
of vaporization of 2.26 � 106 J/kg. 

Additional Problems
60. Review problem. From a large distance away, a particle of

mass 2.00 g and charge 15.0 �C is fired at 21.0 m/s
straight toward a second particle, originally stationary but
free to move, with mass 5.00 g and charge 8.50 �C. (a) At
the instant of closest approach, both particles will be mov-
ing at the same velocity. Explain why. (b) Find this velocity.
(c) Find the distance of closest approach. (d) Find the ve-
locities of both particles after they separate again.

61. The liquid-drop model of the atomic nucleus suggests that
high-energy oscillations of certain nuclei can split the nu-
cleus into two unequal fragments plus a few neutrons. The
fission products acquire kinetic energy from their mutual
Coulomb repulsion. Calculate the electric potential energy
(in electron volts) of two spherical fragments from a ura-
nium nucleus having the following charges and radii: 38e
and 5.50 � 10�15 m; 54e and 6.20 � 10�15 m. Assume that
the charge is distributed uniformly throughout the volume
of each spherical fragment and that just before separating
each fragment is at rest and their surfaces are in contact.
The electrons surrounding the nucleus can be ignored.

62. The Bohr model of the hydrogen atom states that the
single electron can exist only in certain allowed orbits
around the proton. The radius of each Bohr orbit is 
r � n2(0.052 9 nm) where n � 1, 2, 3, . . . . Calculate the
electric potential energy of a hydrogen atom when the
electron is in the (a) first allowed orbit, with n � 1; (b) sec-
ond allowed orbit, with n � 2; and (c) when the electron
has escaped from the atom, with r � � . Express your an-
swers in electron volts.

Calculate the work that must be done to charge a spherical
shell of radius R to a total charge Q.

64. A Geiger–Mueller tube is a radiation detector that essen-
tially consists of a closed, hollow metal cylinder (the cath-
ode) of inner radius ra and a coaxial cylindrical wire (the
anode) of radius rb (Fig. P20.64). The charge per unit
length on the anode is �, and the charge per unit length
on the cathode is � �. A gas fills the space between the
electrodes. When a high-energy elementary particle passes
through this space, it can ionize an atom of the gas. The
strong electric field makes the resulting ion and electron
accelerate in opposite directions. They strike other mole-
cules of the gas to ionize them, producing an avalanche of
electrical discharge. The pulse of electric current between
the wire and the cylinder is counted by an external circuit.
(a) Show that the magnitude of the potential difference
between the wire and the cylinder is 

(b) Show that the magnitude of the electric field in the
space between cathode and anode is given by

where r is the distance from the axis of the anode to the
point where the field is to be calculated.

E �
�V

ln(ra/r b)
 � 1

r �

�V � 2ke � ln � ra

r b
�

63.

î
rb

�

ra –λ

Cathode

Anode

�

FIGURE P20.64 Problems 20.64, 20.65, and 20.66.

65. Assume that the internal diameter of the Geiger–Mueller
tube described in Problem 20.64 is 2.50 cm and that the
wire along the axis has a diameter of 0.200 mm. The di-
electric strength of the gas between the central wire and
the cylinder is 1.20 � 106 V/m. Use the result of Problem
20.64 to calculate the maximum potential difference that
can be applied between the wire and the cylinder before
breakdown occurs in the gas.

66. The results of Problem 20.64 apply also to an electro-
static precipitator (Figs. P20.64 and P20.66). This pollution-
control device consists of a vertical cylindrical duct with a
wire along its axis at a high negative voltage. Corona dis-
charge ionizes the air around the wire to produce free
electrons and positive and negative molecular ions. The
electrons and negative ions accelerate outward. As air
passes through the cylinder, the dirt particles become elec-
trically charged by collisions and ion capture. They are
then swept out of the air by the horizontal electric field be-
tween the wire and the cylinder. In a particular case, an ap-
plied voltage �V � Va � Vb � 50.0 kV is to produce an
electric field of magnitude 5.50 MV/m at the surface of
the central wire. Assume that the outer cylindrical wall has
uniform radius ra � 0.850 m. (a) What should be the ra-
dius rb of the central wire? You will need to solve a tran-
scendental equation. (b) What is the magnitude of the
electric field at the outer wall?

Insulator

Clean air
out

Weight
Dirty
air in

Dirt out

FIGURE P20.66

67. A model of a red blood cell portrays the cell as a ca-
pacitor with two spherical plates. It is a positively charged
conducting liquid sphere of area A, separated by an insu-
lating membrane of thickness t from the surrounding neg-



atively charged conducting fluid. Tiny electrodes intro-
duced into the cell show a potential difference of 100 mV
across the membrane. Take the membrane’s thickness as
100 nm and its dielectric constant as 5.00. (a) Assume that
a typical red blood cell has a mass of 1.00 � 10�12 kg and
density 1 100 kg/m3. Calculate its volume and its surface
area. (b) Find the capacitance of the cell. (c) Calculate the
charge on the surfaces of the membrane. How many elec-
tronic charges does this charge represent? (Suggestion: The
chapter text models the Earth’s atmosphere as a capacitor
with two spherical plates.)

68. Four balls, each with mass m, are connected by four non-
conducting strings to form a square with side a as shown in
Figure P20.68. The assembly is placed on a horizontal,
nonconducting, frictionless surface. Balls 1 and 2 each
have charge q, and balls 3 and 4 are uncharged. Find the
maximum speed of balls 3 and 4 after the string connect-
ing balls 1 and 2 is cut. 

70. An electric dipole is located along the y axis as shown in
Figure P20.70. The magnitude of its electric dipole
moment is defined as p � 2qa. (a) At a point P, which is
far from the dipole (r  a), show that the electric
potential is 

PROBLEMS ❚ 681

y p g p pp

69. The x axis is the symmetry axis of a stationary, uniformly
charged ring of radius R and charge Q (Fig. P20.69). A par-
ticle with charge Q and mass M is located at the center of
the ring. When it is displaced slightly, the point charge ac-
celerates along the x axis to infinity. Show that the ultimate
speed of the point charge is

v � � 2keQ 2

MR �
1/2

1 2

3 4

FIGURE P20.68

R
Q

x

Uniformly
charged ring

Q

v

FIGURE P20.69

(b) Calculate the radial component Er and the perpendic-
ular component E	 of the associated electric field. Note
that E	 � �(1/r)(�V/�	). Do these results seem reason-
able for 	 � 90° and 0°? for r � 0? (c) For the dipole
arrangement shown, express V in terms of Cartesian coor-
dinates using r � (x2 � y2)1/2 and

Using these results and again taking r  a, calculate the
field components Ex and E y.

 cos 	 �
y

(x2 � y2)1/2

V �
ke p cos 	

r 2

a

–q

a

+q

r 1

r 2

r

θ
x

y
P

Er

Eθθ

FIGURE P20.70
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FIGURE P20.71

71. Two large, parallel metal plates are oriented horizontally
and separated by a distance 3d. A grounded conducting
wire joins them, and initially each plate carries no charge.
Now a third identical plate carrying charge Q is inserted
between the two plates, parallel to them and located a dis-
tance d from the upper plate, as shown in Figure P20.71.
(a) What induced charge appears on each of the two origi-
nal plates? (b) What potential difference appears between
the middle plate and each of the other plates? Let A repre-
sent the area of each plate.

72. A 2.00-nF parallel-plate capacitor is charged to an initial
potential difference �Vi � 100 V and then isolated. The di-
electric material between the plates is mica, with a
dielectric constant of 5.00. (a) How much work is required
to withdraw the mica sheet? (b) What is the potential dif-
ference of the capacitor after the mica is withdrawn?



A parallel-plate capacitor is constructed using a dielectric
material whose dielectric constant is 3.00 and whose dielec-
tric strength is 2.00 � 108 V/m. The desired capacitance is
0.250 �F, and the capacitor must withstand a maximum
potential difference of 4 000 V. Find the minimum area of
the capacitor plates.

74. A 10.0-�F capacitor is charged to 15.0 V. It is next con-
nected in series with an uncharged 5.00-�F capacitor. 
The series combination is finally connected across a 
50.0-V battery as diagrammed in Figure P20.74. Find the
new potential differences across the 5.00-�F and 10.0-�F
capacitors.

73.

76. Two square plates of sides � are placed parallel to each other
with separation d as suggested in Figure P20.75. You may as-
sume that d is much less than �. The plates carry uniformly
distributed static charges � Q 0 and � Q 0. A block of metal
has width �, length �, and thickness slightly less than d. It is
inserted a distance x into the space between the plates. The
charges on the plates are not disturbed as the block slides in.
In a static situation, a metal prevents an electric field from
penetrating inside it. The metal can be thought of as a per-
fect dielectric, with � : �. (a) Calculate the stored energy as
a function of x. (b) Find the direction and magnitude of the
force that acts on the metallic block. (c) The area of the ad-
vancing front face of the block is essentially equal to �d. Con-
sidering the force on the block as acting on this face, find
the stress (force per area) on it. (d) For comparison, express
the energy density in the electric field between the capacitor
plates in terms of Q 0, �, d , and � 0.

77. Determine the equivalent capacitance of the combination
shown in Figure P20.77. (Suggestion: Consider the symme-
try involved.)
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75. A capacitor is constructed from two square metallic plates
of sides � and separation d. Charges � Q and � Q are
placed on the plates and the power supply is then re-
moved. A material of dielectric constant � is inserted a dis-
tance x into the capacitor as shown in Figure P20.75. As-
sume that d is much smaller than x. (a) Find the equivalent
capacitance of the device. (b) Calculate the energy stored
in the capacitor. (c) Find the direction and magnitude of
the force exerted by the plates on the dielectric. (d) Ob-
tain a numerical value for the force when x � /2, assum-
ing that � 5.00 cm, d � 2.00 mm, the dielectric is glass
(� � 4.50), and the capacitor was charged to 2 000 V be-
fore the dieletric was inserted. (Suggestion: The system can
be considered as two capacitors connected in parallel.)

�
�

5.00   Fµ

50.0 V

∆Vi = 15.0 V

–+
10.0   Fµ

FIGURE P20.74

x
d

�

�

FIGURE P20.75 Problems 20.75 and 20.76.
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2C

2C

FIGURE P20.77

ANSWERS TO QUICK QUIZZES
20.1 (i), (b). The electric potential is inversely proportion to

the radius (see Eq. 20.11). (ii), (c). Because the same
number of field lines passes through a closed surface of
any shape or size, the electric flux through the surface
remains constant.

20.2 (i), (c). The potential is established only by the source
charge and is independent of the test charge. (ii), (a).
The potential energy of the two-charge system is initially
negative due to the products of charges of opposite sign
in Equation 20.13. When the sign of q2 is changed, both
charges are negative and the potential energy of the sys-
tem is positive.

20.3 (i), (a).  If the potential is constant (zero in this case), its
derivative along this direction is zero. (ii), (b). If the
electric field is zero, there is no change in the electric po-
tential and it must be constant. This constant value could
be zero, but it does not have to be zero.

20.4 (d). The capacitance is a property of the physical system
and does not vary with applied voltage. According to

Equation 20.19, if the voltage is doubled, the charge is
doubled.

20.5 (i), (a). When connecting capacitors in series, the in-
verse of the capacitances add, resulting in a smaller over-
all equivalent capacitance. (ii), (a). When capacitors are
connected in series, the voltages add, for a total of 20 V
in this case. If they are combined in parallel, the voltage
across the combination is still 10 V.

20.6 (b). For a given voltage, the energy stored in a capacitor
is proportional to C : U � C(�V )2/2. Therefore, you
want to maximize the equivalent capacitance. You do so
by connecting the three capacitors in parallel so that the
capacitances add.

20.7 Increase. The dielectric constant of wood (and of all
other insulating materials, for that matter) is greater
than 1; therefore, the capacitance increases (Eq. 20.33).
This increase is sensed by the stud finder’s special
circuitry, which causes an indicator on the device to 
light up.



Thus far, our discussion of electrical phenomena has fo-
cused on charges at rest, or the study of electrostatics. We
shall now consider situations involving electric charges in

motion. The term electric current, or simply current, is used to de-
scribe the flow of charge through some region of space. Most
practical applications of electricity involve electric currents. For
example, in a flashlight, charges flow in the filament of the light-
bulb after the switch is turned on. In most common situations,
the flow of charge takes place in a conductor, such as a copper
wire. It is also possible, however, for currents to exist outside a
conductor. For instance, a beam of electrons in a TV picture tube
constitutes a current in which charge flows through a vacuum.

In Chapter 20, we introduced the notion of a circuit. As we
continue our investigations into circuits in this chapter, we intro-
duce the resistor as a new circuit element.

Current and Direct Current Circuits
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These power lines transfer energy from
the electrical power company to homes
and businesses. The energy is trans-
ferred at a very high voltage, possibly
hundreds of thousands of volts in some
cases. Even though that makes power
lines very dangerous, the high voltage
results in less loss of power due to 
resistance in the wires. We will study
both resistance and power in this 
chapter.
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C H A P T E R  O U T L I N E
21.1 Electric Current
21.2 Resistance and Ohm’s Law
21.3 Superconductors
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21.8 Kirchhoff’s Rules
21.9 RC Circuits
21.10 Context Connection — The Atmosphere 

as a Conductor
SUMMARY



ELECTRIC  CURRENT
Whenever charge is flowing, an electric current is said to exist. To define current
mathematically, suppose charged particles are moving perpendicular to a surface of
area A as in Figure 21.1. (This area could be the cross-sectional area of a wire, for
example.) The current is defined as the rate at which electric charge flows through
this surface. If �Q is the amount of charge that passes through this area in a time
interval �t, the average current Iavg over the time interval is the ratio of the charge
to the time interval:

[21.1]

It is possible for the rate at which charge flows to vary in time. We define the instan-
taneous current I as the limit of the preceding expression as �t goes to zero:

[21.2]

The SI unit of current is the ampere (A):

1 A � 1 C/s [21.3]

That is, 1 A of current is equivalent to 1 C of charge passing through a surface
in 1 s.

The particles flowing through a surface as in Figure 21.1 can be charged posi-
tively or negatively, or we can have two or more types of particles moving, with
charges of both signs in the flow. Conventionally, we define the direction of the cur-
rent as the direction of flow of positive charge, regardless of the sign of the actual
charged particles in motion.1 In a common conductor such as copper, the current
is physically due to the motion of the negatively charged electrons. Therefore,
when we speak of current in such a conductor, the direction of the current is
opposite the direction of flow of electrons. On the other hand, if one considers a
beam of positively charged protons in a particle accelerator, the current is in the
direction of motion of the protons. In some cases—gases and electrolytes, for
example—the current is the result of the flow of both positive and negative
charged particles. It is common to refer to a moving charged particle (whether it is
positive or negative) as a mobile charge carrier. For example, the charge carriers in
a metal are electrons.

We now build a structural model that will allow us to relate the macroscopic cur-
rent to the motion of the charged particles. Consider identical charged particles
moving in a conductor of cross-sectional area A (Fig. 21.2). The volume of a section
of the conductor of length �x (the gray region shown in Fig. 21.2) is A �x. If n rep-
resents the number of mobile charge carriers per unit volume (in other words, the
charge carrier density), the number of carriers in the gray section is nA �x. There-
fore, the total charge �Q in this section is

�Q � number of carriers in section � charge per carrier � (nA �x)q

where q is the charge on each carrier. If the carriers move with an average velocity
component vd in the x direction (along the wire), the displacement they experi-
ence in this direction in a time interval �t is �x � vd �t. The speed vd of the charge
carrier along the wire is an average speed called the drift speed. Let us choose �t to
be the time interval required for the charges in the cylinder to move through a dis-
placement whose magnitude is equal to the length of the cylinder. This time

I � lim
�t : 0

 
�Q
�t

�
dQ
dt

Iavg �
�Q
�t

21.1
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Charges in motion
through an area A. The time rate at
which charge flows through the area
is defined as the current I. The direc-
tion of the current is the direction in
which positive charges flow when free
to do so.

FIGURE 21.1

CURRENT FLOW IS REDUNDANT The
phrase current flow is commonly
used, although it is strictly incor-
rect, because current is a flow (of
charge). This terminology is similar
to the phrase heat transfer, which is
also redundant because heat is a
transfer (of energy). We will avoid
the phrase current flow and speak of
charge flow or flow of charge.

� PITFALL PREVENTION 21.1

� Electric current

1Even though we discuss a direction for current, current is not a vector. As we shall see later in the
chapter, currents add algebraically and not vectorially.

∆x

A
q

vd

vd  ∆t

A section of a uni-
form conductor of cross-sectional area
A. The mobile charge carriers move
with an average speed vd along the
wire, and the displacement they expe-
rience in this direction in a time inter-
val �t is �x � vd �t. If we choose �t to
be the time interval during which the
charges are displaced, on the average,
by the length of the cylinder, the
number of carriers in the section of
length �x is nAvd �t, where n is the
number of carriers per unit volume.

FIGURE 21.2



interval is also that required for all the charges in the cylinder to pass through the
circular area at one end. With this choice, we can write �Q in the form

�Q � (nAvd �t)q

If we divide both sides of this equation by �t, we see that the average current in the
conductor is

[21.4]

Equation 21.4 relates a macroscopically measured average current to the micro-
scopic origin of the current: the density of charge carriers n, the charge per carrier
q, and the drift speed vd.

Iavg �
�Q
�t

� nqvdA
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� Current in terms of microscopic
parameters

Consider positive and negative charges moving horizontally through
the four regions shown in Figure 21.3. Rank the currents in these four regions, from low-
est to highest.

QUICK QUIZ 21.1

(a)

–

–

+
+

+

+
+

+
+

+
+

–

–

–

–

(b) (c) (d)

(Quick Quiz 21.1) Four groups of charges move
through a region.

FIGURE 21.3

Let us investigate further the notion of drift speed. We have identified drift
speed as an average speed along the wire, but the charge carriers are by no means
moving in a straight line with speed vd. Consider a conductor in which the charge
carriers are free electrons. In the absence of a potential difference across the con-
ductor, these electrons undergo random motion similar to that of gas molecules in
the structural model of kinetic theory that we studied in Chapter 16. This random
motion is related to the temperature of the conductor. The electrons undergo re-
peated collisions with the metal atoms, and the result is a complicated zigzag mo-
tion (Active Fig. 21.4). When a potential difference is applied across the conductor,
an electric field is established in the conductor. The electric field exerts an electric
force on the electrons (Eq. 19.4). This force accelerates the electrons and hence
produces a current. The motion of the electrons due to the electric force is super-
imposed on their random motion to provide an average velocity whose magnitude
is the drift speed.

When electrons make collisions with metal atoms during their motion, they trans-
fer energy to the atoms. This energy transfer causes an increase in the vibrational en-
ergy of the atoms and a corresponding increase in the temperature of the
conductor.2 This process involves all three types of energy storage in the continuity
equation for energy, Equation 6.20. If we consider the system to be the electrons, the
metal atoms, and the electric field (which is established by an external source such as
a battery), the energy at the instant when the potential difference is applied across
the conductor is electric potential energy associated with the field and the electrons.
This energy is transformed by work done by the field on the electrons to kinetic en-
ergy of electrons. When the electrons strike the metal atoms, some of the kinetic en-
ergy is transferred to the atoms, which adds to the internal energy of the system.

vd

E

–

A schematic representation of the
zigzag motion of a charge carrier in a
conductor. The changes in direction
are due to collisions with atoms in the
conductor. Note that the net motion
of electrons is opposite the direction
of the electric field. Because of the
acceleration of the charge carriers
due to the electric force, the paths are
actually parabolic. The drift speed,
however, is much smaller than the
average speed, so the parabolic shape
is not visible on this scale.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 21.4 to adjust the
electric field to see the resulting effect
on the motion of an electron.

ACTIVE FIGURE 21.4

2This increase in temperature is sometimes called Joule heating, but that term is a misnomer because
there is no heat involved. We will not use this wording.

www.pop4e.com


The current density J in the conductor is defined as the current per unit area.
From Equation 21.4, the current density is

[21.5]

where J has the SI units amperes per square meter.

� Thinking Physics 21.1
In Chapter 19, we claimed that the electric field inside a conductor is zero. In the
preceding discussion, however, we have used the notion of an electric field in a con-
ducting wire that exerts electric forces on electrons, causing them to move with a
drift velocity. Is this notion inconsistent with Chapter 19?

Reasoning The electric field is zero only in a conductor in electrostatic equilibrium,
that is, a conductor in which the charges are at rest after having moved to equilib-
rium positions. In a current-carrying conductor, the charges are not at rest, so the
requirement for a zero field is not imposed. The electric field in a conductor in a
circuit is due to a distribution of charge over the surface of the conductor that can
be quite complicated.3 �

J � 
I
A

� nqvd
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� 2.22 � 10�4 m/s

 �
10.0 C/s

(8.49 � 1028 m�3)(1.60 � 10�19 C)(3.31 � 10�6 m2)

 vd �
I

nqA

Drift Speed in a Copper WireEXAMPLE 21.1
The 12-gauge copper wire in a typical residential
building has a cross-sectional area of 3.31 � 10�6 m2.
If it carries a current of 10.0 A, what is the drift speed
of the electrons? Assume that each copper atom
contributes one free electron to the current. Take the
density of copper as 8.95 g/cm3.

Solution From the periodic table of the elements in
Appendix C, we find that the molar mass of copper is
63.5 g/mol. Knowing the density of copper enables us
to calculate the volume occupied by 1 mol of copper:

Recall that one mole of any substance contains Avo-
gadro’s number of atoms, 6.02 � 1023 atoms. Because

V �
M
�

�
63.5 g/mol
8.95 g/cm3 � 7.09 cm3/mol

3See Chapter 6 in R. Chabay and B. Sherwood, Electric and Magnetic Interactions, (New York: Wiley, 1995)
for details on this charge distribution.

ELECTRONS ARE AVAILABLE EVERY-
WHERE Let us emphasize the point
being made here: Electrons do not
have to travel from the light switch to the
light for the light to operate. Electrons
already in the filament of the light-
bulb move in response to the elec-
tric field set up by the battery. Note
also that the role of a battery is not
to provide electrons to the circuit.
It establishes the electric field that
exerts a force on electrons already
in the wires and elements of the
circuit.

� PITFALL PREVENTION 21.2

each copper atom contributes one free electron to the
current, the density of charge carriers is

From Equation 21.4, we find that the drift speed is

 � 8.49 � 1028 electrons/m3

 n �
6.02 � 1023 electrons

7.09 cm3  � 1.00 � 106 cm3

1 m3 �

Example 21.1 shows that typical drift speeds in conductors are very small. In
fact, the drift speed is much smaller than the average speed between collisions. For
instance, electrons traveling with the drift speed calculated in Example 21.1 would
take about 75 min to travel 1 m! In view of this low speed, you might wonder why a
light turns on almost instantaneously when a switch is thrown. In a conductor, the
electric field that drives the free electrons is established in the conductor almost in-
stantaneously. Therefore, when you flip a light switch, the electric force that causes
the electrons to start moving in the wire with a drift speed begins immediately. Elec-
trons already in the filament of the lightbulb begin to move in response to this
force, and the lightbulb begins to emit light.



RESISTANCE  AND  OHM’S  LAW
The drift speed of electrons in a current-carrying wire is related to the electric field
in the wire. If the field is increased, the electric force on the electrons is stronger
and the drift speed increases. We shall show in Section 21.4 that this relationship is
linear and that the drift speed is directly proportional to the electric field. For a
uniform field in a conductor of uniform cross-section, the potential difference
across the conductor is proportional to the electric field as in Equation 20.6. There-
fore, when a potential difference �V is applied across the ends of a metallic conduc-
tor as in Figure 21.5, the current in the conductor is found to be proportional to
the applied voltage; that is, I � �V. We can write this proportionality as �V � IR,
where R is called the resistance of the conductor. We define this resistance accord-
ing to the equation we have just written, as the ratio of the voltage across the con-
ductor to the current it carries:

[21.6]

Resistance has the SI units volts per ampere, called ohms (�). Therefore, if a po-
tential difference of 1 V across a conductor produces a current of 1 A, the resis-
tance of the conductor is 1 �. As another example, if an electrical appliance con-
nected to a 120-V source carries a current of 6.0 A, its resistance is 20 �.

Resistance is the quantity that determines the current that results due to a volt-
age in a simple circuit. For a fixed voltage, if the resistance increases, the current
decreases. If the resistance decreases, the current increases.

It might be useful for you to build a mental model for current, voltage, and re-
sistance by comparing these concepts to analogous concepts for the flow of water in
a river. As water flows downhill in a river of constant width and depth, the rate of
flow of water (analogous to current) depends on the angle that the river bottom
makes with the horizontal (analogous to voltage) and on the width and depth as
well as on the effects of rocks, the riverbank, and other obstructions (analogous to
resistance). Likewise, electric current in a uniform conductor depends on the ap-
plied voltage and the resistance of the conductor is caused by collisions of the elec-
trons with atoms in the conductor.

For many materials, including most metals, experiments show that the resistance
is constant over a wide range of applied voltages. This behavior is known as Ohm’s
law after Georg Simon Ohm (1787–1854), who was the first to conduct a systematic
study of electrical resistance.

Many individuals call Equation 21.6 Ohm’s law, but this terminology is incorrect.
This equation is simply the definition of resistance, and it provides an important re-
lationship between voltage, current, and resistance. Ohm’s law is not a fundamental
law of nature, but a behavior that is valid only for certain materials and devices, and
only over a limited range of conditions. Materials or devices that obey Ohm’s law,
and hence that have a constant resistance over a wide range of voltages, are said to
be ohmic (Fig. 21.6a). Materials or devices that do not obey Ohm’s law are

R � 
�V
I

21.2
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� Definition of resistance

A uniform conduc-
tor of length and cross-sectional
area A. A potential difference Vb � Va

is maintained across the conductor so
that an electric field exists in the
conductor, and this field produces a
current I that is proportional to the
potential difference.

E
:

�

FIGURE 21.5

�

Vb Va

IA

E

WE’VE SEEN SOMETHING LIKE EQUA-
TION 21.6 BEFORE In Chapter 4, we
introduced Newton’s second law, 

F � ma, for a net force on an ob-
ject of mass m. It can be written as

In Chapter 4, we defined mass as
resistance to a change in motion in
response to an external force. Mass as
resistance to changes in motion is
analogous to electrical resistance to
charge flow, and Equation 21.6 is
analogous to the form of Newton’s
second law above. Each equation
states that the resistance (electrical
or mechanical ) is equal to (1) �V,
the cause of current or (2) F, the
cause of changes in motion, divided
by the result, (1) a charge flow,
quantified by current I, or (2) a
change in motion, quantified by
acceleration a .

�

m �
�F
a

�

� PITFALL PREVENTION 21.3

(a) The current–
potential difference curve for an
ohmic material. The curve is linear,
and the slope is equal to the inverse
of the resistance of the conductor.
(b) A nonlinear current–potential
difference curve for a semiconducting
diode. This device does not obey
Ohm’s law.

FIGURE 21.6

(a)

I

Slope = 1
R

�V

(b)

I

�V



nonohmic. One common semiconducting device that is nonohmic is the diode, a
circuit element that acts like a one-way valve for current. Its resistance is small for
currents in one direction (positive �V ) and large for currents in the reverse direc-
tion (negative �V ) as shown in Figure 21.6b. Most modern electronic devices have
nonlinear current–voltage relationships; their operation depends on the particular
ways they violate Ohm’s law.

A resistor is a simple circuit element that provides a specified resistance in
an electrical circuit. The symbol for a resistor in circuit diagrams is a zigzag red line
( ). We can express Equation 21.6 in the form

�V � IR [21.7]

This equation tells us that the voltage across a resistor is the product of the resis-
tance and the current in the resistor.

The resistance of an ohmic conducting wire is found to be proportional to its
length � and inversely proportional to its cross-sectional area A. That is,

[21.8]

where the constant of proportionality � is called the resistivity of the material,4

which has the unit ohm meter (�	m). To understand this relationship between re-
sistance and resistivity, note that every ohmic material has a characteristic resistivity,
a parameter that depends on the properties of the material and on temperature.
On the other hand, as you can see from Equation 21.8, the resistance of a particu-
lar conductor depends on its size and shape as well as on the resistivity of the mater-
ial. Table 21.1 provides a list of resistivities for various materials measured at 20
C.

The inverse of the resistivity is defined5 as the conductivity �. Hence, the resis-
tance of an ohmic conductor can be expressed in terms of its conductivity as

[21.9]

where � � 1/�.
Equation 21.9 shows that the resistance of a conductor is proportional to its

length and inversely proportional to its cross-sectional area, similar to the flow of

R �
�

�A

R � � 
�

A
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An assortment of resistors used in electric circuits. � (D
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RESISTANCE AND RESISTIVITY

Resistivity is a property of a sub-
stance, whereas resistance is a prop-
erty of an object. We have seen simi-
lar pairs of variables before. For
example, density is a property of a
substance, whereas mass is a prop-
erty of an object. Equation 21.8 re-
lates resistance to resistivity, and we
have seen a previous equation (Eq.
1.1) that relates mass to density.

� PITFALL PREVENTION 21.4

� Resistance of a uniform material
of resistivity � along a length �

4The symbol � used for resistivity should not be confused with the same symbol used earlier in the text
for mass density and volume charge density.
5Do not confuse the symbol � for conductivity with the same symbol used earlier for the Stefan–
Boltzmann constant and surface charge density.

In Figure 21.6b, as the applied voltage increases, does the resistance
of the diode (a) increase, (b) decrease, or (c) remain the same?
QUICK QUIZ 21.2



liquid through a pipe. As the length of the pipe is increased and the pressure differ-
ence between the ends of the pipe is held constant, the pressure difference be-
tween any two points separated by a fixed distance decreases and there is less force
pushing the element of fluid between these points through the pipe. As its cross-
sectional area is increased, the pipe can transport more fluid in a given time inter-
val, so its resistance drops.

As another analogy between electrical circuits and our previous studies, let us
combine Equations 21.6 and 21.9:

where q is the amount of charge transferred in a time interval �t. Let us compare
this equation to Equation 17.35 for conduction of energy through a slab of material
of area A, length �, and thermal conductivity k, which we reproduce below:

In this equation, Q is the amount of energy transferred by heat in a time interval �t.
Another analogy arises in an example that is important in biochemical applica-

tions. Fick’s law describes the rate of transfer of a chemical solute through a solvent
by the process of diffusion. This transfer occurs because of a difference in concen-
tration of the solute (mass of solute per volume) between the two locations. Fick’s
law is as follows:

where n/�t is the rate of flow of the solute in moles per second, A is the area
through which the solute moves, and L is the length over which the concentration
difference is �C. The concentration is measured in moles per cubic meter. The
parameter D is a diffusion constant (with units of meters squared per second) that
describes the rate of diffusion of a solute through the solvent and is similar in na-
ture to electrical or thermal conductivity. Fick’s law has important applications in
describing the transport of molecules across biological membranes.

n
�t

� DA 
�C
L

� � kA 
(Th � Tc)

L
 : Q

�t
� kA 

�T
L

R �
�

�A
�

�V
I
 : I � �A 

�V
�

 : q
�t

� �A 
�V
�
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Resistivities and Temperature Coefficients
of Resistivity for Various Materials

TABLE 21.1

Material Resistivitya (� � m) Temperature Coefficient � [(�C)�1]

Silver 1.59 � 10�8 3.8 � 10�3

Copper 1.7 � 10�8 3.9 � 10�3

Gold 2.44 � 10�8 3.4 � 10�3

Aluminum 2.82 � 10�8 3.9 � 10�3

Tungsten 5.6 � 10�8 4.5 � 10�3

Iron 10 � 10�8 5.0 � 10�3

Platinum 11 � 10�8 3.92 � 10�3

Lead 22 � 10�8 3.9 � 10�3

Nichromeb 1.50 � 10�6 0.4 � 10�3

Carbon 3.5 � 10�5 � 0.5 � 10�3

Germanium 0.46 � 48 � 10�3

Silicon 640 � 75 � 10�3

Glass 1010 to 1014

Hard rubber �1013

Sulfur 1015

Quartz (fused) 75 � 1016

aAll values are at 20
C.
bNichrome is a nickel–chromium alloy commonly used in heating elements.

Diffusion in biological systems



All three of the preceding equations have exactly the same mathematical form.
Each has a time rate of change on the left, and each has the product of a conductiv-
ity, an area, and a ratio of a difference in a variable to a length on the right. This
type of equation is a transport equation used when we transport energy, charge, or
moles of matter. The difference in the variable on the right side of each equation is
what drives the transport. A temperature difference drives energy transfer by heat,
a potential difference drives a transfer of charge, and a concentration difference
drives a transfer of matter.

Most electric circuits use resistors to control the current level in the various
parts of the circuit. Two common types of resistors are the composition resistor con-
taining carbon and the wire-wound resistor, which consists of a coil of wire. Resistors
are normally color-coded to give their values in ohms, as shown in Figure 21.7 and
Table 21.2.
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Color Code for ResistorsTABLE 21.2

Color Number Multiplier Tolerance

Black 0 1
Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 10�1 5%
Silver 10�2 10%
Colorless 20%

The colored bands
on a resistor represent a code for de-
termining resistance. The first two
colors give the first two digits in the
resistance value. The third color rep-
resents the power of ten for the multi-
plier of the resistance value. The last
color is the tolerance of the resistance
value. As an example, the four colors
on the circled resistors are red (� 2),
black (� 0), orange (� 103), and
gold (� 5%), and so the resistance
value is 20 � 103 � � 20 k� with a
tolerance value of 5% � 1 k�.
(The values for the colors come from
Table 21.2.)

FIGURE 21.7

(S
up

er
St

oc
k)

The Resistance of Nichrome WireEXAMPLE 21.2INTERACTIVE

Note from Table 21.1 that the resistivity of
Nichrome wire is two orders of magnitude larger than
that of copper. A copper wire of the same radius would
have a resistance per unit length of only 0.052 �/m. A
1.0-m length of copper wire of the same radius would
carry the same current (2.2 A) with an applied voltage
of only 0.11 V.

Because of its high resistivity and its resistance to ox-
idation, Nichrome is often used for heating elements in
toasters, irons, and electric heaters.

Explore the resistance of different materi-
als by logging into PhysicsNow at www.pop4e.com and going to
Interactive Example 21.2.

2.2 AI �
�V
R

�
10 V

4.63 �
�

Calculate the resistance per unit length of a 22-
gauge Nichrome wire, which has a radius of 0.321 mm.

Solution The cross-sectional area of this wire is

A � �r 2 � �(0.321 � 10�3 m)2 � 3.24 � 10�7 m2

The resistivity of Nichrome is 1.50 � 10�6 � 	 m
(Table 21.1). We use Equation 21.8 to find the resistance
per unit length:

If a potential difference of 10 V is maintained
across a 1.0-m length of the Nichrome wire, what is the
current in the wire?

Solution Because a 1.0-m length of this wire has a resis-
tance of 4.63 �, we have

B

4.63 �/m
R
�

�
�

A
�

1.50 � 10�6 �	m
3.24 � 10�7 m2 �

A

www.pop4e.com


Change in Resistivity with Temperature
Resistivity depends on a number of factors, one of which is temperature. For most
metals, resistivity increases approximately linearly with increasing temperature over
a limited temperature range according to the expression

� � �0[1  �(T � T0)] [21.10]

where � is the resistivity at some temperature T (in degrees Celsius), �0 is the resis-
tivity at some reference temperature T0 (usually 20
C), and � is called the tempera-
ture coefficient of resistivity (not to be confused with the average coefficient of
linear expansion � in Chapter 16). From Equation 21.10, we see that � can be ex-
pressed as

[21.11]

where �� � � � �0 is the change in resistivity in the temperature interval 
�T � T � T0.

The resistivities and temperature coefficients of certain materials are listed in
Table 21.1. Note the enormous range in resistivities, from very low values for good
conductors, such as copper and silver, to very high values for good insulators, such
as glass and rubber. An ideal, or “perfect,” conductor would have zero resistivity,
and an ideal insulator would have infinite resistivity.

Because resistance is proportional to resistivity according to Equation 21.8, the
temperature variation of the resistance can be written as

R � R0[1  �(T � T0)] [21.12]

Precise temperature measurements are often made using this property, as shown in
Example 21.3.

� �
1
�0

 
��

�T
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� Variation of resistivity with
temperature

� Temperature coefficient
of resistivity

� Variation of resistance with
temperature

When does a lightbulb carry more current: (a) just after it is turned
on and the glow of the metal filament is increasing or (b) after it has been on for a few
seconds and the glow is steady?

QUICK QUIZ 21.3

SUPERCONDUCTORS
For several metals, resistivity is nearly proportional to temperature as shown in Fig-
ure 21.8. In reality, however, there is always a nonlinear region at very low tempera-
tures, and the resistivity usually approaches some finite value near absolute zero
(see the magnified inset in Fig. 21.8). This residual resistivity near absolute zero is
due primarily to collisions of electrons with impurities and to imperfections in the
metal. In contrast, the high temperature resistivity (the linear region) is dominated

21.3

Solution Solving Equation 21.12 for �T and obtaining 
� from Table 21.1, we have

Because T0 � 20.0
C, we find that .157
CT �

 � 137
C

 �T �
R � R 0

�R 0
�

76.8 � � 50.0 �
[3.92 � 10�3 (
C)�1](50.0 �)

A Platinum Resistance ThermometerEXAMPLE 21.3
A resistance thermometer, which measures tempera-
ture by measuring the change in resistance of a conduc-
tor, is made from platinum and has a resistance of 
50.0 � at 20.0
C. When immersed in a vessel containing
melting indium, its resistance increases to 76.8 �.
Assuming that the resistance varies linearly with
temperature over the temperature range in question,
what is the melting point of indium?



by collisions of electrons with the vibrating metal atoms. We shall describe this
process in more detail in Section 21.4.

There is a class of metals and compounds for which the resistivity goes to zero be-
low a certain critical temperature Tc . These materials are known as superconductors.
The resistance– temperature graph for a superconductor follows that of a normal
metal at temperatures above Tc . When the temperature reaches Tc, the resistance of
the sample drops suddenly to zero (Fig. 21.9). This phenomenon was discovered by
Dutch physicist Heike Kamerlingh Onnes in 1911 as he worked with mercury, which
is a superconductor below 4.2 K. Recent measurements have shown that the resistivi-
ties of superconductors below Tc are less than 4 � 10�25 � 	 m, which is about 1017

times smaller than the resistivity of copper and considered to be zero in practice.
Today, thousands of superconductors are known. Such common metals as alu-

minum, tin, lead, zinc, and indium are superconductors. Table 21.3 lists the critical
temperatures of several superconductors. The value of Tc is sensitive to chemical
composition, pressure, and crystalline structure. It is interesting to note that cop-
per, silver, and gold, which are excellent conductors at room temperatures, do not
exhibit superconductivity.

One truly remarkable feature of superconductors is that once a current is set up
in them, it persists without any applied voltage (because R � 0). In fact, steady cur-
rents have been observed to persist in superconducting loops for several years with
no apparent decay!

An important development in physics that created much excitement in the scien-
tific community in the latter part of the twentieth century is the discovery of high-
temperature copper-oxide-based superconductors. The excitement began with a
1986 publication by J. Georg Bednorz and K. Alex Müller, scientists at the IBM
Zurich Research Laboratory in Switzerland, in which they reported evidence for su-
perconductivity at a temperature near 30 K in an oxide of barium, lanthanum, and
copper. Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 for
their remarkable discovery. Shortly thereafter, a new family of compounds was open
for investigation, and research activity in the field of superconductivity proceeded
vigorously. In early 1987, groups at the University of Alabama at Huntsville and the
University of Houston announced the discovery of superconductivity at about 92 K
in an oxide of yttrium, barium, and copper (YBa2Cu3O7). Late in 1987, teams of sci-
entists from Japan and the United States reported superconductivity at 105 K in an
oxide of bismuth, strontium, calcium, and copper. More recently, scientists have re-
ported superconductivity at temperatures as high as 134 K in a compound contain-
ing mercury. At this point, one cannot rule out the possibility of room-temperature
superconductivity, and the search for novel superconducting materials continues. It
is an important search both for scientific reasons and because practical applications
become more probable and widespread as the critical temperature is raised.

An important and useful application is superconducting magnets in which the
magnetic field magnitudes are about ten times greater than those of the best normal
electromagnets. (We will study magnetism in Chapter 22.) Such superconducting
magnets are being considered as a means of storing energy. The idea of using super-
conducting power lines for transmitting power efficiently is also receiving some con-
sideration. Modern superconducting electronic devices consisting of two thin-film
superconductors separated by a thin insulator have been constructed. They include
magnetometers (magnetic-field measuring devices) and various microwave devices.

A  STRUCTURAL  MODEL  FOR  ELECTRICAL
CONDUCTION

In Section 21.1, a structural model of electrical conduction was developed by relat-
ing the macroscopic current to the drift speed of microscopic charge carriers in a
material. This section expands that model by introducing the microscopic origin of

21.4
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Resistivity versus
temperature for a normal metal, such
as copper. The curve is linear over a
wide range of temperatures, and �
increases with increasing tempera-
ture. As T approaches absolute zero
(inset), the resistivity approaches a
finite value �0.
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Resistance versus
temperature for a sample of mercury.
The graph follows that of a normal
metal above the critical temperature
Tc . The resistance drops to zero at Tc,
which is 4.2 K for mercury.
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resistance. Once the model is completed, we shall compare its predictions to exper-
imental measurements.

Consider a conductor as a regular array of atoms containing free electrons
(sometimes called conduction electrons). Such electrons are free to move through
the conductor (as we learned in our discussion of drift speed in Section 21.1) and
are approximately equal in number to the number of atoms in the conductor. In
the absence of an electric field, the free electrons move in random directions with
average speeds on the order of 106 m/s. The situation is similar to the motion of
gas molecules confined in a vessel that we studied in kinetic theory in Chapter 16.
In fact, the conduction electrons in a metal are often called an electron gas.

Conduction electrons are not totally free because they are confined to the inte-
rior of the conductor and undergo frequent collisions with the array of atoms. The
collisions are the predominant mechanism contributing to the resistivity of a metal
at normal temperatures. Note that there is no current in a conductor in the ab-
sence of an electric field because the average velocity of the free electrons is zero.
On the average, just as many electrons move in one direction as in the opposite
direction, so there is no net flow of charge.

The situation is modified, however, when an electric field is applied to the
metal. In addition to random thermal motion, the free electrons drift slowly in a di-
rection opposite that of the electric field, with an average drift speed of vd, which is
much less (typically 10�4 m/s; see Example 21.1) than the average speed between
collisions (typically 106 m/s).

In our structural model, we shall assume that the excess kinetic energy acquired by
the electrons in the electric field is lost to the conductor in the collision process. The
energy given up to the atoms in the collisions increases the total vibrational energy of
the atoms, causing the conductor to warm up. The model also assumes that an elec-
tron’s motion after a collision is independent of its motion before the collision.

Given this basis for our model, we now take the first step toward obtaining an
expression for the drift speed. When a mobile, charged particle of mass m and
charge q is subjected to an electric field , it experiences a force (Eq. 19.4). For
electrons in a metal, . The motion of the electron can be determined
from Newton’s second law, . The acceleration of the electron is

[21.13]

The acceleration, which occurs for only a short time interval between collisions,
changes the velocity of the electron. Because the force is constant, the acceleration
is constant, and we can model the electron as a particle under constant accelera-
tion. If is the velocity of the electron just after a collision, at which we define the
time as t � 0, the velocity of the electron at time t is

[21.14]

The motion of the electron through the metal is characterized by a very large
number of collisions per second. Consequently, we consider the average value of 
over a time interval long compared with the time interval between collisions, which
gives us the drift velocity . Because the velocity of the electron after a collision is
assumed to be independent of its velocity before the collision, the initial velocities
are randomly distributed in direction, so the average value of is zero. In the sec-
ond term on the right of Equation 21.14, the charge, electric field, and mass are all
constant. Therefore, the only factor affected by the averaging process is the time t.
The average value of this term is ( )�, where � is the average time interval be-
tween collisions. Therefore, Equation 21.14 becomes, after the averaging process,
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Critical Temperatures for
Various Superconductors

TABLE 21.3

Material Tc (K)

HgBa2Ca2Cu3O8 134
Tl–Ba–Ca–Cu–O 125
Bi–Sr–Ca–Cu–O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

A small, permanent magnet levitated
above a disk of the superconductor
YBa2Cu3O7, which is at 77 K. This levi-
tation is one the phenomena related
to the lack of resistance in the super-
conductor. �
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Substituting the magnitude of this drift velocity (the drift speed) into Equation
21.4, we have

[21.16]

According to Equation 21.6, the current is related to the macroscopic variables of
potential difference and resistance:

Incorporating Equation 21.8, we can write this expression as

In the conductor, the electric field is uniform, so we use Equation 20.6, �V � E�, to
substitute for the magnitude of the potential difference across the conductor:

[21.17]

Setting the two expressions for the current, Equations 21.16 and 21.17, equal, we
solve for the resistivity :

[21.18]

According to this structural model, resistivity does not depend on the electric
field or, equivalently, on the potential difference, but depends only on fixed para-
meters associated with the material and the electron. This feature is characteristic
of a conductor obeying Ohm’s law. The model shows that the resistivity can be cal-
culated from a knowledge of the density of the electrons, their charge and mass,
and the average time interval � between collisions. This time interval is related to
the average distance between collisions �avg (the mean free path) and the average
speed vavg through the expression6
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� Resistivity in terms of micro-
scopic parameters

6Recall that the average speed of a group of particles depends on the temperature of the group
(Chapter 16) and is not the same as the drift speed vd .

� 2.5 � 10�14 s

� �
9.11 � 10�31 kg

(8.49 � 1028 m�3)(1.6 � 10�19 C)2(1.7 � 10�8 �	m)

Note that this result is a very short time interval and
that the electrons make a very large number of colli-
sions per second.

Assuming that the average speed for free electrons
in copper is 1.6 � 106 m/s and using the result from
part A, calculate the mean free path for electrons in
copper.

B

Electron Collisions in CopperEXAMPLE 21.4

Using the data and results from Example 21.1 and
the structural model of electron conduction, estimate
the average time interval between collisions for elec-
trons in copper at 20
C.

Solution From Equation 21.18 we see that

where � � 1.7 � 10�8 � 	 m for copper and the carrier
density n � 8.49 � 1028 electrons/m3 for the wire de-
scribed in Example 21.1. Substitution of these values
into the expression above gives

� �
me

ne2�

A



Although this structural model of conduction is consistent with Ohm’s law, it
does not correctly predict the values of resistivity or the behavior of the resistivity
with temperature. For example, the results of classical calculations for vavg using the
ideal gas model for the electrons are about a factor of ten smaller than the actual
values, which results in incorrect predictions of values of resistivity from Equation
21.18. Furthermore, according to Equations 21.18 and 21.19, the temperature vari-
ation of the resistivity is predicted to vary as vavg, which according to an ideal-gas
model (Chapter 16, Eq. 16.22) is proportional to . This behavior is in disagree-
ment with the linear dependence of resistivity with temperature for pure metals
(Fig. 21.8a). Because of these incorrect predictions, we must modify our structural
model. We shall call the model that we have developed so far the classical model for
electrical conduction. To account for the incorrect predictions of the classical
model, we will develop it further into a quantum mechanical model, which we shall
describe briefly.

We discussed two important simplification models in earlier chapters, the parti-
cle model and the wave model. Although we discussed these two simplification
models separately, quantum physics tells us that this separation is not so clear-cut.
As we shall discuss in detail in Chapter 28, particles have wave-like properties. The
predictions of some models can only be matched to experimental results if the
model includes the wave-like behavior of particles. The structural model for electri-
cal conduction in metals is one of these cases.

Let us imagine that the electrons moving through the metal have wave-like
properties. If the array of atoms in a conductor is regularly spaced (that is, peri-
odic), the wave-like character of the electrons makes it possible for them to move
freely through the conductor and a collision with an atom is unlikely. For an ideal-
ized conductor, no collisions would occur, the mean free path would be infinite,
and the resistivity would be zero. Electrons are scattered only if the atomic arrange-
ment is irregular (not periodic), as a result of structural defects or impurities, for
example. At low temperatures, the resistivity of metals is dominated by scattering
caused by collisions between the electrons and impurities. At high temperatures,
the resistivity is dominated by scattering caused by collisions between the electrons
and the atoms of the conductor, which are continuously displaced as a result of
thermal agitation, destroying the perfect periodicity. The thermal motion of the
atoms makes the structure irregular (compared with an atomic array at rest),
thereby reducing the electron’s mean free path.

Although it is beyond the scope of this text to show this modification in detail,
the classical model modified with the wave-like character of the electrons results in
predictions of resistivity values that are in agreement with measured values and pre-
dicts a linear temperature dependence. When discussing the hydrogen atom in
Chapter 11, we had to introduce some quantum notions to understand experimen-
tal observations such as atomic spectra. Likewise, we had to introduce quantum
notions in Chapter 17 to understand the temperature behavior of molar specific
heats of gases. Here we have another case in which quantum physics is necessary for
the model to agree with experiment. Although classical physics can explain a
tremendous range of phenomena, we continue to see hints that quantum physics
must be incorporated into our models. We shall study quantum physics in detail in
Chapters 28 through 31.

√T
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Solution Using Equation 21.19, we find

� 4.0 � 10�8 m

�avg � vavg � � (1.6 � 106 m/s)(2.5 � 10�14 s)

which is equivalent to 40 nm (compared with atomic
spacings of about 0.2 nm). Therefore, although the
time interval between collisions is very short, the elec-
trons travel about 200 atomic distances before colliding
with an atom.



ELECTRIC  ENERGY  AND  POWER
In Section 21.1, we discussed the energy transformations occurring in a circuit. If a
battery is used to establish an electric current in a conductor, there is a continuous
transformation of chemical energy in the battery to kinetic energy of the electrons
to internal energy in the conductor, resulting in an increase in the temperature of
the conductor.

In typical electric circuits, energy is transferred from a source, such as a battery,
to some device, such as a lightbulb or a radio receiver by electrical transmission
(TET in Eq. 6.20). Let us determine an expression that will allow us to calculate the
rate of this energy transfer. First, consider the simple circuit in Active Figure 21.10,
where we imagine that energy is being delivered to a resistor. Because the connect-
ing wires also have resistance, some energy is delivered to the wires and some en-
ergy to the resistor. Unless noted otherwise, we will adopt a simplification model in
which the resistance of the wires is so small compared with the resistance of the cir-
cuit element that we ignore the energy delivered to the wires.

Let us now analyze the energetics of the circuit in which a battery is connected
to a resistor of resistance R as in Active Figure 21.10. Imagine following a positive
quantity of charge Q around the circuit from point a through the battery and resis-
tor and back to a . Point a is a reference point at which the potential is defined as
zero. We identify the entire circuit as our system. As the charge moves from a to b
through the battery whose potential difference is �V, the electrical potential energy
of the system increases by the amount Q �V, whereas the chemical energy in the
battery decreases by the same amount. (Recall from Chapter 20 that �U � q �V.)
As the charge moves from c to d through the resistor, however, the system loses this
electrical potential energy during collisions with atoms in the resistor. In this
process, the energy is transformed to internal energy corresponding to increased vi-
brational motion of the atoms in the resistor. Because we have neglected the resis-
tance of the interconnecting wires, no energy transformation occurs for paths bc
and da. When the charge returns to point a, the net result is that some of the chem-
ical energy in the battery has been delivered to the resistor and resides in the resis-
tor as internal energy associated with molecular vibration.

The resistor is normally in contact with air, so its increased temperature results
in a transfer of energy by heat into the air. In addition, there will be thermal radia-
tion from the resistor, representing another means of escape for the energy. After
some time interval has passed, the resistor remains at a constant temperature be-
cause the input of energy from the battery is balanced by the output of energy by
heat and radiation. Some electrical devices include heat sinks7 connected to parts of
the circuit to prevent these parts from reaching dangerously high temperatures.
Heat sinks are pieces of metal with many fins. The high thermal conductivity of the
metal provides a rapid transfer of energy by heat away from the hot component and
the large number of fins provides a large surface area in contact with the air, so en-
ergy can transfer by radiation and into the air by heat at a high rate.

Let us consider now the rate at which the system loses electric potential energy
as the charge Q passes through the resistor:

where I is the current in the circuit. Of course, the system regains this potential en-
ergy when the charge passes through the battery, at the expense of chemical energy
in the battery. The rate at which the system loses potential energy as the charge
passes through the resistor is equal to the rate at which the system gains internal en-
ergy in the resistor. Therefore, the power �, representing the rate at which energy

dU
dt

�
d
dt

 (Q �V ) �
dQ
dt

 �V � I �V
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MISCONCEPTIONS ABOUT CURRENT

Several common misconceptions
are associated with current in a cir-
cuit like that in Active Figure 21.10.
One is that current comes out of
one terminal of the battery and is
then “used up” as it passes through
the resistor. According to this ap-
proach, there is current in only one
part of the circuit. The correct un-
derstanding, however, is that the
current is the same everywhere in the
circuit. A related misconception has
the current coming out of the resis-
tor being smaller than that going in
because some of the current is
“used up.” Another misconception
has current coming out of both
terminals of the battery, in opposite
directions, and then “clashing” in
the resistor, delivering the energy
in this manner. We know that is not
the case because the charges flow in
the same rotational sense at all
points in the circuit. Be sure your
conceptual understanding of
current is valid.

� PITFALL PREVENTION 21.5

b

a

c

d

R

I

∆V
+

–

A circuit consisting of a resistor of
resistance R and a battery having a
potential difference �V across its
terminals. Positive charge flows in the
clockwise direction.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 21.10 to adjust the
battery voltage and the resistance to
see the resulting current in the circuit
and power delivered to the resistor.

7This terminology is another misuse of the word heat that is ingrained in our common language.

ACTIVE FIGURE 21.10

www.pop4e.com


is delivered to the resistor, is

[21.20]

We have developed this result by considering a battery delivering energy to a resis-
tor. Equation 21.20, however, can be used to determine the power transferred from
a voltage source to any device carrying a current I and having a potential difference
�V between its terminals.

Using Equation 21.20 and that �V � IR for a resistor, we can express the power
delivered to the resistor in the alternative forms

[21.21]

The SI unit of power is the watt, introduced in Chapter 6. If you analyze the units in
Equations 21.20 and 21.21, you will see that the result of the calculation provides a
watt as the unit. The power delivered to a conductor of resistance R is often re-
ferred to as an I 2R loss.

As we learned in Section 6.8, the unit of energy your electric company uses to
calculate energy transfer, the kilowatt-hour, is the amount of energy transferred in
1 h at the constant rate of 1 kW. Because 1 W � 1 J/s, we have

1 kWh � (1.0 � 103 W)(3 600 s) � 3.6 � 106 J [21.22]

� � I 2R �
(�V )2

R

� � I �V
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CHARGES DO NOT MOVE ALL THE WAY

AROUND A CIRCUIT The movement
of a charge around the circuit is not
what happens in a circuit, unless
you wait for a very long time. Due
to the very low magnitude of the
drift velocity, it might take hours for
a single electron to make one com-
plete trip around the circuit. In
terms of understanding the energy
transfer in a circuit, however, it is
useful to imagine a charge moving
all the way around the circuit.

� PITFALL PREVENTION 21.6

ENERGY IS NOT “DISSIPATED” In
some books, you may see Equation
21.20 described as the power “dissi-
pated in” a resistor, suggesting that
energy disappears. Instead, we say
energy is “delivered to” a resistor.
The notion of dissipation arises
because a warm resistor will expel
energy by radiation and heat, and
energy delivered by the battery
leaves the circuit. (It does not
disappear!)

� PITFALL PREVENTION 21.7

� Power delivered to a device

For the two lightbulbs shown in Figure 21.11, rank the currents at
points a through f, from largest to smallest.
QUICK QUIZ 21.4

∆V

30 W

60 W

e f

c d

a b

A

B

(Quick Quiz 21.4
and Thinking Physics 21.2) Two light-
bulbs connected across the same
potential difference.

FIGURE 21.11

� Thinking Physics 21.2
Two lightbulbs A and B are connected across the same potential difference as in
Figure 21.11. The electric input powers to the lightbulbs are shown. Which light-
bulb has the higher resistance? Which carries the greater current?

Reasoning Because the voltage across each lightbulb is the same and the rate of en-
ergy delivered to a resistor is � � (�V )2/R, the lightbulb with the lower resistance
exhibits the higher rate of energy transfer. In this case, the resistance of A is larger
than that for B. Furthermore, because � � I �V, we see that the current carried by
B is larger than that of A. �

� Thinking Physics 21.3
When is a lightbulb more likely to fail, just after it is turned on or after it has been
on for a while?

Reasoning When the switch is closed, the source voltage is immediately applied
across the lightbulb. As the voltage is applied across the cold filament when the
lightbulb is first turned on, the resistance of the filament is low. Therefore, the cur-
rent is high and a relatively large amount of energy is delivered to the bulb per unit
time interval. This causes the temperature of the filament to rise rapidly, resulting
in thermal stress on the filament that makes it likely to fail at that moment. As the
filament warms up in the absence of failure, its resistance rises and the current falls.
As a result, the rate of energy delivered to the lightbulb falls. The thermal stress on
the filament is reduced so that the failure is less likely to occur after the bulb has
been on for a while. �
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energy you must pay for, expressed in kWh, is

Energy � (0.075 kW)(24 h) � 1.8 kWh

If energy is purchased at 12¢ per kWh, the cost is

Cost � (1.8 kWh)($0.12/kWh) �

That is, it costs 22¢ to operate the lightbulb for one day.
This cost is a small amount, but when larger and more
complex devices are used, the costs go up rapidly.

Demands on energy supplies have made it necessary
to be aware of the energy requirements of electric de-
vices, not only because they are becoming more expen-
sive to operate but also because, with the dwindling of
the coal and oil resources that ultimately supply us with
electrical energy, increased awareness of conservation
becomes necessary. Every electric appliance has a label
that contains the information needed to calculate the
power requirements of the appliance. The power con-
sumption in watts is often stated directly, as on a light-
bulb. In other cases, the amount of current in the de-
vice and the voltage at which it operates are given. This
information and Equation 21.20 are sufficient to calcu-
late the operating cost of any electric device.

$0.22

Electrical Rating of a LightbulbEXAMPLE 21.5
A lightbulb is rated at 120 V/75 W, which means that at
its intended operating voltage of 120 V it has energy
delivered to it at a rate of 75.0 W. The lightbulb is
powered by a 120-V direct-current power supply.

Find the current in the lightbulb and its resistance.

Solution Because the power rating of the lightbulb is
75.0 W and the operating voltage is 120 V, we can use 
� � I �V to find the current:

Using �V � IR , the resistance is calculated to be

How much does it cost to operate the lightbulb for
24 h if electricity costs 12¢ per kilowatt-hour?

Solution Because the energy delivered to the lightbulb
equals power multiplied by time interval, the amount of

B

192 �R �
�V
I

�
120 V

0.625 A
�

0.625 AI �
�

�V
�

75.0 W
120 V

�

A

Linking Electricity and ThermodynamicsEXAMPLE 21.6INTERACTIVE
energy entering the water:

where Q represents an amount of energy transfer by
heat into the water and Equation 21.21 expresses the
electrical power. The amount of energy transfer by heat
necessary to raise the temperature of the water is given
by Equation 17.3, Q � mc �T. Therefore,

Substituting the values given in the statement of the
problem gives

�

To finalize this problem, let us compare the power and
the cost of operation of the immersion heater to the
lightbulb in Example 21.5. The power of the immer-
sion heater is found from Equation 21.21:

� �
(�V )2

R
�

(110 V)2

28.9 �
� 419 W

28.9 �

R �
(110 V)2(600 s)

(1.50 kg)(4  186 J/kg	
C)(50.0
C � 10.0
C)

(�V )2

R
�

mc �T
�t

 : R �
(�V )2 �t
mc �T

� �
(�V )2

R
�

Q
�t

What is the required resistance of an immersion heater
that will increase the temperature of 1.50 kg of water
from 10.0
C to 50.0
C in 10.0 min while operating at
110 V?

Solution This example allows us to link our new under-
standing of power in electricity with our experience
with specific heat in thermodynamics in Chapter 17. To
conceptualize the problem, we need to realize that an
immersion heater is a resistor that is inserted into a
container of water. As energy is delivered to the immer-
sion heater, raising its temperature, energy leaves the
surface of the resistor by heat, going into the water.
When the immersion heater reaches a constant temper-
ature, the rate of energy delivered to the resistance by
electrical transmission is equal to the rate of energy
delivered by heat to the water.

As a simplification model, we ignore the initial time
interval during which the temperature of the resistor
increases, and we also ignore any variation of resistance
with temperature. Therefore, we imagine a constant
rate of energy transfer for the entire 10.0 min. We cate-
gorize this problem as one in which energy is delivered
to the resistor by electrical transmission and then to the
water by heat. To analyze the problem, we set the rate
of energy delivered to the resistor equal to the rate of
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Even though the power rating is higher for the heater
than for the lightbulb, it costs much less to operate
the heater. Of course, the primary factor in this 
comparison is that the heater is operated for 10.0 min,
whereas the lightbulb in Example 21.5 is operated
for 24 h.

Explore the heating of water by logging
into PhysicsNow at www.pop4e.com and going to Interactive
Example 21.6.

which is significantly larger than the power of the light-
bulb in Example 21.5. The energy transferred to the
heater during the operation time of 10.0 min is

If the energy is purchased at an estimated price of
12.0¢ per kilowatt-hour, the cost is

Cost � (0.069 8 kWh)($0.120/kWh)

� $0.008 38 � 0.838¢

 � 69.8 Wh � 0.069 8 kWh

 �E � � �t � (419 W)(10.0 min)� 1 h
60.0 min �

SOURCES  OF  emf
The entity that maintains the constant voltage in Figure 21.12 is called a source of
emf.8 Sources of emf are any devices (such as batteries and generators) that in-
crease the potential energy of a circuit system by maintaining a potential difference
between points in the circuit while charges move through the circuit. One can
think of a source of emf as a “charge pump.” The emf of a source describes the
work done per unit charge, and hence the SI unit of emf is the volt.

At this point, you may wonder why we need to define a second quantity, emf,
with the volt as a unit when we have already defined the potential difference. To see
the need for this new quantity, consider the circuit shown in Figure 21.12, consist-
ing of a battery connected to a resistor. We shall assume that the connecting wires
have no resistance. We might be tempted to claim that the potential difference
across the battery terminals (the terminal voltage) equals the emf of the battery. A
real battery, however, always has some internal resistance r. As a result, the terminal
voltage is not equal to the emf, as we shall show.

The circuit shown in Figure 21.12 can be described by the circuit diagram in
Active Figure 21.13a. The battery within the dashed rectangle is modeled as an
ideal, zero-resistance source of emf in series with the internal resistance r. Now
imagine moving from a to b in Active Figure 21.13a. As you pass from the negative
to the positive terminal within the source of emf the potential increases by . As
you move through the resistance r, however, the potential decreases by an amount
Ir, where I is the current in the circuit. Therefore, the terminal voltage �V �
Vb � Va of the battery is9

�V � � Ir [21.23]

Note from this expression that is equivalent to the open-circuit voltage, that is,
the terminal voltage when the current is zero. Active Figure 21.13b is a graphical
representation of the changes in potential as the circuit is traversed clockwise. By
inspecting Active Figure 21.13a, we see that the terminal voltage �V must also equal
the potential difference across the external resistance R, often called the load resis-
tance; that is, �V � IR . Combining this expression with Equation 21.23, we see that

� IR  Ir [21.24]�

�
�

�

�

�

21.6
+

Resistor

Battery
–

A circuit consisting
of a resistor connected to the terminals
of a battery.

FIGURE 21.12

8The term emf was originally an abbreviation for electromotive force, but it is not a force, so the long form
is discouraged. The name electromotive force was used early in the study of electricity before the un-
derstanding of batteries was as sophisticated as it is today.
9The terminal voltage in this case is less than the emf by the amount Ir. In some situations, the terminal
voltage may exceed the emf by the amount Ir. Such a situation occurs when the direction of the current
is opposite that of the emf, as when a battery is being charged by another source of emf.

www.pop4e.com


Solving for the current gives

[21.25]

which shows that the current in this simple circuit depends on both the resistance
R external to the battery and the internal resistance r . If R is much greater than r,
we can adopt a simplification model in which we neglect r in our analysis. In many
circuits, we shall adopt this simplification model.

If we multiply Equation 21.24 by the current I, we have

I � I 2R  I 2r

This equation tells us that the total power output I of the source of emf is equal to
the rate I 2R at which energy is delivered to the load resistance plus the rate I 2r at
which energy is delivered to the internal resistance. If r �� R , much more of the
energy from the battery is delivered to the load resistance than stays in the battery,
although the amount of energy is relatively small because the load resistance is
large, resulting in a small current. If r �� R , a significant fraction of the energy
from the source of emf stays in the battery package because it is delivered to the in-
ternal resistance. For example, if a wire is simply connected between the terminals
of a flashlight battery, the battery becomes warm. This warming represents the
transfer of energy from the source of emf to the internal resistance, where it ap-
pears as internal energy associated with temperature. Problem 21.57 explores the
conditions under which the largest amount of energy is transferred from the bat-
tery to the load resistor.

RESISTORS  IN  SERIES  AND  IN  PARALLEL
When two or more resistors are connected together end to end as in Active Figure
21.14a, they are said to be in series. (Compare this configuration to capacitors in
series in Active Figure 20.24.) In a series connection, if an amount of charge Q exits
resistor R1, charge Q must also enter the second resistor R2. Otherwise, charge will
accumulate on the wire between the resistors. Therefore, the same amount of
charge passes through both resistors in a given time interval and the currents are
the same in both resistors.

Because the potential difference between a and b in the circuit diagram of Ac-
tive Figure 21.14b equals IR1 and the potential difference between b and c equals
IR2, the potential difference between a and c is

�V � IR1  IR2 � I(R1  R2)

The potential difference across the battery is also applied to the equivalent resis-
tance in Active Figure 21.14c:

�V � IReq

where we have indicated that the equivalent resistance has the same effect on the cir-
cuit because it results in the same current in the battery as the combination of resis-
tors. Combining these equations, we see that we can replace the two resistors in series
with a single equivalent resistance whose value is the sum of the individual resistances:

�V � IReq � I(R1  R2) : Req � R1  R2 [21.26]

The equivalent resistance of three or more resistors connected in series is simply

[21.27]

Therefore, the equivalent resistance of a series connection of resistors is the alge-
braic sum of the individual resistances and is always greater than any individual
resistance.

R eq � R1  R 2  R 3  	 	 	

21.7

�
�

I �
�

R  r
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Rr
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V

IR
Ir

ε

ε

ε
a

d R

I

br
– +

c

(a)

I

(a) Circuit diagram of a source of emf
(in this case, a battery) with internal

resistance r, connected to an external
resistor of resistance R. (b) Graphical
representation showing how the
potential changes as the circuit in
(a) is traversed clockwise.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 21.13 to adjust the emf
and resistances r and R to see the
effect on the current and on the
graph in (b).

�

ACTIVE FIGURE 21.13

WHAT IS CONSTANT IN A BATTERY?
Notice that Equation 21.25 shows us
that the current in the circuit de-
pends on the resistance connected
to the battery. It is a common mis-
conception that a battery is a source
of constant current. Equation 21.25
clearly shows that to be not true. It
is also not true that a battery is a
source of constant terminal voltage.
Equation 21.23 shows that to be not
true. A battery is a source of
constant emf.

� PITFALL PREVENTION 21.8

� Equivalent resistance of resistors
in series
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Looking back at Equation 21.25, the denominator is the simple algebraic sum of
the external and internal resistances, which is consistent with the internal and ex-
ternal resistances being in series in Active Figure 21.13a.

Note that if the filament of one lightbulb in Active Figure 21.14a were to fail,10

the circuit would no longer be complete (an open-circuit condition would exist)
and the second bulb would also go out.

y g p pp

+ –

(a)

Battery

R1 R2

∆V

(c)

I

+ –

a c

(b)

I

R1 R2

I

+ –

a b c

I1 = I2 = I Req = R1 + R2 

∆V

(a) A series connection of two lightbulbs with resistances R1 and R2. (b) The
circuit diagram for the two-resistor circuit. The current in R1 is the same as
that in R2. (c) The resistors are replaced with a single resistor having an
equivalent resistance Req � R1  R2.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 21.14 to adjust the
battery voltage and resistances R1 and R2 to see the effect on the currents and voltages in the individual
resistors.

ACTIVE FIGURE 21.14

If a piece of wire were used to connect points b and c in Active
Figure 21.14b, does the brightness of lightbulb R1 (a) increase, (b) decrease, or 
(c) remain the same?

QUICK QUIZ 21.5

With the switch in the circuit of Figure 21.15a closed, there is no cur-
rent in R2 because the current has an alternate zero-resistance path through the switch.
There is current in R1, and this current is measured with the ammeter (a device for
measuring current) at the right side of the circuit. If the switch is opened (Fig. 21.15b),
current exists in R2. What happens to the reading on the ammeter when the switch is
opened? (a) The reading goes up. (b) The reading goes down. (c) The reading does
not change.

QUICK QUIZ 21.6

LOCAL AND GLOBAL CHANGES A local
change in one part of a circuit may
result in a global change throughout
the circuit. For example, if a single
resistance is changed in a circuit
containing several resistors and bat-
teries, the currents in all resistors
and batteries, the terminal voltages
of all batteries, and the voltages
across all resistors may change as a
result.

� PITFALL PREVENTION 21.9

A

R1

(a)

R2 A

R1

(b)

R2

(Quick Quiz 21.6)
What happens when the switch is
opened?

FIGURE 21.15

10We will describe the end of the life of a lightbulb by saying that the filament fails rather than by saying
that the lightbulb “burns out.” The word burn suggests a combustion process, which is not what occurs
in a lightbulb. When a filament fails, it breaks, so that the bulb can no longer carry a current.
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Now consider two resistors connected in parallel as shown in Active Figure 21.16a.
In this case, the potential differences across the resistors are equal because each resis-
tor is connected directly across the battery terminals. The currents are generally not
the same, however. When the charges reach point a (called a junction) in the circuit
diagram in Active Figure 21.16b, the current splits into two parts, with I1 in R1 and I2
in R2. If R1 is greater than R2, then I1 is less than I2. Because charge must be con-
served, the current I that enters point a must equal the total current leaving point a:

I � I1  I2

Because the potential differences across the resistors are the same, I � �V/R gives

where Req is an equivalent single resistance that has the same effect on the circuit;
that is, it causes the same current in the battery (Active Fig. 21.16c). From this re-
sult, we see that the equivalent resistance of two resistors in parallel is given by

[21.28]

An extension of this analysis to three or more resistors in parallel yields the fol-
lowing general expression:

[21.29]

From this expression, it can be seen that the inverse of the equivalent resistance of
two or more resistors connected in parallel is the algebraic sum of the inverses of
the individual resistances, and the equivalent resistance is always less than the small-
est resistance in the group.

A circuit consisting of resistors can often be reduced to a simple circuit contain-
ing only one resistor. To do so, examine the initial circuit and replace any resistors
in series or any in parallel with equivalent resistances using Equations 21.27
and 21.29. Draw a sketch of the new circuit after these changes have been made.
Examine the new circuit and replace any new series or parallel combinations that

1
R eq

�
1

R1


1
R 2


1

R 3
  	 	 	

1
Req

�
1

R1


1
R2

I � I1  I2 �
�V
R1


�V
R 2

� �V � 1
R1


1

R 2
� �

�V
R eq
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(c)

I

∆V
+ –

b

(b)

I1

R1

R2

∆V
+ –

a

I
I2

+ –

(a)

R1

R2

Battery

∆V1 = ∆V2 = ∆V 

Req      R1    R2

1 1 1=        +

(a) A parallel connection of two light-
bulbs with resistances R1 and R2. 
(b) The circuit diagram for the two-
resistor circuit. The potential differ-
ence across R1 is the same as that
across R2. (c) The resistors are 
replaced with a single resistor having
an equivalent resistance given by
Equation 21.29.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 21.16 to adjust the bat-
tery voltage and resistances R1 and R2

to see the effect on the currents and
voltages in the individual resistors.

CURRENT DOES NOT TAKE THE PATH

OF LEAST RESISTANCE You may have
heard a phrase like “current takes
the path of least resistance.” This
wording is a reference to a parallel
combination of current paths such
that there are two or more paths for
the current to take. The phrase is
incorrect, however. The current
takes all paths. Those paths with
lower resistance will have large cur-
rents, but even very high-resistance
paths will carry some of the current.

� PITFALL PREVENTION 21.10

� Equivalent resistance of resistors
in parallel

ACTIVE FIGURE 21.16
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now exist. Continue this process until a single equivalent resistance is found for the
entire circuit. (That may not be possible; if not, see the techniques of Section 21.8.)

If the current in or the potential difference across a resistor in the initial circuit
is to be found, start with the final circuit and gradually work your way back through
the equivalent circuits. Find currents and voltages across resistors using �V � IR
and your understanding of series and parallel combinations.

Household circuits are always wired so that the electrical devices are connected
in parallel as in Active Figure 21.16a. In this manner, each device operates indepen-
dently of the others so that if one is switched off, the others remain on. For exam-
ple, if one of the lightbulbs in Active Figure 21.16a were removed from its socket,
the other would continue to operate. Equally important, each device operates on
the same voltage. If devices were connected in series, the voltage applied to the
combination would divide among the devices, so the voltage applied to any one de-
vice would depend on how many devices were in the combination.

In many household circuits, circuit breakers are used in series with other circuit
elements for safety purposes. A circuit breaker is designed to switch off and open the
circuit at some maximum current (typically 15 A or 20 A) whose value depends on
the nature of the circuit. If a circuit breaker were not used, excessive currents caused
by turning on many devices could result in excessive temperatures in wires and, per-
haps, cause a fire. In older home construction, fuses were used in place of circuit
breakers. When the current in a circuit exceeds some value, the conductor in a fuse
melts and opens the circuit. The disadvantage of fuses is that they are destroyed in
the process of opening the circuit, whereas circuit breakers can be reset.

RESISTORS IN SERIES AND IN PARALLEL ❚ 703
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With the switch in the circuit of Figure 21.17a open, no current exists
in R2. Current does exist in R1, and this current is measured with the ammeter at the
right side of the circuit. If the switch is closed (Fig. 21.17b), current exists in R2. What
happens to the reading on the ammeter when the switch is closed? (a) The reading goes
up. (b) The reading goes down. (c) The reading does not change.

QUICK QUIZ 21.7

(i) In Active Figure 21.14b, imagine that we add a third resistor in
series with the first two. Does the current in the battery (a) increase, (b) decrease, or
(c) remain the same? Does the terminal voltage of the battery (d) increase, (e) decrease,
or (f) remain the same? (ii) In Active Figure 21.16b, imagine that we add a third resistor
in parallel with the first two. Does the current in the battery (a) increase, (b) decrease, or
(c) remain the same? Does the terminal voltage of the battery (d) increase, (e) decrease,
or (f) remain the same?

QUICK QUIZ 21.8

(a)

A

R1

R2

(b)

A

R1

R2 (Quick Quiz 21.7)
What happens when the switch is
closed?

FIGURE 21.17

� Thinking Physics 21.4
Compare the brightnesses of the four identical lightbulbs in Figure 21.18. What
happens if bulb A fails so that it cannot conduct? What if bulb C fails? What if bulb
D fails ?

A B

C D

(Thinking
Physics 21.4) What happens to the
lightbulbs if one fails?

FIGURE 21.18



Reasoning Bulbs A and B are connected in series across the battery, whereas bulb C
is connected by itself. Therefore, the terminal voltage of the battery is split between
bulbs A and B. As a result, bulb C will be brighter than bulbs A and B, which should
be equally as bright as each other. Bulb D has a wire connected across it. Therefore,
there is no potential difference across bulb D and it does not glow at all. If bulb A
fails, bulb B goes out but bulb C stays lit. If bulb C fails, there is no effect on the
other bulbs. If bulb D fails, the event is undetectable because bulb D was not glow-
ing initially. �

� Thinking Physics 21.5
Figure 21.19 illustrates how a three-way lightbulb is constructed to provide three
levels of light intensity. The socket of the lamp is equipped with a three-way switch
for selecting different light intensities. The bulb contains two filaments. Why are
the filaments connected in parallel? Explain how the two filaments are used to pro-
vide three different light intensities.

Reasoning If the filaments were connected in series and one of them were to fail,
there would be no current in the bulb and the bulb would give no illumination, re-
gardless of the switch position. When the filaments are connected in parallel, how-
ever, and one of them (say the 75-W filament) fails, the bulb still operates in some
switch positions because there is current in the other (100-W) filament. The three
light intensities are made possible by selecting one of three values of filament resis-
tance, using a single value of 120 V for the applied voltage. The 75-W filament of-
fers one value of resistance, the 100-W filament offers a second value, and the third
resistance is obtained by combining the two filaments in parallel. When switch S1 is
closed and switch S2 is opened, only the 75-W filament carries current. When switch
S1 is open and switch S2 is closed, only the 100-W filament carries current. When
both switches are closed, both filaments carry current, and a total illumination cor-
responding to 175 W is obtained. �
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(Thinking
Physics 21.5) A three-way lightbulb.

FIGURE 21.19

Solution The circuit can be reduced in steps as shown
in Figure 21.20. The 8.0-� and 4.0-� resistors are in se-
ries, and so the equivalent resistance between a and b is
12.0 � (Eq. 21.27). The 6.0-� and 3.0-� resistors are in
parallel, so from Equation 21.29 we find that the equiv-
alent resistance from b to c is 2.0 �. Hence, the equiva-
lent resistance from a to c is .

What is the current in each resistor if a potential
difference of 42 V is maintained between a and c?

Solution Using �V � IR and the results from part A, we
have

The current I in the 8.0-� and 4.0-� resistors is the same
because the resistors are in series. At the junction at b,
the current splits. Part of it (I1) is in the 6.0-� resistor,
and part (I2) is in the 3.0-� resistor. Because the
potential differences �Vbc across these resistors are the
same (they are in parallel), we see that �Vbc � IR �
(6.0 �)I1 � (3.0 �)I2, or I2 � 2.0I1. Using this result and
that I1  I2 � 3.0 A, we find that I1 � and 
I2 � . We could have guessed this result by noting
that the current in the 3.0-� resistor has to be twice the

2.0 A
1.0 A

3.0 AI �
�Vac

Req
�

42 V
14.0 �

�

B

14.0 �

Find the Equivalent ResistanceEXAMPLE 21.7
Four resistors are connected as shown in Figure 21.20a.

Find the equivalent resistance between a and c.A

120 V

100-W filament

75-W filament

S1

S2

6.0 Ω

3.0 Ω

c
b

I1

I2

4.0 Ω8.0 Ω

a

c

2.0 Ω12.0 Ω

ba

14.0 Ω

ca

I
(a)

(b)

(c)

(Example 21.7) The four resistors shown in (a)
can be reduced in steps to an equivalent 14.0-�
resistor shown in (c).

FIGURE 21.20



KIRCHHOFF’S  RULES
As indicated in the preceding section, some simple circuits can be analyzed using
�V � IR and the rules for series and parallel combinations of resistors. Resistors,
however, can be connected so that the circuits formed cannot be reduced to a sin-
gle equivalent resistor. Consider the circuit in Figure 21.22, for example. If either
battery were removed from this circuit, the resistors could be combined with
the techniques of Section 21.7. With both batteries present, however, that cannot
be done.

The procedure for analyzing such circuits is greatly simplified by the use of two
simple rules called Kirchhoff ’s rules:

21.8
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As a final check, note that �Vbc � (6.0 �)I1 �
(3.0 �)I2 � 6.0 V and �Vab � (12.0 �)I � 36 V;
therefore, �Vac � �Vab  �Vbc � 42 V, as it must.

current in the 6.0-� resistor in view of their relative
resistances and that the same potential difference
appears across each of them.

Three Resistors in ParallelEXAMPLE 21.8INTERACTIVE

Calculate the power delivered to each resistor and
the total power delivered to the three resistors.

Solution Applying � � I 2R to each resistor gives

3.00-�: �1 � I1
2R1 � (6.00 A)2(3.00 �) �

6.00-�: �2 � I2
2R2 � (3.00 A)2(6.00 �) �

9.00-�: �3 � I3
2R3 � (2.00 A)2(9.00 �) �

which shows that the smallest resistor receives the most
power. You can also use � � (�V )2/R to find the power
delivered to each resistor. Summing the three quanti-
ties gives a total power of 198 W.

Calculate the equivalent resistance of the combina-
tion of three resistors.

Solution We can use Equation 21.29 to find R eq:

We can check this answer using the battery voltage and
the total current from part A:

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 21.8, you can
explore different configurations of the battery and resistors.

Req �
�V
Itot

�  
18.0 V

6.00 A  3.00 A  2.00 A
� 1.64 �

1.64 � Req �
18.0 �

11
�

1
Req

�
1

3.00 �


1
6.00 �


1

9.00 �
�

11
18.0 �

C

36.0 W

54.0 W

108 W

BThree resistors are connected in parallel as in Figure
21.21. A potential difference of 18.0 V is maintained
between points a and b.

Find the current in each resistor.A

Solution The resistors are in parallel, and the potential
difference across each is 18.0 V. Applying �V � IR to
each resistor gives

2.00 AI3 �
�V
R3

�
18.0 V
9.00 �

�

3.00 AI2 �
�V
R2

�
18.0 V
6.00 �

�

6.00 AI1 �
�V
R1

�
18.0 V
3.00 �

�

I1 I2 I3

I
a

b

18.0 V 3.00 Ω 6.00 Ω 9.00 Ω

(Interactive Example 21.8) Three resistors
connected in parallel. The voltage across each
resistor is 18.0 V.

FIGURE 21.21

14.0 V
e

b

4.0 Ω

– +

10.0 V 6.0 Ω

–+ f

I2

c

I3

I1

2.0 Ω
da

A circuit that can-
not be simplified by using the rules
for series and parallel resistors.

FIGURE 21.22
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• At any junction, the sum of the currents must equal zero:

This rule is often referred to as the junction rule. In Figure 21.22, there are
junctions at b and c.

• The sum of the potential differences across each element around any closed
circuit loop must be zero:

This rule is usually called the loop rule. In Figure 21.22, we can identify three
loops: abcda, aefda, and befcb.

Kirchhoff’s rules are generally used to determine the current in each element
in the circuit. In using these rules, we first draw the circuit diagram and assume 
a direction for the current in each device in the circuit. We draw an arrow
representing that direction next to the device and assign a symbol to each indepen-
dent current, such as I1, I2, and so on. Figure 21.22 shows the three different
currents that exist in this circuit. Keep in mind that currents in devices connected
in series are the same, so the currents in these devices will have the same assigned
symbol.

The junction rule is a statement of conservation of charge. The amount of
charge that enters a given point in a circuit in a time interval must also leave that
point in the same time interval because charge cannot build up or disappear at a
point. Currents with a direction into the junction are entered into the junction rule
as  I, whereas currents with a direction out of a junction are entered as �I. If we
apply the rule to the junction in Figure 21.23a, we have

I1 � I2 � I3 � 0

Figure 21.23b represents a hydraulic analog to this situation in which water flows
through a branched pipe with no leaks. The flow rate into the pipe equals the total
flow rate out of the two branches.

The loop rule is equivalent to the law of conservation of energy. Suppose a
charge moves around any closed loop in a circuit11 (the charge starts and ends at
the same point). In this case, the circuit must gain as much energy as it loses. In this
isolated system model for the system of the circuit, no energy is transferred across
the boundary of the system (ignoring energy transfer by radiation and heat into the
air from warm circuit elements), but energy transformations do occur within the
system. The energy of the circuit may decrease due to a potential drop � IR as a
charge moves through a resistor or as a result of having the charge move in the re-
verse direction through an emf. In the latter case, electric potential energy is con-
verted to chemical energy as the battery is charged. The potential energy increases
when the charge moves through a battery in the same direction as the emf.

Another approach to understanding the loop rule is to remember the definition
of a conservative force from Chapter 7. One of the mathematical behaviors of a
conservative force is that the work done by a such a force when a member of the
system moves around a closed path is zero. A loop in a circuit is a closed path. If we
imagine moving a charge around a loop, the total work done by the conservative
electric force must be zero. The total work is the sum of positive and negative works
as the charge passes through various circuit elements. Because work is related

�
loop

�V � 0

�
junction

I � 0
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Gustav Kirchhoff (1824 – 1887)
Kirchhoff, a professor at Heidelberg,
Germany, and Robert Bunsen
invented the spectroscope and
founded the science of spec-
troscopy, which led to atomic
spectra such as those seen in Chap-
ter 11. They discovered the elements
cesium and rubidium and invented
astronomical spectroscopy.
Kirchhoff formulated another
Kirchhoff ’s rule, namely,“a cool
substance will absorb light of the
same wavelengths that it emits
when hot.”
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(a)

I1

I2

I3

(b)

Flow in

Flow out

(a) A schematic
diagram illustrating Kirchhoff’s junc-
tion rule. Conservation of charge
requires that the sum of the currents
at a junction must equal zero. There-
fore, in this case, I1 � I2 � I3 � 0.
(b) A mechanical analog of the junc-
tion rule. Water does not accumulate
at the junction, so the amount of wa-
ter flowing out of the branches on the
right must equal the amount flowing
into the single branch on the left.

FIGURE 21.23

11Remember that this situation is not what happens; a charge might take hours to traverse a loop. In
terms of analyzing the circuit in terms of energy, however, we can build a mental model in which we
imagine taking a charge all the way around the circuit.



to potential energy changes and because potential energy changes are related to
potential differences (Eq. 20.3), that the sum of all the works is zero is equivalent
to the sum of all the potential differences being zero, which is Kirchhoff’s loop
rule.

As an aid in applying the loop rule, the following sign conventions are used. We
have already drawn arrows for currents on our diagram and have assigned symbols
to the currents to apply the junction rule. To set up the sign conventions, we
choose a direction around each loop that we imagine carrying a positive charge,
clockwise or counterclockwise. Therefore, for any device, there will be two direc-
tions that we need to consider, one for our chosen current and one for our chosen
travel through the device. The sign conventions for potential differences for resis-
tors and batteries based on these two directions are summarized in Figure 21.24,
where it is assumed that travel is from point a toward point b :

• If a resistor is traversed in the direction of the current, the potential difference
across the resistor is � IR (Fig. 21.24a).

• If a resistor is traversed in the direction opposite the current, the potential differ-
ence across the resistor is  IR (Figure 21.24b).

• If a source of emf is traversed in the direction of the emf (from � to  on the
terminals), the potential difference is  (Fig. 21.24c).

• If a source of emf is traversed in the direction opposite the emf (from  to � on
the terminals), the potential difference is � (Fig. 21.24d).

There are limitations on the use of the junction rule and the loop rule. You may
use the junction rule as often as needed, as long as each time you write an equation
you include in it a current that has not been used in a previous junction rule equa-
tion. In general, the number of times the junction rule can be used is one fewer
than the number of junction points in the circuit. The loop rule can be used as
often as needed, as long as a new circuit element (a resistor or battery) or a new
current appears in each new equation. In general, the number of independent
equations you need must equal the number of unknown currents to solve a particu-
lar circuit problem.

�

�
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(a)

I

a b∆V =  –IR

(b)

I

a b∆V =  +IR

(c)

ε
a b

∆V =  +ε
– +

(d)
a b

∆V =  –ε
–+

ε

ε

ε

Rules for deter-
mining the potential differences
across a resistor and a battery. (The
battery is assumed to have no internal
resistance.) Each circuit element is
traversed from a to b.

FIGURE 21.24

Kirchhoff’s RulesPROBLEM-SOLVING STRATEGY

The following procedure is recommended for solving problems
that involve circuits that cannot be reduced by the rules for
combining resistors in series or parallel.

1. Conceptualize Study the circuit diagram and make sure
that you recognize all elements in the circuit. Identify the polar-
ity of each battery and try to imagine the directions in which
the current would exist through the batteries.

2. Categorize Determine whether the circuit can be reduced
by means of combining series and parallel resistors. If so, use
the techniques of Section 21.7. If not, apply Kirchhoff’s rules
according to step 3 below.

3. Analyze Assign labels to all the known quantities and as-
sign symbols to all the unknown quantities. You must assign di-
rections to the currents in each part of the circuit. Although the
assignment of current directions is arbitrary, you must adhere

rigorously to the directions you assign when you apply Kirch-
hoff’s rules.

Apply the junction rule (Kirchhoff’s first rule) to all
junctions in the circuit except one. Now apply the loop rule
(Kirchhoff’s second rule) to as many loops in the circuit as are
needed to obtain, in combination with the equations from the
junction rule, as many equations as there are unknowns. To
apply this rule, you must choose a direction in which to travel
around the loop (either clockwise or counterclockwise) and
correctly identify the change in potential as you cross each
element. Watch out for signs!

Solve the equations simultaneously for the unknown
quantities.

4. Finalize Check your numerical answers for consistency. Do
not be alarmed if any of the resulting currents have a negative
value; if so, you have guessed the direction of that current in-
correctly, but its magnitude will be correct.



RC CIRCUITS
So far, we have been concerned with circuits with constant currents, or steady-state
circuits. We now consider circuits containing capacitors in which the currents may
vary in time.

Charging a Capacitor
Consider the series circuit shown in Active Figure 21.25a. Let us assume that the
capacitor is initially uncharged. No current exists when switch S is open (Active
Fig. 21.25b). If the switch is thrown closed at t � 0, charges begin to flow, setting up
a current in the circuit,12 and the capacitor begins to charge (Active Fig. 21.25c).
Note that during the charging, charges do not jump across the plates of the capaci-
tor because the gap between the plates represents an open circuit. Instead, due to
the electric field in the wires established by the battery, electrons move into the top
plate from the wires and out of the bottom plate into the wires until the capacitor is

21.9

708 ❚ CHAPTER 21 CURRENT AND DIRECT CURRENT CIRCUITS

y g p pp

Applying Kirchhoff’s RulesEXAMPLE 21.9INTERACTIVE

Dividing each term in (3) by 2 and rearranging the
equation gives

�12.0 � � 3.0I1  2.0I2 (5)

Subtracting (5) from (4) eliminates I2, giving

22.0 � 11.0I1

I1 � 2.0 A

Using this value of I1 in (5) gives a value for I2:

2.0I2 � 3.0I1 � 12.0 � 3.0(2.0) � 12.0 � � 6.0

I2 � � 3.0 A

Finally, I3 � I1  I2 � �1.0 A. Hence, the currents
have the values

I1 � I2 � I3 �

That I2 and I3 are negative indicates only that we chose
the wrong directions for these currents. The numerical
values, however, are correct.

Find the potential difference between points b
and c.

Solution In traversing the path from b to c along the
central branch, we have

Vc � Vb �  10.0 V � (6.0 �)I1

�  10.0 V� (6.0 �)(2.0 A) �

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 21.9, you
can practice applying Kirchhoff’s rules.

�2.0 V

B

�1.0 A�3.0 A2.0 A

Find the currents I1, I2, and I3 in the circuit shown
in Figure 21.22.

Solution We choose the directions of the currents as in
Figure 21.22. Applying Kirchhoff’s first rule to junction
c gives

(1) I1  I2 � I3 � 0

There are three loops in the circuit: abcda, befcb, and
aefda (the outer loop). We need only two loop equa-
tions to determine the unknown currents. The third
loop equation would give no new information.
Applying Kirchhoff’s second rule to loops abcda and
befcb and traversing these loops in the clockwise
direction, we obtain the expressions

(2) Loop abcda : 10.0 V � (6.0 �)I1 � (2.0 �)I3 � 0 

(3) Loop befcb : �14.0 V � 10.0 V  (6.0 �)I1
� (4.0 �)I2 � 0

Note that in loop befcb, a positive sign is obtained when
traversing the 6.0-� resistor because the direction of
the path is opposite the direction of I1. Loop aefda
gives �14.0 V � (2.0 �)I3 � (4.0 �)I2 � 0, which is
just the sum of (2) and (3).

Expressions (1), (2), and (3) represent three
independent equations with three unknowns. We can
solve the problem as follows. Dropping the units for
simplicity and substituting I3 from (1) into (2) gives

10.0 � 6.0I1 � 2.0(I1  I2) � 0

10.0 � 8.0I1  2.0I2 (4)

A

12By “a current in the circuit,” we mean current in all parts of the circuit except for the region between
the plates of the capacitor.
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fully charged. The value of the maximum charge depends on the emf of the bat-
tery. Once the maximum charge is reached, the current in the circuit is zero.

To put this discussion on a quantitative basis, let us apply Kirchhoff’s second
rule to the circuit after the switch is closed. In our sign conventions, we did not
specify a convention for the potential difference across a capacitor. From our study
of capacitors in Chapter 20, however, it should be clear that carrying a positive
charge across a capacitor from � to  would represent an increase in potential en-
ergy for the circuit, a positive potential difference. Traversing the capacitor in the
opposite direction would correspond to a decrease in potential energy, a negative
potential difference.

Choosing clockwise as our direction around the circuit in Active Figure 21.25
and applying the sign convention for capacitors that we have just discussed, we
have

[21.30]

where �q/C is the potential difference across the capacitor and �IR is the poten-
tial difference across the resistor consistent with our direction of travel. Note that q
and I are instantaneous values of the charge and current, respectively, as the capaci-
tor is charged.

We can use Equation 21.30 to find the initial current in the circuit and the maxi-
mum charge on the capacitor. At t � 0, when the switch is closed, the charge on the
capacitor is zero, and from Equation 21.30, we find that the initial current in the
circuit I0 is a maximum and equal to

[21.31]

At this time, the potential difference is entirely across the resistor. Later, when the
capacitor is charged to its maximum value Q , charges cease to flow, the current in
the circuit is zero, and the potential difference is entirely across the capacitor. Sub-
stituting I � 0 into Equation 21.30 yields the following expression for Q :

Q � C (maximum charge) [21.32]

To determine analytical expressions for the time dependence of the charge and
current, we must solve Equation 21.30. To do so, let us substitute I � dq/dt and re-
arrange the equation:

dq
dt

�
�
R

�
q

RC
�

C� � q
RC

�

I0 �
�
R

� �
q
C

� IR � 0
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+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

(a) A capacitor in series with a re-
sistor, switch, and battery. (b) Cir-
cuit diagram representing this 
system at time t � 0, before the
switch is closed. (c) Circuit dia-
gram at time t � 0, after the switch
has been closed.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 21.25 to
adjust the values of R and C to see
the effect on the charging of the
capacitor.

ACTIVE FIGURE 21.25
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This expression is a differential equation whose solution is the time-dependent
charge on the capacitor. An expression for q may be found in the following way. We
rearrange the equation by placing terms involving q on the left side and those in-
volving t on the right side. Then we integrate both sides from the moment when
the switch is closed to an arbitrary later instant:

Using the definition of the natural logarithm, we can solve this expression for the
charge on the capacitor as a function of time:

q(t) � C [1 � e�t/RC] � Q [1 � e�t/RC] [21.33]

where e is the base of the natural logarithm (not the charge on the electron!) and
Q � C is the maximum charge on the capacitor.

An expression for the current as a function of time may be found by differentiat-
ing Equation 21.33 with respect to time. Using I � dq/dt, we obtain

[21.34]

where /R is the initial current in the circuit.
Plots of charge and current versus time are shown in Figure 21.26. Note

that the charge is zero at t � 0 and approaches the maximum value of C as t : �
(Fig. 21.26a). Furthermore, the current has its maximum value of I0 � /R at t � 0
and decays exponentially to zero as t : � (Fig. 21.26b). The quantity RC that ap-
pears in the exponential of Equations 21.33 and 21.34 is called the time constant �
of the circuit. It represents the time interval during which the current decreases to
1/e of its initial value; that is, at the end of the time interval �, I � e�1 I0 � 0.368I0.
After the time interval 2�, I � e�2I0 � 0.135I0, and so forth. Likewise, in a time in-
terval � the charge increases from zero to C [1 � e�1] � 0.632C .

The energy decrease of the battery during the charging process is the product
of the total charge and the emf, Q � C 2. After the capacitor is fully charged,
the energy stored in it is , which is just half the energy decrease of the
battery. It is left to an end-of-chapter problem to show that the remaining half of
the energy supplied by the battery appears as internal energy in the resistor (Prob-
lem 21.58).

Discharging a Capacitor
Now consider the circuit in Active Figure 21.27, consisting of a capacitor with an
initial charge Q , a resistor, and a switch. When the switch is open (Active Fig.
21.27a), a potential difference of Q /C exists across the capacitor and zero potential
difference exists across the resistor because I � 0. If the switch is thrown closed at
t � 0, the capacitor begins to discharge through the resistor. At some time during
the discharge, the current in the circuit is I and the charge on the capacitor is q
(Active Fig. 21.27b).

The circuit of Active Figure 21.27 is the same as the circuit of Active Figure
21.25 except for the absence of the battery. Therefore, we modify the Kirchhoff’s

1
2Q� � 1

2C�2
��

��

�
�

�

I(t) �
�
R

 e�t/RC

�

�

q � C�
� C� 

� e�t/RC

 ln � q � C�
�C� � � � 

t
RC

 �q

0
 

dq
(q � C�)

� � 
1

RC
 �t

0
 dt

 
dq

(q � C�)
� � 

1
RC

 dt
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� Charge versus time for a
charging capacitor

q

�
t

C

0.632C

(a)

I

�
t

0.368I0

(b)

I0 I0 =
R

ε

ε

ε

=RC�

(a) Plot of capaci-
tor charge versus time for the circuit
shown in Active Figure 21.25. After a
time interval equal to one time con-
stant � has passed, the charge is 63.2%
of the maximum value C . The
charge approaches its maximum value
as t approaches infinity. (b) Plot of
current versus time for the RC circuit
shown in Active Figure 21.25. The
current has its maximum value 
I0 � /R at t � 0 and decays to zero
exponentially as t approaches infinity.
After a time interval equal to one time
constant � has passed, the current is
36.8% of its initial value.

�

�

FIGURE 21.26



rule expression in Equation 21.30 by dropping the emf from the equation:

[21.35]

Because I � dq/dt, Equation 21.35 becomes

In I � dq/dt, dq is negative, because the charge on the discharging capacitor is de-
creasing; therefore, I has a negative value. This is indicated in Active Figure 21.27
by the reversal of the current arrow compared to Active Figure 21.25. Furthermore,
in Equation 21.37 below, the current will come out to have an explicit negative
value. Integrating this expression from the moment the switch is closed, at which
time q � Q , to an arbitrary later instant gives

[21.36]

Differentiating Equation 21.36 with respect to time gives the current as a function
of time:

[21.37]

where the initial current is I0 � Q/RC. Therefore, we see that both the charge on
the capacitor and the current decay exponentially at a rate characterized by the
time constant � � RC. The negative sign in Equation 21.37 indicates the direction
of the current, which is opposite to the direction during the charging process.

I(t) �
dq
dt

� �I0e�t/RC

 q(t) � Qe�t/RC

 ln � q
Q � � � 

t
RC

 �q

Q
 
dq
q

� � 
1

RC
�t

0
 dt

 
dq
q

� � 
1

RC
 dt

 � R 
dq
dt

�
q
C

� 
q
C

� IR � 0
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(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)

t > 0

(a) A charged capacitor connected to
a resistor and a switch, which is open
for t � 0. (b) After the switch is closed
at t � 0, a current that decreases in
magnitude with time is set up in the
direction shown and the charge on
the capacitor decreases exponentially
with time.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 21.27 to adjust the
values of R and C to see the effect on
the discharging of the capacitor.

ACTIVE FIGURE 21.27

Consider the circuit in Active Figure 21.25a and assume that the
battery has no internal resistance. (i) Just after the switch is closed, the potential differ-
ence across which of the following is equal to the emf of the battery? (a) C (b) R
(c) neither C nor R (ii) After a very long time, the potential difference across which of
the following is equal to the emf of the battery? (a) C (b) R (c) neither C nor R

QUICK QUIZ 21.9

� Thinking Physics 21.6
Many roadway construction sites have flashing yellow lights to warn motorists of
possible dangers. What causes the lightbulbs to flash?

Reasoning A typical circuit for such a flasher is shown in Figure 21.28. The lamp L is
a gas-filled lamp that acts as an open circuit until a large potential difference causes
an electrical discharge in the gas, which gives off a bright light. During this discharge,
charges flow through the gas between the electrodes of the lamp. After switch S is
closed, the battery charges up the capacitor of capacitance C. At the beginning, the
current is high and the charge on the capacitor is low, so most of the potential differ-
ence appears across the resistance R . As the capacitor charges, more potential differ-
ence appears across it, reflecting the lower current and therefore lower potential
difference across the resistor. Eventually, the potential difference across the capacitor
reaches a value at which the lamp will conduct, causing a flash. This discharges the
capacitor through the lamp and the process of charging begins again. The period
between flashes can be adjusted by changing the time constant of the RC circuit. �

ε

R

C L

S

(Thinking Physics
21.6) The RC circuit in a roadway
construction flasher. When the switch
is closed, the charge on the capacitor
increases until the voltage across the
capacitor (and across the flash lamp)
is high enough for the lamp to flash,
discharging the capacitor.

FIGURE 21.28
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CONTEXT 
connectionTHE  ATMOSPHERE  AS  A  CONDUCTOR

When discussing capacitors with air between the plates in Chapter 20, we adopted
the simplification model that air was a perfect insulator. Although that was a good
model for typical potential differences encountered in capacitors, we know that it
is possible for a current to exist in air. Lightning is a dramatic example of this
possibility, but a more mundane example is the common spark that you might re-

21.10
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Q � C � (32.0 � 10�6 F)(5 000 V) � .
The maximum current in the circuit is 
I0 � /R � (5 000 V)/(47.0 � 103 �) � . 
Using these values and Equations 21.33 and 21.34, we
find that

q(t) �

I(t) �

Find the energy stored in the capacitor when it is
fully charged.

Solution Using Equation 20.30, we have

Note that the time constant � of 1.50 s means that
several seconds are required until the capacitor is close
to fully charged. Therefore, after an unsuccessful at-
tempt to defibrillate a patient’s heart by delivering the
stored energy to the chest, the emergency personnel
must wait several seconds for the capacitor to charge
before trying again.

400 JU � 1
2C(�V )2 � 1

2(32.0 � 10�6 C)(5  000 V)2 �

B

(0.106 A) e�t/1.50

(0.160 C) [1 � e�t/1.50]

0.106 A�

0.160 C�
Charging a DefibrillatorEXAMPLE 21.10

A defibrillator (see Fig. P20.48 on page 678) can store
energy in the electric field of a large capacitor. Under
the proper conditions, the defibrillator can be used to
stop cardiac fibrillation (random contractions) in heart
attack victims. When fibrillation occurs, the heart pro-
duces a rapid, irregular pattern of beats. A fast dis-
charge of energy through the heart can return the
organ to its normal beat pattern. Emergency medical
teams use portable defibrillators that contain batteries
capable of charging a capacitor to a high voltage.

Consider the following parameters for the RC circuit
in a defibrillator: C � 32.0 �F and R � 47.0 k�. The
circuitry in the charging system applies 5 000 V to the
RC circuit to charge it.

Find the time constant of the circuit, the maxi-
mum charge on the capacitor, the maximum current in
the circuit during the charging process, and the charge
and current as a function of time.

Solution The time constant of the circuit is 
� � RC � (47.0 � 103 �)(32.0 � 10�6 F) � .
The maximum charge on the capacitor is 

1.50 s

A

The energy stored in the capacitor decreases with
time as it discharges. After how many time constants
is this stored energy one fourth of its initial value?

Solution Using Equations 20.30 and 21.36, we can ex-
press the energy stored in the capacitor at any time t as

where U0 is the initial energy stored in the capacitor.
Similar to part A, we now set U � U0/4 and solve for t :

Again, taking the natural logarithm of both sides and
solving for t gives

0.693RCt � 1
2 RC ln 4 �

 14 � e�2t/RC

1
4U0 � U0e�2t/RC

U �
q2

2C
�

Q2

2C
e�2t/RC � U0e�2t/RC

B
Discharging a Capacitor in an RC CircuitEXAMPLE 21.11

Consider a capacitor C being discharged through a
resistor R as in Active Figure 21.27.

After how many time constants is the charge on
the capacitor one fourth of its initial value?

Solution The charge on the capacitor varies with time
according to Equation 21.36, q(t) � Qe�t/RC. To find
the time at which the charge q has dropped to one
fourth of its initial value, we substitute q(t) � Q /4 into
this expression and solve for t :

Taking the natural logarithm of both sides, we find that

1.39RCt � RC ln 4 �

 � ln 4 � � 
t

RC

 14 � e�t/RC

1
4Q � Qe�t/RC

A



ceive upon bringing your finger near a doorknob after rubbing your feet across a
carpet.

Let us analyze the process that occurs in electrical discharge, which is the same for
lightning and the doorknob spark except for the size of the current. Whenever a
strong electric field exists in air, it is possible for the air to undergo electrical break-
down in which the effective resistivity of the air drops dramatically and the air be-
comes a conductor. At any given time, due to cosmic ray collisions and other events,
air contains a number of ionized molecules (Fig. 21.29a). For a relatively weak elec-
tric field, such as the fair-weather electric field, these ions and freed electrons acceler-
ate slowly due to the electric force. They collide with other molecules with no effect
and eventually neutralize as a freed electron ultimately finds an ion and combines
with it. In a strong electric field such as that associated with a thunderstorm, however,
the freed electrons can accelerate to very high speeds (Fig. 21.29b) before making a
collision with a molecule (Fig. 21.29c). If the field is strong enough, the electron may
have enough energy to ionize the molecule in this collision (Fig. 21.29d). Now there
are two electrons to be accelerated by the field, and each can strike another molecule
at high speed (Fig. 21.29e). The result is a very rapid increase in the number of
charge carriers available in the air and a corresponding decrease in resistance of the
air. Therefore, there can be a large current in the air that tends to neutralize the
charges that established the initial potential difference, such as the charges in the
cloud and on the ground. When that happens, we have lightning.

Typical currents during lightning strikes can be very high. While the stepped
leader is making its way toward the ground, the current is relatively modest, in the
range of 200 to 300 A. This current is large compared with typical household cur-
rents but small compared with peak currents in lightning discharges. Once the con-
nection is made between the stepped leader and the return stroke, the current rises
rapidly to a typical value of 5 � 104 A. Considering that typical potential differences
between cloud and ground in a thunderstorm can be measured in hundreds of
thousands of volts, the power during a lightning stroke is measured in billions of
watts. Much of the energy in the stroke is delivered to the air, resulting in a rapid
temperature increase and the resultant flash of light and sound of thunder.

Even in the absence of a thundercloud, there is a flow of charge through the air.
The ions in the air make the air a conductor, although not a very good one. Atmos-
pheric measurements indicate a typical potential difference across our atmospheric
capacitor (Section 20.11) of about 3 � 105 V. As we shall show in the Context 6
Conclusion, the total resistance of the air between the plates in the atmospheric ca-
pacitor is about 300 �. Therefore, the average fair-weather current in the air is

A number of simplifying assumptions were made in these calculations, but this
result is on the right order of magnitude for the global current. Although the result
might seem surprisingly large, remember that this current is spread out over the en-
tire surface area of the Earth. Therefore, the average fair-weather current density is

In comparison, the current density in a lightning strike is on the order of 105 A/m2.
The fair-weather current and the lightning current are in opposite directions.

The fair-weather current delivers positive charge to the ground, whereas lightning
delivers negative charge. These two effects are in balance,13 which is the principle
that we shall use to estimate the average number of lightning strikes on the Earth in
the Context Conclusion.

J �
I
A

�
I

4�r 2 �
1 � 103 A

4�(6.4 � 106 m)2 � 2 � 10�12 A/m2

I �
�V
R

�
3 � 105 V

300 �
� 1 � 103 A
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E

E
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(a)

(b)

(c)

(d)

(e)

The anatomy of a
spark. (a) A molecule is ionized as a
result of a random event. (b) The ion
accelerates slowly and the electron
accelerates rapidly due to the force
from the electric field. (c) The
accelerated electron approaches
another molecule at high speed.
(d) The new molecule is ionized, and
the original electron and the new
electron accelerate rapidly. (e) These
electrons approach other molecules,
freeing two more electrons, and an
avalanche of ionization proceeds.

FIGURE 21.29

13There are a number of other effects, too, but we will adopt a simplification model in which these are
the only two effects. For more information, see E. A. Bering, A. A. Few, and J. R. Benbrook, “The
Global Electric Circuit,” Physics Today, October 1998, pp. 24–30.
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Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The electric current I in a conductor is defined as

[21.2]

where dQ is the charge that passes through a cross-section of
the conductor in the time interval dt. The SI unit of current is
the ampere (A); 1 A � 1 C/s.

The current in a conductor is related to the motion of the
charge carriers through the relationship

Iavg � nqvdA [21.4]

where n is the density of charge carriers, q is their charge, vd
is the drift speed, and A is the cross-sectional area of the
conductor.

The resistance R of a conductor is defined as the ratio of the
potential difference across the conductor to the current:

[21.6]

The SI units of resistance are volts per ampere, defined as
ohms (�); 1 � � 1 V/A.

If the resistance is independent of the applied voltage, the
conductor obeys Ohm’s law, and conductors that have a constant
resistance over a wide range of voltages are said to be ohmic.

If a conductor has a uniform cross-sectional area A and a
length �, its resistance is

[21.8]

where � is called the resistivity of the material from which the
conductor is made. The inverse of the resistivity is defined as
the conductivity � � 1/�.

The resistivity of a conductor varies with temperature in an
approximately linear fashion; that is,

� � �0[1  �(T � T0)] [21.10]

where �0 is the resistivity at some reference temperature T0 and
� is the temperature coefficient of resistivity.

In a classical model of electronic conduction in a metal, the
electrons are treated as molecules of a gas. In the absence of an
electric field, the average velocity of the electrons is zero. When
an electric field is applied, the electrons move (on the average)
with a drift velocity , which is opposite the electric field:

[21.15]

where � is the average time interval between collisions with the
atoms of the metal. The resistivity of the material according to
this model is

[21.18]

where n is the number of free electrons per unit volume.

� �
me

ne2�

v:d �
�e E

:

me
 �

v:d

R � � 
�

A

R � 
�V
I

I � 
dQ
dt

If a potential difference �V is maintained across a circuit ele-
ment, the power, or the rate at which energy is delivered to the
circuit element, is

[21.20]

Because the potential difference across a resistor is �V � IR , we
can express the power delivered to a resistor in the form

[21.21]

The emf of a battery is the voltage across its terminals when
the current is zero. Because of the voltage drop across the in-
ternal resistance r of a battery, the terminal voltage of the bat-
tery is less than the emf when a current exists in the battery.

The equivalent resistance of a set of resistors connected in
series is

Req � R1  R 2  R3  	 	 	 [21.27]

The equivalent resistance of a set of resistors connected in
parallel is given by

[21.29]

Circuits involving more than one loop are analyzed using
two simple rules called Kirchhoff’s rules:

• At any junction, the sum of the currents must equal zero:

• The sum of the potential differences across each element
around any closed circuit loop must be zero:

For the junction rule, current in a direction into a junction is
 I, whereas current with a direction away from a junction is � I.

For the loop rule, when a resistor is traversed in the direc-
tion of the current, the change in potential �V across the resis-
tor is � IR . If a resistor is traversed in the direction opposite
the current, �V �  IR .

If a source of emf is traversed in the direction of the emf
(negative to positive), the change in potential is  . If it is tra-
versed opposite the emf (positive to negative), the change in
potential is � .

If a capacitor is charged with a battery of emf through a
resistance R , the charge on the capacitor and the current in
the circuit vary in time according to the expressions

q(t) � Q[1 � e�t/RC] [21.33]

[21.34]

where Q � C is the maximum charge on the capacitor. The
product RC is called the time constant of the circuit.

If a charged capacitor is discharged through a resistance R ,
the charge and current decrease exponentially in time accord-
ing to the expressions

�

 I(t) �
�
R

 e�t/RC

�
�

�

�
loop

 �V � 0

�
junction

I � 0

1
R eq

�
1

R1


1
R 2


1

R3
  	 	 	

� � I 2R �
(�V )2

R

� � I �V
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[21.36]

[21.37] I(t) � � I0e�t/RC

 q(t) � Qe�t/RC where I0 � Q /RC is the initial current in the circuit and Q is
the initial charge on the capacitor.

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. In an analogy between electric current and automobile
traffic flow, what would correspond to charge? What would
correspond to current?

2. What factors affect the resistance of a conductor?

Two wires A and B of circular cross-section are made of the
same metal and have equal lengths, but the resistance of
wire A is three times greater than that of wire B. What is
the ratio of their cross-sectional areas? How do their radii
compare?

4. What would happen to the drift velocity of the electrons in
a wire and to the current in the wire if the electrons could
move freely without resistance through the wire?

Use the atomic theory of matter to explain why the
resistance of a material should increase as its temperature
increases.

6. Explain how a current can persist in a superconductor
without any applied voltage.

If charges flow very slowly through a metal, why does it not
require several hours for a light to come on when you
throw a switch?

8. Two lightbulbs both operate from 120 V. One has a power
of 25 W and the other 100 W. Which lightbulb has higher
resistance? Which lightbulb carries more current?

9. Car batteries are often rated in ampere-hours. Does this
rating designate the amount of current, power, energy, or
charge that can be drawn from the battery?

10. When resistors are connected in series, which of the follow-
ing would be the same for each resistor: potential differ-
ence, current, power?

11. When resistors are connected in parallel, which of the
following would be the same for each resistor: potential
difference, current, power?

12. A short circuit is a path of very low resistance in a circuit in
parallel with some other part of the circuit. Discuss the ef-
fect of the short circuit on the portion of the circuit it par-
allels. Use a lamp with a frayed cord as an example.

Why is it possible for a bird to sit on a high-voltage wire
without being electrocuted?

14. If electric power is transmitted over long distances, the re-
sistance of the wires becomes significant. Why? Which
method of transmission would result in less energy wasted:
high current and low voltage or low current and high volt-
age? Explain your answer.

Referring to Figure Q21.15, describe what happens to the
lightbulb after the switch is closed. Assume that the capaci-
tor has a large capacitance and is initially uncharged, and

15.

13.

7.

5.

3.

assume that the lightbulb illuminates when connected
directly across the battery terminals.

Switch
Battery
+ –

C

FIGURE Q21.15

16. Are the two headlights of a car wired in series or in paral-
lel? How can you tell? 

17. Embodied in Kirchhoff’s rules are two conservation laws.
What are they?

18. Figure Q21.18 shows a series combination of three light-
bulbs, each rated at 120 V. From top to bottom, their
power ratings are 60 W, 75 W, and 200 W. Why is the 60-W
bulb the brightest and the 200-W bulb the dimmest?
Which bulb has the greatest resistance? How would their
intensities differ if they were connected in parallel?

FIGURE Q21.18
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19. A student claims that the second lightbulb in series is less
bright than the first because the first lightbulb uses up some
of the current. How would you respond to this statement?

20. So that your grandmother can listen to A Prairie Home Com-
panion, you take her bedside radio to the hospital where
she is staying. You are required to have a maintenance
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worker test it for electrical safety. Finding that it develops
120 V on one of its knobs, he does not let you take it up to
your grandmother’s room. She complains that she has had
the radio for many years and that nobody has ever gotten a
shock from it. You end up having to buy a new plastic ra-
dio. Is that fair? Will the old radio be safe back in her bed-
room?

21. A series circuit consists of three identical lamps connected
to a battery as shown in Figure Q21.21. When the switch S
is closed, what happens (a) to the intensities of lamps A
and B, (b) to the intensity of lamp C, (c) to the current in
the circuit, and (d) to the voltage across the three lamps?
(e) Does the power delivered to the circuit increase, de-
crease, or remain the same?

22. A ski resort consists of a few chairlifts and several intercon-
nected downhill runs on the side of a mountain, with a
lodge at the bottom. The chairlifts are analogous to batter-
ies, and the runs are analogous to resistors. Describe how
two runs can be in series. Describe how three runs can be
in parallel. Sketch a junction of one chairlift and two runs.

State Kirchhoff’s junction rule for ski resorts. One of the
skiers happens to be carrying a sky-diver’s altimeter. She
never takes the same set of chairlifts and runs twice, but
keeps passing you at the fixed location where you are work-
ing. State Kirchhoff’s loop rule for ski resorts.

A

S

B C

ε

FIGURE Q21.21

PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 21.1 � Electric Current
1. In a particular cathode-ray tube, the measured beam cur-

rent is 30.0 �A. How many electrons strike the tube screen
every 40.0 s?

2. A small sphere that carries a charge q is whirled in a circle
at the end of an insulating string. The angular frequency
of revolution is �. What average current does this revolving
charge represent?

Suppose the current in a conductor de-
creases exponentially with time according to the equation
I(t) � I0e�t/�, where I0 is the initial current (at t � 0) and �
is a constant having dimensions of time. Consider a fixed
observation point within the conductor. (a) How much
charge passes this point between t � 0 and t � �? (b) How
much charge passes this point between t � 0 and t � 10�?
(c) How much charge passes this point between t � 0 and
t � �?

4. The quantity of charge q (in coulombs) that has passed
through a surface of area 2.00 cm2 varies with time accord-
ing to the equation q � 4t3  5t  6, where t is in seconds.
(a) What is the instantaneous current across the surface at
t � 1.00 s? (b) What is the value of the current density?

3.

5. An aluminum wire having a cross-sectional area of 
4.00 � 10�6 m2 carries a current of 5.00 A. Find the drift
speed of the electrons in the wire. The density of alu-
minum is 2.70 g/cm3. Assume that one conduction elec-
tron is supplied by each atom.

Section 21.2 � Resistance and Ohm’s Law
6. A lightbulb has a resistance of 240 � when operating with

a potential difference of 120 V across it. What is the cur-
rent in the lightbulb?

A 0.900-V potential difference is main-
tained across a 1.50-m length of tungsten wire that has a
cross-sectional area of 0.600 mm2. What is the current in
the wire?

8. Suppose you wish to fabricate a uniform wire out of 1.00 g
of copper. If the wire is to have a resistance of R � 0.500 �
and if all the copper is to be used, what will be (a) the
length and (b) the diameter of this wire?

An aluminum wire with a diameter of 0.100 mm has a uni-
form electric field of 0.200 V/m imposed along its entire
length. The temperature of the wire is 50.0
C. Assume one
free electron per atom. (a) Use the information in Table
21.1 and determine the resistivity. (b) What is the current
density in the wire? (c) What is the total current in the
wire? (d) What is the drift speed of the conduction elec-
trons? (e) What potential difference must exist between
the ends of a 2.00-m length of the wire to produce the
stated electric field?

10. While taking photographs in Death Valley on a day when
the temperature is 58.0
C, Bill Hiker finds that a certain
voltage applied to a copper wire produces a current of
1.000 A. Bill then travels to Antarctica and applies the

9.

7.

www.pop4e.com
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same voltage to the same wire. What current does he regis-
ter there if the temperature is � 88.0
C? Assume that no
change occurs in the wire’s shape and size.

11. Review problem. An aluminum rod has a resistance of
1.234 � at 20.0
C. Calculate the resistance of the rod at
120
C by accounting for the changes in both the resistivity
and the dimensions of the rod.

Section 21.4 � A Structural Model for Electrical 
Conduction

12. If the current carried by a conductor is doubled, what hap-
pens to (a) the charge carrier density, (b) the current den-
sity, (c) the electron drift velocity, and (d) the average time
interval between collisions?

If the magnitude of the drift velocity of free electrons in a
copper wire is 7.84 � 10�4 m/s, what is the electric field in
the conductor?

Section 21.5 � Electric Energy and Power
14. A toaster is rated at 600 W when connected to a 120-V

source. What current does the toaster carry, and what is its
resistance?

15. In a hydroelectric installation, a turbine delivers 1 500 hp
to a generator, which in turn transfers 80.0% of the me-
chanical energy out by electrical transmission. Under these
conditions, what current does the generator deliver at a
terminal potential difference of 2 000 V?

16. One rechargeable battery of mass 15.0 g delivers to a CD
player an average current of 18.0 mA at 1.60 V for 2.40 h
before the battery needs to be recharged. The recharger
maintains a potential difference of 2.30 V across the bat-
tery and delivers a charging current of 13.5 mA for 4.20 h.
(a) What is the efficiency of the battery as an energy stor-
age device? (b) How much internal energy is produced in
the battery during one charge–discharge cycle? (c) If the
battery is surrounded by ideal thermal insulation and has
an overall effective specific heat of 975 J/kg 	 
 C, by how
much will its temperature increase during the cycle?

Suppose a voltage surge produces 140 V for a moment. By
what percentage does the power output of a 120-V, 100-W
lightbulb increase? Assume that its resistance does not
change.

18. An 11.0-W energy-efficient fluorescent lamp is designed to
produce the same illumination as a conventional 40.0-W
incandescent lightbulb. How much money does the user
of the energy-efficient lamp save during 100 h of use? As-
sume a cost of $0.080 0/kWh for energy from the electric
company.

A certain toaster has a heating element made of Nichrome
wire. When the toaster is first connected to a 120-V source
(and the wire is at a temperature of 20.0
C), the initial cur-
rent is 1.80 A. The current begins to decrease as the heat-
ing element warms up, however. When the toaster reaches
its final operating temperature, the current drops to
1.53 A. (a) Find the power delivered to the toaster when it
is at its operating temperature. (b) What is the final tem-
perature of the heating element?

19.

17.

13.

20. We estimate that 270 million plug-in electric clocks are in
the United States, approximately one clock for each per-
son. The clocks convert energy at the average rate 2.50 W.
To supply this energy, how many metric tons of coal are
burned per hour in coal-fired electric generating plants
that are, on average, 25.0% efficient? The heat of combus-
tion for coal is 33.0 MJ/kg.

21. The cost of electricity varies widely through the United
States; $0.120/kWh is one typical value. At this unit price,
calculate the cost of (a) leaving a 40.0-W porch light on for
two weeks while you are on vacation, (b) making a piece of
dark toast in 3.00 min with a 970-W toaster, and (c) drying
a load of clothes in 40.0 min in a 5 200-W dryer.

22. An office worker uses an immersion heater to warm 250 g of
water in a light, covered insulated cup from 20
C to 100
C
in 4.00 min. In electrical terms, the heater is a Nichrome re-
sistance wire connected to a 120-V power supply. Specify a
diameter and a length that the wire can have. Can it be
made from less than 0.5 cm3 of Nichrome? You may assume
that the wire is at 100
C throughout the time interval.

An electric car is designed to run off a bank of 12.0-V bat-
teries with total energy storage of 2.00 � 107 J. (a) If the
electric motor draws 8.00 kW, what is the current delivered
to the motor? (b) If the electric motor draws 8.00 kW as
the car moves at a steady speed of 20.0 m/s, how far will
the car travel before it is “out of juice”?

24. Make an order-of-magnitude estimate of the cost of one per-
son’s routine use of a hair dryer for 1 yr. If you do not use a
hair dryer yourself, observe or interview someone who does.
State the quantities you estimate and their values.

Section 21.6 � Sources of emf
A battery has an emf of 15.0 V. The terminal voltage of the
battery is 11.6 V when it is delivering 20.0 W of power to
an external load resistor R . (a) What is the value of R ?
(b) What is the internal resistance of the battery?

26. Two 1.50-V batteries—with their positive terminals in the
same direction—are inserted in series into the barrel of
a flashlight. One battery has an internal resistance of
0.255 � and the other an internal resistance of 0.153 �.
When the switch is closed, a current of 600 mA occurs in
the lamp. (a) What is the lamp’s resistance? (b) What frac-
tion of the chemical energy transformed appears as inter-
nal energy in the batteries?

Section 21.7 � Resistors in Series and in Parallel
27. (a) Find the equivalent resistance between points a and b

in Figure P21.27. (b) A potential difference of 34.0 V is ap-
plied between points a and b. Calculate the current in each
resistor.

25.

23.

9.00 Ω4.00 Ω

10.0 Ω

7.00 Ω

ba

FIGURE P21.27
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28. For the purpose of measuring the electric resistance
of shoes through the body of the wearer to a metal ground
plate, the American National Standards Institute (ANSI)
specifies the circuit shown in Figure P21.28. The potential
difference �V across the 1.00-M� resistor is measured with
a high-resistance voltmeter. The resistance of the person’s
body is negligible by comparison. (a) Show that the resis-
tance of the footwear is given by

(b) In a medical test, a current through the human body
should not exceed 150 �A. Can the current delivered by
the ANSI-specified circuit exceed 150 �A? To decide, con-
sider a person standing barefoot on the ground plate.

R shoes � 1.00 M� � 50.0 V � �V
�V � 31. Calculate the power delivered to each resistor in the circuit

shown in Figure P21.31.

32. Four resistors are connected to a battery as shown in Fig-
ure P21.32. The current in the battery is I, the battery emf
is , and the resistor values are R1 � R , R2 � 2R , R3 � 4R,
and R 4 � 3R . (a) Rank the resistors according to the po-
tential difference across them, from largest to smallest.
Note any cases of equal potential differences. (b) Deter-
mine the potential difference across each resistor in terms
of . (c) Rank the resistors according to the current in
them, from largest to smallest. Note any cases of equal cur-
rents. (d) Determine the current in each resistor in terms
of I. (e) If R3 is increased, what happens to the current in
each of the resistors? (f) In the limit that R3 : �, what are
the new values of the current in each resistor in terms of I,
the original current in the battery?

�

�
V

1.00 MΩ

50.0 V

FIGURE P21.28

Consider the circuit shown in Figure
P21.29. Find (a) the current in the 20.0-� resistor and
(b) the potential difference between points a and b.

29.

20.0 Ω

a 10.0 Ω

10.0 Ω 25.0 V

5.00 Ω

b

5.00 Ω

FIGURE P21.29

30. Three 100-� resistors are connected as shown in Figure
P21.30. The maximum power that can safely be delivered
to any one resistor is 25.0 W. (a) What is the maximum
voltage that can be applied to the terminals a and b?
(b) For the voltage determined in part (a), what is the
power delivered to each resistor? What is the total power
delivered?

a

100 Ω

100 Ω

100 Ω

b

FIGURE P21.30

2.00 Ω

18.0 V
3.00 Ω

4.00 Ω

1.00 Ω

FIGURE P21.31

R2 = 2R

R3 = 4R

R1 = R

ε

R4 = 3R

I

FIGURE P21.32

33. A young man has moved into his own apartment. His pos-
sessions include a canister vacuum cleaner marked 535 W
at 120 V and a Volkswagen Beetle, which he wishes to
clean. He must leave the car in a parking lot far from the
building, so he needs an extension cord 15.0 m long to
plug in the vacuum cleaner. You may assume that the vac-
uum cleaner has constant resistance. (a) If the resistance
of each of the two conductors in an inexpensive cord is
0.900 �, what is the actual power delivered to the vacuum
cleaner? (b) If instead the power is to be at least 525 W,
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what must be the diameter of each of two identical copper
conductors in the cord he buys? (c) Repeat part (b) if the
power is to be at least 532 W. (Suggestion: A symbolic solu-
tion can simplify the calculations.)

Section 21.8 � Kirchhoff’s Rules

Note: The currents are not necessarily in the direction
shown for some circuits.

34. The ammeter shown in Figure P21.34 reads 2.00 A. Find
I1, I2, and .�

Determine the current in each branch
of the circuit shown in Figure P21.35.

35.

36. In Figure P21.35, show how to add just enough ammeters
to measure every different current. Show how to add just
enough voltmeters to measure the potential difference
across each resistor and across each battery.

37. The circuit considered in Problem 21.35 and shown in Fig-
ure P21.35 is connected for 2.00 min. (a) Find the energy
delivered by each battery. (b) Find the energy delivered to
each resistor. (c) Identify the net energy transformation
that occurs in the operation of the circuit and the total
amount of energy transformed.

38. The following equations describe an electric circuit:

I1  I3 � I2 � 0

 (370 �)I2  (150 �)I3 � 3.10 V � 0

� (220 �)I1  5.80 V � (370 �)I2 � 0

(a) Draw a diagram of the circuit. (b) Calculate the un-
knowns and identify the physical meaning of each un-
known.

39. Taking R � 1.00 k� and � 250 V in Figure P21.39, de-
termine the direction and magnitude of the current in the
horizontal wire between a and e.

�

40. A dead battery is charged by connecting it to the live bat-
tery of another car with jumper cables (Fig. P21.40). Deter-
mine the current in the starter and in the dead battery.

7.00 Ω 15.0 V

5.00 Ω

2.00 Ω ε
I2

I1

A

FIGURE P21.34

3.00 Ω

1.00 Ω

5.00 Ω

1.00 Ω

4.00 V
+

8.00 Ω

12.0 V
+

�

�

FIGURE P21.35 Problems 21.35, 21.36, and 21.37.
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FIGURE P21.39

0.01 Ω

Live 
battery

+

–

+

–

1.00 Ω
0.06 Ω
Starter

Dead 
battery

12 V 10 V

FIGURE P21.40

Section 12.9 � RC Circuits
Consider a series RC circuit (see Fig.

21.25) for which R � 1.00 M�, C � 5.00 �F, and �
30.0 V. Find (a) the time constant of the circuit and
(b) the maximum charge on the capacitor after the switch
is closed. (c) Find the current in the resistor 10.0 s after
the switch is closed.

42. A 2.00-nF capacitor with an initial charge of 5.10 �C is dis-
charged through a 1.30-k� resistor. (a) Calculate the cur-
rent in the resistor 9.00 �s after the resistor is connected
across the terminals of the capacitor. (b) What charge re-
mains on the capacitor after 8.00 �s? (c) What is the maxi-
mum current in the resistor?

43. In the circuit of Figure P21.43, the switch S has been open
for a long time. It is then suddenly closed. Determine the
time constant (a) before the switch is closed and (b) after
the switch is closed. (c) Let the switch be closed at t � 0.
Determine the current in the switch as a function of time.

�
41.

50.0 kΩ

100 kΩ

10.0 V
S

10.0 Fµ

FIGURE P21.43
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44. In places such as a hospital operating room and a fac-
tory for electronic circuit boards, electric sparks must be
avoided. A person standing on a grounded floor and
touching nothing else can typically have a body capaci-
tance of 150 pF, in parallel with a foot capacitance of
80.0 pF produced by the dielectric soles of his or her
shoes. The person acquires static electric charge from in-
teractions with furniture, clothing, equipment, packaging
materials, and essentially everything else. The static charge
is conducted to ground through the equivalent resistance
of the two shoe soles in parallel with each other. A pair of
rubber-soled street shoes can present an equivalent resis-
tance of 5 000 M�. A pair of shoes with special static-dissi-
pative soles can have an equivalent resistance of 1.00 M�.
Consider the person’s body and shoes as forming an RC
circuit with the ground. (a) How long does it take the rub-
ber-soled shoes to reduce a 3 000-V static charge to 100 V?
(b) How long does it take the static-dissipative shoes to do
the same thing?

The circuit in Figure P21.45 has been connected for a long
time. (a) What is the voltage across the capacitor? (b) If
the battery is disconnected, how long does it take the ca-
pacitor to discharge to one tenth of its initial voltage?

45.

what time interval does 1.00 J pass into the dim lightbulb?
By what mechanisms does this energy enter and exit the
lightbulb? (d) Find how much it costs to run the dim light-
bulb continuously for 30.0 days, assuming that the electric
company sells its product at $0.070 0 per kWh. What prod-
uct does the electric company sell? What is its price for one
SI unit of this quantity?

50. An experiment is conducted to measure the electrical re-
sistivity of Nichrome in the form of wires with different
lengths and cross-sectional areas. For one set of measure-
ments, a student uses 30-gauge wire, which has a cross-
sectional area of 7.30 � 10�8 m2. The student measures
the potential difference across the wire and the current in
the wire with a voltmeter and an ammeter, respectively. For
each of the measurements given in the table taken on
wires of three different lengths, calculate the resistance of
the wires and the corresponding values of the resistivity.
What is the average value of the resistivity? How does this
value compare with the value given in Table 21.1?

L (m) �V (V) I (A) R (�) � (� � m)

0.540 5.22 0.500
1.028 5.82 0.276
1.543 5.94 0.187

51. A straight cylindrical wire lying along the x axis has a
length of 0.500 m and a diameter of 0.200 mm. It is made
of a material described by Ohm’s law with a resistivity of
� � 4.00 � 10�8 � 	 m. Assume that a potential of 4.00 V is
maintained at x � 0 and that V � 0 at x � 0.500 m. Find
(a) the electric field in the wire, (b) the resistance of the
wire, (c) the electric current in the wire, and (d) the cur-
rent density in the wire. Express vectors in vector nota-
tion. (e) Show that 

52. A straight cylindrical wire lying along the x axis has a
length L and a diameter d. It is made of a material de-
scribed by Ohm’s law with a resistivity �. Assume that po-
tential V is maintained at x � 0 and that the potential is
zero at x � L . In terms of L , d, V, �, and physical constants,
derive expressions for (a) the electric field in the wire,
(b) the resistance of the wire, (c) the electric current in
the wire, and (d) the current density in the wire. Express
vectors in vector notation. (e) Prove that .

53. An electric heater is rated at 1 500 W, a toaster at 750 W,
and an electric grill at 1 000 W. The three appliances are
connected to a common 120-V household circuit. (a) How
much current does each draw? (b) Is a circuit with a 25.0-A
circuit breaker sufficient in this situation? Explain your
answer.

54. An oceanographer is studying how the ion concentration
in sea water depends on depth. She does so by lowering
into the water a pair of concentric metallic cylinders (Fig.
P21.54) at the end of a cable and taking data to determine
the resistance between these electrodes as a function of
depth. The water between the two cylinders forms a cylin-
drical shell of inner radius ra, outer radius rb, and length L
much larger than rb . The scientist applies a potential
difference �V between the inner and outer surfaces,

E
:

� � J
:

E
:

� � J
:

.
J
:

E
:

10.0 V

1.00 Ω 8.00 Ω

2.00 Ω4.00 Ω

1.00 µFµ

FIGURE P21.45

46. A 10.0-�F capacitor is charged by a 10.0-V battery through
a resistance R. The capacitor reaches a potential difference
of 4.00 V at the instant 3.00 s after charging begins. Find R.

Section 12.10 � Context Connection — The Atmosphere
as a Conductor

47. A current density of 6.00 � 10�13 A/m2 exists in the at-
mosphere at a location where the electric field is 100 V/m.
Calculate the electrical conductivity of the Earth’s atmos-
phere in this region.

48. Assume that global lightning on the Earth constitutes a
constant current of 1.00 kA between the ground and an at-
mospheric layer at potential 300 kV. (a) Find the power of
terrestrial lightning. (b) For comparison, find the power of
sunlight falling on the Earth. Sunlight has an intensity of
1 370 W/m2 above the atmosphere. Sunlight falls perpen-
dicularly on the circular projected area that the Earth pre-
sents to the Sun.

Additional Problems
49. One lightbulb is marked “25 W 120 V” and another

“100 W 120 V,” which means that each lightbulb has its re-
spective power delivered to it when plugged into a con-
stant 120-V potential difference. (a) Find the resistance of
each lightbulb. (b) During what time interval does 1.00 C
pass into the dim lightbulb? Is the charge different in any
way upon its exit from the lightbulb versus its entry? (c) In
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producing an outward radial current I. Let � represent the
resistivity of the water. (a) Find the resistance of the water
between the cylinders in terms of L, �, ra, and rb. (b) Ex-
press the resistivity of the water in terms of the measured
quantities L, ra, rb, �V, and I.

62. The circuit shown in Figure P21.62 is set up in the lab-
oratory to measure an unknown capacitance C with the use
of a voltmeter of resistance R � 10.0 M� and a battery
whose emf is 6.19 V. The data given in the table are the
measured voltages across the capacitor as a function of
time, where t � 0 represents the instant at which the switch
is opened. (a) Construct a graph of ln( /�V ) versus t and
perform a linear least-squares fit to the data. (b) From the
slope of your graph, obtain a value for the time constant of
the circuit and a value for the capacitance.

�V (V) t (s) ln( /�V )

6.19 0
5.55 4.87
4.93 11.1
4.34 19.4
3.72 30.8
3.09 46.6
2.47 67.3
1.83 102.2

63. Four resistors are connected in parallel across a 9.20-V bat-
tery. They carry currents of 150 mA, 45.0 mA, 14.00 mA,
and 4.00 mA. (a) If the resistor with the largest resistance
is replaced with one having twice the resistance, what
is the ratio of the new current in the battery to the original
current? (b) If instead the resistor with the smallest

�

�

L

ra
r b

FIGURE P21.54
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55. Four 1.50-V AA batteries in series are used to power a tran-
sistor radio. If the batteries can move a charge of 240 C,
how long will they last if the radio has a resistance of 200 �?

56. A battery has an emf of 9.20 V and an internal resistance of
1.20 �. What resistance across the battery will extract from
it (a) a power of 12.8 W and (b) a power of 21.2 W?

57. A battery has an emf and internal resistance r. A variable
load resistor R is connected across the terminals of the bat-
tery. (a) Determine the value of R such that the potential
difference across the terminals is a maximum. (b) Deter-
mine the value of R so that the current in the circuit is a
maximum. (c) Determine the value of R so that the power
delivered to the load resistor is a maximum. Choosing the
load resistance for maximum power transfer is a case of
what is called impedance matching in general. Impedance
matching is important in shifting gears on a bicycle, in
connecting a loudspeaker to an audio amplifier, in con-
necting a battery charger to a bank of solar photoelectric
cells, and in many other applications.

58. A battery is used to charge a capacitor through a resistor as
shown in Figure 21.25. Show that half the energy supplied
by the battery appears as internal energy in the resistor
and that half is stored in the capacitor.

59. The values of the components in a simple series RC
circuit containing a switch (Fig. 21.25) are C � 1.00 �F,
R � 2.00 � 106 �, and � 10.0 V. At the instant 10.0 s
after the switch is closed, calculate (a) the charge on the
capacitor, (b) the current in the resistor, (c) the rate at
which energy is being stored in the capacitor, and (d) the
rate at which energy is being delivered by the battery.

60. The switch in Figure P21.60a closes when �Vc � 2�V/3 and
opens when �Vc � �V/3. The voltmeter reads a voltage as
plotted in Figure P21.60b. What is the period T of the
waveform in terms of RA, RB, and C ?

61. Switch S has been closed for a long time, and the electric
circuit shown in Figure P21.61 carries a constant current.
Take C1 � 3.00 �F, C2 � 6.00 �F, R1 � 4.00 k�, and R2 �
7.00 k�. The power delivered to R2 is 2.40 W. (a) Find the
charge on C1. (b) Now the switch is opened. After many
milliseconds, by how much has the charge on C2 changed?

�

�
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resistance is replaced with one having twice the resistance,
what is the ratio of the new total current to the original
current? (c) On a February night, energy leaves a house by
several energy leaks, including the following: 1 500 W by
conduction through the ceiling, 450 W by infiltration (air
flow) around the windows, 140 W by conduction through
the basement wall above the foundation sill, and 40.0 W by
conduction through the plywood door to the attic. To pro-
duce the biggest saving in heating bills, which one of these
energy transfers should be reduced first?

64. The student engineer of a campus radio station wishes to
verify the effectiveness of the lightning rod on the antenna

mast (Fig. P21.64). The unknown resistance Rx is between
points C and E. Point E is a true ground but is inaccessible
for direct measurement because this stratum is several me-
ters below the Earth’s surface. Two identical rods are dri-
ven into the ground at A and B, introducing an unknown
resistance R y. The procedure is as follows. Measure resis-
tance R1 between points A and B, then connect A and B
with a heavy conducting wire and measure resistance R 2
between points A and C. (a) Derive an equation for Rx in
terms of the observable resistances, R1 and R 2. (b) A satis-
factory ground resistance would be Rx � 2.00 �. Is the
grounding of the station adequate if measurements give 
R1 � 13.0 � and R 2 � 6.00 �?

S

C

R

Voltmeter

ε

FIGURE P21.62

Ry Rx

A BC

Ry

E

FIGURE P21.64

ANSWERS TO QUICK QUIZZES

21.1. (d), (b) � (c), (a). The current in part (d) is equivalent
to two positive charges moving to the left. Parts (b) and
(c) each represent four charges moving in the same di-
rection because negative charges moving to the left are
equivalent to positive charges moving to the right. The
current in part (a) is equivalent to five positive charges
moving to the right.

21.2. (b). According to Equation 21.6, resistance is the ratio of
voltage across a device to current in the device. In Figure
21.6b, a line drawn from the origin to a point on the
curve will have a slope equal to I/�V, which is the inverse
of resistance. As �V increases, the slope of this line also
increases, so the resistance decreases.

21.3 (a). When the filament is at room temperature, its resis-
tance is low and hence the current is relatively large. As
the filament warms up, its resistance increases and the
current decreases.

21.4 Ia � Ib � Ic � Id � Ie � If . Charge constituting the current
Ia leaves the positive terminal of the battery and then splits
to flow through the two lightbulbs; therefore, Ia � Ic  Ie .
Because the potential difference �V is the same across the
two lightbulbs and because the power delivered to a de-
vice is � � I �V, the 60-W lightbulb with the higher power
rating must carry the greater current. Because charge does
not accumulate in the lightbulbs, we know that the same
amount of charge flowing into a lightbulb from the left
has to flow out on the right; consequently Ic � Id and Ie �
If . The two currents leaving the lightbulbs recombine to
form the current back into the battery, If  Id � Ib.

21.5 (a). Connecting b to c “shorts out” lightbulb R2 and
changes the total resistance of the circuit from R1  R2

to just R1. Because the resistance of the circuit has de-
creased (and the potential difference supplied by the
battery does not change), the current in the circuit in-
creases.

21.6 (b). When the switch is opened, resistors R1 and R2 are
in series, so the total circuit resistance is larger than
when the switch was closed. As a result, the current
drops.

21.7 (a). When the switch is closed, resistors R1 and R2 are in
parallel, so the total circuit resistance is smaller than
when the switch was open. As a result, the current in-
creases.

21.8 (i), (b), (d). Adding another series resistor increases the
total resistance of the circuit and therefore reduces the
current in the circuit. The potential difference across
the battery terminals increases because the reduced
current results in a smaller voltage decrease across the
internal resistance. (ii), (a), (e). If a third resistor were
connected in parallel, the total resistance of the circuit
would decrease and the current in the battery would in-
crease. The potential difference across the terminals
would decrease because the increased current results in a
greater voltage drop across the internal resistance.

21.9 (i), (b). Just after the switch is closed, there is no charge
on the capacitor, so there is no voltage across it. Charges
begin to flow in the circuit to charge up the capacitor,
so all the voltage �V � IR appears across the resistor.
(ii), (a). After a long time, the capacitor is fully charged
and the current drops to zero. Therefore, the battery
voltage is now entirely across the capacitor.



y g p pp

Determining the Number 
of Lightning Strikes
Now that we have investigated the principles of electricity, let us respond to our
central question for the Lightning Context:

How can we determine the number of lightning strikes on the Earth in a typical day?

We must combine several ideas from our knowledge of electricity to perform
this calculation. In Chapter 20, the atmosphere was modeled as a capacitor. Such
modeling was first done by Lord Kelvin, who modeled the ionosphere as the posi-
tive plate several tens of kilometers above the Earth’s surface. More sophisticated
models have shown the effective height of the positive plate to be the 5 km that we
used in our earlier calculation.

The Atmospheric Capacitor Model
The plates of the atmospheric capacitor are separated by a layer of air containing a
large number of free ions that can carry current. Air is a good insulator; measure-
ments show that the resistivity of air is about 3 � 1013 ��m. Let us calculate the re-
sistance of the air between our capacitor plates. The shape of the resistor is that of a
spherical shell between the plates of the atmospheric capacitor. The length of 5 km,
however, is very short compared with the radius of 6 400 km. Therefore, we can ig-
nore the spherical shape and approximate the resistor as a 5-km slab of flat material
whose area is the surface area of the Earth. Using Equation 21.8,

The charge on the atmospheric capacitor can pass
from the upper plate to the ground by electric current in
the air between the plates. Thus, we can model the atmos-
phere as an RC circuit, using the capacitance found in
Chapter 20, and the resistance connecting the plates
calculated above (Fig. 1). The time constant for this RC
circuit is

Thus, the charge on the atmospheric capacitor should
fall to e�1 � 37% of its original value after only 5 min! Af-
ter 30 min, less than 0.3% of the charge would remain!
Why doesn’t that happen? What keeps the atmospheric
capacitor charged? The answer is lightning. The processes
occurring in cloud charging result in lightning strikes
that deliver negative charge to the ground to replace that
neutralized by the flow of charge through the air. On the
average, a net charge on the atmospheric capacitor re-
sults from a balance between these two processes.

Now, let’s use this balance to numerically answer our
central question. We first address the charge on the at-
mospheric capacitor. In Chapter 19, we mentioned a

� � RC � (0.9 F)(3 � 102 �) � 3 � 102 s � 5 min

R � � 
�

A
� (3 � 1013 ��m) 

5 � 103 m
4	(6.4 � 106 m)2 � 3 � 102 �

C O N T E X T CONCLUSION6

Negative plate
(Earth’s surface)

Positive plate
(charges in

atmosphere)
Air between
plates acts as

a resistor

(a)

+

–
R

(b)

C

(a) The atmosphere can be modeled as a capacitor, with
conductive air between the plates. (b) We can imagine
an equivalent RC circuit for the atmosphere, with the
natural discharge of the capacitor in balance with the
charging of the capacitor by lightning.

FIGURE 1



charge of 5 � 105 C that is spread over the surface of the Earth, which is the charge
on the atmospheric capacitor.

A typical lightning strike delivers about 25 C of negative charge to the ground in
the process of charging the capacitor. Dividing the charge on the capacitor by the
charge per lightning strike tells us the number of lightning strikes required to
charge the capacitor:

According to our calculation for the RC circuit, the atmospheric capacitor almost
completely discharges through the air in about 30 min. Thus, 2 � 104 lightning
strikes must occur every 30 min, or 4 � 104/h, to keep the charging and discharg-
ing processes in balance. Multiplying by the number of hours in a day gives us

Despite the simplifications that we have adopted in our calculations, this number is
on the right order of magnitude for the actual number of lightning strikes on the
Earth in a typical day: 1 million!

Problems
1. Consider the atmospheric capacitor described in the text, with the ground as

one plate and positive charges in the atmosphere as the other. On one
particular day, the capacitance of the atmospheric capacitor is 0.800 F. The
effective plate separation distance is 4.00 km, and the resistivity of the air
between the plates is 2.00 � 1013 ��m. If no lightning events occur, the
capacitor will discharge through the air. If a charge of 4.00 � 104 C is on the
atmospheric capacitor at time t � 0, at what later time is the charge reduced
(a) to 2.00 � 104 C, (b) to 5.00 � 103 C, and (c) to zero?

2. Consider this alternative line of reasoning to estimate the number of lightning
strikes on the Earth in one day. Using the charge on the Earth of 5.00 � 105 C
and the atmospheric capacitance of 0.9 F, we find that the potential difference
across the capacitor is 
V � Q/C � 5.00 � 105 C/0.9 F � 6 � 105 V. The leakage
current in the air is I � 
V/R � 6 � 105 V/300 � � 2 kA. To keep the capacitor
charged, lightning should deliver the same net current in the opposite direc-
tion. (a) If each lightning strike delivers 25 C of charge to the ground, what is
the average time interval between lightning strikes so that the average current
due to lightning is 2 kA? (b) Using this average time interval between lightning
strikes, calculate the number of lightning strikes in one day.

3. Consider again the atmospheric capacitor discussed in the text. (a) Assume that
atmospheric conditions are such that, for one complete day, the lower 2.50 km
of the air between the capacitor plates has resistivity 2.00 � 1013 ��m and the
upper 2.50 km has resistivity 0.500 � 1013 ��m. How many lightning strikes
occur on this day? (b) Assume that atmospheric conditions are such that, for
one complete day, resistivity of the air between the plates in the southern hemi-
sphere is 2.00 � 1013 ��m and the resistivity between the plates in the northern
hemisphere is 0.200 � 1013 ��m. How many lightning strikes occur on this day?

 � 1 � 106 strokes/day

Number of lightning strikes per day � (4 � 104 strikes/h)� 24 h
1 d �

 �
5 � 105 C

25 C per strike
� 2 � 104 lightning strikes

Number of lightning strikes �
total charge

charge per lightning strike
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Magnetic Levitation Vehicles
All commercial long-distance ground
transportation currently operating in
the United States is subject to the force
of friction between wheels and a road-
way or a track. Recall that friction is a
nonconservative force that transforms
kinetic energy into internal energy. As
discussed in Chapters 16 through 18 on
thermodynamics, this internal energy is
wasted.

Magnetic levitation (maglev) vehi-
cles are suspended by magnetic forces
and therefore do not make physical
contact with a roadway or track. This
suspension eliminates mechanical fric-
tion with the track, the primary cause
of transformation of kinetic energy to
internal energy. There is still a friction
force from the surrounding air that will
transform some of the kinetic energy.

Robert Goddard, of rocket fame,
published a story in 1907 that describes
many features of magnetic levitation.
He also published a paper in Scientific
American in 1909 describing a magneti-

cally levitated vehicle operating in a
tunnel between Boston and New York
City. Emile Bachelet, a French engi-
neer, published a paper in 1912 de-
scribing a magnetically levitated vehicle
for delivering mail. He received a
patent for his invention, but it required
far too much power to be practical.

After these early ideas, no significant
progress in magnetic levitation was
made until the 1960s. At that time, ad-
vances in superconducting magnets
spurred new interest in magnetic levita-
tion because of the possible savings in
energy costs over previous designs such
as Bachelet’s. In 1963, a physicist at
Brookhaven National Laboratory pro-
posed a system using superconducting
magnets. Within a few years, projects
were underway at Stanford University,
MIT, Raytheon, Ford Motor Company,
the University of Toronto, and McGill
University. Projects were also initiated
shortly thereafter in Japan, Germany,
and England.

7

Because a magnetic levitation (maglev) vehicle is not subject to mechanical friction
with rails, it can reach very high speeds. This photo shows the German Transrapid
maglev vehicle in operation. Of all proposed models of maglev, the Transrapid is
furthest along in its development.

FIGURE 1
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Despite this promising start by sev-
eral U.S. companies and universities,
federal funding for maglev research in
the United States ended in 1975. Re-
search in other countries continued,
primarily in Germany and Japan. These
studies and a variety of full-scale test
vehicles have shown that maglev tech-
nology is very successful. Research in
maglev has seen a modest revival in the
United States following the National
Maglev Initiative signed into law in
1991, but the United States remains far
behind Germany and Japan.

The German maglev project is called
the Transrapid. It has undergone exten-
sive testing in Germany. In December
2003, it realized a major milestone in
having the first commercial Transrapid
line open for business in Shanghai,

hicle at 581 km/h, achieved in Decem-
ber 2003 with technicians on board. The
MLX01 is currently in the final phase of
testing before the Japanese Ministry of
Transport decides whether to proceed
with commercial development.

In addition to the energy savings in a
maglev vehicle associated with the re-

y g p pp

How can we lift, propel, and brake a vehicle with magnetic forces?

The German Transrapid in commercial operation in Shanghai, China.
Recent tests have shown that this vehicle can travel at speeds of more than
500 km/h.

FIGURE 2
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The Japanese MLX01 test vehi-
cle. Although this vehicle differs
in technology from the German
maglev vehicles, it also can travel
at very high speeds and currently
holds the world record for a 
maglev vehicle.

FIGURE 3
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duction of friction, there are other ben-
efits. One is reduced environmental
impact compared with a traditional rail-
road because of the absence of emis-
sions. Furthermore, the reliability un-
der various weather conditions such as
snow and rain is enhanced because the
motion is not dependent on a coeffi-
cient of friction. In this Context, we
shall investigate the physics of magnetic
fields and electromagnetism and apply
these principles to understanding the
processes of lifting, propelling, and
braking a maglev vehicle. Two primary
mechanisms—the attractive and repul-
sive models—are the basis of current
research and development efforts. We
shall study each of these models so we
can respond to our central question:

China. Additional proposals call for the
Transrapid to be incorporated into trans-
portation projects in Pittsburgh; Los
Angeles; between Baltimore and Wash-
ington, D.C.; and between Anaheim, Cal-
ifornia, and Las Vegas, Nevada.

The Japanese maglev vehicle is
dubbed the MLX01 (ML for maglev, X
for “experimental”). This vehicle holds
the world speed record for a maglev ve-



The list of technological applications of magnetism is very
long. For instance, large electromagnets are used to pick
up heavy loads in scrap yards. Magnets are used in such

devices as meters, motors, and loudspeakers. Magnetic tapes are
routinely used in sound and video recording equipment and for
computer data storage. Intense magnetic fields generated by su-
perconducting magnets are currently being used as a means of
containing plasmas at temperatures on the order of 108 K used in
controlled nuclear fusion research.

As we investigate magnetism in this chapter, we shall find that
the subject cannot be divorced from electricity. For example,
magnetic fields affect moving electric charges, and moving
charges produce magnetic fields. This close association between
electricity and magnetism will justify their union into electromag-
netism that we explore in this chapter and the next.

Magnetic Forces 
and Magnetic Fields

C H A P T E R 22

Magnetic fingerprinting allows fin-
gerprints to be seen on surfaces that
otherwise would not allow prints to
be lifted. The powder spread on the
surface is coated with an organic 
material that adheres to the greasy
residue in a fingerprint. A magnetic
“brush” removes the excess powder
and makes the fingerprint visible.

C H A P T E R  O U T L I N E
22.1 Historical Overview
22.2 The Magnetic Field
22.3 Motion of a Charged Particle in a Uniform

Magnetic Field
22.4 Applications Involving Charged Particles

Moving in a Magnetic Field
22.5 Magnetic Force on a Current-Carrying 

Conductor
22.6 Torque on a Current Loop in a Uniform

Magnetic Field
22.7 The Biot – Savart Law
22.8 The Magnetic Force Between Two Parallel

Conductors
22.9 Ampère’s Law
22.10 The Magnetic Field of a Solenoid
22.11 Magnetism in Matter
22.12 Context Connection — The Attractive Model

for Magnetic Levitation
SUMMARY
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HISTORICAL  OVERVIEW
Many historians of science believe that the compass, which uses a magnetic needle,
was used in China as early as the 13th century B.C., its invention being of Arab or In-
dian origin. The phenomenon of magnetism was known to the Greeks as early as
about 800 B.C. They discovered that certain stones, made of a material now called
magnetite (Fe3O4), attracted pieces of iron.

In 1269, Pierre de Maricourt (c. 1220–?) mapped out the directions taken by a
magnetized needle when it was placed at various points on the surface of a spheri-
cal natural magnet. He found that the directions formed lines that encircled the
sphere and passed through two points diametrically opposite each other, which he
called the poles of the magnet. Subsequent experiments have shown that every
magnet, regardless of its shape, has two poles, called north (N) and south (S), that
exhibit forces on each other in a manner analogous to electric charges. That is,
similar poles (N–N or S–S) repel each other and dissimilar poles (N–S) attract
each other. The poles received their names because of the behavior of a magnet in
the presence of the Earth’s magnetic field. If a bar magnet is suspended from its
midpoint by a piece of string so that it can swing freely in a horizontal plane, it ro-
tates until its “north” pole points to the north geographic pole of the Earth (which
is a south magnetic pole) and its “south” pole points to the Earth’s south geo-
graphic pole. (The same idea is used to construct a simple compass.)

In 1600, William Gilbert (1544–1603) extended these experiments to a variety of
materials. Using the fact that a compass needle orients in preferred directions,
Gilbert suggested that magnets are attracted to land masses. In 1750, John Michell
(1724–1793) used a torsion balance to show that magnetic poles exert attractive or
repulsive forces on each other and that these forces vary as the inverse square of their
separation. Although the force between two magnetic poles is similar to the force be-
tween two electric charges, an important difference exists. Electric charges can be iso-
lated (witness the electron and proton), whereas magnetic poles cannot be isolated.
That is, magnetic poles are always found in pairs. No matter how many times a per-
manent magnet is cut, each piece always has a north pole and a south pole. (Some
theories speculate that magnetic monopoles—isolated north or south poles—may
exist in nature, and attempts to detect them currently make up an active experimen-
tal field of investigation. None of these attempts has yet proven successful, however.)

The relationship between magnetism and electricity was discovered in 1819
when, while preparing for a lecture demonstration, Danish scientist Hans Christian
Oersted found that an electric current in a wire deflected a nearby compass needle.
Shortly thereafter, André-Marie Ampère (1775–1836) deduced quantitative laws of
magnetic force between current-carrying conductors. He also suggested that elec-
tric current loops of molecular size are responsible for all magnetic phenomena.

In the 1820s, Faraday and, independently, Joseph Henry (1797–1878) identified
further connections between electricity and magnetism. They showed that an
electric current could be produced in a circuit either by moving a magnet near the
circuit or by changing the current in a nearby circuit. Their observations demon-
strated that a changing magnetic field produces an electric field. Years later, theo-
retical work by James Clerk Maxwell showed that the reverse is also true: a changing
electric field gives rise to a magnetic field.

In this chapter, we shall investigate the effects of constant magnetic fields on
charges and currents, and study the sources of magnetic fields. In the next chapter,
we shall explore the effects of magnetic fields that vary in time.

THE  MAGNETIC  FIELD
In earlier chapters, we described the interaction between charged objects in terms
of electric fields. Recall that an electric field surrounds any stationary electric
charge. The region of space surrounding a moving charge includes a magnetic field

22.2

22.1
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Hans Christian Oersted
(1777 – 1851)

Oersted, a Danish physicist, is best
known for observing that a compass
needle deflects when placed near a
wire carrying a current. This impor-
tant discovery was the first evidence
of the connection between electric
and magnetic phenomena. Oersted
was also the first to prepare pure
aluminum.
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in addition to the electric field. A magnetic field also surrounds any material with
permanent magnetism. We find that the magnetic field is a vector field, as is the
electric field.

To describe any type of vector field, we must define its magnitude and its direc-
tion. The direction of the magnetic field vector at any location is the direction in
which the north pole of a compass needle points at that location. Active Figure 22.1
shows how the magnetic field of a bar magnet can be traced with the aid of a com-
pass, defining a magnetic field line, similar in many ways to the electric field lines
we studied in Chapter 19. Several magnetic field lines of a bar magnet traced out in
this manner are shown in the two-dimensional pictorial representation in Active
Figure 22.1. Magnetic field patterns can be displayed by small iron filings placed in
the vicinity of a magnet, as in Figure 22.2.

We can quantify the magnetic field by using our model of a particle in a field.
The existence of a magnetic field at some point in space can be determined by
measuring the magnetic force exerted on an appropriate test particle placed at
that point. This process is the same one we followed in defining the electric field in
Chapter 19. Our test particle will be an electrically charged particle such as a pro-
ton. If we perform such an experiment, we find the following results:

• The magnetic force is proportional to the charge q of the particle as well as
to the speed v of the particle.

• When a charged particle moves parallel to the magnetic field vector, the mag-
netic force on the charge is zero.

• When the velocity vector makes an angle � with the magnetic field, the mag-
netic force acts in a direction perpendicular to both and ; that is, the 
magnetic force is perpendicular to the plane formed by and 
(Fig. 22.3a).

• The magnetic force on a negative charge is directed opposite to the force on a
positive charge moving in the same direction (Fig. 22.3b).

• If the velocity vector makes an angle � with the magnetic field, the magnitude of
the magnetic force is proportional to sin �.

These results show that the magnetic force on a particle is more complicated
than the electric force. The magnetic force is distinctive because it depends on the
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A small compass can be used to 
trace the magnetic field lines of a bar
magnet.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 22.1 to move the
compass around and trace the field
lines for yourself.

ACTIVE FIGURE 22.1

(a) Magnetic field patterns surrounding a bar magnet as displayed with iron filings.
(b) Magnetic field patterns between dissimilar poles of two bar magnets. (c) Magnetic
field pattern between similar poles of two bar magnets.

FIGURE 22.2
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velocity of the particle and because its direction is perpendicular to both and .
Despite this complicated behavior, these observations can be summarized in a com-
pact way by writing the magnetic force in the form

[22.1]

where the direction of the magnetic force is that of , which, by definition of
the cross product, is perpendicular to both and . Equation 22.1 is analogous to
Equation 19.4, , but is clearly more complicated. We can regard Equation
22.1 as an operational definition of the magnetic field at a point in space. The SI
unit of magnetic field is the tesla (T), where 

1 T � 1 N � s/C � m

Figure 22.4 reviews two right-hand rules for determining the direction of the cross
product and determining the direction of . The rule in Figure 22.4a
depends on our right-hand rule for the cross product in Figure 10.13. You point the
four fingers of your right hand along the direction of with the palm facing and
curl them toward . The extended thumb, which is at a right angle to the fingers,
points in the direction of . Because , is in the direction of your
thumb if q is positive and opposite the direction of your thumb if q is negative. 

A second rule is shown in Figure 22.4b. Here the thumb points in the direction
of and the extended fingers in the direction of . Now, the force on a positive
charge extends outward from your palm. The advantage of this rule is that the
force on the charge is in the direction that you would push on something with your
hand, outward from your palm. The force on a negative charge is in the opposite
direction. Feel free to use either of these two right-hand rules.

The magnitude of the magnetic force is

[22.2]

where � is the angle between and . From this expression, we see that FB is zero
when is either parallel or antiparallel to (� � 0 or 180�). Furthermore, the
force has its maximum value when is perpendicular to (� � 90�).

There are important differences between electric and magnetic forces on
charged particles:

B
:

v:FB � �q �vB
B
:
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FB � �q �vB sin �
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:

B � q v: � B
:

v: � B
:

B
:

B
:

v:

F
:

Bv: � B
:

F
:

e � q E
:

B
:

v:
v: � B

:

F
:

B � q v: � B
:

B
:

v:

730 ❚ CHAPTER 22 MAGNETIC FORCES AND MAGNETIC FIELDS

y g p pp

(a)

FB

+ q
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θ

(b)

FB

–

B

+

F

B

B

v

v

The direction of
the magnetic force on a charged 
particle moving with a velocity in
the presence of a magnetic field . 
(a) When is at an angle � to , the
magnetic force is perpendicular to
both and . (b) Oppositely
directed magnetic forces are exerted
on two oppositely charged particles
moving with the same velocity in a
magnetic field. The broken lines 
suggest the paths followed by the 
particles after the instant shown in 
the figure.

B
:

v:

B
:

v:
B
:

v:

FIGURE 22.3

■ Magnetic force on a charged par-
ticle moving in a magnetic field



• The electric force is always parallel or antiparallel to the direction of the electric
field, whereas the magnetic force is perpendicular to the magnetic field.

• The electric force acts on a charged particle independent of the particle’s 
velocity, whereas the magnetic force acts on a charged particle only when the
particle is in motion and the force is proportional to the velocity.

• The electric force does work in displacing a charged particle, whereas the
magnetic force associated with a constant magnetic field does no work when a
charged particle is displaced.

This last statement is true because when a charge moves in a constant magnetic
field, the magnetic force is always perpendicular to the displacement. That is, for a
small displacement of a particle, the work done by the magnetic force on
the particle is because the magnetic force is a vector
perpendicular to . From this property and the work–kinetic energy theorem, we
conclude that the kinetic energy of a charged particle cannot be altered by a con-
stant magnetic field alone. In other words, when a charge moves with a velocity of

, an applied magnetic field can alter the direction of the velocity vector, but it can-
not change the speed of the particle.

In Figures 22.3 and 22.4, we used green arrows to represent magnetic field vec-
tors, which will be the convention in this book. In Active Figure 22.1, we repre-
sented the magnetic field of a bar magnet with green field lines. Studying magnetic
fields presents a complication that we avoided in electric fields. In our study of
electric fields, we drew all electric field vectors in the plane of the page or used per-
spective to represent them directed at an angle to the page. The cross product in
Equation 22.1 requires us to think in three dimensions for problems in magnetism.
Thus, in addition to drawing vectors pointing left or right and up or down, we will
need a method of drawing vectors into or out of the page. These methods of repre-
senting the vectors are illustrated in Figure 22.5. A vector coming out of the page is
represented by a dot, which we can think of as the tip of the arrowhead represent-
ing the vector coming through the paper toward us (Fig. 22.5a). A vector going
into the page is represented by a cross, which we can think of as the tail feathers of
an arrow going into the page (Fig. 22.5b). This depiction can be used for any type
of vector we will encounter: magnetic field, velocity, force, and so on.

v:

v:
dW � F

:
B�d s: � (F

:
B � v:)dt � 0
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B

Two right-hand
rules for determining the direction of
the magnetic force act-
ing on a particle with charge q moving
with a velocity in a magnetic field .
(a) In this rule, the fingers point in
the direction of , with coming out
of your palm, so that you can curl
your fingers in the direction of . The
direction of , and the force on
a positive charge, is the direction in
which the thumb points. (b) In this
rule, the vector is in the direction of
your thumb and is in the direction
of your fingers. The force on a pos-
itive charge is in the direction of your
palm, as if you are pushing the parti-
cle with your hand.
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(a) Magnetic field
lines coming out of the paper are
indicated by dots, representing the
tips of arrows coming outward.
(b) Magnetic field lines going into the
paper are indicated by crosses,
representing the feathers of arrows
going inward.

FIGURE 22.5

An electron moves in the plane of this paper toward the top of the
page. A magnetic field is also in the plane of the page and directed toward the right. What
is the direction of the magnetic force on the electron? (a) toward the top of the page
(b) toward the bottom of the page (c) toward the left edge of the page (d) toward the
right edge of the page (e) upward out of the page (f) downward into the page

QUICK QUIZ 22.1



■ Thinking Physics 22.1
On a business trip to Australia, you take along your U.S.-made compass that you
used in your Boy Scout days. Does this compass work correctly in Australia?

Reasoning Using the compass in Australia presents no problem. The north pole of
the magnet in the compass will be attracted to the south magnetic pole near the
north geographic pole, just as it was in the United States. The only difference in the
magnetic field lines is that they have an upward component in Australia, whereas
they have a downward component in the United States. When you hold the com-
pass in a horizontal plane, it cannot detect the vertical component of the field,
however; it only displays the direction of the horizontal component of the magnetic
field. ■
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Solution Using Equation 22.2, we find the magnitude
of the magnetic force:

Because is in the positive z direction (from the
right-hand rule) and the charge is negative, is in the
negative z direction.

Once we have determined the magnetic force, we
have a Chapter 4 problem because the electron is a
particle under a net force and the acceleration is
determined from Newton’s second law. The mass of the
electron is me � 9.1 � 10�31 kg, and so its acceleration is

in the negative z direction.

3.1 � 1016 m/s2a �
FB

me
�

2.8 � 10�14 N
9.1 � 10�31 kg

�

F
:

B

v: � B
:

� 2.8 � 10�14 N

 � (1.60 � 10�19 C)(8.0 � 106 m/s)(0.025 T)(sin 60�)

 FB � �q �vB sin �

An Electron Moving in a Magnetic FieldEXAMPLE 22.1
An electron in a television picture tube moves toward
the front of the tube with a speed of 8.0 � 106 m/s
along the x axis (Fig. 22.6). The neck of the tube is sur-
rounded by a coil of wire that creates a magnetic field
of magnitude 0.025 T, directed at an angle of 60� to the
x axis and lying in the xy plane. Calculate the magnetic
force on and acceleration of the electron.

z

y

x

B

60°

–e

B

F

v

(Example 22.1) The magnetic force on the elec-
tron is in the negative z direction when and lie
in the xy plane.

B
:

v:
F
:

BFIGURE 22.6

MOTION  OF  A  CHARGED  PARTICLE  
IN  A  UNIFORM  MAGNETIC  FIELD

In Section 22.2, we found that the magnetic force acting on a charged particle mov-
ing in a magnetic field is perpendicular to the velocity of the particle and that, con-
sequently, the work done on the particle by the magnetic force is zero. Consider
now the special case of a positively charged particle moving in a uniform magnetic
field when the initial velocity vector of the particle is perpendicular to the field. Let
us assume that the direction of the magnetic field is into the page. Active Figure
22.7 shows that the particle moves in a circular path whose plane is perpendicular
to the magnetic field.

22.3



The particle moves in this way because the magnetic force is perpendicular
to and and has a constant magnitude qvB. As the force changes the direction of

, the direction of changes continuously as in Active Figure 22.7. Because 
always points toward the center of the circle, the particle can be modeled as being
in uniform circular motion. As Active Figure 22.7 shows, the rotation is counter-
clockwise for a positive charge in a magnetic field directed into the page. If q were
negative, the rotation would be clockwise. We can use Newton’s second law to deter-
mine the radius of the circular path:

[22.3]

That is, the radius of the path is proportional to the linear momentum mv of the
particle and inversely proportional to the magnitude of the charge on the particle
and to the magnitude of the magnetic field. The angular speed of the particle is
(from Eq. 10.10)

[22.4]

The period of the motion (the time interval required for the particle to complete
one revolution) is equal to the circumference of the circular path divided by the
speed of the particle:

[22.5]

These results show that the angular speed of the particle and the period of the cir-
cular motion do not depend on the translational speed of the particle or the radius
of the orbit for a given particle in a given uniform magnetic field. The angular
speed � is often referred to as the cyclotron frequency because charged particles
circulate at this angular speed in one type of accelerator called a cyclotron, discussed
in Section 22.4.

If a charged particle moves in a uniform magnetic field with its velocity at some
arbitrary angle to , its path is a helix. For example, if the field is in the x direction
as in Active Figure 22.8, there is no component of force on the particle in the x
direction. As a result, ax � 0, and so the x component of velocity of the particle
remains constant. The magnetic force causes the components vy and vz to
change in time, however, and the resulting motion of the particle is a helix having
its axis parallel to the magnetic field. The projection of the path onto the yz plane
(viewed along the x axis) is a circle. (The projections of the path onto the xy and xz
planes are sinusoids!) Equations 22.3 to 22.5 still apply provided that v is replaced
by v� � √vy 

2 � vz 

2.
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FB

FB

FB

When the velocity of a charged 
particle is perpendicular to a uniform
magnetic field, the particle moves in a
circular path in a plane perpendicular
to . The magnetic force acting on
the charge is always directed toward
the center of the circle.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 22.7. You can adjust the
mass, speed, and charge of the
particle and the magnitude of the
magnetic field to observe the
resulting circular motion.

F
:

BB
:

Helical
path

B

x

+q

z

y

+

A charged particle having a velocity
vector with a component parallel to 
a uniform magnetic field moves in a
helical path.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 22.8. You can adjust the
x component of the velocity of the
particle and observe the resulting
helical motion.

(i) A charged particle is moving perpendicular to a magnetic field in
a circle with a radius r. The magnitude of the magnetic field is increased. Compared with
the initial radius of the circular path, is the radius of the new path (a) smaller, (b) larger,
or (c) equal in size? (ii) An identical particle enters the field, with perpendicular to ,
but with a higher speed v than the first particle. Compared with the radius of the circle
for the first particle in the same magnetic field, is the radius of the circle for the second
particle (a) smaller, (b) larger, or (c) equal in size?

B
:

v:

QUICK QUIZ 22.2

ACTIVE FIGURE 22.7

ACTIVE FIGURE 22.8
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■ Thinking Physics 22.2
Suppose a uniform magnetic field exists in a finite region of space as in Figure 22.9.
Can you inject a charged particle into this region and have it stay trapped in the
region by the magnetic force?

Reasoning Consider separately the components of the particle velocity parallel and
perpendicular to the field lines in the region. For the component parallel to the
field lines, no force is exerted on the particle and it continues to move with the par-
allel component until it leaves the region of the magnetic field. Now consider the
component perpendicular to the field lines. This component results in a magnetic
force that is perpendicular to both the field lines and the velocity component. As
discussed earlier, if the force acting on a charged particle is always perpendicular to
its velocity, the particle moves in a circular path. Thus, the particle follows half of a
circular arc and exits the field on the other side of the circle, as shown in Figure
22.9. Therefore, a particle injected into a uniform magnetic field cannot stay
trapped in the field region. ■
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F

v

Magnetic field
region (out of page)

Particle
motion

B

(Thinking Physics
22.2) A positively charged particle
enters a region of magnetic field
directed out of the page.

FIGURE 22.9

� 4.69 � 106 m/s

 v �
qBr
mp

�
(1.60 � 10�19 C)(0.350 T)(14.0 � 10�2 m)

1.67 � 10�27 kg

Find the period of the circular motion of the
proton.

Solution From Equation 22.5,

� 1.87 � 10�7 s

T �
2	mp

qB
�

2	(1.67 � 10�27 kg)

(1.60 � 10�19 C)(0.350 T)

B

A Proton Moving Perpendicular to a Uniform Magnetic FieldEXAMPLE 22.2
A proton is moving in a circular orbit of radius 14.0 cm
in a uniform 0.350-T magnetic field directed perpen-
dicular to the velocity of the proton.

Find the translational speed of the proton.

Solution From Equation 22.3, we find that

A

Bending an Electron BeamEXAMPLE 22.3INTERACTIVE

problem as one in which we will use our understanding
of uniform circular motion along with our knowledge

In an experiment designed to measure the strength of
a uniform magnetic field, electrons are accelerated
from rest (by means of an electric field) through a
potential difference of 350 V. After leaving the region
of the electric field, the electrons enter a magnetic field
and travel along a curved path because of the magnetic
force exerted on them. The radius of the path is
measured to be 7.50 cm. Figure 22.10 shows such a
curved beam of electrons.

Assuming that the magnetic field is perpendicular
to the beam, what is the magnitude of the field?

Solution The drawing in Active Figure 22.7 and the
photograph in Figure 22.10 help us conceptualize the
circular motion of the electrons. We categorize this

A
(Interactive Example 22.3) The bending of an
electron beam in a magnetic field.

FIGURE 22.10
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APPLICATIONS  INVOLVING  CHARGED  PARTICLES
MOVING  IN  A  MAGNETIC FIELD

A charge moving with velocity in the presence of an electric field and a magnetic
field experiences both an electric force and a magnetic force . The total
force, called the Lorentz force, acting on the charge is therefore the vector sum,

[22.6]

In this section, we look at three applications involving particles experiencing the
Lorentz force.

Velocity Selector
In many experiments involving moving charged particles, it is important to have par-
ticles that all move with essentially the same velocity. That can be achieved by apply-
ing a combination of an electric field and a magnetic field oriented as shown in
Active Figure 22.11a. A uniform electric field is directed vertically downward (in the
plane of the page in Active Fig. 22.11a), and a uniform magnetic field is applied
perpendicular to the electric field (into the page in Active Fig. 22.11a). Particles mov-
ing through this region will experience the Lorentz force, given by Equation 22.6.
For a positively charged particle, the magnetic force is upward and the
electric force is downward. When the magnitudes of the two fields are chosen 
so that qE � qvB, the particle is in equilibrium (Active Fig. 22.11b) and moves in
a straight horizontal line through the region of the fields. From qE � qvB we
find that

[22.7]

Only those particles having this speed are undeflected as they move through the
perpendicular electric and magnetic fields and pass through a small opening at the
end of the device. The magnetic force exerted on particles moving faster than this

v �
E
B

q E
:

q v: � B
:

F
:

� q E
:

� q v: � B
:

q v: � B
:

q E
:

B
:

E
:

v:

22.4
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What is the angular speed of the electrons?

Solution Using Equation 22.4, we find that

To finalize this problem, note that the angular speed
can be written as � � (1.5 � 108 rad/s)(1 rev/2	 rad)
� 2.4 � 107 rev/s. The electrons travel around the cir-
cle 24 million times per second! This very high speed is
consistent with what we found in part A.

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 22.3, you
can investigate the relationship between the radius of the
circular path of the electrons and the magnetic field.

1.5 � 108 rad/s� �
v
r

�
1.11 � 107 m/s

0.075 m
�

B

8.4 � 10�4 T

B �
mev
er

�
(9.11 � 10�31 kg)(1.11 � 107 m/s)

(1.60 � 10�19 C)(0.075 m)

of the magnetic force. Looking at Equation 22.3, we see
that we need the speed v of the electron if we are to
find the magnetic field magnitude, and v is not given.
Consequently, we must find the speed of the electron
based on the potential difference through which it is
accelerated. We can therefore also categorize this prob-
lem as one in which we must apply conservation of
mechanical energy for an isolated system. We begin to
analyze the problem by finding the electron speed. For
the isolated electron–electric field system, the loss of
potential energy as the electron moves through the
350-V potential difference appears as an increase in the
kinetic energy of the electron. Because Ki � 0 and

, we have

Now, using Equation 22.3, we find that

 � 1.11 � 107 m/s

 v � √ 2e 
V
me

� √ 2(1.60 � 10�19 C)(350 V)
9.11 � 10�31 kg

 
K � 
U � 0 : 1
2mev 2 � (�e) 
V � 0

Kf � 1
2mev2
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qv × B
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× × × × × × ×
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(a) A velocity selector. When a positively charged particle is in the
presence of a magnetic field directed into the page and an electric field
directed downward, it experiences a downward electric force and an
upward magnetic force . (b) When these forces balance, the
particle moves in a straight line through the fields.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 22.11. You can
adjust the electric and magnetic fields to try to achieve straight line motion for the charge.
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v

A mass spectrometer. Positively
charged particles are sent first
through a velocity selector and
then into a region where the mag-
netic field causes the particles
to move in a semicircular path and
strike a detector array at P.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 22.12 to
predict where particles will strike
the detector array.

B
:

0

ACTIVE FIGURE 22.12

speed is stronger than the electric force, and these particles are deflected upward.
Those moving slower are deflected downward.

The Mass Spectrometer
A mass spectrometer separates ions according to their mass-to-charge ratio. In one
version, known as the Bainbridge mass spectrometer, a beam of ions first passes through
a velocity selector and then enters a second region with no electric field and a
uniform magnetic field that has the same direction as the magnetic field in the
selector (Active Fig. 22.12). On entering the second magnetic field, the ions move
in a semicircle of radius r before striking a detector array at P. If the ions are posi-
tively charged, the beam deflects upward as in Active Figure 22.12. If the ions are
negatively charged, the beam deflects downward. From Equation 22.3, we can
express the ratio m/q as

Using Equation 22.7, we find that

[22.8]
m
q

�
rB0B

E

m
q

�
rB0

v

B
:

0

www.pop4e.com
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Therefore, m/q can be determined by measuring the radius of curvature and know-
ing the field magnitudes B, B0, and E . In practice, one usually measures the masses
of various isotopes of a given ion, with the ions all carrying the same charge q. In
this way, the mass ratios can be determined even if q is unknown.

A variation of this technique was used by J. J. Thomson (1856–1940) in 1897 to
measure the ratio e/me for electrons. Figure 22.13a shows the basic apparatus he
used. Electrons are accelerated from the cathode and pass through two slits. They
then drift into a region of perpendicular electric and magnetic fields. The magni-
tudes of the two fields are first adjusted to produce an undeflected beam. When the
magnetic field is turned off, the electric field produces a measurable beam deflec-
tion that is recorded on the fluorescent screen. From the size of the deflection and
the measured values of E and B, the charge-to-mass ratio can be determined. The
results of this crucial experiment represent the discovery of the electron as a funda-
mental particle of nature.

The Cyclotron
A cyclotron can accelerate charged particles to very high speeds. Both electric and
magnetic forces play a key role in its operation. The energetic particles produced
are used to bombard atomic nuclei and thereby produce nuclear reactions of
interest to researchers. A number of hospitals use cyclotron facilities to produce ra-
dioactive substances for diagnosis and treatment as well as beams of high-energy
particles for treating cancer. For example, retinoblastoma, a cancer of the eye, can
be treated with a series of beams of protons from a cyclotron.

A schematic drawing of a cyclotron is shown in Figure 22.14a. The charges move
inside two hollow metal semicircular containers, D1 and D2, referred to as dees be-
cause they are shaped like the letter D. A high-frequency alternating potential dif-
ference is applied to the dees, and a uniform magnetic field is directed perpendicu-
lar to them. A positive ion released at P near the center of the magnet moves in a
semicircular path in one dee (indicated by the dashed red line in the drawing) and
arrives back at the gap in a time interval T/2, where T is the time interval needed
to make one complete trip around the two dees, given by Equation 22.5. The fre-
quency of the applied potential difference is chosen so that the polarity of the dees
is reversed during the time interval in which the ion travels around one dee. If the
applied potential difference is adjusted such that D2 is at a lower electric potential
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(a) Thomson’s apparatus for measuring e/me . Electrons are accelerated from the
cathode, pass through two slits, and are deflected by both an electric field and a mag-
netic field (directed perpendicular to the electric field). The electrons then strike a
fluorescent screen. (b) J. J. Thomson (left) in the Cavendish Laboratory, University of
Cambridge. It is interesting to note that the man on the right, Frank Baldwin Jewett,
is a distant relative of John W. Jewett Jr., coauthor of this text.

FIGURE 22.13
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Use of cyclotrons in medicine



than D1 by an amount 
V, the ion accelerates across the gap to D2 and its kinetic
energy increases by an amount q 
V. It then moves around D2 in a semicircular path
of larger radius (because its speed has increased). After a time interval T/2, it again
arrives at the gap between the dees. By this time, the polarity across the dees has re-
versed again and the ion is given another “kick” across the gap. The motion contin-
ues so that for each half-circle trip, the ion gains additional kinetic energy equal to
q 
V. When the radius of its path is nearly that of the dees, the energetic ion leaves
the system through the exit slit. It is important to note that the operation of the cy-
clotron is based on T being independent of the speed of the ion and the radius of
its circular path (Eq. 22.5).

We can obtain an expression for the kinetic energy of the ion when it exits from
the cyclotron in terms of the radius R of the dees. From Equation 22.3 we know
that v � qBR/m. Hence, the kinetic energy is

[22.9]

When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic
effects come into play. For this reason, the moving ions do not remain in phase
with the applied potential difference. Some accelerators solve this problem by mod-
ifying the frequency of the applied potential difference so that it remains in phase
with the moving ions.

MAGNETIC  FORCE  ON  A  CURRENT-
CARRYING  CONDUCTOR

Because a magnetic force is exerted on a single charged particle when it moves
through an external magnetic field, it should not surprise you to find that a
current-carrying wire also experiences a magnetic force when placed in an external
magnetic field because the current represents a collection of many charged parti-
cles in motion. Hence, the resultant magnetic force on the wire is due to the sum of
the individual magnetic forces on the charged particles. The force on the particles
is transmitted to the “bulk” of the wire through collisions with the atoms making up
the wire.

22.5

K � 1
2 mv 2 �

q 2B 2R 2

2m
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B

P

D1

D2

(a)

North pole of magnet

Particle exits here

Alternating ∆V

(b)

(a) A cyclotron consists of an ion source at P, two hollow sections called dees, D1 and
D2, across which an alternating potential difference is applied, and a uniform
magnetic field. (The south pole of the magnet is not shown.) The red dashed curved
lines represent the path of the particles. (b) The first cyclotron, invented by E. O.
Lawrence and M. S. Livingston in 1934.

FIGURE 22.14

THE CYCLOTRON IS NOT STATE-
OF-THE-ART TECHNOLOGY The 
cyclotron is important historically
because it was the first particle
accelerator to achieve very high
particle speeds. Cyclotrons are still
used, for example, to accelerate
particles to high speeds in medical
applications. The cyclotron is also
important as an application of the
ideas in this discussion. Most
accelerators built recently and
currently in use in research, how-
ever, are not cyclotrons. They work
on a different principle and are
generally called synchrotrons.
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The magnetic force on a current-carrying conductor can be demonstrated by
hanging a wire between the poles of a magnet as in Figure 22.15, where the mag-
netic field is directed into the page. The wire deflects to the left or right when a
current is passed through it.

Let us quantify this discussion by considering a straight segment of wire of
length � and cross-sectional area A, carrying a current I in a uniform external
magnetic field as in Figure 22.16. As a simplification model, we shall ignore the
high-speed zigzag motion of the charges in the wire (which is valid because the net
velocity associated with this motion is zero) and assume that the charges simply
move with the drift velocity . The magnetic force on a charge q moving with drift
velocity is . To find the total magnetic force on the wire segment, we
multiply the magnetic force on one charge by the number of charges in the seg-
ment. Because the volume of the segment is A�, the number of charges in the
segment is nA�, where n is the number of charges per unit volume. Hence, the total
magnetic force on the wire of length � is

This equation can be written in a more convenient form by noting that, from Equa-
tion 21.4, the current in the wire is I � nqvdA. Therefore, can be expressed as

[22.10]

where is a vector in the direction of the current I ; the magnitude of equals the
length of the segment. Note that this expression applies only to a straight segment
of wire in a uniform external magnetic field.

Now consider an arbitrarily shaped wire of uniform cross-section in an external
magnetic field as in Figure 22.17. It follows from Equation 22.10 that the magnetic
force on a very small segment of the wire of length ds in the presence of an external
field is

[22.11]

where is a vector representing the length segment, with its direction the same as
that of the current, and is directed out of the page for the directions assumed
in Figure 22.17. We can consider Equation 22.11 as an alternative definition of to
Equation 22.1. That is, the field can be defined in terms of a measurable force on
a current element, where the force is a maximum when is perpendicular to the
element and zero when is parallel to the element.

To obtain the total magnetic force on a length of the wire between arbitrary
points a and b, we integrate Equation 22.11 over the length of the wire between
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(a) A wire sus-
pended vertically between the poles of
a magnet. (b) The setup shown in
(a) as seen looking at the south pole
of the magnet so that the magnetic
field (green crosses) is directed into
the page. When no current is flowing
in the wire, it remains vertical.
(c) When the current is upward, the
wire deflects to the left. (d) When the
current is downward, the wire deflects
to the right.

FIGURE 22.15

q
vd

A
Bin

+

FB

× × × × ×

× × × × ×

×

×
�

A section of a wire
containing moving charges in a mag-
netic field . The magnetic force on
each charge is , and the net
force on a segment of length is
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A wire segment of
arbitrary shape carrying a current I in
a magnetic field experiences a
magnetic force. The force on any
length element is and
is directed out of the page.
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FIGURE 22.17

■ Magnetic force on a 
current-carrying conductor



these points:

[22.12]

When this integration is carried out, the magnitude of the magnetic field and the
direction of the field relative to the vector may vary from point to point.d s:

F
:

B � I �b

a
d s: � B

:
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A wire carries current in the plane of this paper toward the top of the
page. The wire experiences a magnetic force toward the right edge of the page. What is
the direction of the magnetic field causing this force? (a) in the plane of the page
and toward the left edge (b) in the plane of the page and toward the bottom edge
(c) upward out of the page (d) downward into the page

QUICK QUIZ 22.3

■ Thinking Physics 22.3
In a lightning stroke, negative charge rapidly moves from a cloud to the ground. In
what direction is a lightning stroke deflected by the Earth’s magnetic field?

Reasoning The downward flow of negative charge in a lightning stroke is equiva-
lent to an upward-moving current. Thus, the vector is upward, and the mag-
netic field vector has a northward component. According to the cross product of
the length element and magnetic field vectors (Eq. 22.11), the lightning stroke
would be deflected to the west. ■

d s:

To find the magnetic force on the curved part, we
first write an expression for the magnetic force on
the element . If � is the angle between and in
Figure 22.18, the magnitude of is

To integrate this expression, we express ds in terms of �.
Because s � R�, ds � Rd�, and the expression for dF2
can be written as

dF2 � IRB sin � d�

To obtain the total magnetic force F2 on the curved
portion, we integrate this expression to account for
contributions from all elements. Note that the direction
of the magnetic force on every element is the same: into
the paper (because is inward). Therefore, the
resultant magnetic force on the curved wire must
also be into the paper. Integrating dF2 over the limits
� � 0 to � � 	 (i.e., the entire semicircle) gives

Because F2 � 2IRB and the vector is directed
into the paper and because the force on the straight
wire has magnitude F1 � 2IRB and is out of the paper,
we see that the net magnetic force on the closed loop is
zero.

F
:

2

2IRB � �IRB(cos 	 � cos 0) � �IRB(�1 � 1) �

 F2 � IRB �	

0
 sin � d� � IRB ��cos ��

	

0

F
:

2

d s: � B
:

dF2 � I �d s: � B
:

� � IB sin � ds

d F
:

2

d s:B
:

d s:
d F

:
2

Force on a Semicircular ConductorEXAMPLE 22.4
A wire bent into the shape of a semicircle of radius R
forms a closed circuit and carries a current I. The cir-
cuit lies in the xy plane, and a uniform magnetic field is
present along the positive y axis as in Figure 22.18. Find
the magnetic force on the straight portion of the wire
and on the curved portion.

Solution The force on the straight portion of the wire
has a magnitude F1 � I�B � because � � 2R and
the wire is perpendicular to . The direction of is out
of the paper because is outward. (That is, is to
the right, in the direction of the current, and so by the
rule of cross products, is outward.)�

:
� B
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� B
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dθ
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s

(Example 22.4) The net force on a closed current
loop in a uniform magnetic field is zero. For the
loop shown here, the force on the straight portion
is 2IRB and out of the page, whereas the force on
the curved portion is 2IRB and into the page.

FIGURE 22.18



TORQUE  ON  A  CURRENT  LOOP  IN  A  UNIFORM
MAGNETIC  FIELD

In the preceding section, we showed how a magnetic force is exerted on a current-
carrying conductor when the conductor is placed in an external magnetic field.
Starting at this point, we shall show that a torque is exerted on a current loop placed
in a magnetic field. The results of this analysis are of great practical value in the de-
sign of motors and generators.

Consider a rectangular loop carrying a current I in the presence of a uniform
external magnetic field in the plane of the loop as in Figure 22.19a. The magnetic
forces on sides � and �, of length b, are zero because these wires are parallel to
the field; hence, for these sides. Nonzero magnetic forces act on sides
� and �, however, because these sides are oriented perpendicular to the field. The
magnitude of these forces is

F2 � F4 � IaB

We see that the net force on the loop is zero. The direction of , the magnetic
force on side �, is out of the paper, and that of , the magnetic force on side �, is
into the paper. If we view the loop from side � as in Figure 22.19b, we see the
forces on � and � directed as shown. If we assume that the loop is pivoted so that
it can rotate about an axis perpendicular to the page and passing through point O,
we see that these two magnetic forces produce a net torque about this axis that ro-
tates the loop clockwise. The magnitude of the torque, which we will call �max, is

where the moment arm about this axis is b/2 for each force. Because the area of
the loop is A � ab, the magnitude of the torque can be expressed as

�max � IAB [22.13]

Remember that this torque occurs only when the field is parallel to the plane of
the loop. The sense of the rotation is clockwise when the loop is viewed as in Figure
22.19b. If the current were reversed, the magnetic forces would reverse their direc-
tions and the rotational tendency would be counterclockwise.

Now suppose the uniform magnetic field makes an angle � with a line perpen-
dicular to the plane of the loop as in Active Figure 22.20. For convenience, we
shall assume that is perpendicular to sides � and �. (The end view of these sides
is shown in Active Fig. 22.20.) In this case, the magnetic forces on sides � and �
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(a) Overhead view
of a rectangular current loop in a
uniform magnetic field. No magnetic
forces are exerted on sides � and �
because these sides are parallel to .
Forces are exerted on sides � and �,
however. (b) Edge view of the loop
sighting down � and � shows that
the forces and exerted on these
sides create a torque that tends to
rotate the loop clockwise. The purple
dot in the left circle represents cur-
rent in wire � coming toward you;
the purple in the right circle repre-
sents current in wire � moving away
from you.
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FIGURE 22.19
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An end view of the loop in Figure
22.19b rotated through an angle with
respect to the magnetic field. If is at
an angle � with respect to vector ,
which is perpendicular to the plane of
the loop, the torque is IAB sin �.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 22.20. You can choose
the current in the loop, the magnetic
field, and the initial orientation of the
loop and observe the subsequent
motion.

A
:

B
:

ACTIVE FIGURE 22.20

www.pop4e.com


cancel each other and produce no torque because they have the same line of ac-
tion. The magnetic forces and acting on sides � and �, however, both
produce a torque about an axis through the center of the loop. Referring to Active
Figure 22.20, we note that the moment arm of about this axis is (b/2) sin �.
Likewise, the moment arm of is also (b/2) sin �. Because F2 � F4 � IaB, the net
torque � has the magnitude

where A � ab is the area of the loop. This result shows that the torque has its
maximum value IAB (Eq. 22.13) when the field is parallel to the plane of the
loop (� � 90�) and is zero when the field is perpendicular to the plane of the loop
(� � 0). As we see in Active Figure 22.20, the loop tends to rotate in the direction
of decreasing values of � (i.e., so that the normal to the plane of the loop rotates
toward the direction of the magnetic field). A convenient vector expression for the
torque is

[22.14]

where , a vector perpendicular to the plane of the loop (Active Fig. 22.20), has a
magnitude equal to the area of the loop. The sense of is determined by the right-
hand rule illustrated in Figure 22.21. When the four fingers of the right hand are
curled in the direction of the current in the loop, the thumb points in the direction
of . The product is defined to be the magnetic dipole moment (often simply
called the “magnetic moment”) of the loop:

[22.15]

The SI unit of magnetic dipole moment is the ampere-meter2 (A � m2). Using this
definition, the torque can be expressed as

[22.16]

Although the torque was obtained for a particular orientation of with respect
to the loop, Equation 22.16 is valid for any orientation. Furthermore, although the
torque expression was derived for a rectangular loop, the result is valid for a loop of
any shape. Once the torque is determined, the motion of the coil can be modeled
as a rigid object under a net torque, which was studied in Chapter 10.

If a coil consists of N turns of wire, each carrying the same current and each
having the same area, the total magnetic moment of the coil is the product of the
number of turns and the magnetic moment for one turn, . Thus, the
torque on an N -turn coil is N times greater than that on a one-turn coil.

A common electric motor consists of a coil of wire mounted so that it can rotate
in the field of a permanent magnet. The torque on the current-carrying coil is used
to rotate a shaft that drives a mechanical device such as the power windows in your
car, your household fan, or your electric hedge trimmer.
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Right-hand rule for
determining the direction of the
vector . The direction of the
magnetic moment is the same as
the direction of .A

:
�:

A
:

FIGURE 22.21

■ Magnetic moment of a current
loop

■ Torque on a current loop

Solution The magnitude of the magnetic moment of a
current loop is � � IA (Eq. 22.15). In this case, 
A � (0.054 0 m)(0.085 0 m) � 4.59 � 10�3 m2.
Because the coil has 25 turns and assuming that each
turn has the same area A, we have

The Magnetic Moment and Torque on a CoilEXAMPLE 22.5
A rectangular coil of dimensions 5.40 cm � 8.50 cm
consists of 25 turns of wire. The coil carries a current of
15.0 mA.

Calculate the magnitude of its magnetic moment.A



THE  BIOT – SAVART  LAW
In the previous sections, we investigated the result of placing an object in an exist-
ing magnetic field. When a moving charge is placed in the field, it experiences a
magnetic force. A current-carrying wire placed in the field also experiences a mag-
netic force; a current loop in the field experiences a torque.

Now we shift our thinking and investigate the source of the magnetic field.
Oersted’s 1819 discovery (Section 22.1) that an electric current in a wire deflects a
nearby compass needle indicates that a current acts as a source of a magnetic field.
From their investigations on the force between a current-carrying conductor and a
magnet in the early 19th century, Jean-Baptiste Biot and Félix Savart arrived at an
expression for the magnetic field at a point in space in terms of the current that
produces the field. No point currents exist comparable to point charges (because
we must have a complete circuit for a current to exist). Hence, we must investigate
the magnetic field due to an infinitesimally small element of current that is part of
a larger current distribution. Suppose the current distribution is a wire carrying a
steady current I as in Figure 22.22. The Biot–Savart law says that the magnetic field

at point P created by an element of infinitesimal length ds of the wire has the
following properties:

• The vector is perpendicular both to (which is in the direction of the cur-
rent) and to the unit vector directed from the element toward P.

• The magnitude of is inversely proportional to r 2, where r is the distance
from the element to P.

• The magnitude of is proportional to the current I and to the length ds of the
element.

• The magnitude of is proportional to sin �, where � is the angle between 
and .

The Biot–Savart law can be summarized in the following compact form:

[22.17]

where km is a constant that in SI units is exactly 10�7 T � m/A. The constant km is
usually written �0/4	, where �0 is another constant, called the permeability of free
space:

[22.18]

[22.19]

Hence, the Biot–Savart law, Equation 22.17, can also be written
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Solution The torque is given by Equation 22.16,
. In this case, is perpendicular to , so

� � �coilB � (1.72 � 10�3 A � m2)(0.350 T)

� 6.02 � 10�4 N�m

�:coilB
:

�: � �: � B
:

�

Suppose a uniform magnetic field of magnitude
0.350 T is applied parallel to the plane of the loop.
What is the magnitude of the torque acting on the loop?

B

1.72 � 10�3 A �m2

 �coil � NIA � (25)(15.0 � 10�3 A)(4.59 � 10�3 m2)

Pd Bout

r

θ d

P ′
dBin

I
r̂

×r̂

s

The magnetic field
at a point P due to a current I

through a length element is given
by the Biot–Savart law. The field is
out of the page at P and into the page
at P . (Both P and P  are in the plane
of the page.)

d s:
d B

:
FIGURE 22.22

THE BIOT –SAVART LAW When you
are applying the Biot–Savart law, it
is important to recognize that the
magnetic field described in these
calculations is the field due to a
given current-carrying conductor.
This magnetic field is not to be
confused with any external field that
may be applied to the conductor
from some other source.

� PITFALL PREVENTION 22.2

■ Permeability of free space

■ Biot – Savart law



Consider the current in the length of wire shown in Figure 22.24.
Rank the points A, B, and C, in terms of magnitude of the magnetic field due to the
current in the length element shown, from greatest to least.d s:

QUICK QUIZ 22.4

(Quick Quiz 22.4) Where is the magnetic field the greatest?FIGURE 22.24

It is important to note that the Biot–Savart law gives the magnetic field at a
point only for a small length element of the conductor. We identify the product

as a current element. To find the total magnetic field at some point due to a
conductor of finite size, we must sum contributions from all current elements mak-
ing up the conductor. That is, we evaluate by integrating Equation 22.20 over the
entire conductor.

There are two similarities between the Biot–Savart law of magnetism and Equa-
tion 19.7 for the electric field of a charge distribution, and there are two important
differences. The current element I ds produces a magnetic field, and the charge el-
ement dq produces an electric field. Furthermore, the magnitude of the magnetic
field varies as the inverse square of the distance from the current element, as does
the electric field due to a charge element. The directions of the two fields are quite
different, however. The electric field due to a charge element is radial; in the
case of a positive point charge, is directed away from the charge. The magnetic
field due to a current element is perpendicular to both the current element
and the radius vector. Hence, if the conductor lies in the plane of the page, as in
Figure 22.22, points out of the page at the point P and into the page at P . An-
other important difference is that an electric field can be a result either of a single
charge or a distribution of charges, but a magnetic field can only be a result of a
current distribution.

Figure 22.23 shows a convenient right-hand rule for determining the direction
of the magnetic field due to a current. Note that the field lines generally encircle
the current. In the case of current in a long, straight wire, the field lines form cir-
cles that are concentric with the wire and are in a plane perpendicular to the wire.
If the wire is grasped in the right hand with the thumb in the direction of the cur-
rent, the fingers will curl in the direction of .

Although the magnetic field due to an infinitely long, current-carrying wire can
be calculated using the Biot–Savart law (Problem 22.52), in Section 22.9 we use a
different method to show that the magnitude of this field at a distance r from the
wire is

[22.21]B �
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r

I

B

The right-hand
rule for determining the direction of
the magnetic field surrounding a
long, straight wire carrying a current.
Note that the magnetic field lines
form circles around the wire. The
magnitude of the magnetic field at a
distance r from the wire is given by
Equation 22.21.

FIGURE 22.23

■ Magnetic field due to a long,
straight wire

Magnetic Field on the Axis of a Circular Current LoopEXAMPLE 22.6INTERACTIVE

[22.22]

The direction of the magnetic field due to the
element is perpendicular to the plane formed by 
and as in Figure 22.25. The vector can be resolved
into a component dBx , along the x axis, and a component
dBy, which is perpendicular to the x axis. When the com-
ponents dBy are summed over the whole loop, the result
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ds

(x2 � R2)

Consider a circular loop of wire of radius R located in
the yz plane and carrying a steady current I as in Figure
22.25. Calculate the magnetic field at an axial point P a
distance x from the center of the loop.

Solution In this situation, note that any element is
perpendicular to . Furthermore, all elements around
the loop are at the same distance r from P, where 
r 2 � x2 � R2. Hence, the magnitude of due to the
element isd s:

dB
:

r̂
d s:

A
d

CB

I
s
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where we have used that (the circumfer-
ence of the loop).

To find the magnetic field at the center of the loop,
we set x � 0 in Equation 22.23. At this special point, we
have

[22.24]

It is also interesting to determine the behavior of the
magnetic field far from the loop, that is, when x is large
compared with R. In this case, we can ignore the term R2

in the denominator of Equation 22.23 and we find that

(for x �� R) [22.25]

Because the magnitude of the magnetic dipole
moment � of the loop is defined as the product of the
current and the area (Eq. 22.15), � � I(	R2), we can
express Equation 22.25 in the form

[22.26]

This result is similar in form to the expression
for the electric field due to an electric dipole, 
E � ke(2qa)/y3 � ke p/y3 (Example 19.3), where p is the
electric dipole moment. The pattern of the magnetic
field lines for a circular loop is shown in Figure 22.26a.
For clarity, the lines are drawn only for one plane that
contains the axis of the loop. Note that the field-line
pattern is axially symmetric and looks like the pattern
around a bar magnet, shown in Figure 22.26c.

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 22.6, you
can explore the field for different loop radii.

B �
�0

2	
 

�

x3

B �
�0IR 2

2x3

B �
�0I
2R

  (at x � 0)

	 ds � 2	R

is zero. That is, by symmetry, any element on one side of
the loop sets up a component dBy that cancels the com-
ponent set up by an element diametrically opposite it.

For these reasons, the resultant field at P must be
along the x axis and can be found by integrating the
components dBx � dB cos �, where this expression is
obtained from resolving the vector into its compo-
nents as shown in Figure 22.25. That is, , where

and the integral must be taken over the entire loop.
Because �, x, and R are constants for all elements of the
loop and because cos � � R/(x2 � R2)1/2, we obtain

[22.23]
�0IR 2

2(x 2 � R 2)3/2Bx �
�0IR

4	(x 2 � R2)3/2  
 ds �
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dB cos � �
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(Interactive Example 22.6) The geometry for cal-
culating the magnetic field at a point P lying on
the axis of a current loop. By symmetry, the total
field is along this axis.B

:

FIGURE 22.25

(a) (b) (c)

S

N

I
S

N

(Interactive Example 22.6) (a) Magnetic field lines surrounding a current loop. (b) Magnetic field lines surrounding a current
loop displayed with iron filings. (c) Magnetic field lines surrounding a bar magnet. Note the similarity between this line pattern
and that of a current loop.

FIGURE 22.26
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THE  MAGNETIC  FORCE  BETWEEN  TWO  
PARALLEL  CONDUCTORS

In Section 22.5, we described the magnetic force that acts on a current-carrying con-
ductor when the conductor is placed in an external magnetic field. Because a cur-
rent in a conductor sets up its own magnetic field, it is easy to understand that two
current-carrying conductors exert magnetic forces on each other. As we shall see,
such forces can be used as the basis for defining the ampere and the coulomb.

Consider two infinitely long, straight, parallel wires separated by the distance a
and carrying currents I1 and I2 in the same direction as in Active Figure 22.27. We
shall adopt a simplification model in which the radii of the wires are much smaller
than a so that the radius plays no role in the calculation. We can determine the
force on one wire due to the magnetic field set up by the other wire. Wire 2, which
carries current I2, sets up a magnetic field at the position of wire 1. The direc-
tion of is perpendicular to the wire as shown in Active Figure 22.27. According
to Equation 22.10, the magnetic force on a length � of wire 1 is . Be-
cause is perpendicular to , the magnitude of is F1 � I1�B2. Because the field
due to wire 2 is given by Equation 22.21, we see that

We can rewrite this expression in terms of the force per unit length as

The direction of is downward, toward wire 2, because is downward. If
one considers the field set up at wire 2 due to wire 1, the force on wire 2 is found
to be equal in magnitude and opposite in direction to . That is what one would
expect because Newton’s third law must be obeyed. Thus, we can drop the force
subscript so that the magnetic force per unit length exerted by each long current-
carrying wire on the other is

[22.27]

This equation also applies if one of the wires is of finite length. In the discussion
above, we used the equation for the magnetic field of an infinite wire carrying cur-
rent I2, but did not require that wire 1 be of infinite length.

When the currents are in opposite directions, the magnetic forces are reversed
and the wires repel each other. Hence, we find that parallel conductors carrying
currents in the same direction attract each other, whereas parallel conductors carry-
ing currents in opposite directions repel each other.

The magnetic force between two parallel wires, each carrying a current, is used
to define the ampere: If two long, parallel wires 1 m apart carry the same current
and the force per unit length on each wire is 2 � 10�7 N/m, the current is defined
to be 1 A. The numerical value of 2 � 10�7 N/m is obtained from Equation 22.27,
with I1 � I2 � 1 A and a � 1 m.

The SI unit of charge, the coulomb, can now be defined in terms of the ampere:
If a conductor carries a steady current of 1 A, the quantity of charge that flows
through a cross-section of the conductor in 1 s is 1 C.
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2

1

B2

�

a

I1

I2

F1

a

Two parallel wires that each carry a
steady current exert a force on each
other. The field due to the current
in wire 2 exerts a force of magnitude 
F1 � I1�B2 on wire 1. The force is
attractive if the currents are parallel
(as shown) and repulsive if the
currents are antiparallel.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 22.27. You can adjust
the currents in the wires and the
distance between them to see the
effect on the force.

B
:

2

ACTIVE FIGURE 22.27

■ Magnetic force per unit length
between parallel current-
carrying wires

A loose spiral spring is hung from the ceiling and a large current is
sent through it. Do the coils (a) move closer together, (b) move farther apart, or (c) not
move at all?

QUICK QUIZ 22.5
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AMPÈRE’S LAW
A simple experiment first carried out by Oersted in 1820 clearly demonstrates that
a current-carrying conductor produces a magnetic field. In this experiment, several
compass needles are placed in a horizontal plane near a long vertical wire as in
Active Figure 22.28a. When the wire carries no current, all needles point in the
same direction (that of the Earth’s magnetic field), as one would expect. When the
wire carries a strong, steady current, however, the needles all deflect in a direction
tangent to the circle as in Active Figure 22.28b. These observations show that the
direction of is consistent with the right-hand rule described in Section 22.7.
When the current is reversed, the needles in Active Figure 22.28b also reverse.

Because the needles point in the direction of , we conclude that the lines of 
form circles about the wire, as discussed in Section 22.7. By symmetry, the magni-
tude of is the same everywhere on a circular path that is centered on the wire and
lies in a plane perpendicular to the wire. By varying the current and distance from
the wire, one finds that is proportional to the current and inversely proportional
to the distance from the wire.

In Chapter 19, we investigated Gauss’s law, which is a relationship between an
electric charge and the electric field it produces. Gauss’s law can be used to deter-
mine the electric field in highly symmetric situations. We now consider an analo-
gous relationship in magnetism between a current and the magnetic field it pro-
duces. This relationship can be used to determine the magnetic field created by a
highly symmetric current distribution.

Let us evaluate the product for a small length element on the circular
path1 centered on the wire in Active Figure 22.28b. Along this path, the vectors d s:

d s:B
:

� d s:

B
:

B
:

B
:

B
:

B
:
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(a) (b)

I  =  0

I

d

B

s

(a) When no current is present in the vertical wire, all compass needles
point in the same direction (toward the Earth’s North Pole). (b) When
the wire carries a strong current, the compass needles deflect in a direc-
tion tangent to the circle, which is the direction of the magnetic field
created by the current. (c) Circular magnetic field lines surrounding a
current-carrying conductor, displayed with iron filings.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 22.28. You can
change the value of the current to see the effect on the compasses.

ACTIVE FIGURE 22.28
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(c)

1 You may wonder why we would choose to do this evaluation. The origin of Ampère’s law is in 19th-
century science, in which a “magnetic charge” (the supposed analog to an isolated electric charge) was
imagined to be moved around a circular field line. The work done on the charge was related to ,
just like the work done moving an electric charge in an electric field is related to . Thus, Ampère’s
law, a valid and useful principle, arose from an erroneous and abandoned work calculation!

E
:

� d s:
B
:

� d s:

www.pop4e.com


and are parallel at each point, so . Furthermore, by symmetry, is
constant in magnitude on this circle and is given by Equation 22.21. Therefore, the
sum of the products B ds over the closed path, which is equivalent to the line inte-
gral of , is

[22.28]

where is the circumference of the circle.
This result, known as Ampère’s law, was calculated for the special case of a circu-

lar path surrounding a wire. It can, however, also be applied in the general case in
which a steady current passes through the area surrounded by an arbitrary closed
path. That is, Ampère’s law says that the line integral of around any closed
path equals �0I, where I is the total steady current passing through any surface
bounded by the closed path:

[22.29]
 B
:

� d s: � �0I

B
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� d s:

	 ds � 2	r
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ds �
�0I
2	r
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(a) Rank the values of for the closed paths in Figure 22.29,
from smallest to largest. (b) Rank the values of for the closed paths in Figure
22.30, from smallest to largest.

	 B
:

� d s:
	 B: � d s:QUICK QUIZ 22.6

André-Marie Ampère
(1775 – 1836)

Ampère, a Frenchman, is credited
with the discovery of electromag-
netism, the relationship between
electric currents and magnetic
fields. Ampère’s genius, particularly
in mathematics, became evident by
the time he was 12 years old; his
personal life, however, was filled
with tragedy. His father, a wealthy
city official, was guillotined during
the French Revolution, and his wife
died young, in 1803. Ampère died at
the age of 61 of pneumonia. His
judgment of his life is clear from the
epitaph he chose for his gravestone:
Tandem Felix (Happy at Last).
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Ampère’s law is valid only for steady currents. Furthermore, even though Am-
père’s law is true for all current configurations, it is only useful for calculating the
magnetic fields of configurations with high degrees of symmetry.

In Section 19.10, we provided some conditions to be sought when defining a
gaussian surface. Similarly, to apply Equation 22.29 to calculate a magnetic field, we
must determine a path of integration (sometimes called an amperian loop) such that
each portion of the path satisfies one or more of the following conditions:

1. The value of the magnetic field can be argued by symmetry to be constant over
the portion of the path.

2. The dot product in Equation 22.29 can be expressed as a simple algebraic 
product B ds because and are parallel.

3. The dot product in Equation 2.29 is zero because and are perpendicular.
4. The magnetic field can be argued to be zero at all points on the portion of the

path.

d s:B
:

d s:B
:

■ Ampère’s law

×

1 A
5 A

b

a

d

c

2 A

(Quick Quiz 22.6)
Four closed paths around three
current-carrying wires.

FIGURE 22.29 (Quick Quiz 22.6)
Four closed paths near a single
current-carrying wire.

FIGURE 22.30

a

b

c
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The following examples illustrate some symmetric current configurations for which
Ampère’s law is useful.
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Here the current I  passing through the plane of the
circle is less than the total current I. Because the cur-
rent is uniform over the cross-section of the wire, the
fraction of the current enclosed by the circle of radius
r � R must equal the ratio of the area 	r 2 enclosed by
circular path 2 and the cross-sectional area 	R2 of the
wire:

Following the same procedure as for circular path 1, we
apply Ampère’s law to circular path 2:

[22.30]

The magnitude of the magnetic field versus r for this
configuration is sketched in Figure 22.32. Note that
inside the wire B : 0 as r : 0. This result is similar in
form to that of the electric field inside a uniformly
charged rod.

(for r � R)� �0I
2	R2 � rB �


 B
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� d s: � B(2	r) � �0I  � �0 � r 2
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R 2  I
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I
�

	r 2

	R 2

The Magnetic Field Created by a Long Current-Carrying WireEXAMPLE 22.7
A long, straight wire of radius R carries a steady current
I that is uniformly distributed through the cross-section
of the wire (Fig. 22.31). Calculate the magnetic field a
distance r from the center of the wire in the regions 
r � R and r � R .

Solution As mentioned in Section 22.7, we could use
the Biot–Savart law to solve this problem, but Ampère’s
law provides a much simpler solution. For r � R , let us
choose path 1 in Figure 22.31, a circle of radius r cen-
tered on the wire. From symmetry, we see that must 
be constant in magnitude—condition 1—and parallel
to —condition 2—at every point on this circle. Be-
cause the total current passing through the plane of the
circle is I, Ampère’s law applied to the circular path 
gives

B �

which is the result (Eq. 22.21) referred to in 
Section 22.7.

Now consider the interior of the wire, where r � R .
We choose the circular path 2 shown in Figure 22.31.

(for r � R)
�0I
2	r

 
 B
:

� d s: � B 
ds � B(2	r) � �0I

d s:

B
:

2
R

r

1 I

d s

(Example 22.7) A long, straight wire of radius R
carrying a steady current I uniformly distributed
across the wire. The magnetic field at any point
can be calculated from Ampère’s law using a circu-
lar path of radius r, concentric with the wire.

FIGURE 22.31
R

r

B ∝ 1/r

B ∝ r

B

(Example 22.7) Magnitude of the magnetic field
versus r for the wire described in Figure 22.31. The
field is proportional to r inside the wire and varies
as 1/r outside the wire.

FIGURE 22.32

ing material. For a toroid having N closely spaced turns
of wire and air in the torus, calculate the magnetic field
in the region occupied by the torus, a distance r from
the center.

The Magnetic Field Created by a ToroidEXAMPLE 22.8
A device called a toroid (Fig. 22.33) is often used to
create an almost uniform magnetic field in some
enclosed area. The device consists of a conducting wire
wrapped around a ring (a torus) made of a nonconduct-



THE  MAGNETIC  FIELD  OF  A  SOLENOID
A solenoid is a long wire wound in the form of a helix. If the turns are closely
spaced, this configuration can produce a reasonably uniform magnetic field
throughout the volume enclosed by the solenoid, except close to its ends. Each of
the turns can be modeled as a circular loop, and the net magnetic field is the vector
sum of the fields due to all the turns.

If the turns are closely spaced and the solenoid is of finite length, the field lines
are as shown in Figure 22.34a. In this case, the field lines diverge from one end and
converge at the opposite end. An inspection of this field distribution exterior to the
solenoid shows a similarity to the field of a bar magnet (Fig. 22.34b). Hence, one
end of the solenoid behaves like the north pole of a magnet and the opposite end
behaves like the south pole. As the length of the solenoid increases, the field within
it becomes more and more uniform. When the solenoid’s turns are closely spaced
and its length is large compared with its radius, it approaches the case of an ideal so-
lenoid. For an ideal solenoid, the field outside the solenoid is negligible and the
field inside is uniform. We will use the ideal solenoid as a simplification model for a
real solenoid.

If we consider the amperian loop perpendicular to the page in Figure 22.35, sur-
rounding the ideal solenoid, we see that it it encloses a small current as the charges
in the wire move coil by coil along the length of the solenoid. Thus, there is a

22.10
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applied to the circular path gives

[22.31]

This result shows that B varies as 1/r and hence is
nonuniform within the coil. If r is large compared with
the cross-sectional radius a of the torus, however, the
field is approximately uniform inside the coil.

For an ideal toroid in which the turns are closely
spaced, the external magnetic field is close to zero. It is
not exactly zero, however. In Figure 22.33, imagine the
radius r of the amperian loop to be either smaller than
b or larger than c. In either case, the loop encloses zero
net current, so . We might be tempted to
claim that this expression proves that , but it does
not. Consider the amperian loop on the right side of
the toroid in Figure 22.33. The plane of this loop is per-
pendicular to the page and the toroid passes through
the loop. As charges enter the toroid as indicated by
the current directions in Figure 22.33, they work their
way counterclockwise around the toroid. Thus, a cur-
rent passes through the perpendicular amperian loop!
This current is small, but it is not zero. As a result, the
toroid acts as a current loop and produces a weak exter-
nal field of the form shown in Figure 22.26a. The rea-
son that for the amperian loops of radius 
r � b and r � c in the plane of the page is that the 
field lines are perpendicular to (condition 3), not
because (condition 4).B
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Solution To calculate the field inside the toroid, we
evaluate the line integral of over the circular am-
perian loop of radius r in the plane of Figure 22.33. By
symmetry, we see that conditions 1 and 2 apply: the
magnetic field is constant in magnitude on this circle
and tangent to it, so .

Furthermore, note that the closed path surrounds a
circular area through which N loops of wire pass, each
of which carries a current I. The right side of Equation
22.29 is therefore �0NI in this case. Ampère’s law
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B
:

� d s:

B

ca

d

I

I

r

b

s

(Example 22.8) A toroid consisting of many turns
of wire wrapped around a doughnut-shaped struc-
ture (called a torus). If the coils are closely spaced,
the field in the interior of the toroid is tangent to
the dashed circle and varies as 1/r. The dimension
a is the cross-sectional radius of the torus. The
field outside the toroid is very small and can be de-
scribed by using the amperian loop at the right
side, perpendicular to the page.

FIGURE 22.33



nonzero magnetic field outside the solenoid. It is a weak field, with circular field
lines, like those due to a line of current as in Figure 22.23. For an ideal solenoid, it
is the only field external to the solenoid. We can eliminate this field in Figure 22.35
by adding a second layer of turns of wire outside the first layer. If the first layer of
turns is wrapped so that the turns progress from the bottom of Figure 22.35 to the
top and the second layer has turns progressing from the top to the bottom, the net
current along the axis is zero.

We can use Ampère’s law to obtain an expression for the magnetic field inside
an ideal solenoid. A longitudinal cross-section of part of our ideal solenoid
(Fig. 22.35) carries current I. Here, inside the ideal solenoid is uniform and par-
allel to the axis. Consider a rectangular path of length � and width w as shown in
Figure 22.35. We can apply Ampère’s law to this path by evaluating the integral of

over each of the four sides of the rectangle. The contribution along side 3 is
zero because the magnetic field lines are perpendicular to the path in this region,
which matches condition 3 in Section 22.9. The contributions from sides 2 and 4
are both zero because is perpendicular to along these paths, both inside and
outside the solenoid. Side 1, whose length is �, gives a contribution to the integral
because along this portion of the path is constant in magnitude and parallel to

, which matches conditions 1 and 2. The integral over the closed rectangular
path therefore has the value

The right side of Ampère’s law involves the total current that passes through the
surface bounded by the path of integration. In our case, the total current through
the rectangular path equals the current through each turn of the solenoid multi-
plied by the number of turns enclosed by the path of integration. If N is the num-
ber of turns in the length �, the total current through the rectangle equals NI.
Ampère’s law applied to this path therefore gives

[22.32]

where n � N/� is the number of turns per unit length (not to be confused with N,
the number of turns).
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(a)

S

N

(a) Magnetic field
lines for a tightly wound solenoid of
finite length carrying a steady current.
The field in the space enclosed by the
solenoid is nearly uniform and strong.
Note that the field lines resemble
those of a bar magnet and that the
solenoid effectively has north and
south poles. (b) The magnetic field
pattern of a bar magnet, displayed
with iron filings.

FIGURE 22.34
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Cross-sectional
view of an ideal solenoid, where the
interior magnetic field is uniform and
the exterior field is close to zero. Am-
père’s law applied to the circular path
near the bottom whose plane is per-
pendicular to the page can be used to
show that there is a weak field outside
the solenoid. Ampère’s law applied to
the rectangular dashed path in the
plane of the page can be used to
calculate the magnitude of the inte-
rior field.

FIGURE 22.35

■ Magnetic field inside a long
solenoid



We also could obtain this result in a simpler manner by reconsidering the mag-
netic field of a toroidal coil (Example 22.8). If the radius r of the toroidal coil
containing N turns is large compared with its cross-sectional radius a, a short sec-
tion of the toroidal coil approximates a short section of a solenoid, with 
n � N/2	r. In this limit, we see that Equation 22.31 derived for the toroidal coil
agrees with Equation 22.32.

Equation 22.32 is valid only for points near the center of a very long solenoid. As
you might expect, the field near each end is smaller than the value given by Equa-
tion 22.32. At the very end of a long solenoid, the magnitude of the field is about
one-half that of the field at the center (see Problem 22.46).
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Consider a solenoid that is very long compared with the radius. Of the
following choices, the most effective way to increase the magnetic field in the interior of
the solenoid is to (a) double its length, keeping the number of turns per unit length con-
stant, (b) reduce its radius by half, keeping the number of turns per unit length constant,
or (c) overwrap the entire solenoid with an additional layer of current-carrying wire.

QUICK QUIZ 22.7
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An electron mov-
ing in a circular orbit of radius r has
an angular momentum in one
direction and a magnetic moment 
in the opposite direction. The motion
of the electron in the direction of the
gray arrow results in a current in the
direction shown.
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FIGURE 22.36

MAGNETISM  IN  MATTER
The magnetic field produced by a current in a coil of wire gives a hint about what
causes certain materials to exhibit strong magnetic properties. To understand why
some materials are magnetic, it is instructive to begin this discussion with the Bohr
structural model of the atom, in which electrons are assumed to move in circular
orbits about the much more massive nucleus. Figure 22.36 shows the angular
momentum associated with the electron. In the Bohr model, each electron, with its
charge of magnitude 1.6 � 10�19 C, circles the atom once in about 10�16 s. If we
divide the electronic charge by this time interval, we find that the orbiting electron
is equivalent to a current of 1.6 � 10�3 A. Each orbiting electron is therefore
viewed as a tiny current loop with a corresponding magnetic moment. Because the
charge of the electron is negative, the magnetic moment is directed opposite to the
angular momentum as shown in Figure 22.36.

In most substances, the magnetic moment of one electron in an atom is can-
celed by that of another electron in the atom, orbiting in the opposite direction.
The net result is that the magnetic effect produced by the orbital motion of the
electrons is either zero or very small for most materials.

In addition to its orbital angular momentum, an electron has an intrinsic angu-
lar momentum, called spin, which also contributes to its magnetic moment. The
spin of an electron is an angular momentum separate from its orbital angular mo-
mentum, just as the spin of the Earth is separate from its orbital motion about the
Sun. Even if the electron is at rest, it still has an angular momentum associated with
spin. We shall investigate spin more deeply in Chapter 29.

In atoms or ions containing multiple electrons, many electrons are paired up
with their spins in opposite directions, an arrangement that results in a cancellation
of the spin magnetic moments. An atom with an odd number of electrons, however,
must have at least one “unpaired” electron and a corresponding spin magnetic
moment. The net magnetic moment of the atom leads to various types of magnetic
behavior. The magnetic moments of several atoms and ions are listed in Table 22.1.

Ferromagnetic Materials
Iron, cobalt, nickel, gadolinium, and dysprosium are strongly magnetic materials
and are said to be ferromagnetic. Ferromagnetic substances, used to fabricate per-
manent magnets, contain atoms with spin magnetic moments that tend to align
parallel to each other even in a weak external magnetic field. Once the moments
are aligned, the substance remains magnetized after the external field is removed.

22.11

THE ELECTRON DOES NOT SPIN Do
not be misled by the word spin into
believing that the electron is physi-
cally spinning. The electron has an
intrinsic angular momentum as if it
were spinning, but the notion of rota-
tion for a point particle is meaning-
less; remember that we described
rotation of a rigid object, with an
extent in space, in Chapter 10. Spin
angular momentum is actually a
relativistic effect.

� PITFALL PREVENTION 22.3

Magnetic Moments of Some
Atoms and Ions

TABLE 22.1

Magnet Moment
Atom per Atom
or Ion or Ion (10�24 J/T)

H 9.27
He 0
Ne 0
Fe 2.06
Co 16.0
Ni 5.62
Gd 65.8
Dy 92.7
Co2� 44.5
Ni2� 29.7
Fe2� 50.1
Ce3� 19.8
Yb3� 37.1



CONTEXT 
connection

This permanent alignment is due to strong coupling between neighboring atoms,
which can only be understood using quantum physics.

All ferromagnetic materials contain microscopic regions called domains, within
which all magnetic moments are aligned. The domains range from about 10�12 to
10�8 m3 in volume and contain 1017 to 1021 atoms. The boundaries between do-
mains having different orientations are called domain walls. In an unmagnetized
sample, the domains are randomly oriented so that the net magnetic moment is
zero as in Figure 22.37a. When the sample is placed in an external magnetic field,
domains with magnetic moment vectors initially oriented along the external field
grow in size at the expense of other domains, which results in a magnetized sample,
as in Figures 22.37b and 22.37c. When the external field is removed, the sample
may retain most of its magnetism.

The extent to which a ferromagnetic substance retains its magnetism is de-
scribed by its classification as being magnetically hard or soft. Soft magnetic materi-
als, such as iron, are easily magnetized but also tend to lose their magnetism easily.
When a soft magnetic material is magnetized and the external magnetic field is re-
moved, thermal agitation produces domain motion and the material quickly re-
turns to an unmagnetized state. In contrast, hard magnetic materials, such as cobalt
and nickel, are difficult to magnetize but tend to retain their magnetism, and do-
main alignment persists in them after the external magnetic field is removed. Such
hard magnetic materials are referred to as permanent magnets. Rare-earth perma-
nent magnets, such as samarium–cobalt, are now regularly used in industry.

THE  ATTRACTIVE  MODEL  FOR  MAGNETIC
LEVITATION

A number of designs have been developed for magnetic levitation. In this section,
we shall describe one design model called the electromagnetic system (EMS). This
model is conceptually simple because it depends only on the attractive force be-
tween magnets and ferromagnetic materials. It has some technological complica-
tions, however. The EMS system is used in the German Transrapid design.

In an EMS system, the magnets supporting the vehicle are located below the
track because the attractive force between these magnets and those in the track
must lift the vehicle upward. A diagram of the German Transrapid system is shown
in Figure 22.38.

The electromagnets attached to the vehicle are attracted to the steel rail, lifting
the car. One disadvantage of this system is the instability of the vehicle caused by the
variation of the magnetic force with distance. If the vehicle rises slightly, the magnet
moves closer to the rail and the strength of the attractive force increases. As a re-
sult, the vehicle continues to move upward until the magnet makes contact with the
rail. Conversely, if the vehicle drops slightly, the force decreases and the vehicle
continues to drop. For these reasons, this system requires a proximity detector and
electronic controls that adjust the magnetizing current to keep the vehicle at a con-
stant position relative to the rail.

Figure 22.39 shows a typical method for controlling the separation between the
magnets and the rails. The proximity detector is a device that uses magnetic induc-
tion (which we shall study in Chapter 23) to measure the magnet–rail separation. If
the vehicle drops so that the levitation magnet moves farther from the rail, the detec-
tor causes the power supply to send more current to the magnet, pulling the vehicle
back up. If the magnet rises, the decreased separation distance is detected and the
power supply sends less current to the magnet so that the vehicle drops downward.

Another disadvantage of the EMS system is the relatively small separation be-
tween the levitating magnets and the track, about 10 mm. This small separation re-
quires careful tolerance in track layout and curvature and steadfast maintenance of
the track against problems with snow, ice, and temperature changes.
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(a) Random orien-
tation of atomic magnetic dipoles in
the domains of an unmagnetized
substance. (b) When an external field

is applied, the domains with
components of magnetic moment in
the same direction as grow larger.
(c) As the field is made even stronger,
the domains with magnetic moment
vectors not aligned with the external
field become very small.

B
:

B
:

FIGURE 22.37



A major advantage of the EMS system is that the levitation is independent of
speed so that wheels are not required; the vehicle is levitated even when stopped at
a station. Wheels are still required, however, for an emergency “landing” system if a
loss of power occurs.

The Transrapid system has undergone extensive testing in Germany and has
achieved speeds of more than 450 km/h. As mentioned in the Context introduction,
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Steel rail
(support)

Steel rail
(guidance)

Guidance magnet

Support magnet

(a) (b)

(a) A front view of a German Transrapid vehicle, showing it hovering above the track.
(b) A close-up view of the support and guidance mechanisms. The attractive force be-
tween the support magnet and the steel rail lifts the vehicle upward. A second steel
rail and the associated guidance magnet keep the vehicle laterally centered on the
track. For more information, visit the Transrapid web site at www.transrapid.de/en/.

FIGURE 22.38

Controlled
power supply Controller

Support
magnet

Proximity
detector

The control system
for maintaining a fixed separation
distance between the magnets and the
track. The proximity detector signals
the controller if the separation
distance changes. The controlled
power supply changes the current in
the support magnet to counteract the
change in the separation distance.

FIGURE 22.39

www.transrapid.de/en/


the Transrapid has entered commercial utilization in China, with a 30-km long track
between Long Yang Station in Shanghai and Pudong International Airport. The sta-
tion-to-station travel time is about 15 min, which is a significant reduction in time
from that for a bus or a taxi. During the commissioning phase of this line, which
spanned the year 2003, the vehicle achieved a speed of 501 km/h. During this phase,
hundreds of thousands of visitors traveled on the line, including Chinese Premier
Zhu Rongji and visiting German Chancellor Gerhard Schroeder. Scheduled commer-
cial operations on this line began on December 29, 2003.
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SUMMARY

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The magnetic force that acts on a charge q moving with velocity
in an external magnetic field is

[22.1]

This force is in a direction perpendicular both to the veloc-
ity of the particle and to the magnetic field and given by the
right-hand rules shown in Figure 22.4. The magnitude of the
magnetic force is

[22.2]

where � is the angle between and .
A particle with mass m and charge q moving with velocity 

perpendicular to a uniform magnetic field follows a circular
path of radius

[22.3]

If a straight conductor of length � carries current I, the mag-
netic force on that conductor when placed in a uniform exter-
nal magnetic field is

[22.10]

where is in the direction of the current and , the
length of the conductor.

If an arbitrarily shaped wire carrying current I is placed in
an external magnetic field, the magnetic force on a very small
length element is

[22.11]

To determine the total magnetic force on the wire, one must
integrate Equation 22.11 over the wire.

The magnetic dipole moment of a loop carrying current I is

[22.15]

where is perpendicular to the plane of the loop and is
equal to the area of the loop. The SI unit of is the ampere-
meter squared, or A � m2.

The torque on a current loop when the loop is placed
in a uniform external magnetic field isB
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[22.16]

The Biot–Savart law says that the magnetic field at a point
P due to a wire element carrying a steady current I is

[22.20]

where �0 � 4	 � 10�7 T � m/A is the permeability of free
space and r is the distance from the element to the point P.
To find the total field at P due to a current distribution,
one must integrate this vector expression over the entire
distribution.

The magnitude of the magnetic field at a distance r from a
long, straight wire carrying current I is

[22.21]

The field lines are circles concentric with the wire.
The magnetic force per unit length between two parallel

wires (at least one of which is long) separated by a distance a
and carrying currents I1 and I2 has the magnitude

[22.27]

The force is attractive if the currents are in the same direction
and repulsive if they are in opposite directions.

Ampère’s law says that the line integral of around any
closed path equals �0I, where I is the total steady current pass-
ing through any surface bounded by the closed path:

[22.29]

Using Ampère’s law, one finds that the fields inside a
toroidal coil and solenoid are

[22.31]

[22.32]

where N is the total number of turns and n is the number of
turns per unit length.
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N
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I � �0nI  (solenoid)

 B �
�0NI
2	r

  (toroid)


 B
:

� d s: � �0I

B
:

� d s:

F
�

�
�0I1I2

2	a

B �
�0I
2	r

dB
:

�
�0

4	
 
I d s: � r̂

r 2

d s:
d B

:

�: � �: � B
:

www.pop4e.com


756 ❚ CHAPTER 22 MAGNETIC FORCES AND MAGNETIC FIELDS

y g p pp

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

Two charged particles are projected into a magnetic field
perpendicular to their velocities. If the charges are de-
flected in opposite directions, what can you say about
them?

2. List several similarities and differences between electric
and magnetic forces.

3. The electron beam in Figure Q22.3 is projected to the
right. The beam deflects downward in the presence of a
magnetic field produced by a pair of current-carrying coils.
(a) What is the direction of the magnetic field? (b) What
would happen to the beam if the current in the coils were
reversed?

1.

Explain why two parallel wires carrying currents in oppo-
site directions repel each other.

10. Parallel current-carrying wires exert magnetic forces on
each other. What about perpendicular wires? Imagine two
such wires oriented perpendicular to each other and al-
most touching. Does a magnetic force exist between the
wires?

A hollow copper tube carries a current along its length.
Why is inside the tube? Is nonzero outside the
tube?

12. Describe the change in the magnetic field in the space en-
closed by a solenoid carrying a steady current I if (a) the
length of the solenoid is doubled but the number of turns
remains the same and (b) the number of turns is doubled
but the length remains the same.

13. A magnet attracts a piece of iron. The iron can then attract
another piece of iron. On the basis of domain alignment,
explain what happens in each piece of iron.

14. The “north” pole of a bar magnet is attracted toward the
geographic north pole of the Earth. Yet, similar poles re-
pel. What is the way out of this dilemma?

15. Why does hitting a magnet with a hammer cause the mag-
netism to be reduced?

16. Should the surface of a computer disk be made from a
hard or a soft ferromagnetic substance?

17. Figure Q22.17 shows two permanent magnets, each having
a hole through its center. Note that the upper magnet is
levitated above the lower one. (a) How does this situation
occur? (b) What purpose does the pencil serve? (c) What
can you say about the poles of the magnets from this obser-
vation? (d) If the upper magnet were inverted, what do
you suppose would happen?

B
:

B
:

� 0
11.

9.

FIGURE Q22.3 Bending of a beam of electrons in a
magnetic field.
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FIGURE Q22.17 Magnetic levitation using two ceramic
magnets.
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4. A current-carrying conductor experiences no magnetic
force when placed in a certain manner in a uniform mag-
netic field. Explain.

Is it possible to orient a current loop in a uniform mag-
netic field such that the loop does not tend to rotate?
Explain.

6. Explain why it is not possible to determine the charge
and the mass of a charged particle separately by measur-
ing accelerations produced by electric and magnetic
forces on the particle.

7. Charged particles from outer space, called cosmic rays,
strike the Earth more frequently near the poles than near
the equator. Why?

8. A bubble chamber is a device used for observing tracks of
particles that pass through the chamber, which is
immersed in a magnetic field. If some of the tracks are
spirals and others are straight lines, what can you say
about the particles?

5.
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PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 22.2 ■ The Magnetic Field
Determine the initial direction of the

deflection of charged particles as they enter the magnetic
fields as shown in Figure P22.1.

1.

Section 22.3 ■ Motion of a Charged Particle in a
Uniform Magnetic Field

7. Review problem. One electron collides elastically with a
second electron initially at rest. After the collision, the
radii of their trajectories are 1.00 cm and 2.40 cm. The tra-
jectories are perpendicular to a uniform magnetic field of
magnitude 0.044 0 T. Determine the energy (in keV) of
the incident electron.

8. Review problem. An electron moves in a circular path
perpendicular to a constant magnetic field of magnitude
1.00 mT. The angular momentum of the electron about
the center of the circle is 4.00 � 10�25 J � s. Determine
(a) the radius of the circular path and (b) the speed of the
electron.

A cosmic-ray proton in interstellar space has an energy of
10.0 MeV and executes a circular orbit having a radius equal
to that of Mercury’s orbit around the Sun (5.80 � 1010 m).
What is the magnetic field in that region of space?

Section 22.4 ■ Applications Involving Charged Particles
Moving in a Magnetic Field

10. A velocity selector consists of electric and magnetic fields
described by the expressions and , with B �
15.0 mT. Find the value of E such that a 750-eV electron
moving along the positive x axis is undeflected.

11. Consider the mass spectrometer shown schematically in
Active Figure 22.12. The magnitude of the electric field be-
tween the plates of the velocity selector is 2 500 V/m, and
the magnetic field in both the velocity selector and the de-
flection chamber has a magnitude of 0.035 0 T. Calculate
the radius of the path for a singly charged ion having a
mass m � 2.18 � 10�26 kg.

12. A cyclotron designed to accelerate protons has an outer ra-
dius of 0.350 m. The protons are emitted nearly at rest
from a source at the center and are accelerated through
600 V each time they cross the gap between the dees. The
dees are between the poles of an electromagnet where the
field is 0.800 T. (a) Find the cyclotron frequency. (b) Find
the speed at which protons exit the cyclotron and (c) their
maximum kinetic energy. (d) How many revolutions does
a proton make in the cyclotron? (e) For what time interval
does one proton accelerate?

The picture tube in a television uses magnetic deflection
coils rather than electric deflection plates. Suppose an elec-
tron beam is accelerated through a 50.0-kV potential differ-
ence and then moves through a region of uniform mag-
netic field 1.00 cm wide. The screen is located 10.0 cm from
the center of the coils and is 50.0 cm wide. When the field is
turned off, the electron beam hits the center of the screen.
What field magnitude is necessary to deflect the beam to
the side of the screen? Ignore relativistic corrections.

14. The Hall effect finds important application in the electron-
ics industry. It is used to find the sign and density of the
carriers of electric current in semiconductor chips. The
arrangement is shown in Figure P22.14. A semiconducting

13.
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FIGURE P22.1

2. Consider an electron near the Earth’s equator. In which
direction does it tend to deflect if its velocity is directed
(a) downward, (b) northward, (c) westward, or (d) south-
eastward?

3. A proton travels with a speed of 3.00 � 106 m/s at an angle
of 37.0� with the direction of a magnetic field of 0.300 T in
the �y direction. What are (a) the magnitude of the mag-
netic force on the proton and (b) its acceleration?

4. An electron is accelerated through 2 400 V from rest
and then enters a uniform 1.70-T magnetic field. What are
(a) the maximum and (b) the minimum values of the mag-
netic force this charge can experience?

5. At the equator, near the surface of the Earth, the magnetic
field is approximately 50.0 �T northward and the electric
field is about 100 N/C downward in fair weather. Find the
gravitational, electric, and magnetic forces on an electron
in this environment, assuming that the electron has an in-
stantaneous velocity of 6.00 � 106 m/s directed to the east.

6. A proton moves with a velocity of 
in a region in which the magnetic field is

. What is the magnitude of the mag-
netic force this charge experiences?
B
:

� ( î � 2 ĵ � 3k̂) T

v: � (2 î � 4 ĵ � k̂) m/s

www.pop4e.com


block of thickness t and width d carries a current I in the x
direction. A uniform magnetic field B is applied in the y di-
rection. If the charge carriers are positive, the magnetic
force deflects them in the z direction. Positive charge accu-
mulates on the top surface of the sample and negative
charge on the bottom surface, creating a downward elec-
tric field. In equilibrium, the downward electric force on
the charge carriers balances the upward magnetic force
and the carriers move through the sample without deflec-
tion. The Hall voltage 
VH � Vc � Va between the top and
bottom surfaces is measured, and the density of the charge
carriers can be calculated from it. (a) Demonstrate that if
the charge carriers are negative the Hall voltage will be
negative. Hence, the Hall effect reveals the sign of the
charge carriers, so the sample can be classified as p -type
(with positive majority charge carriers) or n-type (with
negative). (b) Determine the number of charge carriers
per unit volume n in terms of I, t, B, 
VH, and the magni-
tude q of the charge carrier.

direction shown. A uniform magnetic field of magnitude 
B � 0.020 0 T is in the positive y direction. Determine the
magnitude and direction of the magnetic force on each
segment.
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Section 22.5 ■ Magnetic Force on a Current-
Carrying Conductor

15. A wire carries a steady current of 2.40 A. A straight section
of the wire is 0.750 m long and lies along the x axis within
a uniform magnetic field, . If the current is
in the � x direction, what is the magnetic force on the sec-
tion of wire?

16. A wire 2.80 m in length carries a current of 5.00 A in a re-
gion where a uniform magnetic field has a magnitude
of 0.390 T. Calculate the magnitude of the magnetic force
on the wire assuming that the angle between the mag-
netic field and the current is (a) 60.0�, (b) 90.0�, and
(c) 120�.

A nonuniform magnetic field exerts a net
force on a magnetic dipole. A strong magnet is placed under a
horizontal conducting ring of radius r that carries current
I as shown in Figure P22.17. If the magnetic field makes
an angle � with the vertical at the ring’s location, what are
the magnitude and direction of the resultant force on the
ring?

18. In Figure P22.18, the cube is 40.0 cm on each edge.
Four straight segments of wire—ab, bc, cd, and da—form a
closed loop that carries a current I � 5.00 A, in the

B
:

17.

B
:

� 1.60k̂
 
T

Section 22.6 ■ Torque on a Current Loop in a Uniform
Magnetic Field

19. A current of 17.0 mA is maintained in a single circular
loop of 2.00 m circumference. A magnetic field of 0.800 T
is directed parallel to the plane of the loop. (a) Calculate
the magnetic moment of the loop. (b) What is the magni-
tude of the torque exerted by the magnetic field on the
loop?

20. A current loop with magnetic dipole moment is placed
in a uniform magnetic field , with its moment making an-
gle � with the field. With the arbitrary choice of U � 0 for
� � 90�, prove that the potential energy of the dipole-field
system is .

A rectangular coil consists of N � 100
closely wrapped turns and has dimensions a � 0.400 m
and b � 0.300 m. The coil is hinged along the y axis, and
its plane makes an angle � � 30.0� with the x axis
(Fig. P22.21). What is the magnitude of the torque exerted
on the coil by a uniform magnetic field B � 0.800 T di-
rected along the x axis when the current is I � 1.20 A in
the direction shown? What is the expected direction of
rotation of the coil?

21.

U � ��: � B
:

B
:

�:



22. The rotor in a certain electric motor is a flat, rectangular
coil with 80 turns of wire and dimensions 2.50 cm by
4.00 cm. The rotor rotates in a uniform magnetic field of
0.800 T. When the plane of the rotor is perpendicular to the
direction of the magnetic field, it carries a current of 
10.0 mA. In this orientation, the magnetic moment of the
rotor is directed opposite the magnetic field. The rotor then
turns through one-half revolution. This process is repeated
to cause the rotor to turn steadily at 3 600 rev/min. (a) Find
the maximum torque acting on the rotor. (b) Find the peak
power output of the motor. (c) Determine the amount of
work performed by the magnetic field on the rotor in every
full revolution. (d) What is the average power of the motor?

Section 22.7 ■ The Biot – Savart Law
23. In Niels Bohr’s 1913 model of the hydrogen atom, an elec-

tron circles the proton at a distance of 5.29 � 10�11 m
with a speed of 2.19 � 106 m/s. Compute the magnitude
of the magnetic field that this motion produces at the loca-
tion of the proton.

24. A lightning bolt may carry a current of 1.00 � 104 A for a
short time interval. What is the resulting magnetic field
100 m from the bolt? Assume that the bolt extends far
above and below the point of observation.

Determine the magnetic field at a point
P located a distance x from the corner of an infinitely long
wire bent at a right angle as shown in Figure P22.25. The
wire carries a steady current I.

25.

an expression for the vector magnetic field at the center of
the loop.

28. Consider a flat, circular current loop of radius R carry-
ing current I. Choose the x axis to be along the axis of the
loop, with the origin at the center of the loop. Plot a graph
of the ratio of the magnitude of the magnetic field at coor-
dinate x to that at the origin, for x � 0 to x � 5R. It may be
useful to use a programmable calculator or a computer to
solve this problem.

29. Two very long, straight, parallel wires carry currents that
are directed perpendicular to the page as shown in Figure
P22.29. Wire 1 carries a current I1 into the page (in the �z
direction) and passes through the x axis at x � � a. Wire
2 passes through the x axis at x � � 2a and carries an un-
known current I2. The total magnetic field at the origin
due to the current-carrying wires has the magnitude
2�0I1/(2	a). The current I2 can have either of two possi-
ble values. (a) Find the value of I2 with the smaller
magnitude, stating it in terms of I1 and giving its direction.
(b) Find the other possible value of I2.
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26. Calculate the magnitude of the magnetic field at a point 
100 cm from a long, thin conductor carrying a current of
1.00 A.

27. A conductor consists of a circular loop of radius R and two
straight, long sections as shown in Figure P22.27. The wire
lies in the plane of the paper and carries a current I. Find

30. One very long wire carries current 30.0 A to the left along
the x axis. A second very long wire carries current 50.0 A
to the right along the line (y � 0.280 m, z � 0). (a) Where
in the plane of the two wires is the total magnetic field
equal to zero? (b) A particle with a charge of � 2.00 �C
is moving with a velocity of along the line 
(y � 0.100 m, z � 0). Calculate the vector magnetic force
acting on the particle. (c) A uniform electric field is ap-
plied to allow this particle to pass through this region unde-
flected. Calculate the required vector electric field.

31. A current path shaped as shown in Figure P22.31 produces
a magnetic field at P, the center of the arc. If the arc sub-
tends an angle of 30.0� and the radius of the arc is 0.600 m,
what are the magnitude and direction of the field pro-
duced at P if the current is 3.00 A?

150 î
 
Mm/s

P
30.0°

I

I

FIGURE P22.31



33. In studies of the possibility of migrating birds using the
Earth’s magnetic field for navigation, birds have been fit-
ted with coils as “caps” and “collars” as shown in Figure
P22.33. (a) If the identical coils have radii of 1.20 cm and
are 2.20 cm apart, with 50 turns of wire apiece, what cur-
rent should they both carry to produce a magnetic field of
4.50 � 10�5 T halfway between them? (b) If the resistance
of each coil is 210 �, what voltage should the battery
supplying each coil have? (c) What power is delivered to
each coil?

Section 22.8 ■ The Magnetic Force Between Two 
Parallel Conductors

34. Two long, parallel conductors, separated by 10.0 cm, carry
currents in the same direction. The first wire carries
current I1 � 5.00 A and the second carries I2 � 8.00 A.
(a) What is the magnitude of the magnetic field created by
I1 at the location of I2? (b) What is the force per unit
length exerted by I1 on I2? (c) What is the magnitude
of the magnetic field created by I2 at the location of I1?
(d) What is the force per length exerted by I2 on I1?

In Figure P22.35, the current in the long, straight wire is 
I1 � 5.00 A and the wire lies in the plane of the rectangu-
lar loop, which carries the current I2 � 10.0 A. The dimen-
sions are c � 0.100 m, a � 0.150 m, and � � 0.450 m. Find
the magnitude and direction of the net force exerted on
the loop by the magnetic field created by the wire.

35.

760 ❚ CHAPTER 22 MAGNETIC FORCES AND MAGNETIC FIELDS

y g p pp

I

I

aa

a

a

a
B

A
C

I

FIGURE P22.32

FIGURE P22.33

I1

�

c a

I2

FIGURE P22.35

36. Three long wires (wire 1, wire 2, and wire 3) hang verti-
cally. The distance between wire 1 and wire 2 is 20.0 cm.
On the left, wire 1 carries an upward current of 1.50 A. To
the right, wire 2 carries a downward current of 4.00 A.
Wire 3 is located such that when it carries a certain
current, each wire experiences no net force. Find (a) the
position of wire 3 and (b) the magnitude and direction of
the current in wire 3.

Section 22.9 ■ Ampère’s Law
Four long, parallel conductors carry equal currents of 
I � 5.00 A. Figure P22.37 is an end view of the conductors.
The current direction is into the page at points A and B
(indicated by the crosses) and out of the page at C and D
(indicated by the dots). Calculate the magnitude and di-
rection of the magnetic field at point P, located at the cen-
ter of the square of edge length 0.200 m.

38. A long, straight wire lies on a horizontal table and carries a
current of 1.20 �A. In a vacuum, a proton moves parallel
to the wire (opposite the current) with a constant speed of
2.30 � 104 m/s at a distance d above the wire. Determine
the value of d. You may ignore the magnetic field due to
the Earth.

37.

32. Three long, parallel conductors carry currents of I � 2.00 A.
Figure P22.32 is an end view of the conductors, with each
current coming out of the page. Taking a � 1.00 cm, deter-
mine the magnitude and direction of the magnetic field at
points A, B, and C.



A packed bundle of 100 long, straight,
insulated wires forms a cylinder of radius R � 0.500 cm.
(a) If each wire carries 2.00 A, what are the magnitude and
direction of the magnetic force per unit length acting on a
wire located 0.200 cm from the center of the bundle?
(b) Would a wire on the outer edge of the bundle experi-
ence a force greater or smaller than the value calculated in
part (a)?

40. The magnetic field 40.0 cm away from a long, straight wire
carrying current 2.00 A is 1.00 �T. (a) At what distance is it
0.100 �T? (b) At one instant, the two conductors in a long
household extension cord carry equal 2.00-A currents in
opposite directions. The two wires are 3.00 mm apart. Find
the magnetic field 40.0 cm away from the middle of the
straight cord, in the plane of the two wires. (c) At what dis-
tance is it one-tenth as large? (d) The center wire in a
coaxial cable carries current 2.00 A in one direction and
the sheath around it carries current 2.00 A in the opposite
direction. What magnetic field does the cable create at
points outside?

41. The magnetic coils of a tokamak fusion reactor are in the
shape of a toroid having an inner radius of 0.700 m and an
outer radius of 1.30 m. The toroid has 900 turns of large-
diameter wire, each of which carries a current of 14.0 kA.
Find the magnitude of the magnetic field inside the toroid
along (a) the inner radius and (b) the outer radius.

42. Consider a column of electric current in a plasma (ionized
gas). Filaments of current within the column are magneti-
cally attracted to one another. They can crowd together to
yield a very great current density and a very strong mag-
netic field in a small region. Sometimes the current can be
cut off momentarily by this pinch effect. (In a metallic wire,
a pinch effect is not important because the current-
carrying electrons repel one another with electric forces.)
The pinch effect can be demonstrated by making an empty
aluminum can carry a large current parallel to its axis. Let
R represent the radius of the can and I the upward cur-
rent, uniformly distributed over its curved wall. Determine
the magnetic field (a) just inside the wall and (b) just out-
side. (c) Determine the pressure on the wall.

43. Niobium metal becomes a superconductor when cooled
below 9 K. Its superconductivity is destroyed when the sur-
face magnetic field exceeds 0.100 T. Determine the maxi-
mum current a 2.00-mm-diameter niobium wire can carry
and remain superconducting, in the absence of any exter-
nal magnetic field.

39.

Section 22.10 ■ The Magnetic Field of a Solenoid
44. A single-turn square loop of wire, 2.00 cm on each edge,

carries a clockwise current of 0.200 A. The loop is inside
a solenoid, with the plane of the loop perpendicular to
the magnetic field of the solenoid. The solenoid has
30 turns/cm and carries a clockwise current of 15.0 A.
Find the force on each side of the loop and the torque act-
ing on the loop.

What current is required in the windings of a long sole-
noid that has 1 000 turns uniformly distributed over a
length of 0.400 m to produce at the center of the solenoid
a magnetic field of magnitude 1.00 � 10�4 T?

46. Consider a solenoid of length � and radius R, containing
N closely spaced turns and carrying a steady current I.
(a) In terms of these parameters, find the magnetic field at
a point along the axis as a function of distance a from the
end of the solenoid. (b) Show that as � becomes very long,
B approaches �0NI/2� at each end of the solenoid.

47. A solenoid 10.0 cm in diameter and 75.0 cm long is made
from copper wire of diameter 0.100 cm, with very thin in-
sulation. The wire is wound onto a cardboard tube in a
single layer, with adjacent turns touching each other. To
produce a field of 8.00 mT at the center of the solenoid,
what power must be delivered to the solenoid?

Section 22.11 ■ Magnetism in Matter
48. In Bohr’s 1913 model of the hydrogen atom, the electron

is in a circular orbit of radius 5.29 � 10�11 m and its speed
is 2.19 � 106 m/s. (a) What is the magnitude of the mag-
netic moment due to the electron’s motion? (b) If the
electron moves in a horizontal circle, counterclockwise as
seen from above, what is the direction of this magnetic mo-
ment vector?

49. The magnetic moment of the Earth is approximately
8.00 � 1022 A � m2. (a) If it were caused by the complete
magnetization of a huge iron deposit, how many unpaired
electrons would participate? (b) At two unpaired electrons
per iron atom, how many kilograms of iron would that
correspond to? (Iron has a density of 7 900 kg/m3 and ap-
proximately 8.50 � 1028 iron atoms/m3.)

Section 22.12 ■ Context Connection — The Attractive
Model for Magnetic Levitation

50. The following represents a crude model for levitating a
commercial transportation vehicle. Suppose the levitation is
achieved by mounting small electrically charged spheres be-
low the vehicle. The spheres pass through a magnetic field
established by permanent magnets placed along the track.
Let us assume that the permanent magnets produce a uni-
form magnetic field of 0.1 T at the location of the spheres
and that an electronic control system maintains a charge of
1 �C on each sphere. The vehicle has a mass of 5 � 104 kg
and travels at a speed of 400 km/h. How many charged
spheres are required to support the weight of the vehicle at
this speed? Your answer should suggest that this design
would not be practical as a means of magnetic levitation. 

51. Data for the Transrapid maglev system show that the input
electric power required to operate the vehicle is on the
order of 102 kW. (a) Assume that the Transrapid vehicle

45.
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moves at 400 km/h. Approximately how much energy, in
joules, is used for each mile of travel for the vehicle?
(b) Calculate the energy per mile used by an automobile
that achieves 20 mi/gal. The energy available from gaso-
line is approximately 40 MJ/kg, a typical automobile
engine efficiency is 20%, and the density of gasoline is
754 kg/m3. (c) Considering 1 passenger in the automobile
and 100 on the Transrapid vehicle, the energy per mile
necessary for each passenger in the Transrapid is what
fraction of that for an automobile?

Additional Problems
52. Consider a thin, straight wire segment carrying a constant

current I and placed along the x axis as shown in Figure
P22.52. (a) Use the Biot–Savart law to show that the total
magnetic field at the point P, located a distance a from the
wire, is

(b) Assuming that the wire is infinitely long, show that the
result in part (a) gives a magnetic field that agrees with
that obtained by using Ampère’s law in Example 22.7.

B �
�0I
4	a

 (cos �1 � cos �2)

53. An infinite sheet of current lying in the yz plane carries a
surface current of density . The current is in the y direc-
tion, and Js represents the current per unit length mea-
sured along the z axis. Figure P22.53 is an edge view of the
sheet. Find the magnetic field near the sheet. (Suggestion:
Use Ampère’s law and evaluate the line integral for a rec-
tangular path around the sheet, represented by the dashed
line in Fig. P22.53.)

J
:

s

54. Assume that the region to the right of a certain vertical
plane contains a vertical magnetic field of magnitude
1.00 mT and that the field is zero in the region to the left
of the plane. An electron, originally traveling perpendicu-
lar to the boundary plane, passes into the region of the
field. (a) Determine the time interval required for the
electron to leave the “field-filled” region, noting that its
path is a semicircle. (b) Find the kinetic energy of the elec-
tron assuming that the maximum depth of penetration
into the field is 2.00 cm.

55. Heart– lung machines and artificial kidney machines
employ blood pumps. A mechanical pump can mangle
blood cells. Figure P22.55 represents an electromagnetic
pump. The blood is confined to an electrically insulating
tube, cylindrical in practice but represented as a rectangle
of width w and height h. The simplicity of design makes
the pump dependable. The blood is easily kept uncontami-
nated; the tube is simple to clean or cheap to replace. Two
electrodes fit into the top and bottom of the tube. The po-
tential difference between them establishes an electric cur-
rent through the blood, with current density J over a sec-
tion of length L. A perpendicular magnetic field exists in
the same region. (a) Explain why this arrangement pro-
duces on the liquid a force that is directed along the
length of the pipe. (b) Show that the section of liquid in
the magnetic field experiences a pressure increase JLB.
(c) After the blood leaves the pump, is it charged? Is it cur-
rent-carrying? Is it magnetized? The same magnetic pump
can be used for any fluid that conducts electricity, such as
liquid sodium in a nuclear reactor.
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56. A 0.200-kg metal rod carrying a current of 10.0 A glides on
two horizontal rails 0.500 m apart. What vertical magnetic
field is required to keep the rod moving at a constant
speed if the coefficient of kinetic friction between the rod
and rails is 0.100?

A positive charge q � 3.20 � 10�19 C moves with a velocity
through a region where both a

uniform magnetic field and a uniform electric field exist.
(a) Calculate the total force on the moving charge (in
unit-vector notation), taking and

. (b) What angle does the force
vector make with the positive x axis?

58. Protons having a kinetic energy of 5.00 MeV are moving in
the positive x direction and enter a magnetic field

directed out of the plane of the page and
extending from x � 0 to x � 1.00 m as shown in Figure
P22.58. (a) Calculate the y component of the protons’

B
:

� 0.050  0k̂
 
T

E
:

� (4 î � ĵ � 2k̂) V/m
B
:

� (2 î � 4 ĵ � k̂) T

v: � (2 î � 3 ĵ � k̂) m/s
57.



momentum as they leave the magnetic field. (b) Find the
angle � between the initial velocity vector of the proton
beam and the velocity vector after the beam emerges
from the field. Ignore relativistic effects and note that 
1 eV � 1.60 � 10�19 J.

59. A handheld electric mixer contains an electric motor.
Model the motor as a single flat, compact, circular coil car-
rying electric current in a region where a magnetic field is
produced by an external permanent magnet. You need
consider only one instant in the operation of the motor.
(We will consider motors again in Chapter 23.) The coil
moves because the magnetic field exerts torque on the coil
as described in Section 22.6. Make order-of-magnitude esti-
mates of the magnetic field, the torque on the coil, the
current in it, its area, and the number of turns in the coil,
so that they are related according to Equation 22.16. Note
that the input power to the motor is electric, given by 
� � I
V, and the useful output power is mechanical, 
� � ��.

60. A cyclotron is sometimes used for carbon dating as
will be described in Chapter 30. Carbon-14 and carbon-12
ions are obtained from a sample of the material to be
dated and are accelerated in the cyclotron. If the cyclotron
has a magnetic field of magnitude 2.40 T, what is the differ-
ence in cyclotron frequencies for the two ions?

61. A uniform magnetic field of magnitude 0.150 T is di-
rected along the positive x axis. A positron moving at 
5.00 � 106 m/s enters the field along a direction that
makes an angle of 85.0� with the x axis (Fig. P22.61). The
motion of the particle is expected to be a helix as de-
scribed in Section 22.3. Calculate (a) the pitch p and 
(b) the radius r of the trajectory.

diameter 3.00 mm. (a) For a magnetic field magnitude of
0.040 0 T, an emf of 160 �V appears between the elec-
trodes. Calculate the speed of the blood. (b) Verify that
electrode A is positive as shown. Does the sign of the emf
depend on whether the mobile ions in the blood are pre-
dominantly positively or negatively charged? Explain.
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62. A heart surgeon monitors the flow rate of blood
through an artery using an electromagnetic flowmeter
(Fig. P22.62). Electrodes A and B make contact with
the outer surface of the blood vessel, which has interior

A very long, thin strip of metal of width w carries a current
I along its length as shown in Figure P22.63. Find the mag-
netic field at the point P in the diagram. The point P is in
the plane of the strip at distance b away from it.

63.

64. The magnitude of the Earth’s magnetic field at either pole
is approximately 7.00 � 10�5 T. Suppose the field fades
away, before its next reversal. Scouts, sailors, and conserva-
tive politicians around the world join together in a pro-
gram to replace the field. One plan is to use a current loop
around the equator, without relying on magnetization of
any materials inside the Earth. Determine the current that
would generate such a field if this plan were carried out.
(Take the radius of the Earth as RE � 6.37 � 106 m.)

65. A nonconducting ring of radius R is uniformly charged
with a total positive charge q. The ring rotates at a constant
angular speed � about an axis through its center, perpen-
dicular to the plane of the ring. What is the magnitude of
the magnetic field on the axis of the ring a distance R/2
from its center?



66. Two circular coils of radius R , each with N turns, are per-
pendicular to a common axis. The coil centers are a dis-
tance R apart. Each coil carries a steady current I in the
same direction as shown in Figure P22.66. (a) Show that
the magnetic field on the axis at a distance x from the cen-
ter of one coil is

(b) Show that dB/dx and d2B/dx2 are both zero at the
point midway between the coils. Thus, the magnetic field
in the region midway between the coils is uniform. Coils in
this configuration are called Helmholtz coils.

B �
N�0IR2

2 � 1
(R 2 � x 2)3/2 �

1
(2R 2 � x 2 � 2Rx)3/2 �

67. Two circular loops are parallel, coaxial, and almost in con-
tact, 1.00 mm apart (Fig. P22.67). Each loop is 10.0 cm in
radius. The top loop carries a clockwise current of 140 A.
The bottom loop carries a counterclockwise current of
140 A. (a) Calculate the magnetic force exerted by the bot-

tom loop on the top loop. (b) The upper loop has a mass
of 0.021 0 kg. Calculate its acceleration, assuming that the
only forces acting on it are the force in part (a) and the
gravitational force. (Suggestion: Think about how one loop
looks to a bug perched on the other loop.)

68. Rail guns have been suggested for launching projectiles
into space without chemical rockets and for ground-to-air
antimissile weapons of war. A tabletop model rail gun
(Fig. P22.68) consists of two long, parallel, horizontal rails
3.50 cm apart, bridged by a bar BD of mass 3.00 g. The bar
is originally at rest at the midpoint of the rails and is free
to slide without friction. When the switch is closed, electric
current is quickly established in the circuit ABCDEA. The
rails and bar have low electric resistance, and the current is
limited to a constant 24.0 A by the power supply. (a) Find
the magnitude of the magnetic field 1.75 cm from a single
very long, straight wire carrying current 24.0 A. (b) Find
the magnitude and direction of the magnetic field at point
C in the diagram, the midpoint of the bar, immediately af-
ter the switch is closed. (Suggestion: Consider what conclu-
sions you can draw from the Biot–Savart law.) (c) At other
points along the bar BD, the field is in the same direction
as at point C but is larger in magnitude. Assume that the
average effective magnetic field along BD is five times
larger than the field at C. With this assumption, find the
magnitude and direction of the force on the bar. (d) Find
the acceleration of the bar when it is in motion. (e) Does
the bar move with constant acceleration? (f) Find the ve-
locity of the bar after it has traveled 130 cm to the end of
the rails.
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ANSWERS TO QUICK QUIZZES

22.1 (e). The right-hand rule gives the direction. Be sure to
account for the negative charge on the electron.

22.2 (i), (a). The magnetic force on the particle increases in
proportion to B. The result is a smaller radius, as we can
see from Equation 22.3. (ii), (b). The magnetic force on
the particle increases in proportion to v, but the cen-
tripetal acceleration increases according to the square of
v. The result is a larger radius, as we can see from Equa-
tion 22.3.

22.3 (c). The right-hand rule is used to determine the direc-
tion of the magnetic field.

22.4 B, C, A. Point B is closest to the current element. Point C
is farther away, and the field is further reduced by the 
sin � factor in the cross product . The field at A is
zero because � � 0.

d s: � r̂

22.5 (a). The coils act like wires carrying parallel currents and
hence attract one another.

22.6 (a) b, d, a, c. Equation 22.29 indicates that the value of
the line integral depends only on the net current
through each closed path. Path b encloses 1 A, path d en-
closes 3 A, path a encloses 4 A, and path c encloses 6 A.
(b) b, then a � c � d. Paths a, c, and d all give the same
nonzero value �0I because the size and shape of the
paths do not matter. Path b does not enclose the current,
and hence its line integral is zero.

22.7 (c). The magnetic field in a very long solenoid is inde-
pendent of its length or radius. Overwrapping with an
additional layer of wire increases the number of turns
per unit length.



Our studies in electromagnetism so far have been con-
cerned with the electric fields due to stationary charges
and the magnetic fields produced by moving charges.

This chapter introduces a new type of electric field, one that is
due to a changing magnetic field.

As we learned in Section 19.1, experiments conducted by
Michael Faraday in England in the early 1800s and independently
by Joseph Henry in the United States showed that an electric cur-
rent can be induced in a circuit by a changing magnetic field. The
results of those experiments led to a very basic and important law of
electromagnetism known as Faraday’s law of induction. Faraday’s law
explains how generators, as well as other practical devices, work.

FARADAY’S  LAW  OF  INDUCTION
We begin discussing the concepts in this chapter by consid-
ering a simple experiment that builds on material presented in
Chapter 22. Imagine that a straight metal wire resides in a uni-

23.1

Faraday’s Law and Inductance

In a commercial electric power plant,
large generators transform energy
that is transferred out of the plant
by electrical transmission. These
generators use magnetic induction
to generate a potential difference
when coils of wire in the generator
are rotated in a magnetic field. The
source of energy to rotate the coils
might be falling water, burning fossil
fuels, or a nuclear reaction.
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23.2 Motional emf
23.3 Lenz’s Law
23.4 Induced emfs and Electric Fields
23.5 Self-Inductance
23.6 RL Circuits
23.7 Energy Stored in a Magnetic Field
23.8 Context Connection — The Repulsive Model

for Magnetic Levitation
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form magnetic field directed into the page as in Figure 23.1. Within the wire,
there are free electrons. Suppose the wire is now moved with a velocity toward
the right. Equation 22.1 tells us that a magnetic force acts on the electrons in the
wire. Using the right-hand rule, the force on the electrons is downward in Figure
23.1 (remember that the electrons carry a negative charge). Because this direc-
tion is along the wire, the electrons move along the wire in response to this
force. Thus, a current is produced in the wire as it moves through a magnetic
field!

Let us consider another simple experiment that demonstrates that an electric
current can be produced by a magnetic field. Consider a loop of wire connected to
a sensitive ammeter, a device that measures current, as illustrated in Active Figure
23.2. If a magnet is moved toward the loop, the ammeter needle deflects in one di-
rection as in Active Figure 23.2a. When the magnet is held stationary as in Active
Figure 23.2b, the needle is not deflected. If the magnet is moved away from the
loop as in Active Figure 23.2c, the ammeter needle deflects in the opposite direc-
tion from that caused by the motion of the magnet toward the ammeter. Finally, if
the magnet is held stationary and the coil is moved either toward or away from it,
the needle deflects. From these observations comes the conclusion that an electric
current is set up in the coil as long as relative motion occurs between the magnet
and the coil.

These results are quite remarkable when we consider that a current exists in a
wire even though no batteries are connected to the wire. We call such a current an
induced current, and it is produced by an induced emf.

v:
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(a) When a magnet is moved toward
a loop of wire connected to a sensi-
tive ammeter, the ammeter needle
deflects as shown, indicating that a
current is induced in the loop. 
(b) When the magnet is held station-
ary, no current is induced in the
loop, even when the magnet is inside
the loop. (c) When the magnet is
moved away from the loop, the am-
meter needle deflects in the oppo-
site direction, indicating that the in-
duced current is opposite that shown
in (a).

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 23.2, you can
move the magnet and observe the
current in the ammeter.

ACTIVE FIGURE 23.2

www.pop4e.com


Faraday’s experiment. When the
switch in the primary circuit is
closed, the ammeter needle in the
secondary circuit deflects momen-
tarily. The emf induced in the sec-
ondary circuit is caused by the
changing magnetic field through
the secondary coil.

By logging
into PhysicsNow at www.pop4e.com
and going to Active Figure 23.3, you
can open and close the switch 
and observe the current in the 
ammeter.

ACTIVE FIGURE 23.3

Another experiment, first conducted by Faraday, is illustrated in Active Figure
23.3. Part of the apparatus consists of a coil of insulated wire connected to a switch
and a battery. We shall refer to this coil as the primary coil of wire and to the corre-
sponding circuit as the primary circuit. The coil is wrapped around an iron ring to
intensify the magnetic field produced by the current through the coil. A second
coil of insulated wire at the right is also wrapped around the iron ring and is con-
nected to a sensitive ammeter. We shall refer to this coil as the secondary coil and to
the corresponding circuit as the secondary circuit. The secondary circuit has
no battery, and the secondary coil is not electrically connected to the primary coil.
The purpose of this apparatus is to detect any current that might be generated in
the secondary circuit by a change in the magnetic field produced by the primary
circuit.

Initially, you might guess that no current would ever be detected in the sec-
ondary circuit. Something quite surprising happens, however, when the switch in
the primary circuit is opened or thrown closed. At the instant the switch is thrown
closed, the ammeter needle deflects in one direction and then returns to zero.
When the switch is opened, the ammeter needle deflects in the opposite direction
and then again returns to zero. Finally, the ammeter reads zero when the primary
circuit carries a steady current.

As a result of these observations, Faraday concluded that an electric current can
be produced by a time-varying magnetic field. A current cannot be produced by a
steady magnetic field. In the experiment shown in Active Figure 23.2, the changing
magnetic field is a result of the relative motion between the magnet and the loop of
wire. As long as the motion persists, the current is maintained. In the experiment
shown in Active Figure 23.3, the current produced in the secondary circuit occurs
for only an instant after the switch is closed while the magnetic field acting on the
secondary coil builds from its zero value to its final value. In effect, the secondary
circuit behaves as though a source of emf were connected to it for an instant. It is
customary to say that an emf is induced in the secondary circuit by the changing
magnetic field produced by the current in the primary circuit.

To quantify such observations, we define a quantity called magnetic flux. The
flux associated with a magnetic field is defined in a similar manner to the electric
flux (Section 19.8) and is proportional to the number of magnetic field lines pass-
ing through an area. Consider an element of area dA on an arbitrarily shaped open
surface as in Figure 23.4. If the magnetic field at the location of this element is ,
the magnetic flux through the element is , where is a vector perpendicu-
lar to the surface whose magnitude equals the area dA. Hence, the total magnetic

dA
:

B
:

� d A
:

B
:
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Michael Faraday (1791 – 1867)
Faraday, a British physicist and
chemist, is often regarded as the
greatest experimental scientist
of the 1800s. His many contribu-
tions to the study of electricity in-
clude the invention of the electric
motor, the electric generator, and
the transformer as well as the
discovery of electromagnetic 
induction and the laws of electroly-
sis. Greatly influenced by his religious
beliefs, he refused to work on the
development of poison gas for the
British military.
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flux �B through the surface is

[23.1]

The SI unit of magnetic flux is a tesla-meter squared, which is named the weber
(Wb); 1 Wb � 1 T � m2.

The two experiments illustrated in Figures 23.2 and 23.3 have one thing in com-
mon. In both cases, an emf is induced in a circuit when the magnetic flux through
the surface bounded by the circuit changes with time. In fact, a general statement
summarizes such experiments involving induced emfs:

The emf induced in a circuit is equal to the time rate of change of magnetic
flux through the circuit.

This statement, known as Faraday’s law of induction, can be written as

[23.2]

where �B is the magnetic flux through the surface bounded by the circuit and is
given by Equation 23.1. The negative sign in Equation 23.2 will be discussed in Sec-
tion 23.3. If the circuit is a coil consisting of N identical and concentric loops and if
the field lines pass through all loops, the induced emf is

[23.3]

The emf is increased by the factor N because all the loops are in series, so the emfs
in the individual loops add to give the total emf.

Suppose the magnetic field is uniform over the area A bounded by a loop lying
in a plane as in Figure 23.5. In this case, the magnetic flux through the loop is

Hence, the induced emf is

[23.4]

This expression shows that an emf can be induced in a circuit by changing the mag-
netic flux in several ways: (1) the magnitude of can vary with time, (2) the area A
of the circuit can change with time, (3) the angle � between and the normal to
the plane can change with time, and (4) any combination of these changes can occur.

An interesting application of Faraday’s law is the production of sound in an elec-
tric guitar (Fig. 23.6). The coil in this case, called the pickup coil, is placed near the
vibrating guitar string, which is made of a metal that can be magnetized. A perma-
nent magnet inside the coil magnetizes the portion of the string nearest the coil.
When the string vibrates at some frequency, its magnetized segment produces a
changing magnetic flux through the coil. The changing flux induces an emf in the
coil that is fed to an amplifier. The output of the amplifier is sent to the loudspeakers,
which produce the sound waves we hear.

B
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B
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d
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INDUCED EMF REQUIRES A CHANGE IN

FLUX Remember that the existence of
a magnetic flux through an area is
not sufficient to create an induced
emf. A change in the magnetic flux
must occur for an emf to be induced.

� PITFALL PREVENTION 23.1

■ Faraday’s law

■ Magnetic flux

θ

θ

Loop of
area A

B

A conducting loop
that encloses an area A in the pres-
ence of a uniform magnetic field .
The angle between and the normal
to the loop is �.

B
:

B
:

FIGURE 23.5

A circular loop of wire is held in a uniform magnetic field, with the
plane of the loop perpendicular to the field lines. Which of the following will not cause a
current to be induced in the loop? (a) crushing the loop (b) rotating the loop about
an axis perpendicular to the field lines (c) keeping the orientation of the loop fixed and
moving it along the field lines (d) pulling the loop out of the field

QUICK QUIZ 23.1



■ Thinking Physics 23.1
The ground fault interrupter (GFI) is a safety device that protects users of electric
power against electric shock when they touch appliances. Its essential parts are shown
in Figure 23.8. How does the operation of a GFI make use of Faraday’s law?

Reasoning Wire 1 leads from the wall outlet to the appliance being protected, and
wire 2 leads from the appliance back to the wall outlet. An iron ring surrounds the
two wires. A sensing coil wrapped around part of the iron ring activates a circuit
breaker when changes in magnetic flux occur. Because the currents in the two
wires are in opposite directions during normal operation of the appliance, the net
magnetic field through the sensing coil due to the currents is zero. A change in
magnetic flux through the sensing coil can happen, however, if one of the wires on
the appliance loses its insulation and accidentally touches the metal case of the
appliance, providing a direct path to ground. When such a short to ground
occurs, a net magnetic flux occurs through the sensing coil that alternates in
time because household current is alternating. This changing flux produces an
induced voltage in the coil, which in turn triggers a circuit breaker, stopping the
current before it reaches a level that might be harmful to the person using the
appliance. ■
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(a)

Magnetized
portion of

string

Guitar string

To amplifier
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N S

Magnet
Pickup

coil

(b)

(a) In an electric
guitar, a vibrating magnetized string
induces an emf in a pickup coil. 
(b) The pickups (the circles beneath
the metallic strings) of this electric
guitar detect the vibrations of the
strings and send this information
through an amplifier and into speak-
ers. (A switch on the guitar allows the
musician to select which set of six
pickups is used.)

FIGURE 23.6
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Figure 23.7 shows a graphical representation of the field magnitude
versus time for a magnetic field that passes through a fixed loop and that is oriented per-
pendicular to the plane of the loop. The magnitude of the magnetic field at any time is
uniform over the area of the loop. Rank the magnitudes of the emf generated in the loop
at the five instants indicated, from largest to smallest.

QUICK QUIZ 23.2

B

a b c d e
t

(Quick Quiz 23.2) The
time behavior of a magnetic field through
a loop.

FIGURE 23.7

Circuit
breaker

Sensing
coil

Alternating
current  

Iron
ring

1

2

(Thinking Physics
23.1) Essential components of a
ground fault interrupter.

FIGURE 23.8
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magnitude of the field and the area of the turns, and
Equation 23.3 becomes

Because the magnetic field changes at a constant rate,
the derivative of the field with respect to time is equal
to the ratio of the change in field to the time interval
during which that change occurs:

4.0  V�(200)(0.18 m)2 
0.50 T � 0

0.80 s
�

 ��� � NA 
dB
dt

� NA 
�B
�t

� � �N  
d�B

dt
� �N  

d(BA)
dt

� �NA 
dB
dt

One Way to Induce an emf in a CoilEXAMPLE 23.1
A coil is wrapped with 200 turns of wire on the perime-
ter of a square frame with sides of 18 cm. Each turn has
the same area, equal to that of the frame, and the total
resistance of the coil is 2.0 �. A magnetic field is per-
pendicular to the plane of the coil and has the same
magnitude at all points within the area of the coil at
any time. If the field magnitude changes at a constant
rate from 0 to 0.50 T in a time of 0.80 s, find the magni-
tude of the induced emf in the coil while the field is
changing.

Solution Because the field is uniform across the area of
the coil and perpendicular to the turns of wire, the
magnetic flux at any time is simply the product of the

That is, the induced emf decays exponentially with
time. Note that the maximum emf occurs at t � 0,
where max � aABmax cos . The plot of versus t is
similar to the B versus t curve shown in Figure 23.9.

���

An Exponentially Decaying B FieldEXAMPLE 23.2
A plane loop of wire of area A is placed in a region
where the magnetic field is at a fixed angle � to the
normal to the plane and has the same magnitude at all
points within the area of the coil at any time. The mag-
nitude of the magnetic field varies with time according
to the expression B � Bmaxe�at. That is, at t � 0, the
field is Bmax, and for t 	 0, the field decreases expo-
nentially with time (Fig. 23.9). Find the induced emf in
the loop as a function of time.

Solution Because is uniform across the area of the
coil, the magnetic flux through the loop at time t 	 0 is

Because the coefficient ABmax and the parameter a are
constants, the induced emf from Equation 23.2 is

� aABmax cos � e�at

� � � 
d �B

dt
� �ABmax cos � 

d
dt

 e�at

�B � BA cos � � ABmax cos � e�at

B
:

t

B

Bmax

(Example 23.2) Exponential decrease in the
magnitude of the magnetic field with time. The
induced emf and induced current vary with time
in the same way.

FIGURE 23.9

MOTIONAL  emf
Examples 23.1 and 23.2 are cases in which an emf is produced in a circuit when the
magnetic field changes with time. In this section, we describe motional emf, in
which an emf is induced in a conductor moving through a magnetic field. This is
the situation described in Figure 23.1 at the beginning of Section 23.1.

Consider a straight conductor of length � moving with constant velocity through
a uniform magnetic field directed into the page as in Figure 23.10. For simplicity,

23.2



we shall assume that the conductor is moving with a velocity that is perpendicular
to the field. The electrons in the conductor experience a force along the conductor
with magnitude . According to Newton’s second law, the
electrons accelerate in response to this force and move along the wire. Once the
electrons move to the lower end of the wire, they accumulate there, leaving a net
positive charge at the upper end. As a result of this charge separation, an electric
field is produced within the conductor. The charge at the ends of the conductor
builds up until the magnetic force qvB on an electron in the conductor is balanced
by the electric force qE on the electron as shown in Figure 23.10. At this point,
charge stops flowing. In this situation, the zero net force on an electron allows us to
relate the electric field to the magnetic field:

Because the electric field produced in the conductor is uniform, it is related to the
potential difference across the ends of the conductor according to the relation
�V � E� (Section 20.2). Thus,

where the upper end is at a higher potential than the lower end. Therefore, a po-
tential difference is maintained as long as the conductor is moving through the
magnetic field. If the motion is reversed, the polarity of �V is also reversed.

An interesting situation occurs if we now consider what happens when the
moving conductor is part of a closed circuit. Consider a circuit consisting of a
conducting bar of length � sliding along two fixed parallel conducting rails as in
Active Figure 23.11a. For simplicity, we assume that the moving bar has zero electri-
cal resistance and that the stationary part of the circuit has a resistance R. A uni-
form and constant magnetic field is applied perpendicular to the plane of the
circuit.

As the bar is pulled to the right with a velocity under the influence of an ap-
plied force , free charges in the bar experience a magnetic force along the
length of the bar. Because the moving bar is part of a complete circuit, a continu-
ous current is established in the circuit. In this case, the rate of change of magnetic
flux through the loop and the accompanying induced emf across the moving bar
are proportional to the change in loop area as the bar moves through the magnetic
field.

Because the area of the circuit at any instant is �x, the magnetic flux through the
circuit is

where x is the width of the circuit, a parameter that changes with time. Using Faraday’s
law, we find that the induced emf is

[23.5]

Because the resistance of the circuit is R, the magnitude of the induced current is

[23.6]

The equivalent circuit diagram for this example is shown in Active Figure 23.11b.
The moving bar is behaving like a battery in that it is a source of emf as long as the
bar continues to move.

Let us examine this situation using energy considerations in the nonisolated
system model, with the system being the entire circuit. Because the circuit has no
battery, you might wonder about the origin of the induced current and the energy
delivered to the resistor. Note that the external force does work on the
conductor, thereby moving charges through a magnetic field, which causes the
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FIGURE 23.10

(a) A conducting bar sliding with a 
velocity along two conducting rails
under the action of an applied force

. (b) The equivalent circuit dia-
gram for the pictorial representation
in (a).

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 23.11, you can
adjust the applied force, the magnetic
field, and the resistance to see the ef-
fects on the motion of the bar.
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charges to move along the conductor with some average drift velocity. Hence, a
current is established. From the viewpoint of the continuity equation for energy
(Eq. 6.20), the total work done on the system by the applied force while the bar
moves with constant speed must equal the increase in internal energy in the resis-
tor during this time interval. (This statement assumes that the energy stays in the
resistor; in reality, energy leaves the resistor by heat and electromagnetic
radiation.)

As the conductor of length � moves through the uniform magnetic field , it
experiences a magnetic force of magnitude I�B (Eq. 22.10), where I is the cur-
rent induced due to its motion. The direction of this force is opposite the motion
of the bar, or to the left in Active Figure 23.11a.

If the bar is to move with a constant velocity, the applied force must be equal
in magnitude and opposite in direction to the magnetic force, or to the right in
Active Figure 23.11a. (If the magnetic force acted in the direction of motion, it
would cause the bar to accelerate once it was in motion, thereby increasing its
speed. This state of affairs would represent a violation of the principle of energy
conservation.) Using Equation 23.6 and that Fapp � FB � I�B, we find that the
power delivered by the applied force is

[23.7]

This power is equal to the rate at which energy is delivered to the resistor, as we
expect.

� � Fappv � (I�B)v �
B2�2v2

R
� � B�v

R �
2
 R � I 2R

F
:

app

F
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B

B
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You wish to move a rectangular loop of wire into a region of uniform
magnetic field at a given speed so as to induce an emf in the loop. The plane of the loop
must remain perpendicular to the magnetic field lines. In which orientation should you
hold the loop while you move it into the region of magnetic field so as to generate the
largest emf ? (a) with the long dimension of the loop parallel to the velocity vector
(b) with the short dimension of the loop parallel to the velocity vector (c) either way
because the emf is the same regardless of orientation

QUICK QUIZ 23.3

In Active Figure 23.11, a given applied force of magnitude Fapp

results in a constant speed v and a power input �. Imagine that the force is increased so
that the constant speed of the bar is doubled to 2v. Under these conditions, what are the
new force and the new power input? (a) 2F and 2� (b) 4F and 2� (c) 2F and 4�

(d) 4F and 4�

QUICK QUIZ 23.4

Motional emf Induced in a Rotating BarEXAMPLE 23.3INTERACTIVE

A conducting bar of length � rotates with a constant
angular speed 
 about a pivot at one end. A uniform
magnetic field is directed perpendicular to the plane
of rotation as in Figure 23.12. Find the emf induced
between the ends of the bar.

Solution Consider a segment of the bar of length dr
whose velocity is . According to Equation 23.5, the
magnitude of the emf induced in a conductor of length
dr moving perpendicular to a field is

(1) d� � Bv dr
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(Interactive
Example 23.3) A conducting
bar rotating about a pivot at
one end in a uniform magnetic
field that is perpendicular to
the plane of rotation. An emf is
induced between the ends of
the bar.

FIGURE 23.12
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Each segment of the bar is moving perpendicular to ,
so an emf is generated across each segment, the value of
which is given by (1). Summing the emfs induced across
all elements, which are in series, gives the magnitude of
the total emf between the ends of the bar. That is,

To integrate this expression, note that the linear speed
of an element is related to the angular speed 
 through

� � �Bv dr

B
: the relationship v � r
 (Eq. 10.10). Because B and 


are constants, we therefore find that

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 23.3, you
can explore the induced emf for different angular speeds and
field magnitudes.

1
2 B
�2� � B ��

0
v dr � B
 ��

0
r dr �

A Sliding Bar in a Magnetic FieldEXAMPLE 23.4INTERACTIVE

The conducting bar illustrated in Figure 23.13 moves
on two frictionless, parallel rails in the presence of a
uniform magnetic field directed into the page. The bar
has mass m and its length is �. The bar is given an initial
velocity to the right and is released at t � 0.

Using Newton’s laws, find the velocity of the bar as
a function of time.

Solution Conceptualize this situation as follows. As the
bar slides to the right in Figure 23.13, a counterclock-
wise current is established in the circuit consisting of
the bar, the rails, and the resistor. The upward current
in the bar results in a magnetic force to the left on the
bar as shown in the figure. As a result, the bar will slow
down, so our mathematical solution should demon-
strate that. The text of the question already categorizes
this problem as one using Newton’s laws. To analyze the
problem, we determine from Equation 22.10 that the
magnetic force is FB � � I�B, where the negative sign
indicates that the retarding force is to the left. Because
this force is the only horizontal force acting on the bar,
Newton’s second law applied to motion in the horizontal

A

v:i

direction gives

From Equation 23.6, we know that I � B �v/R, and so
we can write this expression as

Integrating this equation using the initial condition
that v � vi at t � 0, we find that

where the constant � � mR/B2�2. From this result, we
see that the velocity can be expressed in the exponen-
tial form

(1)

To finalize the problem, note that this expression for v
indicates that the velocity of the bar decreases with time
under the action of the magnetic retarding force, as we
expect from our conceptualization of the problem.

Show that the same result is reached by using an
energy approach.

Solution The wording of the text immediately catego-
rizes this problem as one in energy conservation. Con-
sider the sliding bar as one system possessing kinetic
energy, which decreases because energy is transferring
out of the system by electrical transmission through the
rails. The resistor is another system possessing internal
energy, which rises because energy is transferring into this
system. Because energy is not leaving the combination
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(Interactive Example 23.4) A conducting bar of
length � sliding on two fixed conducting rails is
given an initial velocity in the positive x direction.v:i

FIGURE 23.13
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The Alternating-Current Generator
The alternating-current (AC) generator is a device in which energy is transferred in
by work and out by electrical transmission. A simplified pictorial representation of
an AC generator is shown in Active Figure 23.14a. It consists of a coil of wire ro-
tated in an external magnetic field by some external agent, which is the work input.
In commercial power plants, the energy required to rotate the loop can be derived
from a variety of sources. In a hydroelectric plant, for example, falling water
directed against the blades of a turbine produces the rotary motion; in a coal-fired
plant, the high temperature produced by burning the coal is used to convert water
to steam and this steam is directed against turbine blades. As the loop rotates, the
magnetic flux through it changes with time, inducing an emf and a current in a
circuit connected to the coil.

Suppose the coil has N turns, all of the same area A, and suppose the coil rotates
with a constant angular speed 
 about an axis perpendicular to the magnetic field.
If � is the angle between the magnetic field and the direction perpendicular to the
plane of the coil, the magnetic flux through the loop at any time t is given by

where we have used the relationship between angular position and a constant angu-
lar speed, � � 
t. (See Eq. 10.7 and set the angular acceleration � equal to zero.)

�B � BA cos � � � cos 
t
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of two systems, the rate of energy transfer out of the bar
equals the rate of energy transfer into the resistor.
Therefore,

where the negative sign is necessary because energy is
leaving the bar and �bar is a negative number. Substi-
tuting for the electrical power delivered to the resistor
and the time rate of change of kinetic energy for the
bar, we have

Using Equation 23.6 for the current and carrying out
the derivative, we find that

I 2R �  � 
d
dt

(1
2 mv 2)

�resistor � � �bar
Rearranging terms gives

To finalize this part of the problem, note that this 
expression is the same one that we generated in 
part A, so the solution for v will be the same.

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 23.4, you
can study the motion of the bar after it is released.

dv
v

 �  �� B2�2

mR � dt

B2�2v2

R
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dt
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Slip rings N

Brushes

External
circuit

Loop

S

t

ε

(b)

εmax

External
rotator

(a) Schematic diagram of an AC
generator. An emf is induced in a
loop that rotates in a magnetic field.
(b) A graphical representation of
the alternating emf induced in the
loop as a function of time.

By logging
into PhysicsNow at www.pop4e.com
and going to Active Figure 23.14,
you can adjust the speed of rotation
and the strength of the field to see
the effects on the emf generated.

ACTIVE FIGURE 23.14
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Hence, the induced emf in the coil is

[23.8]

This result shows that the emf varies sinusoidally with time as shown in Active
Figure 23.14b. From Equation 23.8, we see that the maximum emf has the value 

max � NAB
, which occurs when 
t � 90° or 270°. In other words, � max
when the magnetic field is in the plane of the coil, and the time rate of change of
flux is a maximum. In this position, the velocity vector for a wire in the loop is per-
pendicular to the magnetic field vector. Furthermore, the emf is zero when 
t � 0
or 180°—that is, when is perpendicular to the plane of the coil—and the time
rate of change of flux is zero. In this orientation, the velocity vector for a wire in the
loop is parallel to the magnetic field vector.

The sinusoidally varying emf in Equation 23.8 is the source of alternating current
delivered to customers of electrical utility companies. It is called AC voltage as op-
posed to the DC voltage from a source such as a battery.

LENZ’S  LAW
Let us now address the negative sign in Faraday’s law. When a change occurs in the
magnetic flux, the direction of the induced emf and induced current can be found
from Lenz’s law:

The polarity of the induced emf in a loop is such that it produces a current
whose magnetic field opposes the change in magnetic flux through the loop.
That is, the induced current is in a direction such that the induced magnetic
field attempts to maintain the original flux through the loop.

Notice that no equation is associated with Lenz’s law. The law is in words only and
provides a means for determining the direction of the current in a circuit when a
magnetic change occurs.

■ Thinking Physics 23.2
A transformer (Fig. 23.15) consists of a pair of coils wrapped around an iron form.
When AC voltage is applied to one coil, the primary, the magnetic field lines cutting
through the other coil, the secondary, induce an emf. (This arrangement is used in
Faraday’s experiment shown in Active Fig. 23.3.) By varying the number of turns of
wire on each coil, the AC voltage in the secondary can be made larger or smaller than
that in the primary. Clearly, this device cannot work with DC voltage. What’s more, if
DC voltage is applied, the primary coil sometimes overheats and burns. Why?

Reasoning When a current exists in the primary coil, the magnetic field lines from
this current pass through the coil itself. Therefore, any change in the current
causes a change in the magnetic field that in turn induces a current in the same
coil. According to Lenz’s law, this current is in the direction opposite the original
current. The result is that when an AC voltage is applied, the opposing emf due to
Lenz’s law limits the current in the coil to a low value. If DC voltage is applied, no
opposing emf occurs and the current can rise to a higher value. This increased cur-
rent causes the temperature of the coil to rise, to the point at which the insulation
on the wire sometimes burns. ■

To attain a better understanding of Lenz’s law, let us return to the example of a
bar moving to the right on two parallel rails in the presence of a uniform magnetic
field directed into the page (Fig. 23.16a). As the bar moves to the right, the magnetic
flux through the circuit increases with time because the area of the loop increases.
Lenz’s law says that the induced current must be in such a direction that the magnetic

23.3
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(Thinking Physics
23.2) An ideal transformer consists of
two coils of wire wound on the same
iron core. An alternating voltage �V1

is applied to the primary coil, and the
output voltage �V2 appears across the
resistance R .

FIGURE 23.15

INDUCED CURRENT OPPOSES THE

CHANGE The induced current in a
circuit opposes the change in the
magnetic field, not the field itself.
Therefore, in some cases the mag-
netic field due to the induced cur-
rent is in the same direction as the
changing external magnetic field.
Such is the case if the external mag-
netic field is decreasing in magni-
tude, for example.

� PITFALL PREVENTION 23.2



field it produces opposes the change in the magnetic flux of the external magnetic
field. Because the flux is due to an external field into the page and is increasing, the
induced current, if it is to oppose the change, must produce a magnetic field through
the circuit out of the page. Hence, the induced current must be counterclockwise
when the bar moves to the right to give a counteracting field out of the page in the
region inside the loop. (Use the right-hand rule to verify this direction.) If the bar is
moving to the left, as in Figure 23.16b, the magnetic flux through the loop decreases
with time. Because the magnetic field is into the page, the induced current has to be
clockwise to produce a magnetic field into the page inside the loop. In either case,
the induced current attempts to maintain the original flux through the circuit.

Let us examine this situation from the viewpoint of energy considerations. Sup-
pose the bar is given a slight push to the right. In the preceding analysis, we found
that this motion leads to a counterclockwise current in the loop. What happens if
we incorrectly assume that the current is clockwise? For a clockwise current I, the
direction of the magnetic force I�B on the sliding bar would be to the right. Ac-
cording to Newton’s second law, this force would accelerate the rod and increase its
speed, which in turn would cause the area of the loop to increase more rapidly.
This increase would increase the induced current, which would increase the force,
which would increase the current, and so on. In effect, the system would acquire
energy with no additional energy input. This result is clearly inconsistent with all
experience and with the continuity equation for energy. Thus, we are forced to con-
clude that the current must be counterclockwise.

Consider another situation, one in which a bar magnet is moved to the right to-
ward a stationary loop of wire as in Figure 23.17a. As the magnet moves toward the
loop, the magnetic flux through the loop increases with time. To counteract this in-
crease in flux due to a magnetic field directed toward the right, the induced cur-
rent produces a magnetic field to the left as in Figure 23.17b; hence, the induced
current is in the direction shown. Therefore, the left face of the current loop is a
north pole and the right face is a south pole.

If the magnet is moved to the left as in Figure 23.17c, the magnetic field through
the loop, which is toward the right, decreases with time. Under these circumstances,
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(a) When the mag-
net is moved toward the stationary
conducting loop, a current is induced
in the direction shown. (b) This
induced current produces its own
magnetic field that is directed to the
left within the loop to counteract the
increasing external flux. (c) When
the magnet is moved away from the
stationary conducting loop, a current
is induced in the direction shown. 
(d) This induced current produces its
own magnetic field that is directed to
the right within the loop to counter-
act the decreasing external flux.

FIGURE 23.17

(a) As the conduct-
ing bar slides on the two fixed
conducting rails, the flux due to the
magnetic field directed inward
through the area enclosed by the loop
increases in time. By Lenz’s law, the
induced current must be counter-
clockwise so as to produce a counter-
acting magnetic field directed
outward from the page. (b) When the
bar moves to the left, the induced
current must be clockwise. Why?

FIGURE 23.16
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the induced current in the loop sets up a magnetic field through the loop from left
to right in an effort to maintain a constant flux. Hence, the direction of the in-
duced current in the loop is as shown in Figure 23.17d. In this case, the left face of
the loop is a south pole and the right face is a north pole.
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In equal-arm balances from the early 20th century (Fig. 23.18), it is
sometimes observed that an aluminum sheet hangs from one of the arms and passes
between the poles of a magnet, which causes the oscillations of the equal arm balance to
decay rapidly. In the absence of such magnetic braking, the oscillation might continue for
a very long time and the experimenter would have to wait to take a reading. Why do the
oscillations decay? (a) The aluminum sheet is attracted to the magnet. (b) Currents in the
aluminum sheet set up a magnetic field that opposes the oscillations. (c) Aluminum is fer-
romagnetic.

QUICK QUIZ 23.5

(Quick Quiz 23.5) In an old-fashioned equal-arm balance, an aluminum sheet
hangs between the poles of a magnet.

FIGURE 23.18

(P
ho

to
s 

by
 J

oh
n 

Je
w

et
t)

Application of Lenz’s LawEXAMPLE 23.5
A coil of wire is placed near an electromagnet as in 
Figure 23.19a.

Find the direction of the induced current in the
coil at the instant the switch is closed.

Solution When the switch is closed, the situation changes
from a condition in which no magnetic flux occurs
through the coil to one in which flux does occur due to a
magnetic field in the direction shown in Figure 23.19b.
To counteract this increase in magnetic flux, the coil
must set up a field from left to right in the figure, which
requires a current directed as shown in Figure 23.19b.

Find the direction of the induced current in the
coil after the switch has been closed for several seconds.

Solution After the switch has been closed for several
seconds, the magnetic flux through the loop does not
change. Hence, the induced current is zero.

B

A

ε
(c)

(a) (b)
ε εSwitch

(Example 23.5) A current in the ring is induced
when the switch is opened or closed.

FIGURE 23.19



INDUCED  emfs AND  ELECTRIC  FIELDS
We have seen that a changing magnetic flux induces an emf and a current in a
conducting loop. We can also interpret this phenomenon from another point of
view. Because the normal flow of charges in a circuit is due to an electric field in
the wires set up by a source such as a battery, we can interpret the changing
magnetic field as creating an induced electric field. This electric field applies a
force on the charges to cause them to move. With this approach, then, we see
that an electric field is created in the conductor as a result of changing magnetic
flux. In fact, the law of electromagnetic induction can be interpreted as follows: An
electric field is always generated by a changing magnetic flux, even in free space
where no charges are present. This induced electric field, however, has quite
different properties from those of the electrostatic field produced by stationary
charges.

Let us illustrate this point by considering a conducting loop of radius r, situ-
ated in a uniform magnetic field that is perpendicular to the plane of the loop as
in Figure 23.20. If the magnetic field changes with time, Faraday’s law tells us
that an emf � � d �B/dt is induced in the loop. The induced current thus pro-
duced implies the presence of an induced electric field that must be tangent
to the loop so as to provide an electric force on the charges around the loop.
The work done by the electric field on the loop in moving a test charge q once
around the loop is equal to W � q . Because the magnitude of the electric force
on the charge is qE, the work done by the electric field can also be expressed
from Equation 6.12 as , where 2�r is the circumference
of the loop. These two expressions for the work must be equal; therefore, we see
that

Using this result along with Faraday’s law and that �B � BA � B�r 2 for a circular
loop, we find that the induced electric field can be expressed as

This expression can be used to calculate the induced electric field if the time varia-
tion of the magnetic field is specified. The negative sign indicates that the induced
electric field results in a current that opposes the change in the magnetic field. It
is important to understand that this result is also valid in the absence of a conduc-
tor or charges. That is, the same electric field is induced by the changing magnetic
field in empty space.

In general, the magnitude of the emf for any closed path can be expressed as
the line integral of over that path (Eq. 20.3). Hence, the general form ofE

:
� d s:

E
:

E � � 
1

2�r
 
d�B

dt
� � 

1
2�r

 
d
dt

 (B�r 2) � � 
r
2

 
dB
dt

 E �
�

2�r

q� � qE(2�r)

W � � F
:

�d r: � qE (2�r)

�

E
:

�

23.4

778 ❚ CHAPTER 23 FARADAY’S LAW AND INDUCTANCE

y g p p pp

Find the direction of the induced current in the
coil when the switch is opened.

Solution Opening the switch causes the magnetic field
to change from a condition in which magnetic field

C lines pass through the coil from right to left to a condi-
tion of zero field. The induced current must then be as
shown in Figure 23.19c so as to set up its own magnetic
field from right to left.

E

××

E

E

in

×× ××

×× ××

×× ×× ×× ××××

×× ×× ×× ××××

×× ×× ××××

×× ×× ××

r

B

E

A conducting loop
of radius r in a uniform magnetic field
perpendicular to the plane of the
loop. If changes in time, an electric
field is induced in a direction tangent
to the loop.

B
:

FIGURE 23.20



Faraday’s law of induction is

[23.9]

It is important to recognize that the induced electric field that appears in Equa-
tion 23.9 is a nonconservative field that is generated by a changing magnetic field.
We call it a nonconservative field because the work done in moving a charge
around a closed path (the loop in Fig. 23.20) is not zero. This type of electric field
is very different from an electrostatic field.

E
:

� � � E
:

� d s: � � 
d �B

dt
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■ Faraday’s law in general form

In a region of space, a magnetic field is uniform over space but
increases at a constant rate. This changing magnetic field induces an electric field that 
(a) increases in time, (b) is conservative, (c) is in the direction of the magnetic field, or
(d) has a constant magnitude.

QUICK QUIZ 23.6

■ Thinking Physics 23.3
In studying electric fields, we noted that electric field lines begin on positive
charges and end on negative charges. Do all electric field lines begin and end on
charges?

Reasoning The statement that electric field lines begin and end on charges is true
only for electrostatic fields, that is, electric fields due to stationary charges. Electric
field lines due to changing magnetic fields form closed loops, with no beginning
and no end, and are independent of the presence of charges. ■

Solution First consider an external point and take the
path for our line integral to be a circle of radius r
centered on the solenoid as illustrated in Figure 23.21.
By symmetry, we see that the magnitude of is constant
on this path and that is tangent to it. The magnetic
flux through the area enclosed by the path is

; hence, Equation 23.9 gives

(1)

Based on the symmetry of the situation,

(2)

Setting these two expressions equal, we find that

(3)

The magnetic field inside a long solenoid is given 
by Equation 22.32, B � �0nI. When we substitute 
I � Imax cos 
t into this equation and then substitute
the result into (3), we find that

E � � 
R 2

2r
 
dB
dt

� E
:

� d s: � � E ds � E �ds � E(2�r)

� E
:

� d s: � � 
d
dt

 (B�R2) � � �R2 
dB
dt

�B
:

� dA
:

 �  BA � B�R 2

E
:

E
:

Electric Field Induced by a Changing Magnetic Field in a SolenoidEXAMPLE 23.6
A long solenoid of radius R has n turns of wire per unit
length and carries a time-varying current that varies 
sinusoidally as I � Imax cos 
t, where Imax is the maxi-
mum current and 
 is the angular frequency of the AC
source (Fig. 23.21).

Determine the magnitude of the induced electric
field outside the solenoid, a distance r 	 R from its
long central axis.

A

Path of
integration

R

r

Imax cos    tω

(Example 23.6) A long solenoid carrying a time-
varying current given by I � Imax cos 
t. An electric
field is induced both inside and outside the solenoid.

FIGURE 23.21



SELF-INDUCTANCE
Consider an isolated circuit consisting of a switch, a resistor, and a source of emf
as in Figure 23.22. The circuit diagram is represented in perspective so that we
can see the orientations of some of the magnetic field lines due to the current in
the circuit. When the switch is closed, the current doesn’t immediately jump
from zero to its maximum value /R ; the law of electromagnetic induction
(Faraday’s law) describes the actual behavior. As the current increases with time,
the magnetic flux through the loop of the circuit itself due to the current also
increases with time. This increasing magnetic flux from the circuit induces an emf
in the circuit (sometimes referred to as a back emf ) that opposes the change in
the net magnetic flux through the loop of the circuit. By Lenz’s law, the induced
electric field in the wires must therefore be opposite the direction of the current,
and the opposing emf results in a gradual increase in the current. This effect
is called self-induction because the changing magnetic flux through the
circuit arises from the circuit itself. The emf set up in this case is called a self-
induced emf.

To obtain a quantitative description of self-induction, we recall from Faraday’s
law that the induced emf is the negative time rate of change of the magnetic flux.
The magnetic flux is proportional to the magnetic field, which in turn is propor-
tional to the current in the circuit. Therefore, the self-induced emf is always pro-
portional to the time rate of change of the current. For a closely spaced coil of N
turns of fixed geometry (a toroidal coil or the ideal solenoid), we can express this
proportionality as follows:

[23.10]

where L is a proportionality constant, called the inductance of the coil, that
depends on the geometric features of the coil and other physical characteristics.
From this expression, we see that the inductance of a coil containing N

�L � � N 
d�B

dt
� � L

dI
dt

�
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become

(4)

(5)

(6)

Substituting the expression for the magnetic field into
(6) gives

�

This expression shows that the amplitude of the electric
field induced inside the solenoid by the changing mag-
netic field varies linearly with r and varies sinusoidally
with time.

 
�0nImax


2
 r sin 
t  (for r � R)

E � � 
r
2

 
d
dt

(�0nImax cos 
t)

E � � 
r
2

 
dB
dt

� E
:

� d s: � �E ds � E  �ds � E(2�r)

� E
:

� d s: � � 
 
d
dt

(B�r 2) � �r 2 dB
dt

�

Hence, the electric field varies sinusoidally with time,
and its amplitude falls off as 1/r outside the solenoid.
According to the Ampère-Maxwell law, which we will
study in Section 24.1, the changing electric field creates
an additional contribution to the magnetic field. At
high frequencies, an altogether new phenomenon can
occur. The electric and magnetic fields, each support-
ing the other, can constitute an electromagnetic wave
radiated by the solenoid, as we will study in Chapter 24.

What is the magnitude of the induced electric field
inside the solenoid, a distance r from its axis?

Solution For an interior point (r � R), the flux pass-
ing through the area bounded by a path of integration
is given by B�r 2. Thus, the analogs to (1), (2), and (3)

B

�0nImax
R 2

2r
 sin 
t  (for r 	 R )

E � � 
R 2

2r
 

d
dt

 (�0nImax cos 
t)

B

ε
R

S
I

I

After the switch is
closed, the current produces a mag-
netic flux through the area enclosed
by the loop of the circuit. As the cur-
rent increases toward its final value,
this magnetic flux changes with time
and induces an emf in the loop.

FIGURE 23.22

■ Self-induced emf



turns is

[23.11]

where it is assumed that the same magnetic flux passes through each turn. Later we
shall use this equation to calculate the inductance of some special coil geometries.

From Equation 23.10, we can also write the inductance as the ratio

[23.12]

which is usually taken to be the defining equation for the inductance of any coil, re-
gardless of its shape, size, or material characteristics. If we compare Equation 23.10
with Equation 21.6, R � �V/I, we see that resistance is a measure of opposition to
current, whereas inductance is a measure of opposition to the change in current.

The SI unit of inductance is the henry (H), which, from Equation 23.12, is seen
to be equal to 1 volt-second per ampere:

1 H � 1 V � s/A

As we shall see, the inductance of a coil depends on its geometry. Because
inductance calculations can be quite difficult for complicated geometries, the ex-
amples we shall explore involve simple situations for which inductances are easily
evaluated.

L � � 
�L

dI/dt

L �
N �B

I
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in the form

where V � A� is the volume of the solenoid.

Calculate the inductance of a solenoid containing
300 turns if the length of the solenoid is 25.0 cm and its
cross-sectional area is 4.00 cm2 � 4.00 � 10�4 m2.

Solution Using the expression for L from part A, we
find that

Calculate the self-induced emf in the solenoid de-
scribed in part B if the current through it is decreasing
at the rate of 50.0 A/s.

Solution Using Equation 23.10 and given that dI/dt �
� 50.0 A/s, we have

C

0.181 mH� 1.81 � 10�4 T �m2/A �

 � (4� � 10�7 T �m/A) 
(300)2(4.00 � 10�4 m2)

25.0 � 10�2 m

L �
�0N 2A

�

B

L � �0
(n �)2

�
A � �0n2A� � �0n2V

Inductance of a SolenoidEXAMPLE 23.7
Consider a uniformly wound solenoid having N turns
and length �.

Find the inductance of the solenoid. Assume that �
is long compared with the radius and that the core of
the solenoid is air.

Solution Because � is long compared with the radius,
we can model the solenoid as an ideal solenoid. In this
case, the interior magnetic field is uniform and given
by Equation 22.32:

where n � N/� is the number of turns per unit length.
The magnetic flux through each turn is

where A is the cross-sectional area of the solenoid. Us-
ing this expression and Equation 23.11, we find that

which shows that L depends on the geometry of the so-
lenoid and is proportional to the square of the number
of turns. Because N � n�, we can also express the result

�0N 2A
�

L �
N�B

I
�

�B � BA � �0 
NA
�

 I

B � �0nI � �0 
N
�

 I

A

9.05 mV�

�L � �L
dI
dt

� �(1.81 � 10�4 H)(�50.0 A/s)

Joseph Henry (1797 – 1878)
Henry, an American physicist, be-
came the first director of the Smith-
sonian Institution and first presi-
dent of the Academy of Natural
Science. He improved the design of
the electromagnet and constructed
one of the first motors. He also dis-
covered the phenomenon of self-in-
duction but failed to publish his
findings. The unit of inductance, the
henry, is named in his honor.
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RL CIRCUITS
A circuit that contains a coil, such as a solenoid, has a self-inductance that prevents
the current from increasing or decreasing instantaneously. A circuit element whose
main purpose is to provide inductance in a circuit is called an inductor. The circuit
symbol for an inductor is . As a simplification model, we shall always
assume that the self-inductance of the remainder of the circuit is negligible com-
pared with that of any inductors in the circuit. In addition, any resistance in the in-
ductor is assumed to be combined with other resistance in the circuit, so we model
the inductor as having zero resistance.

Consider the circuit shown in Active Figure 23.23, consisting of a resistor, an induc-
tor, a switch, and a battery. The internal resistance of the battery will be ignored as a
further simplification model. Suppose the switch S is thrown closed at t � 0. The cur-
rent begins to increase, and, due to the increasing current, the inductor produces an
emf that opposes the increasing current. The back emf produced by the inductor is

Because the current is increasing, dI/dt is positive; therefore L is negative, which
corresponds to the potential drop occurring from a to b across the inductor. For
this reason, point a is at a higher potential than point b as illustrated in Active
Figure 23.23.

We can apply Kirchhoff’s loop rule to this circuit. If we begin at the battery and
travel clockwise, we have

[23.13]

where IR is the voltage across the resistor. The potential difference across the in-
ductor is given a negative sign because its emf is in the opposite sense to that of the
battery. We must now look for a solution to this differential equation, which is a
mathematical representation of the behavior of the RL circuit. It is similar to Equa-
tion 21.30 for the RC circuit.

To obtain a mathematical solution of Equation 23.13, it is convenient to change
variables by letting x � ( /R) � I so that dx � � dI. With these substitutions,
Equation 23.13 can be written as

Integrating this last expression from an initial instant t � 0 to some later time t gives

Taking the antilog of this result gives

The value of x at t � 0 is expressed as xi � /R because I � 0 at t � 0. Hence, the
preceding expression is equivalent to

 I �
�
R

 (1 � e �Rt/L)

�
R

� I �
�
R

 e�Rt/L

�
x � xie�Rt/L

�x

x i

 
dx
x

� � 
R
L

 �t

0
 dt : ln 

x
xi

� � 
R
L

 t

 
dx
x

� � 
R
L

 dt

�
R

� I �
L
R

 
dI
dt

� x �
L
R

 
dx
dt

� 0

�

� � IR � L
dI
dt

� 0

�

�L � �L
dI
dt
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A series RL circuit. As the current 
increases toward its maximum value,
an emf that opposes the increasing
current is induced in the inductor.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 23.23, you can
adjust the values of R and L to see
the effect on the current. A graphi-
cal display as in Active Figure 23.24
is available.

ACTIVE FIGURE 23.23

   t =

t 

L

t

R
ε

R
ε

R0.632

I

Plot of current versus time for the
RL circuit shown in Active Figure
23.23. The switch is open for t � 0
and then closed at t � 0, and the
current increases toward its maxi-
mum value �/R . The time constant
� is the time interval required for I
to reach 63.2% of its maximum value.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 23.24, you can
observe the graph develop after the
switch in Active Figure 23.23 is
closed.

ACTIVE FIGURE 23.24

www.pop4e.com
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This expression represents the solution of Equation 23.13, the current as a function
of time. It can also be written as

[23.14]

where � is the time constant of the RL circuit:

� � [23.15]

It can be shown that the dimension of � is time. Physically, � is the time interval re-
quired for the current to reach (1 � e�1) � 0.632 of its final value /R .

Active Figure 23.24 plots current versus time. Note that I � 0 at t � 0 and that
the final steady-state value of the current, which occurs as t : �, is /R . This result
can be seen by setting dI/dt equal to zero in Equation 23.13 (in steady state, the
change in the current is zero) and solving for the current. Thus, we see that the
current rises very rapidly initially and then gradually approaches the maximum
value /R as t : �. Notice that the final current does not involve L because the in-
ductor has no effect on the circuit (ignoring any resistance associated with it) if the
current is not changing.

Taking the first time derivative of Equation 23.14, we obtain

[23.16]

From this equation, we see that the rate of change of current dI/dt is a
maximum (equal to /L) at t � 0 and falls off exponentially to zero as t : �
(Fig. 23.25).

Now consider the RL circuit arranged as shown in Active Figure 23.26. The
curved lines on the switch S represent a switch that is connected either to a or b at
all times. (If the switch is connected to neither a nor b, the current in the circuit
suddenly stops.) Suppose the switch has been set at position a long enough to allow
the current to reach its equilibrium value /R. In this situation, the circuit is de-
scribed by the outer loop in Active Figure 23.26. If the switch is thrown from a to b,
the circuit is now described by just the right-hand loop in Active Figure 23.26. Thus,
we have a circuit with no battery ( � 0). Applying Kirchhoff’s loop rule to the
right-hand loop at the instant the switch is thrown from a to b, we obtain

[23.17]

It is left to Problem 23.34 to show that the solution of this differential equation is

[23.18]

where the current at t � 0 is Ii � /R and � � L/R.
The graph of current versus time (Active Fig. 23.27) for the circuit of Active

Figure 23.26 shows that the current is continuously decreasing with time, as one
would expect. Furthermore, the slope dI/dt is always negative and has its maximum
magnitude at t � 0. The negative slope signifies that L � � L(dI/dt) is now
positive.

�

�

I(t ) �
�
R

 e �t/�

IR � L 
dI
dt

� 0

�

�

�

dI
dt

�
�
L

 e �t/�

�

�

�

L
R

I(t ) �
�
R

(1 � e�t/� )
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■ Time constant of the RL circuit

dI
dt

t

L
ε

Plot of dI/dt versus
time for the RL circuit shown in Ac-
tive Figure 23.23. The time rate of
change of current is a maximum at 
t � 0, which is the instant at which the
switch is closed. The rate decreases
exponentially with time as I increases
toward its maximum value.

FIGURE 23.25

R

Lε

b

Sa

An RL circuit. When the switch S is in
position a, the battery is in the circuit.
When the switch is thrown to position 
b, the battery is no longer part of the 
circuit. The switch is designed so that it
is never open, which would cause the
current to stop.

By logging into
PhysicsNow at www.pop4e.com and 
going to Active Figure 23.26, you can
adjust the values of R and L to see the
effect on the current. A graphical display
as in Active Figure 23.27 is available.

ACTIVE FIGURE 23.26

The circuit in Figure 23.28 includes a power source that provides a si-
nusoidal voltage. Thus, the magnetic field in the inductor is constantly changing. The in-
ductor is a simple air-core solenoid. The switch in the circuit is closed and the lightbulb

QUICK QUIZ 23.7

www.pop4e.com
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glows steadily. An iron rod is inserted into the interior of the solenoid, which increases
the magnitude of the magnetic field in the solenoid. As that happens, the brightness of
the lightbulb (a) increases, (b) decreases, or (c) is unaffected.

Current versus time for the right-
hand loop of the circuit shown in
Active Figure 23.26. 

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 23.27, you can
observe this graph develop after the
switch in Active Figure 23.26 is
thrown to position b.

ACTIVE FIGURE 23.27

I

t

R
ε

S

L

Iron bar
(Quick Quiz 23.7) A lightbulb is pow-

ered by an AC source with an inductor in the circuit. When
the iron bar is inserted into the coil, what happens to the 
brightness of the lightbulb?

FIGURE 23.28

Two circuits like the one shown in Active Figure 23.26 are identical
except for the value of L. In circuit A, the inductance of the inductor is LA, and in circuit
B, it is LB . The switch has been in position b for both circuits for a long time. At t � 0, the
switch is thrown to a in both circuits. At t � 10 s, the switch is thrown to b in both circuits.
The resulting graphical representation of the current as a function of time is shown in
Figure 23.29. Assuming that the time constant of each circuit is much less than 10 s,
which of the following is true? (a) LA 	 LB . (b) LA � LB . (c) There is not enough infor-
mation to determine the relative values.

QUICK QUIZ 23.8

0

I

5 10 15

A

B

t (s)

(Quick Quiz 23.8)
Current–time graphs for two circuits
with different inductances.

FIGURE 23.29

(a)

30.0 mH

12.0 V 6.00 Ω
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12 14

Time Constant of an RL CircuitEXAMPLE 23.8INTERACTIVE

Solution The time constant is given by Equation 23.15:

5.00 ms� �
L
R

�
30.0 � 10�3 H

6.00 �
�

Consider the RL circuit in Figure 23.30a.

Find the time constant of the circuit.A

(Interactive Example 23.8) (a) The
switch in this RL circuit is open for t � 0 and then closed
at t � 0. (b) A graph of the current versus time for the cir-
cuit in (a).

FIGURE 23.30
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ENERGY  STORED  IN  A  MAGNETIC  FIELD
In the preceding section, we found that the induced emf set up by an inductor pre-
vents a battery from establishing an instantaneous current. Part of the energy sup-
plied by the battery goes into internal energy in the resistor, and the remaining
energy is stored in the inductor. If we multiply each term in Equation 23.13 by the
current I and rearrange the expression, we have

[23.19]

This expression tells us that the rate I at which energy is supplied by the battery
equals the sum of the rate I 2R at which energy is delivered to the resistor and the
rate LI (dI/dt) at which energy is delivered to the inductor. Thus, Equation 23.19 is
simply an expression of energy conservation for the isolated system of the circuit.
(Actually, energy can leave the circuit by thermal conduction into the air and by
electromagnetic radiation, so the system need not be completely isolated.) If we let
UB denote the energy stored in the inductor at any time, the rate dUB/dt at which
energy is delivered to the inductor can be written as

To find the total energy stored in the inductor at any instant, we can rewrite this ex-
pression as dUB � LI dI and integrate:

[23.20]

where L is constant and so has been removed from the integral. Equation 23.20 rep-
resents the energy stored in the magnetic field of the inductor when the current is I.

Equation 23.20 is similar to the equation for the energy stored in the electric
field of a capacitor, (Eq. 20.29). In either case, we see that energy
from a battery is required to establish a field and that energy is stored in the field.
In the case of the capacitor, we can conceptually relate the energy stored in the
capacitor to the electric potential energy associated with the separated charge on
the plates. We have not discussed a magnetic analogy to electric potential energy,
so the storage of energy in an inductor is not as easy to conceptualize.

To argue that energy is stored in an inductor, consider the circuit in Figure
23.31a, which is the same circuit as in Active Figure 23.26, with the addition of a
switch S2 across the resistor R. With switch S1 set to position a and S2 closed as
shown, a current is established in the inductor. Now, as in Figure 23.31b, switch S1 is
thrown to position b. The current persists in this (ideally) resistance-free and bat-
tery-free circuit (the right-hand loop in Fig. 23.31b), consisting of only the inductor
and a conducting path between its ends. There is no current in the resistor (because
the path around it through S2 is resistance free), so no energy is being delivered to

UE �  
1
2 C(�V )2

UB �  
1
2 LI 2

UB � �UB

0
dUB �  �I

0
LI dI 

dUB

dt
� LI  

dI
dt

�

I� � I 2R � LI  
dI
dt
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A plot of Equation 23.14 for this circuit is given in 
Figure 23.30b.

By logging into PhysicsNow 
at www.pop4e.com and going to Interactive 
Example 23.8, you can explore the time behavior of the 
current in the circuit.

The switch in Figure 23.30a is closed at t � 0. 
Calculate the current in the circuit at t � 2.00 ms.

Solution Using Equation 23.14 for the current as a
function of time (with t and � in milliseconds), we find
that at t � 2.00 ms,

B

0.659 AI �
�
R

 (1 � e�t/� ) �
12.0 V
6.00 �

 (1 � e�0.400) �

COMPARE ENERGY IN A CAPACITOR, 
RESISTOR, AND INDUCTOR We have
now seen three circuit elements to
which we can transfer energy. Keep
in mind the difference in energy
transfer mechanisms. A capacitor
stores a given amount of energy for
a fixed charge on its plates. Further
energy is delivered to the capacitor
as a current in the wires connected
to the capacitor delivers more
charge to the plates. An inductor
stores a given amount of energy if
the current remains constant. 
Further energy is delivered to the
inductor by increasing the current.
A resistor acts differently because
the energy is not stored as potential
energy but rather is transformed to
internal energy. Energy continues
to be delivered to the resistor as
long as it carries a current.

� PITFALL PREVENTION 23.3

■ Energy stored in an inductor

www.pop4e.com


it. The next step is to open switch S2 as shown in Figure 23.31c, which puts the re-
sistor into the circuit. There is now current in the resistor, and energy is delivered
to the resistor. Where is the energy coming from? The only other element in the
circuit previous to opening switch S2 was the inductor. Energy must therefore have
been stored in the inductor and is now being delivered to the resistor.

Now let us determine the energy per unit volume, or energy density, stored in a
magnetic field. For simplicity, consider a solenoid whose inductance is L � �0n2A�
(see Example 23.7). The magnetic field of the solenoid is B � �0nI. Substituting
the expression for L and I � B/�0n into Equation 23.20 gives

[23.21]

Because A� is the volume of the solenoid, the energy stored per unit volume in a
magnetic field—in other words, the magnetic energy density—is

[23.22]

Although Equation 23.22 was derived for the special case of a solenoid, it is valid
for any region of space in which a magnetic field exists. Note that it is similar to the
equation for the energy per unit volume stored in an electric field, given by 
(Eq. 20.32). In both cases, the energy density is proportional to the square of the
magnitude of the field.

1
2 �0E2

uB �
UB

A�
�

B2

2�0

UB �  
1
2 LI 2 � 1

2 �0n2A� � B
�0n �

2
�

B2

2�0
 (A�)
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S1

S2

R

L
ε

b

a

(a)

S1

S2

R

L
ε

b

a

(b)

S1

S2

R

L
ε

b

a

(c)

An RL circuit used for conceptualizing energy storage in an inductor. (a) With the
switches as shown, the battery establishes a current through the inductor. (b) Switch S1 is
thrown to position b. Because the ends of the inductor are connected by a resistance-free
path, the current continues to flow through the inductor. (c) Switch S2 is opened, adding
the resistor to the circuit, and energy is delivered to the resistor. This energy can only
have been stored in the inductor because that is the only other element in the circuit.

FIGURE 23.31

You are performing an experiment that requires the highest possible
energy density in the interior of a very long solenoid. Which of the following increases
the energy density? (More than one choice may be correct.) (a) increasing the number
of turns per unit length on the solenoid (b) increasing the cross-sectional area of the
solenoid (c) increasing only the length of the solenoid while keeping the number of
turns per unit length fixed (d) increasing the current in the solenoid

QUICK QUIZ 23.9

the magnetic field of the inductor is transferred to the
resistor.

Solution The rate at which energy is transferred to the
resistor is I 2R, where I is the instantaneous current. Us-
ing I from Equation 23.18,

� � I 2R � (Iie�Rt/L)2R � Ii 

2Re�2Rt/L

What Happens to the Energy in the Inductor?EXAMPLE 23.9
Consider once again the RL circuit shown in Active
Figure 23.26 in which switch S is thrown to position b
at t � 0. Recall that the current in the right-hand loop
decays exponentially with time according to the
expression I � Iie�t/�, where Ii � /R is the initial 
current in the circuit and � � L/R is the time constant.
Let us show explicitly that all the energy stored in 

�

■ Magnetic energy density



THE  REPULSIVE  MODEL  FOR 
MAGNETIC  LEVITATION

In Chapter 22, we considered a model for magnetic levitation that is based on the
attractive force between a magnet and a rail made of magnetic material. The sec-
ond major model for magnetically levitated vehicles is the EDS (electrodynamic
system) model. The EDS model is used in Japan Railways’s magnetic levitation sys-
tem. This system uses superconducting magnets, unlike the conventional room-
temperature magnets used in the German Transrapid. The result is improved en-
ergy efficiency. There is promise for even better efficiency in the future if
higher-temperature superconductors are developed.

23.8
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Calculate the total energy stored in the magnetic 
field of the cable.

Solution Using Equation 23.20 and the results to part A gives

�0�I 2

4�
 ln � b

a �UB � 1
2 LI 2 �

B

�0�

2�
 ln � b

a �L �
�B

I
�

The Coaxial CableEXAMPLE 23.10
A long coaxial cable consists of two concentric cylindri-
cal conductors of radii a and b and length � as in 
Figure 23.32. The inner conductor is assumed to be a
thin cylindrical shell. The conductors carry current I in
opposite directions.

Calculate the self-inductance L of this cable.

Solution To obtain L, we must know the magnetic
flux through any cross-section between the two con-
ductors. From Ampère’s law (Eq. 22.29), we know that
the magnetic field between the conductors is 
B � �0I/2� r. The magnetic field is zero outside the
conductors (r 	 b) because the net current through a
circular path surrounding both wires is zero. The mag-
netic field is zero inside the inner conductor because
it is hollow and no current flows within a radius r � a.

The magnetic field is perpendicular to the light
blue rectangle of length � and width (b � a), the cross-
section of interest. Dividing this rectangle into strips of
width dr, such as the dark blue strip in Figure 23.32, we
see that the area of each strip is � dr and the flux
through each strip is B dA � B �dr. Hence, the total
magnetic flux through the entire cross-section is

Using this result, we find that the self-inductance of the
cable is

 �
�0I�

2�
 ln � b

a �

 �B � �B dA �  �b

a
 

�0I
2�r

�dr �
�0I�

2�
 �b

a
 
dr
r

A

I

�

bdr

rI

a

B

(Example 23.10) Section of a long coaxial cable. The in-
ner and outer conductors carry equal currents in oppo-
site directions.

FIGURE 23.32

Note that this expression is equal to the initial energy
stored in the magnetic field of the inductor, given by
Equation 23.20, as we set out to prove.

 �  
Ii

2L
2

[0 � (�1)] � 1
2Ii

2L

 E �  Ii 

2R � L
2R ���

0
e�x dx �  

Ii
2L
2

(�e�x)�
�

0
  

To find the total energy transferred to the resistor, we inte-
grate this expression over the limits t � 0 to t � � (because
it takes an infinite time for the current to reach zero):

(1)

If we identify the variable x � 2Rt/L so that 
dx � (2R/L) dt, we can rewrite (1) as,

E � ��

0
�dt � ��

0
Ii 

2Re�2Rt/L dt � Ii 

2R ��

0
e�2Rt/L dt 

CONTEXT 
connection



In this model, we appeal to Lenz’s law. In the simplest form of the model, the
vehicle carries a magnet. As the magnet passes over a metal plate that runs along
the center of the track, currents are induced in the plate that tend to oppose the
original change. The result is a repulsive force, which lifts the vehicle.

Although the idea of inducing a current in a metal plate is a valid concept, it
represents a large expense in terms of the amount of metal required for a long
track. Another technique is used in Japan’s maglev vehicle. In this vehicle, the cur-
rent is induced by magnets passing by coils located on the side of the railway chan-
nel. A schematic illustration of such a vehicle is given in Figure 23.33.

One of the disadvantages of the EMS model discussed in Chapter 22 is the insta-
bility of the attractive force, requiring feedback electronics. The EDS model, however,
has a natural stabilizing feature. If the vehicle drops, the repulsion becomes stronger
and pushes the vehicle back up. If the vehicle rises, the force decreases and the vehi-
cle drops back down. Another advantage of the EDS system is the larger separation of
about 10 cm between track and vehicle, as opposed to 10 mm in the EMS model.

A disadvantage of the EDS system is that levitation only exists while the vehicle is
moving because it depends on Faraday’s law; that is, a magnetic change must occur.
Therefore, the vehicle must have landing wheels for stopping and starting at sta-
tions; these wheels are indicated in Figure 23.33.

Another disadvantage of the EDS system is that the induced currents result in a
drag force as well as a lift force. The drag force requires more power for propulsion.
It is larger than the lift force for small speeds, but the drag force maximizes at some
speed and then begins to decrease. The lift force continues to increase as the speed
increases. Therefore, it is advantageous to travel at high speeds, but the significant
drag force at low speeds must be overcome every time the vehicle starts up.

The Japanese maglev project is jointly developed by the Central Japan Railway Co.,
the Railway Technical Research Institute, and the Japan Railway Construction, Trans-
port, and Technology Agency. Exhaustive tests have been performed on five genera-
tions of maglev vehicles, beginning with the four-seater ML100, built in 1972 to cele-
brate Japan Railways’s 100th anniversary. Current tests are being performed on the
sixth-generation vehicle, the MLX01, a multicar train that can carry more than 100
passengers in its commercial form. A 43-km test line between Sakaigawa and Akiyama
in Yamanashi Prefecture was opened in 1997. As mentioned in the Context introduc-
tion, the MLX01 holds the world speed record for magnetic levitation vehicles at
581 km/h. The Yamanashi Test Line is funded by the Japanese government, with the
intention of final confirmation of maglev feasibility and commercial operation within
the next few years. Once the Japanese system enters commercial operation, it will be
interesting to watch the competition between it and the German Transrapid system! ■
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Levitation and
guidance coils

Guidance wheels

MagnetsTakeoff and
landing wheels

Schematic diagram
of the levitation system for the 
Japanese maglev vehicle. The magnets
induce currents in the coils at the side
of the track so that, by Lenz’s law, the
repulsive force pushes the vehicle 
upward.

FIGURE 23.33
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Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The magnetic flux through a surface associated with a magnetic
field is

[23.1]

where the integral is over the surface.
Faraday’s law of induction states that the emf induced in a

circuit is directly proportional to the time rate of change of
magnetic flux through the circuit:

[23.3]

where N is the number of turns and �B is the magnetic flux
through each turn.

When a conducting bar of length � moves through a
magnetic field with a velocity so that is perpendicular to

, the emf induced in the bar (called the motional emf) is

� � B�v [23.5]

Lenz’s law states that the induced current and induced emf
in a conductor are in such a direction as to oppose the change
that produced them.

A general form of Faraday’s law of induction is

[23.9]

where is a nonconservative electric field produced by the
changing magnetic flux.

When the current in a coil changes with time, an emf is in-
duced in the coil according to Faraday’s law. The self-induced
emf is described by the expression

E
:

� � � E
:

� d s: � � 
d�B

dt

�

B
:

v:v:B
:

� � �N  
d�B

dt

�B � � B
:

� d A
:

 

B
:

[23.10]

where L is the inductance of the coil. Inductance is a measure of
the opposition of a device to a change in current.

The inductance of a coil is

[23.11]

where �B is the magnetic flux through the coil and N is the to-
tal number of turns. Inductance has the SI unit the henry (H),
where 1 H � 1 V � s/A.

If a resistor and inductor are connected in series to a battery
of emf as shown in Active Figure 23.23 and a switch in the
circuit is closed at t � 0, the current in the circuit varies with
time according to the expression

[23.14]

where � � L/R is the time constant of the RL circuit.
If the battery is removed from an RL circuit as in Active

Figure 23.26 with the switch thrown to position b, the current
decays exponentially with time according to the expression

[23.18]

where /R is the initial current in the circuit.
The energy stored in the magnetic field of an inductor car-

rying a current I is

[23.20]

The energy per unit volume (or energy density) at a point
where the magnetic field is B is

[23.22]uB �
B2

2� 0

UB � 1
2 LI 2

�

I(t) �
�
R

 e�t/�

I(t) �
�
R

(1 � e�t/� )

�

L �
N�B

I

�L � � L 
dI
dt

SUMMARY

QUESTIONS
� answer available in the Student Solutions Manual and

Study Guide

1. A loop of wire is placed in a uniform magnetic field. For
what orientation of the loop is the magnetic flux a maxi-
mum? For what orientation is the flux zero?

2. A bar magnet is held above a loop of wire in a horizontal
plane as shown in Figure Q23.2. The south end of the
magnet is toward the loop of wire. The magnet is dropped
toward the loop. Find the direction of the current in the
resistor (a) while the magnet is falling toward the loop and
(b) after the magnet has passed through the loop and is
moving away from it.

3. As the bar in Figure Q23.3 moves to the right, an electric
field is set up directed downward in the bar. Explain why

the electric field would be upward if the bar were moving to
the left.

R

S

N

v

FIGURE Q23.2
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4. As the bar in Figure Q23.3 moves perpendicular to the
field, is an external force required to keep it moving with
constant speed?

The bar in Figure Q23.5 moves on rails to the right with a
velocity , and the uniform, constant magnetic field is di-
rected out of the page. Why is the induced current clock-
wise? If the bar were moving to the left, what would be
the direction of the induced current?

v:
5.
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FIGURE Q23.3 Questions 23.3 and 23.4.

Bout

v

FIGURE Q23.5 Questions 23.5 and 23.6.

6. Explain why an applied force is necessary to keep the bar
in Figure Q23.5 moving with a constant speed.

In a hydroelectric dam, how is the energy produced that is
then transferred out by electrical transmission? That is,
how is the energy of motion of the water converted to en-
ergy that is transmitted by AC electricity?

8. A piece of aluminum is dropped vertically downward be-
tween the poles of an electromagnet. Does the magnetic
field affect the velocity of the aluminum?

9. When the switch in Figure Q23.9a is closed, a current is
set up in the coil and the metal ring springs upward
(Fig. Q23.9b). Explain this behavior.

10. Assume that the battery in Figure Q23.9a is replaced by an
AC source and that the switch is held closed. If it is held
down, the metal ring on top of the solenoid becomes hot.
Why?

11. Find the direction of the current in the resistor in Figure
Q23.11 (a) at the instant the switch is closed, (b) after the
switch has been closed for several minutes, and (c) at the
instant the switch is opened.

7.

(a)

Iron core

Metal ring

S

(b)

FIGURE Q23.9 Questions 23.9 and 23.10.
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FIGURE Q23.11

12. An emf is induced between the wingtips of an airplane be-
cause of its motion in the Earth’s magnetic field. Can this
emf be used to power a light in the passenger compart-
ment? Explain your answer.

13. Section 7.3 defined conservative and nonconservative
forces. Section 20.1 stated that an electric charge creates
an electric field that produces a conservative force. Argue
now that induction creates an electric field that produces a
nonconservative force.

14. What parameters affect the inductance of a coil? Does the
inductance of a coil depend on the current in the coil?

15. Suppose the switch in Figure Q23.15 has been closed for a
long time and is suddenly opened. Does the current in-
stantaneously drop to zero? Why does a spark appear at the
switch contacts at the moment the switch is opened?

ε

R

L

Switch

FIGURE Q23.15

16. Consider this thesis: “Joseph Henry, America’s first profes-
sional physicist, caused the most recent basic change in 
the human view of the Universe when he discovered self-



induction during a school vacation at the Albany Academy
about 1830. Before that time, one could think of the Uni-
verse as composed of just one thing: matter. The energy
that temporarily maintains the current after a battery is re-
moved from a coil, on the other hand, is not energy that
belongs to any chunk of matter. It is energy in the massless
magnetic field surrounding the coil. With Henry’s discov-
ery, Nature forced us to admit that the Universe consists of
fields as well as matter.” Argue for or against the statement.
What in your view makes up the Universe?

If the current in an inductor is doubled, by what factor
does the stored energy change?

18. Discuss the similarities between the energy stored in the
electric field of a charged capacitor and the energy stored
in the magnetic field of a current-carrying coil.

19. What is the inductance of two inductors connected in se-
ries? Does it matter if they are solenoids or toroids?

20. Can an object exert a force on itself? When a coil induces
an emf in itself, does it exert a force on itself?

17.
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PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available
at www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 23.1 ■ Faraday’s Law of Induction
Section 23.3 ■ Lenz’s Law
1. A flat loop of wire consisting of a single turn of cross-

sectional area 8.00 cm2 is perpendicular to a magnetic
field that increases uniformly in magnitude from 0.500 T
to 2.50 T in 1.00 s. What is the resulting induced current
if the loop has a resistance of 2.00 �?

2. A 25-turn circular coil of wire has diameter 1.00 m. It is
placed with its axis along the direction of the Earth’s
magnetic field of 50.0 �T, and then in 0.200 s it is flipped
180°. An average emf of what magnitude is generated in
the coil?

A strong electromagnet produces a
uniform magnetic field of 1.60 T over a cross-sectional
area of 0.200 m2. We place a coil having 200 turns and a
total resistance of 20.0 � around the electromagnet. We
then smoothly reduce the current in the electromagnet
until it reaches zero in 20.0 ms. What is the current in-
duced in the coil?

4. An aluminum ring of radius r1 and resistance R is placed
around the top of a long air-core solenoid with n turns
per meter and smaller radius r2 as shown in Figure P23.4.
Assume that the axial component of the field produced
by the solenoid over the area of the end of the solenoid is
one-half as strong as at the solenoid’s center. Assume that
the solenoid produces negligible field outside its cross-
sectional area. The current in the solenoid is increasing
at a rate of �I/�t. (a) What is the induced current in the
ring? (b) At the center of the ring, what is the magnetic
field produced by the induced current in the ring?
(c) What is the direction of this field?

5. (a) A loop of wire in the shape of a rectangle of width w
and length L and a long, straight wire carrying a current

3.

I lie on a tabletop as shown in Figure P23.5. (a) Deter-
mine the magnetic flux through the loop due to the cur-
rent I. (b) Suppose the current is changing with time ac-
cording to I � a � bt, where a and b are constants.
Determine the emf that is induced in the loop if b �
10.0 A/s, h � 1.00 cm, w � 10.0 cm, and L � 100 cm.
What is the direction of the induced current in the rec-
tangle?

I

I

r1

r2

FIGURE P23.4

I

w

h

L

FIGURE P23.5 Problems 23.5 and 23.59.

6. A coil of 15 turns and radius 10.0 cm surrounds a long
solenoid of radius 2.00 cm and 1.00 � 103 turns/m
(Fig. P23.6). The current in the solenoid changes as
I � (5.00 A) sin(120t). Find the induced emf in the 15-
turn coil as a function of time.
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7. A 30-turn circular coil of radius 4.00 cm and resistance
1.00 � is placed in a magnetic field directed perpendicular
to the plane of the coil. The magnitude of the magnetic
field varies in time according to the expression B �
0.010 0t � 0.040 0t2, where t is in seconds and B is in teslas.
Calculate the induced emf in the coil at t � 5.00 s.

8. An instrument based on induced emf has been used to
measure projectile speeds up to 6 km/s. A small magnet is
imbedded in the projectile as shown in Figure P23.8. The
projectile passes through two coils separated by a distance
d. As the projectile passes through each coil, a pulse of emf
is induced in the coil. The time interval between pulses
can be measured accurately with an oscilloscope, and thus
the speed can be determined. (a) Sketch a graph of �V
versus t for the arrangement shown. Consider a current
that flows counterclockwise as viewed from the starting
point of the projectile as positive. On your graph, indicate
which pulse is from coil 1 and which is from coil 2. (b) If
the pulse separation is 2.40 ms and d � 1.50 m, what is the
projectile speed?

10. A piece of insulated wire is shaped into a figure eight as
shown in Figure P23.10. The radius of the upper circle is
5.00 cm and that of the lower circle is 9.00 cm. The wire
has a uniform resistance per unit length of 3.00 �/m. A
uniform magnetic field is applied perpendicular to the
plane of the two circles, in the direction shown. The mag-
netic field is increasing at a constant rate of 2.00 T/s. Find
the magnitude and direction of the induced current in the
wire.
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9. When a wire carries an AC current with a known fre-
quency, you can use a Rogowski coil to determine the ampli-
tude Imax of the current without disconnecting the wire to
shunt the current in a meter. The Rogowski coil, shown in
Figure P23.9, simply clips around the wire. It consists of a
toroidal conductor wrapped around a circular return cord.
The toroid has n turns per unit length and a cross-sectional
area A. The current to be measured is given by I(t) �
Imax sin 
t. (a) Show that the amplitude of the emf induced
in the Rogowski coil is max � �0nA
 Imax. (b) Explain why
the wire carrying the unknown current need not be at the
center of the Rogowski coil and why the coil will not re-
spond to nearby currents that it does not enclose.

�

ε I(t )

FIGURE P23.9
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Section 23.2 ■ Motional emf
Section 23.3 ■ Lenz’s Law

Note: Problem 22.62 can be assigned with this section.

11. An automobile has a vertical radio antenna 1.20 m long.
The automobile travels at 65.0 km/h on a horizontal road
where the Earth’s magnetic field is 50.0 �T directed
toward the north and downward at an angle of 65.0° below
the horizontal. (a) Specify the direction that the automobile
should move to generate the maximum motional emf in
the antenna, with the top of the antenna positive relative
to the bottom. (b) Calculate the magnitude of this in-
duced emf.

12. Consider the arrangement shown in Figure P23.12. As-
sume that R � 6.00 �, � � 1.20 m, and a uniform 2.50-T
magnetic field is directed into the page. At what speed
should the bar be moved to produce a current of 0.500 A
in the resistor?

Figure P23.12 shows a top view of a bar that can slide with-
out friction. The resistor is 6.00 �, and a 2.50-T magnetic
field is directed perpendicularly downward, into the paper.

13.



Let � � 1.20 m. (a) Calculate the applied force required to
move the bar to the right at a constant speed of 2.00 m/s.
(b) At what rate is energy delivered to the resistor?

18. Review problem. A flexible metallic wire with linear density
3.00 � 10�3 kg/m is stretched between two fixed clamps
64.0 cm apart and held under tension 267 N. A magnet is
placed near the wire as shown in Figure P23.18. Assume
that the magnet produces a uniform field of 4.50 mT over a
2.00-cm length at the center of the wire and a negligible
field elsewhere. The wire is set vibrating at its fundamental
(lowest) frequency. The section of the wire in the magnetic
field moves with a uniform amplitude of 1.50 cm. Find 
(a) the frequency and (b) the amplitude of the electromo-
tive force induced between the ends of the wire.
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14. A conducting rod of length � moves on two horizontal,
frictionless rails as shown in Figure P23.12. If a constant
force of 1.00 N moves the bar at 2.00 m/s through a
magnetic field that is directed into the page, (a) what
is the current through the 8.00-� resistor R ? (b) What
is the rate at which energy is delivered to the resistor? 
(c) What is the mechanical power delivered by the force

?

15. A metal rod of mass m slides without friction along two par-
allel horizontal rails, separated by a distance � and con-
nected by a resistor R, as shown in Figure P23.12. A uni-
form vertical magnetic field of magnitude B is applied
perpendicular to the plane of the paper. The applied force
shown in the figure acts only for a moment, to give the rod
a speed v. In terms of m, �, R, B, and v, find the distance
the rod will then slide as it coasts to a stop.

16. Very large magnetic fields can be produced using a proce-
dure called flux compression. A metallic cylindrical tube of
radius R is placed coaxially in a long solenoid of somewhat
larger radius. The space between the tube and the sole-
noid is filled with a highly explosive material. When the ex-
plosive is set off, it collapses the tube to a cylinder of radius
r � R . If the collapse happens very rapidly, induced cur-
rent in the tube maintains the magnetic flux nearly con-
stant inside the tube. If the initial magnetic field in the so-
lenoid is 2.50 T and R/r � 12.0, what maximum value of
magnetic field can be achieved?

17. The homopolar generator, also called the Faraday disk, is a
low-voltage, high-current electric generator. It consists of a
rotating conducting disk with one stationary brush (a slid-
ing electrical contact) at its axle and another at a point on
its circumference as shown in Figure P23.17. A magnetic
field is applied perpendicular to the plane of the disk.
Assume that the field is 0.900 T, the angular speed is
3 200 rev/min, and the radius of the disk is 0.400 m. Find
the emf generated between the brushes. When supercon-
ducting coils are used to produce a large magnetic field, a
homopolar generator can have a power output of several
megawatts. Such a generator is useful, for example, in puri-
fying metals by electrolysis. If a voltage is applied to the
output terminals of the generator, it runs in reverse as a
homopolar motor capable of providing great torque, useful in
ship propulsion.
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19. A helicopter (Fig. P23.19) has blades of length 3.00 m, ex-
tending out from a central hub and rotating at 2.00 rev/s.

FIGURE P23.19



If the vertical component of the Earth’s magnetic field is
50.0 �T, what is the emf induced between the blade tip
and the center hub?

20. Use Lenz’s law to answer the following questions concerning
the direction of induced currents. (a) What is the direction
of the induced current in resistor R in Figure P23.20a when
the bar magnet is moved to the left? (b) What is the direc-
tion of the current induced in the resistor R immediately af-
ter the switch S in Figure P23.20b is closed? (c) What is the
direction of the induced current in R when the current I in
Figure P23.20c decreases rapidly to zero? (d) A copper bar
is moved to the right while its axis is maintained in a direc-
tion perpendicular to a magnetic field as shown in Figure
P31.28d. If the top of the bar becomes positive relative to
the bottom, what is the direction of the magnetic field?
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A conducting rectangular loop of mass
M, resistance R , and dimensions w by � falls from rest into
a magnetic field as shown in Figure P23.21. During the
time interval before the top edge of the loop reaches the
field, the loop approaches a terminal speed vT. (a) Show
that

(b) Why is vT proportional to R? (c) Why is it inversely
proportional to B2?

22. A rectangular coil with resistance R has N turns, each of
length � and width w as shown in Figure P23.22. The coil
moves into a uniform magnetic field with constant veloc-
ity . What are the magnitude and direction of the total
magnetic force on the coil (a) as it enters the magnetic
field, (b) as it moves within the field, and (c) as it leaves
the field?
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A coil of area 0.100 m2 is rotating at
60.0 rev/s with the axis of rotation perpendicular to a
0.200-T magnetic field. (a) If the coil has 1 000 turns, what
is the maximum emf generated in it? (b) What is the orien-
tation of the coil with respect to the magnetic field when
the maximum induced voltage occurs?

24. A long solenoid, with its axis along the x axis, consists of
200 turns per meter of wire that carries a steady current of
15.0 A. A coil is formed by wrapping 30 turns of thin wire
around a circular frame that has a radius of 8.00 cm. The
coil is placed inside the solenoid and mounted on an axis
that is a diameter of the coil and that coincides with the
y axis. The coil is then rotated with an angular speed of
4.00� rad/s. (The plane of the coil is in the yz plane at
t � 0.) Determine the emf generated in the coil as a func-
tion of time.

Section 23.4 ■ Induced emfs and Electric Fields
A magnetic field directed into the page changes with time
according to B � (0.030 0t2 � 1.40) T, where t is in sec-
onds. The field has a circular cross-section of radius
R � 2.50 cm (Fig. P23.25). What are the magnitude and di-
rection of the electric field at point P1 when t � 3.00 s and
r1 � 0.020 0 m?

26. For the situation shown in Figure P23.25, the magnetic
field changes with time according to the expression
B � (2.00t3 � 4.00t2 � 0.800) T and r2 � 2R � 5.00 cm.
(a) Calculate the magnitude and direction of the force

25.

23.



exerted on an electron located at point P2 when t � 2.00 s.
(b) At what time is this force equal to zero?

(An exact expression of the inductance of a toroid with a
rectangular cross-section is derived in Problem 23.60.)

Section 23.6 ■ RL Circuits
A 12.0-V battery is connected into a series circuit contain-
ing a 10.0-� resistor and a 2.00-H inductor. In what time
interval will the current reach (a) 50.0% and (b) 90.0% of
its final value?

34. Show that I � Ii e�t/� is a solution of the differential
equation

where � � L/R and Ii is the current at t � 0.

35. Consider the circuit in Figure P23.35, taking � 6.00 V,
L � 8.00 mH, and R � 4.00 �. (a) What is the inductive
time constant of the circuit? (b) Calculate the current in
the circuit 250 �s after the switch is closed. (c) What is the
value of the final steady-state current? (d) How long does it
take the current to reach 80.0% of its maximum value?

�

IR � L 
dI
dt

� 0

33.

PROBLEMS ❚ 795

y g p p pp

in

×× ×× ×× ×× ×× ×× ×× ××

×× ×× ×× ×× ×× ×× ××

×× ×× ×× ×× ×× ×× ××

×× ×× ×× ×× ×× ××

×× ×× ×× ×× ××

×× ×× ×× ×× ×× ××

×× ×× ×× ×× ××

r2
P2

P1

R

r1

B

FIGURE P23.25 Problems 23.25 and 23.26.

Section 23.5 ■ Self-Inductance
27. A coil has an inductance of 3.00 mH, and the current in

it changes from 0.200 A to 1.50 A in a time interval of
0.200 s. Find the magnitude of the average induced emf in
the coil during this time interval.

28. A coiled telephone cord forms a spiral with 70 turns, a di-
ameter of 1.30 cm, and an unstretched length of 60.0 cm.
Determine the self-inductance of one conductor in the un-
stretched cord.

A 10.0-mH inductor carries a current
I � Imax sin 
t, with Imax � 5.00 A and 
/2� � 60.0 Hz.
What is the self-induced emf as a function of time?

30. An emf of 24.0 mV is induced in a 500-turn coil at an in-
stant when the current is 4.00 A and is changing at the rate
of 10.0 A/s. What is the magnetic flux through each turn
of the coil?

31. The current in a 90.0-mH inductor changes with time as
I � 1.00t2 � 6.00t (in SI units). Find the magnitude of the
induced emf at (a) t � 1.00 s and (b) t � 4.00 s. (c) At
what time is the emf zero?

32. A toroid has a major radius R and a minor radius r, and is
tightly wound with N turns of wire as shown in Figure
P23.32. If R 		 r, the magnetic field in the region enclosed
by the wire of the torus, of cross-sectional area A � �r2, is
essentially the same as the magnetic field of a solenoid that
has been bent into a large circle of radius R. Modeling the
field as the uniform field of a long solenoid, show that the
self-inductance of such a toroid is approximately

L �
� 0N 2A

2�R

29.
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36. For the RL circuit shown in Figure P23.35, let the induc-
tance be 3.00 H, the resistance 8.00 �, and the battery emf
36.0 V. (a) Calculate the ratio of the potential difference
across the resistor to the voltage across the inductor when
the current is 2.00 A. (b) Calculate the voltage across the
inductor when the current is 4.50 A.

37. A circuit consists of a coil, a switch, and a battery, all in se-
ries. The internal resistance of the battery is negligible
compared with that of the coil. The switch is originally
open. It is thrown closed, and after a time interval �t, the
current in the circuit reaches 80.0% of its final value. The
switch remains closed for a time interval much longer
than �t. Then the battery is disconnected and the termi-
nals of the coil are connected together to form a short
circuit. (a) After an equal additional time interval �t
elapses, the current is what percentage of its maximum
value? (b) At the moment 2�t after the coil is short-
circuited, the current in the coil is what percentage of its
maximum value?

38. When the switch in Figure P23.35 is closed, the current
takes 3.00 ms to reach 98.0% of its final value. If R � 10.0 �,
what is the inductance?

39. The switch in Figure P23.39 is open for t � 0 and then
closed at time t � 0. Find the current in the inductor and
the current in the switch as functions of time thereafter.



40. One application of an RL circuit is the generation of time-
varying high voltage from a low-voltage source as shown in
Figure P23.40. (a) What is the current in the circuit a long
time after the switch has been in position a? (b) Now the
switch is thrown quickly from a to b. Compute the initial
voltage across each resistor and across the inductor.
(c) How much time elapses before the voltage across the
inductor drops to 12.0 V?

An air-core solenoid with 68 turns is 8.00 cm long and has
a diameter of 1.20 cm. How much energy is stored in its
magnetic field when it carries a current of 0.770 A?

44. An RL circuit in which the inductance is 4.00 H and the re-
sistance is 5.00 � is connected to a 22.0-V battery at t � 0.
(a) What energy is stored in the inductor when the current
is 0.500 A? (b) At what rate is energy being stored in the
inductor when I � 1.00 A? (c) What power is being deliv-
ered to the circuit by the battery when I � 0.500 A?

On a clear day at a certain location, a 100-V/m vertical
electric field exists near the Earth’s surface. At the same
place, the Earth’s magnetic field has a magnitude of 
0.500 � 10�4 T. Compute the energy densities of the two
fields.

Section 23.8 ■ Context Connection — The Repulsive
Model for Magnetic Levitation

46. The following is a crude model for levitating a commercial
transportation vehicle using Faraday’s law. Assume that
magnets are used to establish regions of horizontal mag-
netic field across the track as shown in Figure P23.46. Rec-
tangular loops of wire are mounted on the vehicle so that
the lower 20 cm of each loop passes into these regions of
magnetic field. The upper portion of each loop contains a
25-� resistor. As the leading edge of a loop passes into the
magnetic field, a current is induced in the loop as shown in
the figure. The magnetic force on this current in the bot-
tom of the loop, of length 10 cm, results in an upward force
on the vehicle. (By electronic timing, a switch is opened in
the loop before the loop’s leading edge leaves the region of
magnetic field, so a current is not induced in the opposite
direction to apply a downward force on the vehicle.) The
vehicle has a mass of 5 � 104 kg and travels at a speed of
400 km/h. If the vehicle has 100 loops carrying current at
any moment, what is the approximate magnitude of the
magnetic field required to levitate the vehicle? Assume that
the magnetic force acts over the entire 10-cm length of the
horizontal wire. Your answer should suggest that this design
is impractical for magnetic levitation.

45.

43.
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A 140-mH inductor and a 4.90-� resistor
are connected with a switch to a 6.00-V battery as shown in
Figure P23.41. (a) If the switch is thrown to the left (con-
necting the battery), how much time elapses before the
current reaches 220 mA? (b) What is the current in the in-
ductor 10.0 s after the switch is closed? (c) Now the switch
is quickly thrown from a to b. How much time elapses be-
fore the current falls to 160 mA?

41.
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Section 23.7 ■ Energy Stored in a Magnetic Field
42. The magnetic field inside a superconducting solenoid is

4.50 T. The solenoid has an inner diameter of 6.20 cm and
a length of 26.0 cm. Determine (a) the magnetic energy
density in the field and (b) the energy stored in the
magnetic field within the solenoid.
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47. The Meissner effect. Compare this problem with Problem 20.76
on the force attracting a perfect dielectric into a strong elec-
tric field. A fundamental property of a type I superconduct-
ing material is perfect diamagnetism, or demonstration of the
Meissner effect, illustrated in the photograph of the levitating
magnet on page 693 and described as follows. The supercon-
ducting material has everywhere inside it. If a sample
of the material is placed into an externally produced mag-
netic field or if it is cooled to become superconducting while
it is in a magnetic field, electric currents appear on the sur-
face of the sample. The currents have precisely the strength
and orientation required to make the total magnetic field
zero throughout the interior of the sample. The following
problem will help you understand the magnetic force that
can then act on the superconducting sample.

A vertical solenoid with a length of 120 cm and a diam-
eter of 2.50 cm consists of 1 400 turns of copper wire carry-
ing a counterclockwise current of 2.00 A as shown in Fig-
ure P23.47a. (a) Find the magnetic field in the vacuum
inside the solenoid. (b) Find the energy density of the
magnetic field. Note that the units J/m3 of energy density
are the same as the units N/m2 of pressure. (c) Now a su-
perconducting bar 2.20 cm in diameter is inserted partway
into the solenoid. Its upper end is far outside the solenoid,
where the magnetic field is negligible. The lower end of
the bar is deep inside the solenoid. Identify the direction
required for the current on the curved surface of the bar
so that the total magnetic field is zero within the bar. The
field created by the supercurrents is sketched in Figure
P23.47b, and the total field is sketched in Figure P23.47c.
(d) The field of the solenoid exerts a force on the current
in the superconductor. Identify the direction of the force
on the bar. (e) Calculate the magnitude of the force by
multiplying the energy density of the solenoid field times
the area of the bottom end of the superconducting bar.

B
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Additional Problems
48. Figure P23.48 is a graph of the induced emf versus time for

a coil of N turns rotating with angular speed 
 in a uni-
form magnetic field directed perpendicular to the axis of
rotation of the coil. Copy this sketch (on a larger scale)
and on the same set of axes show the graph of emf versus t
(a) if the number of turns in the coil is doubled, (b) if in-
stead the angular speed is doubled, and (c) if the angular
speed is doubled while the number of turns in the coil is
halved.
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49. A steel guitar string vibrates (Figure 23.6). The component
of magnetic field perpendicular to the area of a pickup
coil nearby is given by

B � 50.0 mT � (3.20 mT) sin(2� 523 t/s)

The circular pickup coil has 30 turns and radius 2.70 mm.
Find the emf induced in the coil as a function of time.

50. Strong magnetic fields are used in such medical proce-
dures as magnetic resonance imaging. A technician wear-
ing a brass bracelet enclosing area 0.005 00 m2 places her
hand in a solenoid whose magnetic field is 5.00 T directed
perpendicular to the plane of the bracelet. The electrical
resistance around the circumference of the bracelet is
0.020 0 �. An unexpected power failure causes the field to
drop to 1.50 T in a time of 20.0 ms. Find (a) the current
induced in the bracelet and (b) the power delivered to the
bracelet. (Note: As this problem implies, you should not
wear any metal objects when working in regions of strong
magnetic fields.)

51. Suppose you wrap wire onto the core from a roll of cello-
phane tape to make a coil. Describe how you can use a bar
magnet to produce an induced voltage in the coil. What is
the order of magnitude of the emf you generate? State the
quantities you take as data and their values.

52. A bar of mass m, length d, and resistance R slides without
friction in a horizontal plane, moving on parallel rails as
shown in Figure P23.52. A battery that maintains a con-
stant emf is connected between the rails, and a constant�

d B (out of page) ε

FIGURE P23.52



magnetic field is directed perpendicularly to the plane
of the page. Assuming that the bar starts from rest, show
that at time t it moves with a speed

53. Review problem. A particle with a mass of 2.00 � 10�16 kg
and a charge of 30.0 nC starts from rest, is accelerated by
a strong electric field, and is fired from a small source
inside a region of uniform constant magnetic field 0.600 T.
The velocity of the particle is perpendicular to the field.
The circular orbit of the particle encloses a magnetic flux
of 15.0 �Wb. (a) Calculate the speed of the particle. 
(b) Calculate the potential difference through which the
particle accelerated inside the source.

54. An induction furnace uses electromagnetic induction to
produce eddy currents in a conductor, thereby raising the
conductor’s temperature. Commercial units operate at fre-
quencies ranging from 60 Hz to about 1 MHz and deliver
powers from a few watts to several megawatts. Induction
heating can be used for warming a metal pan on a kitchen
stove. It can also be used for welding in a vacuum enclo-
sure so as to avoid oxidation and contamination of the
metal. At high frequencies, induced currents occur only
near the surface of the conductor—this phenomenon is
the “skin effect.” By creating an induced current for a
short time interval at an appropriately high frequency, one
can heat a sample down to a controlled depth. For exam-
ple, the surface of a farm tiller can be tempered to make it
hard and brittle for effective cutting while keeping the in-
terior metal soft and ductile to resist breakage.

To explore induction heating, consider a flat conduct-
ing disk of radius R, thickness b, and resistivity �. A sinu-
soidal magnetic field Bmax cos 
t is applied perpendicular
to the disk. Assume that the field is uniform in space and
that the frequency is so low that the skin effect is not impor-
tant. Assume that the eddy currents occur in circles concen-
tric with the disk. (a) Calculate the average power delivered
to the disk. By what factor does the power change (b) when
the amplitude of the field doubles, (c) when the frequency
doubles, and (d) when the radius of the disk doubles?

The magnetic flux through a metal ring varies with time t
according to �B � 3(at3 � bt2)T � m2, with a � 2.00 s�3

and b � 6.00 s�2. The resistance of the ring is 3.00 �.
Determine the maximum current induced in the ring dur-
ing the interval from t � 0 to t � 2.00 s.

56. Figure P23.56 shows a stationary conductor whose shape is
similar to the letter e. The radius of its circular portion is

55.

v �
�
Bd

(1 � e�B 2d2t/mR)

B
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a � 50.0 cm. It is placed in a constant magnetic field of
0.500 T directed out of the page. A straight conducting
rod, 50.0 cm long, is pivoted about point O and rotates
with a constant angular speed of 2.00 rad/s. (a) Determine
the induced emf in the loop POQ . Note that the area of
the loop is �a2/2. (b) If all the conducting material has a
resistance per length of 5.00 �/m, what is the induced cur-
rent in the loop POQ at the instant 0.250 s after point P
passes point Q ?

57. A betatron accelerates electrons to energies in the MeV
range by means of electromagnetic induction. Electrons in
a vacuum chamber are held in a circular orbit by a mag-
netic field perpendicular to the orbital plane. The mag-
netic field is gradually increased to induce an electric field
around the orbit. (a) Show that the electric field is in the
correct direction to make the electrons speed up. (b) As-
sume that the radius of the orbit remains constant. Show
that the average magnetic field over the area enclosed by
the orbit must be twice as large as the magnetic field at the
circumference of the circle.

58. To monitor the breathing of a hospital patient, a thin
belt is girded around the patient’s chest. The belt is a 
200-turn coil. When the patient inhales, the area encircled
by the coil increases by 39.0 cm2. The magnitude of the
Earth’s magnetic field is 50.0 �T and makes an angle of
28.0° with the plane of the coil. Assuming that a patient
takes 1.80 s to inhale, find the average induced emf in the
coil during this time.

A long, straight wire carries a current that is given by
I � Imax sin(
t � �). The wire lies in the plane of a rec-
tangular coil of N turns of wire as shown in Figure P23.5.
The quantities Imax, 
, and � are all constants. Determine
the emf induced in the coil by the magnetic field created
by the current in the straight wire. Assume that Imax �
50.0 A, 
 � 200� s�1, N � 100, h � w � 5.00 cm, and 
L � 20.0 cm.

60. The toroid in Figure P23.60 consists of N turns and has a
rectangular cross-section. Its inner and outer radii are a
and b, respectively. (a) Show that the inductance of the
toroid is

(b) Using this result, compute the self-inductance of a 
500-turn toroid for which a � 10.0 cm, b � 12.0 cm, and
h � 1.00 cm. (c) In Problem 23.32, an approximate expres-
sion for the inductance of a toroid with R 		 r was
derived. To get a feel for the accuracy of that result, use
the expression in Problem 23.32 to compute the approxi-
mate inductance of the toroid described in part (b). Com-
pare the result with the answer to part (b).

L �
� 0N 2h

2�
 ln 

b
a

59.
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61. (a) A flat, circular coil does not really produce a uniform
magnetic field in the area it encloses. Nonetheless, estimate
the self-inductance of a flat, compact, circular coil, with ra-
dius R and N turns, by assuming that the field at its center is
uniform over its area. (b) A circuit on a laboratory table
consists of a 1.5-volt battery, a 270-� resistor, a switch, and
three 30-cm-long patch cords connecting them. Suppose
the circuit is arranged to be circular. Think of it as a flat
coil with one turn. Compute the order of magnitude of its
self-inductance and (c) of the time constant describing
how fast the current increases when you close the switch.

62. To prevent damage from arcing in an electric motor, a dis-
charge resistor is sometimes placed in parallel with the ar-
mature. If the motor is suddenly unplugged while running,
this resistor limits the voltage that appears across the arma-
ture coils. Consider a 12.0-V DC motor with an armature that
has a resistance of 7.50 � and an inductance of 450 mH.
Assume that the magnitude of the self-induced emf in the
armature coils is 10.0 V when the motor is running at nor-
mal speed. (The equivalent circuit for the armature is
shown in Fig. P23.62.) Calculate the maximum resistance
R that limits the voltage across the armature to 80.0 V
when the motor is unplugged.

63. The resistance of a superconductor. In an experiment carried
out by S. C. Collins between 1955 and 1958, a current
was maintained in a superconducting lead ring for 
2.50 yr with no observed loss. If the inductance of the
ring was 3.14 � 10�8 H and the sensitivity of the experi-
ment was 1 part in 109, what was the maximum resistance
of the ring? (Suggestion: Treat this problem as a decaying
current in an RL circuit and recall that e�x � 1 � x for
small x.)

64. A novel method of storing energy has been proposed. A
huge underground superconducting coil, 1.00 km in diam-
eter, would be fabricated. It would carry a maximum cur-
rent of 50.0 kA through each winding of a 150-turn Nb3Sn
solenoid. (a) If the inductance of this huge coil were 
50.0 H, what would be the total energy stored? (b) What
would be the compressive force per meter length acting
between two adjacent windings 0.250 m apart?

65. Superconducting power transmission. The use of superconduc-
tors has been proposed for power transmission lines. A sin-
gle coaxial cable (Fig. P23.65) could carry 1.00 � 103 MW
(the output of a large power plant) at 200 kV, DC, over a
distance of 1 000 km without loss. An inner wire of
radius 2.00 cm, made from the superconductor Nb3Sn,
carries the current I in one direction. A surrounding su-
perconducting cylinder, of radius 5.00 cm, would carry
the return current I. In such a system, what is the
magnetic field (a) at the surface of the inner conductor
and (b) at the inner surface of the outer conductor? 
(c) How much energy would be stored in the space be-
tween the conductors in a 1 000-km superconducting
line? (d) What is the pressure exerted on the outer
conductor?
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Review problems. Problems 23.63 through 23.65 apply
ideas from this chapter and earlier chapters to some
properties of superconductors, which were introduced in
Section 21.3.

I

a = 2.00 cm

b = 5.00 cm
a

I

b

FIGURE P23.65

23.1 (c). In all cases except this one, there is a change in the
magnetic flux through the loop.

23.2 c, d � e, b, a. The magnitude of the emf is proportional
to the rate of change of the magnetic flux. For the situa-
tion described, the rate of change of magnetic flux is pro-
portional to the rate of change of the magnetic field. This
rate of change is the slope of the graph in Figure 23.7.
The magnitude of the slope is largest at c. Points d and e
are on a straight line, so the slope is the same at each
point. Point b represents a point of relatively small slope,

and a is at a point of zero slope because the curve is hori-
zontal at that point.

23.3 (b). According to Equation 23.5, because B and v are
fixed, the emf depends only on the length of the wire
moving in the magnetic field. Thus, you want the long di-
mension moving through the magnetic field lines so that
it is perpendicular to the velocity vector. In this case, the
short dimension is parallel to the velocity vector.

23.4 (c). The force on the wire is of magnitude Fapp � FB � I�B,
with I given by Equation 23.6. Thus, the force is propor-
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tional to the speed and the force doubles. Because 
� � Fappv, the doubling of the force and the speed re-
sults in the power being four times as large.

23.5 (b). When the aluminum sheet moves between the
poles of the magnet, circular currents called eddy cur-
rents are established in the aluminum. According to
Lenz’s law, these currents are in a direction so as to
oppose the original change, which is the movement of
the aluminum sheet in the magnetic field. Thus, the
effect of the eddy currents is create a force opposite to
the velocity. This magnetic braking causes the oscilla-
tions of the equal arm balance to settle down, and a
reading of the mass can take place. Magnetic damping
has an advantage over frictional damping in that the
magnetic damping force goes exactly to zero as the
speed goes to zero. On the other hand, if mechanical
friction were used to damp the oscillation of the bal-
ance beam, the speed might go to zero at a final posi-
tion other than zero.

23.6 (d). The constant rate of change of B will result in a con-
stant rate of change of the magnetic flux. According to
Equation 23.9, if d�B/dt is constant, is constant in
magnitude.

E
:

23.7 (b). When the iron rod is inserted into the solenoid, the
inductance of the coil increases. As a result, more poten-
tial difference appears across the coil than before. Con-
sequently, less potential difference appears across the
lightbulb, so the bulb is dimmer.

23.8 (b). Figure 23.29 shows that circuit B has the larger time
constant because in this circuit it takes longer for the
current to reach its maximum value and then longer for
this current to drop back down to zero after the switch
is thrown to b. Equation 23.15 indicates that, for equal re-
sistances RA and RB , the condition �B 	 �A means that 
LA � LB .

23.9 (a), (d). Because the energy density depends on the
magnitude of the magnetic field, we must increase the
magnetic field to increase the energy density. For a
solenoid, B � �0nI, where n is the number of turns per
unit length. In (a), we increase n to increase the mag-
netic field. In (b), the change in cross-sectional area has
no effect on the magnetic field. In (c), increasing the
length but keeping n fixed has no effect on the magnetic
field. Increasing the current in (d) increases the mag-
netic field in the solenoid.
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Lifting, Propelling, and Braking 
the Vehicle
Now that we have investigated the principles of electromagnetism, let us respond to
our central question for the Magnetic Levitation Vehicles Context:

How can we lift, propel, and brake a vehicle with magnetic forces?

We have addressed two mechanisms for lifting the vehicle, one in each of the
preceding chapters. Once the vehicle is suspended above the track, we must con-
trol its speed with propulsion and braking. We shall discuss these processes in this
Context Conclusion.

Magnetic Propulsion
If you have a toy car made of iron, you can imagine how to propel the car with a
magnet. You hold the magnet near the front of the car so that it exerts an attractive
force on the car, causing it to accelerate from rest. As the car moves, you move the
magnet in the same direction, not allowing the magnet and the car to touch. In
essence, the car “chases” the moving magnet due to the attractive force.

You could increase the propelling force on the car by mounting a bar magnet
on it, with the north pole near the front of the car and the south pole near the
back. Now, you use two other bar magnets, one with its south pole in front of the
car and another with its south pole near the back of the car. The magnet on the car
is attracted to the front magnet and repelled by the rear magnet. In this manner,
the car experiences a strong
propelling force.

Such is the fundamental
idea behind magnetic propul-
sion. Electromagnets are
mounted on the magnetic
levitation vehicle, and a series
of propulsion coils are placed
along the side of the track as
shown in Figure 1. The polar-
ity of the magnets on the ve-
hicle remains constant. An
electrical signal is passed
through the coils such that
each magnet on the vehicle
“sees” a coil with opposite po-
larity ahead of it and a coil
with the same polarity behind
it. As a result, the vehicle ex-
periences an attractive force
from the coil ahead of it and
a repulsive force from the
coil behind it, both forces
pushing the vehicle in the
forward direction. Figure 1

C O N T E X T CONCLUSION7

re
pe

l

N

S

N

S

N

S

S

N

S

N

attract

at
tr

ac
t

attract

at
tr

ac
t

attract

at
tr

ac
t

attract

at
tr

ac
t

attract
at

tr
ac

t

attract

at
tr

ac
t repel

re
pe

l

repel

re
pe

l

repel

re
pe

l

repel
re

pe
l

repel

SSS NN N

N SSS NN

Alternating
current

Alternating
current

Propulsion
coils

Magnetic propulsion. Magnets on the vehicle are attracted and repelled by electromagnetic
poles created by a sinusoidal current passed through coils on the side of the track. As the
wave of current moves along the track, the vehicle moves with it.

FIGURE 1



shows this situation at a single instant of time. As the sinusoidal wave in Figure 1
moves along the track, the vehicle “chases” it due to the magnetic forces.

Magnetic Braking
Electromagnetic transportation has the added benefit of a built-in braking mecha-
nism. Lenz’s law tells us that a magnetic change induces a current that acts to op-
pose the original change, which represents a natural braking mechanism. For ex-
ample, if an aluminum plate is dropped between the poles of a very strong magnet,
the plate drops slowly because currents established in the plate experience a mag-
netic force that opposes the fall.

In the case of magnetic levitation vehicles, imagine that the propulsion system is
deactivated so that the vehicle begins to coast. The relative motion of magnets and
coils in the train and track induces currents that slow the train down, according to
Lenz’s law. The propulsion system can be used in combination with this magnetic
braking for complete control over the stopping process.

This principle is not new. Railroads operating in the Alps at the beginning of
the 20th century included mechanisms for connecting the electric drive motor to a
resistance when the train moved downhill. As the motion of the train causes the
motor to turn, the motor acts as a generator. The generator produces a current in
the resistance, resulting in a back emf. Because this back emf opposes the original
change (the rotation of the motor), it controls the motion of the train down the
hill. This same principle is now used in hybrid vehicles (see Context 1) so that the
braking process feeds energy back to the battery.

A Third Levitation Model: the Inductrack
In Chapters 22 and 23, we discussed models for magnetic levitation that are under
study in Germany and Japan, both of which require strong electromagnets. At
Lawrence Livermore Laboratory in California, scientists are working on a magnetic
levitation scheme that involves permanent magnets. The scheme is called the Induc-
track. One attractive feature of this approach is that no energy is required to power
the magnets, resulting in savings for energy costs to operate the system.

The Inductrack system uses a Halbach array of magnets. Figure 2 shows a one-
dimensional Halbach array. Underneath the array, the magnetic field lines of adjacent
magnets with poles oriented vertically combine with those with poles oriented hori-
zontally to create a very strong magnetic field. Above the array, the magnetic field
lines of vertically oriented magnets are in the opposite direction from those created
by the horizontally oriented magnets, resulting in a weak field in this region.

The Halbach array, at-
tached to the underside of the
vehicle, passes over a series of
coils of wire and induces cur-
rents in these coils. By Fara-
day’s law, similar to the situa-
tion in the electrodynamic
model of Section 23.8, the
magnetic field resulting from
the current in the coils exerts a
repulsive force on the magnets,
creating a levitation force on
the vehicle. A levitation force
of 40 metric tons per square
meter can be achieved using
high-field alloy magnets. A
working model of the Induc-
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track system successfully propelled and levitated a 22-kg vehicle over a 20-m test
track. Using federal funding, General Atomics in San Diego is developing the In-
ductrack technology as it moves toward commercial applications. Experiments with
full-scale test vehicles are currently in progress on a 120-m test track (Fig. 3a), in
preparation for development of a full- scale vehicle (Fig. 3b).

What does the future of magnetic levitation transportation hold? Will the Induc-
track become the system of choice, or will it be the Japanese or German system? Or
will all three coexist? At this point, it is impossible to predict, and we invite you to
watch the newspapers for further developments!

Problems
1. Assume that the vehicle shown in Figure 1 is moving at

400 km/h. The distance between adjacent magnets on the
vehicle is 10.0 m. What is the frequency of the alternating
current in the coils on the side of the track required to
propel the vehicle?

2. Figure 4 represents an electromagnetic brake that uses eddy
currents. An electromagnet hangs from a railroad car near
one rail. To stop the car, a large current is sent through the
coils of the electromagnet. The moving electromagnet
induces eddy currents in the rails, whose fields oppose the
change in the field of the electromagnet. The magnetic
fields of the eddy currents exert force on the current in the
electromagnet, thereby slowing the car. The direction of
the car’s motion and the direction of the current in the
electromagnet are shown correctly in the picture.
Determine which of the eddy currents shown on the rails is
correct. Explain your answer.

LIFTING, PROPELLING, AND BRAKING THE VEHICLE ❚ 803
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(a) General Atomics has built a full-scale Inductrack test vehicle, shown here on the test
track in San Diego, California. (b) A drawing of the front end and magnetic compo-
nents of a maglev vehicle using the Inductrack approach.
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Lasers
The invention of the laser was popu-
larly credited to Arthur L. Schawlow
and Charles H. Townes for many years
after their publication of a proposal for
the laser in a 1958 issue of Physical Re-
view. Schawlow and Townes received a
patent for the device in 1959. In 1960,
the first laser was built and operated by
Theodore Maiman. This device used a
ruby crystal to create the laser light,
which was emitted in pulses from the
end of a ruby cylinder. A flash lamp was
used to excite the laser action.

In 1977, the first victory in a 30-year-
long legal battle was completed in
which Gordon Gould, who was a gradu-
ate student at Columbia University in
the late 1950s, received a patent for
inventing the laser in 1957 as well as
coining the term. Believing erroneously

that he had to have a working proto-
type before he could file for a patent,
he did not file until later in 1959 than
had Schawlow and Townes. Gould’s le-
gal battles ended in 1987. By this time,
Gould’s technology was being widely
used in industry and medicine. His vic-
tory finally resulted in his control of
patent rights to perhaps 90% of the
lasers used and sold in the United
States.

Since the development of the first
device, laser technology has experi-
enced tremendous growth. Lasers that
cover wavelengths in the infrared, visi-
ble, and ultraviolet regions are now
available. Various types of lasers use
solids, liquids, and gases as the active
medium. Although the original laser
emitted light over a very narrow range
around a fixed wavelength, tunable
lasers are now available, in which the
wavelength can be varied.

The laser is an omnipresent techno-
logical tool in our daily life. Applica-
tions include surgical “welding” of de-
tached retinas, precision surveying and
length measurement, a potential
source for inducing nuclear fusion re-
actions, precision cutting of metals and
other materials, and telephone com-
munication along optical fibers.

A laser is used on a human eye to perform a surgical
procedure. The word laser is an acronym meaning light ampli-
fication by stimulated emission of radiation.
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Photograph of an early ruby laser,
showing the flash lamp (glass
helix) surrounding the ruby rod
(red cylinder).
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We also use lasers to read informa-
tion from compact discs for use in au-
dio entertainment and computer appli-
cations. Digital videodiscs use lasers to
read video information. Lasers are used
in retail stores to read price and inven-
tory information from product labels.
In the laboratory, lasers can be used
to trap atoms and cool them to

millikelvins above absolute
zero and to move microscopic
biological organisms around
harmlessly.

These and other applica-
tions are possible because of
the unique characteristics of
laser light. In addition to its
being almost monochromatic,
laser light is also highly direc-
tional and can therefore be
sharply focused to produce
regions of extreme intensity.

In this Context, we shall in-
vestigate the physics of electro-
magnetic radiation and optics
and apply the principles to an
understanding of the behavior
of laser light and its applica-
tions. A major focus of our

The original ruby laser emitted red light, as
did many lasers developed soon afterward.
Today, lasers are available in a variety of colors
and various regions of the electromagnetic
spectrum. In this photograph, a green laser is
used to perform scientific research.
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This robotic device, one of the
many technological uses of lasers
in our society, carries laser scis-
sors, which can cut up to 
50 layers of fabric at a time.
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A supermarket scanner uses light from a laser
to identify products being purchased. The
reflections from the bar code on the package
are read and entered into the computer to
determine the price of the item.
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study will be on the technology of opti-
cal fibers and how they are used in in-
dustry and medicine. We shall study the
nature of light as we respond to our
central question:

What is special about laser light, and how is it used in technological
applications?

CONTEXT 8 LASERS ❚ 805



Although we are not always aware of their presence, elec-
tromagnetic waves permeate our environment. In the
form of visible light, they enable us to view the world

around us with our eyes. Infrared waves from the surface of the
Earth warm our environment, radio-frequency waves carry our
favorite radio entertainment, microwaves cook our food and are
used in radar communication systems, and the list goes on and
on. The waves described in Chapter 13 are mechanical waves,
which require a medium through which to propagate. Electro-
magnetic waves, in contrast, can propagate through a vacuum.
Despite this difference between mechanical and electromagnetic
waves, much of the behavior in the wave models of Chapters 13
and 14 is similar for electromagnetic waves.

The purpose of this chapter is to explore the properties
of electromagnetic waves. The fundamental laws of electricity
and magnetism—Maxwell’s equations—form the basis of all

Electromagnetic Waves

C H A P T E R 24

Electromagnetic waves cover a broad
spectrum of wavelengths, with
waves in various wavelength ranges
having distinct properties. These
photos of the Crab Nebula show dif-
ferent structure for observations
made with waves of various wave-
lengths. The photos (clockwise start-
ing from the upper left) were taken
with x-rays, unpolarized visible light,
radio waves, and visible light passing
through a polarizing filter.
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electromagnetic phenomena. One of these equations predicts that a time-varying
electric field produces a magnetic field just as a time-varying magnetic field pro-
duces an electric field. From this generalization, Maxwell provided the final impor-
tant link between electric and magnetic fields. The most dramatic prediction of his
equations is the existence of electromagnetic waves that propagate through empty
space with the speed of light. This discovery led to many practical applications,
such as radio and television, and to the realization that light is one form of electro-
magnetic radiation.

DISPLACEMENT  CURRENT  AND  THE  GENERALIZED
AMPÈRE’S  LAW

We have seen that charges in motion, or currents, produce magnetic fields. When a
current-carrying conductor has high symmetry, we can calculate the magnetic field
using Ampère’s law, given by Equation 22.29:

where the line integral is over any closed path through which the conduction cur-
rent passes and the conduction current is defined by I � dq/dt.

In this section, we shall use the term conduction current to refer to the type of cur-
rent that we have already discussed, that is, current carried by charged particles in a
wire. We use this term to differentiate this current from a different type of current
we will introduce shortly. Ampère’s law in this form is valid only if the conduction
current is continuous in space. Maxwell recognized this limitation and modified
Ampère’s law to include all possible situations.

This limitation can be understood by considering a capacitor being charged as
in Figure 24.1. When conduction current exists in the wires, the charge on the
plates changes, but no conduction current exists between the plates. Consider the
two surfaces S1 (a circle, shown in blue) and S2 (a paraboloid, in orange, passing
between the plates) in Figure 24.1 bounded by the same path P. Ampère’s law says
that the line integral of around this path must equal �0I, where I is the con-
duction current through any surface bounded by the path P.

When the path P is considered as bounding S1, the right-hand side of Equation
22.29 is �0I because the conduction current passes through S1 while the capacitor
is charging. When the path bounds S2, however, the right-hand side of Equation
22.29 is zero because no conduction current passes through S2. Therefore, a con-
tradictory situation arises because of the discontinuity of the current! Maxwell
solved this problem by postulating an additional term on the right side of Equation
22.29, called the displacement current Id , defined as

[24.1]

Recall that �E is the flux of the electric field, defined as (Eq. 19.20).
(The word displacement here does not have the same meaning as in Chapter 2; it
is historically entrenched in the language of physics, however, so we continue to
use it.)

Equation 24.1 is interpreted as follows. As the capacitor is being charged (or dis-
charged), the changing electric field between the plates may be considered as
equivalent to a current between the plates that acts as a continuation of the conduc-
tion current in the wire. When the expression for the displacement current given
by Equation 24.1 is added to the conduction current on the right side of Ampère’s
law, the difficulty represented in Figure 24.1 is resolved. No matter what surface

�E  � � E
:

� dA
:

Id �  �0 
d�E

dt

B
:

� d s:

� B
:

� d s: �  �0I
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Two surfaces S1

and S2 near the plate of a capacitor
are bounded by the same path P. The
conduction current in the wire passes
only through S1, which leads to a con-
tradiction in Ampère’s law that is re-
solved only if one postulates a dis-
placement current through S2.

FIGURE 24.1
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bounded by the path P is chosen, either conduction current or displacement
current passes through it. With this new notion of displacement current, we can
express the general form of Ampère’s law (sometimes called the Ampère–Maxwell
law) as1 

[24.2]

The meaning of this expression can be understood by referring to Figure 24.2.
The electric flux through S2 (a circle, shown in gray, between the plates) is

, where A is the area of the capacitor plates and E is the magni-
tude of the uniform electric field between the plates. If q is the charge on the plates
at any instant, E � q/�0A (Section 20.7). Therefore, the electric flux through S2 is
simply

Hence, the displacement current Id through S2 is

[24.3]

That is, the displacement current through S2 is precisely equal to the conduction
current I through S1! The central point of this formalism is that magnetic fields are
produced both by conduction currents and by changing electric fields. This result is
a remarkable example of theoretical work by Maxwell and of his major contribu-
tions in advancing the understanding of electromagnetism.

Id �  �0 
d�E

dt
�

dq
dt

�E � EA �
q
�0

�E �  � E
:

� d A
:

 �  EA

� B
:

� d s: � �0(I � Id) � �0I � �0�0 
d�E

dt
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� Ampère – Maxwell law

1Strictly speaking, this expression is valid only in a vacuum. If a magnetic material is present, a magnetizing
current must also be included on the right side of Equation 24.2 to make Ampère’s law fully general.

In an RC circuit, the capacitor begins to discharge. (i) During the
discharge, in the region of space between the plates of the capacitor, is there (a) conduc-
tion current but no displacement current, (b) displacement current but no conduction
current, (c) both conduction and displacement current, or (d) no current of any type? 
(ii) During the discharge, in the region of space between the plates of the capacitor, is
there (a) an electric field but no magnetic field, (b) a magnetic field but no electric field,
(c) both electric and magnetic fields, or (d) no fields of any type?

QUICK QUIZ 24.1

E–q

S2
S1

q

II

Because it exists only in the wires
attached to the capacitor plates, the conduction
current I � dq/dt passes through the curved surface
S1 but not the flat surface S2. Only the displace-
ment current Id � �0d�E/dt passes through S2. The
two currents must be equal for continuity.

FIGURE 24.2

MAXWELL’S  EQUATIONS
In this section, we gather together four equations from our studies in recent chap-
ters that as a group can be regarded as the theoretical basis of all electric and mag-
netic fields. These relationships, known as Maxwell’s equations after James Clerk
Maxwell, are as fundamental to electromagnetic phenomena as Newton’s laws are

24.2

James Clerk Maxwell
(1831 – 1879)

Scottish theoretical physicist
Maxwell developed the electromag-
netic theory of light and the kinetic
theory of gases, and he explained
the nature of color vision and of 
Saturn’s rings. His successful inter-
pretation of electromagnetic fields
produced the field equations that
bear his name. Formidable mathe-
matical ability combined with great
insight enabled Maxwell to lead the
way in the study of electromagnet-
ism and kinetic theory. He died of
cancer before he was 50.
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to mechanical phenomena. In fact, the theory developed by Maxwell was more far
reaching than even he imagined because it was shown by Albert Einstein in 1905 to
be in agreement with the special theory of relativity. As we shall see, Maxwell’s equa-
tions represent laws of electricity and magnetism that have already been discussed.
The equations have additional important consequences, however, in that they pre-
dict the existence of electromagnetic waves (traveling patterns of electric and mag-
netic fields) that travel in vacuum with a speed of ,
the speed of light. Furthermore, Maxwell’s equations show that electromagnetic
waves are radiated by accelerating charges, as we discussed in Chapter 17 with re-
gard to thermal radiation.

For simplicity, we present Maxwell’s equations as applied to free space, that is, in
the absence of any dielectric or magnetic material. The four equations are

[24.4]

[24.5]

[24.6]

[24.7]

Equation 24.4 is Gauss’s law, which states that the total electric flux through any
closed surface equals the net charge inside that surface divided by 0 (Section 19.9).
This law describes how charges create electric fields.

Equation 24.5, which can be considered Gauss’s law for magnetism, says that
the net magnetic flux through a closed surface is zero. That is, the number of mag-
netic field lines entering a closed volume must equal the number leaving that vol-
ume. This law implies that magnetic field lines cannot begin or end at any point. If
they did, it would mean that isolated magnetic monopoles existed at those points.
That isolated magnetic monopoles have not been observed in nature can be taken
as a basis of Equation 24.5.

Equation 24.6 is Faraday’s law of induction (Eq. 23.9), which describes how a
changing magnetic field creates an electric field. This law states that the line inte-
gral of the electric field around any closed path (which equals the emf) equals the
rate of change of magnetic flux through any surface area bounded by that path.

Equation 24.7 is the generalized form of Ampère’s law. It describes how both an
electric current and a changing electric field create a magnetic field. That is, the
line integral of the magnetic field around any closed path is determined by the net
current and the rate of change of electric flux through any surface bounded by that
path.

Once the electric and magnetic fields are known at some point in space, the
force those fields exert on a particle of charge q can be calculated from the
expression

[24.8]

which is called the Lorentz force (Section 22.4). Maxwell’s equations and this force
law give a complete description of all classical electromagnetic interactions.

Note the interesting symmetry of Maxwell’s equations. In a region of space free
of charges, so that q � 0, Equations 24.4 and 24.5 are symmetric in that the surface

F
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c � 1/√�0�0 � 3.00 � 108
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integral of or over a closed surface equals zero. Furthermore, in a region free
of conduction currents so that I � 0, Equations 24.6 and 24.7 are symmetric in that
the line integrals of and around a closed path are related to the rate of change
of magnetic flux and electric flux, respectively.

ELECTROMAGNETIC  WAVES
In his unified theory of electromagnetism, Maxwell showed that time-dependent
electric and magnetic fields satisfy a linear wave equation. (The linear wave equa-
tion for mechanical waves is Equation 13.19.) The most significant outcome of this
theory is the prediction of the existence of electromagnetic waves.

Maxwell’s equations predict that an electromagnetic wave consists of oscillating
electric and magnetic fields. The changing fields induce each other, which main-
tains the propagation of the wave; a changing electric field induces a magnetic
field, and a changing magnetic field induces an electric field. The and vectors
are perpendicular to each other, and to the direction of propagation, as shown in
Active Figure 24.3a at one instant of time and one point in space. The direction of
propagation is the direction of the vector product , which we shall explore
more fully in Section 24.5. Active Figure 24.3b shows how the electric and magnetic
fields vary in phase sinusoidally along the x axis in the simplest type of electromag-
netic wave. We will discuss this sinusoidal behavior shortly. As time progresses, imag-
ine the construction in Active Figure 24.3b moving to the right along the x axis.
That is what happens in an electromagnetic wave, with the movement taking place
at the speed of light c.

To understand the prediction of electromagnetic waves, let us focus our atten-
tion on an electromagnetic wave traveling in the x direction. For this wave, the
electric field is in the y direction and the magnetic field is in the z direction as
in Active Figure 24.3. Waves in which the electric and magnetic fields are restricted
to being parallel to certain directions are said to be linearly polarized waves.
Furthermore, let us assume that at any point in space in Active Figure 24.3, the
magnitudes E and B of the fields depend on x and t only, not on the y or z
coordinates.

Let us also imagine that the source of the electromagnetic waves is such that a
wave radiated from any position in the yz plane (not just from the origin as might
be suggested by Active Fig. 24.3) propagates in the x direction and that all such
waves are emitted in phase. If we define a ray as the line along which a wave travels,
all rays for these waves are parallel. This whole collection of waves is often called
a plane wave. A surface connecting points of equal phase on all waves, which
we call a wave front, is a geometric plane. In comparison, a point source of
radiation sends waves out in all directions. A surface connecting points of equal
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(a) The fields in an electromagnetic
wave traveling at velocity in the positive x direction at one
point on the x axis. These fields depend only on x and t. 
(b) Representation of a sinusoidal electromagnetic wave moving
in the positive x direction with a speed c.

Log into PhysicsNow at www.pop4e.com
and go to Active Figure 24.3 to observe the wave in part (b). In
addition, you can take a “snapshot” of the wave at an instant of
time and investigate the electric and magnetic fields at that instant.

c:
ACTIVE FIGURE 24.3

WHAT IS “A” WAVE? A sticky point in
these types of discussions is what we
mean by a single wave. We could de-
fine one wave as that which is emit-
ted by a single charged particle. In
practice, however, the word wave
represents both the emission from a
single point (“wave radiated from any
position in the yz plane”) and the
collection of waves from all points
on the source (“plane wave”). You
should be able to use this term in
both ways and to understand its
meaning from the context.

� PITFALL PREVENTION 24.1

www.pop4e.com


phase for this situation is a sphere, so we call the radiation from a point source a
spherical wave.

To generate the prediction of electromagnetic waves, we start with Faraday’s law,
Equation 24.6:

Let us assume that a plane electromagnetic wave is traveling in the x direction, with
the electric field in the positive y direction and the magnetic field B in the posi-
tive z direction.

Consider a rectangle of width dx and height � lying in thexy plane as in Figure 24.4.
To apply Equation 24.6, we first evaluate the line integral of around this
rectangle. The contributions from the top and bottom of the rectangle are zero
because is perpendicular to ds for these paths. We can express the electric field
on the right side of the rectangle as2

whereas the field on the left side of the rectangle is simply E(x, t). The line integral
over this rectangle is therefore approximately

[24.9]

Because the magnetic field is in the z direction, the magnetic flux through the rec-
tangle of area � dx is approximately �B � B� dx. (This expression assumes that dx is
very small compared with the wavelength of the wave so that B is uniform over the
width dx.) Taking the time derivative of the magnetic flux at the location of the rec-
tangle on the x axis gives

[24.10]

Substituting Equations 24.9 and 24.10 into Equation 24.6 gives

[24.11]

We can derive a second equation by starting with Maxwell’s fourth equation in
empty space (Eq. 24.7). In this case, we evaluate the line integral of around a
rectangle lying in the xz plane and having width dx and length � as in Figure 24.5.
Using the sense of the integration shown and noting that the magnetic field
changes from B(x, t) to B(x � dx, t) over the width dx, we find that

[24.12]

The electric flux through the rectangle is �E � E� dx, which when differentiated
with respect to time gives

[24.13]
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2Because dE/dx in this equation is expressed as the change in E with x at a given instant t, dE/dx is
equivalent to the partial derivative . Likewise, we will shortly require dB/dt, which means the
change in B with time at a particular position x, and so we can replace dB/dt by .	B/	t
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As a plane wave
moving in the � x direction passes
through a rectangular path of width
dx lying in the xy plane, the electric
field in the y direction varies from 
to . This construction allows
us to evaluate the line integral of 
over the perimeter of the rectangle.
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As a plane wave
moving in the �x direction passes
through a rectangular path of width
dx lying in the xz plane, the magnetic
field in the z direction varies from 
to . This construction allows
us to evaluate the line integral of 
over the perimeter of the rectangle.
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Substituting Equations 24.12 and 24.13 into Equation 24.7 gives

[24.14]

Taking the derivative of Equation 24.11 with respect to x and combining it with
Equation 24.14 gives

[24.15]

In the same manner, taking a derivative of Equation 24.14 with respect to x and
combining it with Equation 24.11, we find that

[24.16]

Equations 24.15 and 24.16 both have the form of a linear wave equation (Eq.
13.19). As indicated in Chapter 13, such an equation is a mathematical representa-
tion of the traveling wave model. In this discussion, Equations 24.15 and 24.16 rep-
resent traveling electromagnetic waves. In the linear wave equation, the coefficient
of the time derivative is the inverse of the speed of the waves. Therefore, these elec-
tromagnetic waves travel with a speed c of

[24.17]

Substituting �0 � 8.854 19 � 10�12 C2/N 
 m2 and �0 � 4� � 10�7 T 
 m/A in
Equation 24.17, we find that c � 2.997 92 � 108 m/s. Because this speed is pre-
cisely the same as the speed of light in empty space,3 one is led to believe (cor-
rectly) that light is an electromagnetic wave.

The simplest wave solutions to Equations 24.15 and 24.16 are those for which
the field amplitudes E and B vary with x and t according to the expressions

[24.18]

[24.19]

In these expressions, Emax and Bmax are the maximum values of the fields, the wave
number k � 2�/�, where � is the wavelength, and the angular frequency  � 2�f ,
where f is the frequency. Active Figure 24.3b represents a view at one instant of a
sinusoidal electromagnetic wave moving in the positive x direction.

Because electromagnetic waves are described by the traveling wave model, we
can adopt another mathematical representation from the model, first seen in Equa-
tion 13.11 for mechanical waves. It is the relationship between wave speed, wave-
length, and frequency for sinusoidal waves, v � �f, which we can write for sinu-
soidal electromagnetic waves as

c � �f [24.20]

The electric and magnetic fields of a plane electromagnetic wave are perpendic-
ular to each other and to the direction of propagation. Therefore, electromagnetic

 B � Bmax cos(kx � t)

 E � Emax cos(kx � t)
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� Magnetic field wave equation 
for electromagnetic waves in 
free space

� The speed of electromagnetic
waves

3Because of the redefinition of the meter in 1983, the speed of light is now a defined quantity with an
exact value of c � 2.997 924 58 � 108 m/s.



waves are transverse waves. The transverse mechanical waves studied in Chapter
13 exhibited physical displacements of the elements of the medium that were
perpendicular to the direction of propagation of the wave. Electromagnetic waves
do not require a medium for propagation, so there are no elements to be dis-
placed. The transverse nature of an electromagnetic wave is represented by the
direction of the field vectors with respect to the direction of propagation.

Taking partial derivatives of Equations 24.18 (with respect to x) and 24.19 (with
respect to t), and substituting into Equation 24.11, we find that

Substituting from Equations 24.18 and 24.19 gives

[24.21]

That is, at every instant the ratio of the electric field to the magnetic field of an
electromagnetic wave equals the speed of light.

Finally, electromagnetic waves obey the superposition principle because the dif-
ferential equations involving E and B are linear equations. For example, the resul-
tant electric field magnitude of two waves coinciding in space with their vectors
parallel can be found by simply adding the individual expressions for E given by
Equation 24.18.

Doppler Effect for Light
In Section 13.8, we studied the Doppler effect for sound waves, in which the appar-
ent frequency of the sound changes due to motion of the source or the observer.
Light also exhibits a Doppler effect, which is demonstrated in astronomical obser-
vations by the wavelength shift of spectral lines from receding galaxies. This move-
ment of spectral lines is toward the red end of the spectrum. It is therefore called
the red shift and is evidence that other galaxies are moving away from us. (See Sec-
tion 31.12 for more evidence of the expanding universe.)

The equation for the Doppler effect for light is not the same equation as
that for sound for the following reason. For waves requiring a medium, the speeds
of the source and observer can be separately measured with respect to a third
entity, the medium. In the Doppler effect for sound, these two speeds are that of
the source and that of the observer relative to the air. Because light does not
require a medium, no third entity exists. Therefore, we cannot identify separate
speeds for the source and observer. Only their relative speed can be identified.
As a result, a different equation must be used, one that contains only this
single speed. This equation can be generated from the laws of relativity and is
found to be

[24.22]

where v is the relative speed between the source and the observer, c is the 
speed of light, f � is the frequency of light detected by the observer, and f is the
frequency emitted by the source. For galaxies receding away from the Earth, v is
entered into this equation as a negative number so that f � � f , which results 
in an apparent wavelength �� such that �� � �. Therefore, the light should 
shift toward the red end of the spectrum, which is what is observed in the red
shift.

f � � f  √ c � v
c � v
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HERTZ’S  DISCOVERIES
In 1888, Heinrich Rudolf Hertz was the first to generate and detect electromag-
netic waves in a laboratory setting. To appreciate the details of his experiment, let
us first examine the properties of an LC circuit. In such a circuit, a charged capaci-
tor is connected to an inductor as in Figure 24.7. When the switch is closed, both
the current in the circuit and the charge on the capacitor oscillate in a manner
closely related to our simple harmonic motion model in Chapter 12. If resistance is
ignored, no energy is transformed to internal energy.

Let us investigate these oscillations in a way similar to our energy analysis
of the simple harmonic motion model in Chapter 12. We assume that the

24.4
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An Electromagnetic WaveEXAMPLE 24.1INTERACTIVE

Because and must be perpendicular to each
other and must be in the direction of wave
propagation (x in this case), we conclude that is in
the z direction.

Write expressions for the space– time variation of
the electric and magnetic field components for this
wave.

Solution We can apply Equations 24.18 and 24.19 
directly:

where

An observer on the x axis, far to the right in Figure
24.6, moves to the left along the x axis at 0.500c. What
frequency does this observer measure for the electro-
magnetic wave?

Solution We use Equation 24.22 for the Doppler effect
for light:

�

We have substituted v as a positive number because the
observer is moving toward the source.

Explore electromagnetic waves of different
frequencies by logging into PhysicsNow at www.pop4e.com and
going to Interactive Example 24.1.

69.3 MHz

f � � f √ c � v
c � v  �  40.0 MHz √ c �  (� 0.500c)

c � (� 0.500c)   

D

 k �
2�

�
�

2�

7.50 m
� 0.838 rad/m

  � 2�f � 2�(4.00 � 107 Hz) � 2.51 � 108 rad/s

 B � Bmax cos(kx � t) � (2.50 � 10�6 T)cos(kx � t)

 E � Emax cos(kx � t) � (750 N/C) cos(kx � t)

C

B
:

E
:

 �  B
:

B
:

E
:

2.50 � 10�6 TBmax �
Emax

c
�

750 N/C
3.00 � 108 m/s

�A sinusoidal electromagnetic wave of frequency 
40.0 MHz travels in free space in the x direction as in 
Figure 24.6.

Determine the wavelength and period of the wave.

Solution Because c � �f and we know that 
f � 40.0 MHz � 4.00 � 107 Hz, we have

The period T of the wave equals the inverse of the fre-
quency, so

At some point and at some instant, the electric
field has its maximum value of 750 N/C and is along
the y axis. Calculate the magnitude and direction of the
magnetic field at this position and time.

Solution From Equation 24.21, we see that

B

2.50 � 10�8 sT �
1
f

�
1

4.00 � 107 Hz
�

7.50 m� �
c
f

�
3.00 � 108 m/s
4.00 � 107 Hz

�

A

B c x

y

E = 750j  N/C

z

ˆ

(Interactive Example 24.1) At some instant, a plane
electromagnetic wave moving in the x direction has
a maximum electric field of 750 N/C in the positive
y direction. The corresponding magnetic field at
that point has a magnitude E/c and is in the 
z direction.

FIGURE 24.6

S

L
C

Q  max

+

–

A simple LC
circuit. The capacitor has an initial
charge Q max, and the switch is closed
at t � 0.

FIGURE 24.7
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capacitor has an initial charge of Q max and that the switch is closed at t � 0.
When the capacitor is fully charged, the total energy in the circuit is stored in
the electric field of the capacitor and is equal to At this time, the cur-
rent is zero and so no energy is stored in the inductor. As the capacitor begins
to discharge, the energy stored in its electric field decreases. At the same time,
the current increases and an amount of energy equal to is now stored in
the magnetic field of the inductor. Therefore, energy is transferred from the
electric field of the capacitor to the magnetic field of the inductor. When the
capacitor is fully discharged, it stores no energy. At this time, the current
reaches its maximum value and all the energy is stored in the inductor. The cur-
rent continues in the same direction and begins to decrease in magnitude.
While that occurs, the capacitor charges with polarity opposite to its previous
polarity until the current stops and the capacitor is fully charged again. The
process then repeats in the reverse direction. The energy continues to transfer
between the inductor and the capacitor, corresponding to oscillations of both
current and charge.

A representation of this energy transfer is shown in Active Figure 24.8. As men-
tioned, the behavior of the circuit is analogous to that of the oscillating
block– spring system studied in Chapter 12. The potential energy stored in a
stretched spring is analogous to the potential energy stored in the capaci-
tor. The kinetic energy of the moving block is analogous to the magnetic en-
ergy stored in the inductor, which requires the presence of moving charges.
In Active Figure 24.8a, all the energy is stored as electric potential energy in the
capacitor at t � 0 (because I � 0), just like all the energy in a block– spring system
is initially stored as potential energy in the spring if it is stretched and released at
t � 0. In Active Figure 24.8b, all the energy is stored as magnetic energy in 
the inductor, where Imax is the maximum current. Active Figures 24.8c and 24.8d
show subsequent quarter-cycle situations in which the energy is all electric or all
magnetic. At intermediate points, part of the energy is electric and part is
magnetic.

We now describe an alternative approach to the analogy between the LC circuit
and the block– spring system of Chapter 12. Recall Equation 12.3, which is the dif-
ferential equation describing the position of the block (modeled as a particle) in
the simple harmonic motion model:

Applying Kirchhoff’s loop rule to the circuit in Figure 24.7 gives

Because I � dQ /dt, we can rewrite this equation as

[24.23]

This equation has exactly the same mathematical form as Equation 12.3 for the
block– spring system. Therefore, we conclude that the charge in the circuit will
oscillate in a way analogous to a block on a spring.

In Chapter 12, we recognized the coefficient of x in Equation 12.3 as the square
of the angular frequency (Eq. 12.4):

Because of the identical mathematical form of the equation describing the LC
circuit (Eq. 24.23), we can identify the coefficient of Q as the square of the angular
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Heinrich Rudolf Hertz
(1857 – 1894)

German physicist Hertz made his
greatest discovery — radio waves —
in 1887. After finding that the speed
of a radio wave is the same as that
of light, he showed that radio waves,
like light waves, could be reflected,
refracted, and diffracted. Hertz died
of blood poisoning at age 36. During
his short life, he made many contri-
butions to science. The hertz, equal
to one complete vibration or 
cycle per second, is named after him.
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The conditions in a resistanceless LC circuit are shown at quarter-cycle
intervals during its oscillation. Associated with each image of the circuit is the
mechanical analog, the block– spring oscillating system. (a) At t � 0, the 
capacitor has a charge Qmax and there is an electric field between the plates.
Because no current exists at this instant, there is no magnetic field in the 
inductor. In the mechanical system, the block of mass m is at its maximum 
displacement from equilibrium, with a speed of zero. (b) One quarter of a 
cycle later, the charge on the capacitor has reached zero and the current has
its maximum value Imax, causing a magnetic field of maximum magnitude in
the inductor. The block in the mechanical system is passing through x � 0
with maximum speed. (c) After another quarter cycle, the capacitor has
charged up to its maximum value, with opposite polarity to that in (a). The
mechanical system is similar to that in (a) except that the spring is at maxi-
mum compression rather than extension. (d) Circuit conditions are similar to
those in (b) but with current in the opposite direction. The mechanical sys-
tem is similar to that in (b) but with the direction of the velocity reversed.
One quarter of a cycle later, the circuit and the mechanical system return to
the conditions in (a), ready to begin a new cycle.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 24.8 to adjust the
values of C and L and see the effect on the oscillating circuit. The block on the spring oscillates in a 
mechanical analog of the electrical oscillations. A graphical display of charge and current is available, as is
an energy bar graph.

ACTIVE FIGURE 24.8
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frequency:

Therefore, the frequency of oscillation of an LC circuit, called the resonance
frequency, is

[24.24]

The circuit Hertz used in his investigations of electromagnetic waves is shown
schematically in Figure 24.9. A large coil of wire called an induction coil is con-
nected to two metal spheres with a narrow gap between them to form a capacitor.
Oscillations are initiated in the circuit by sending short voltage pulses via the coil to
the spheres, initially charging one positive, the other negative. Based on the values
of L and C in Hertz’s circuit, the frequency of oscillation is f � 100 MHz. This cir-
cuit is called a transmitter because it produces electromagnetic waves.

Hertz placed a second circuit, the receiver, several meters from the transmitter
circuit. This receiver circuit, which consisted of a single loop of wire connected to
two spheres, had its own effective inductance, capacitance, and natural frequency
of oscillation. Hertz found that energy was being sent from the transmitter to the
receiver when the resonance frequency of the receiver was adjusted to match that
of the transmitter.4 The energy transfer was detected when the voltage across the
spheres in the receiver circuit became high enough to cause sparks to appear in the
air gap separating the spheres. Hertz’s experiment is analogous to the mechanical
phenomenon in which one tuning fork responds to acoustic vibrations from an
identical vibrating fork. In the case of the tuning fork, the energy transfer from one
fork to another is by means of sound, whereas the transfer mechanism is electro-
magnetic radiation for Hertz’s apparatus.

Hertz assumed that the energy transferred from the transmitter to the receiver
was carried in the form of waves, which are now known to have been electromag-
netic waves. In a series of experiments, he also showed that the radiation gener-
ated by the transmitter exhibited the wave properties of interference, diffraction,
reflection, refraction, and polarization. As we shall see shortly, all these properties
are exhibited by light. Therefore, it became evident that the waves observed by
Hertz had properties similar to those of light waves and differed only in frequency
and wavelength.

Perhaps Hertz’s most convincing experiment was his measurement of the speed
of the waves from the transmitter. Waves of known frequency from the transmitter
were reflected from a metal sheet so that a pattern of nodes and antinodes was set
up, much like the standing wave pattern on a stretched string. As we saw in our dis-
cussion of standing waves (Chapter 14), the distance between nodes is �/2, so Hertz
was able to determine the wavelength �. Using the relationship v � f �, Hertz found
that v was close to 3.00 � 108 m/s, the known speed of visible light. Therefore,
Hertz’s experiments provided the first evidence in support of Maxwell’s theory.

� Thinking Physics 24.1
In radio transmission, a radio wave serves as a carrier wave and the sound wave is
superimposed on the carrier wave. In amplitude modulation (AM radio), the am-
plitude of the carrier wave varies according to the sound wave. (The word modulate
means “to change.”) In frequency modulation (FM radio), the frequency of the car-
rier wave varies according to the sound wave. The navy sometimes uses flashing

f0 �
1

2�√LC

2 �
1

LC
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� Resonance frequency of an LC
circuit

4Following Hertz’s discoveries, Guglielmo Marconi succeeded in developing this phenomenon into a
practical, long-range communication system, radio.

Input

Transmitter

Receiver

Induction
coil

q –q

+ –

Schematic diagram
of Hertz’s apparatus for generating
and detecting electromagnetic waves.
The transmitter consists of two spheri-
cal electrodes connected to an induc-
tion coil, which provides short voltage
surges to the spheres, setting up oscil-
lations in the discharge. The receiver
is a nearby loop containing a second
spark gap.

FIGURE 24.9



lights to send Morse code to neighboring ships, a process that is similar to radio
broadcasting. Is this process AM or FM? What is the carrier frequency? What is the
signal frequency? What is the broadcasting antenna? What is the receiving antenna?

Reasoning The flashing of the light according to Morse code is a drastic amplitude
modulation because the amplitude is changing between a maximum value and
zero. In this sense, it is similar to the on-and-off binary code used in computers and
compact discs. The carrier frequency is that of the visible light, on the order of 
1014 Hz. The signal frequency depends on the skill of the signal operator, but is on
the order of a few hertz, as the light is flashed on and off. The broadcasting
antenna for this modulated signal is the filament of the lightbulb in the signal
source. The receiving antenna is the eye. �

ENERGY  CARRIED  BY  ELECTROMAGNETIC  WAVES
In Section 13.6, we found that mechanical waves carry energy. Electromagnetic
waves also carry energy, and as they propagate through space they can transfer en-
ergy to objects placed in their path. This notion was introduced in Chapter 6 when
we discussed the transfer mechanisms in the continuity equation for energy, and it
was noted again in Chapter 17 in the discussion of thermal radiation. The rate of
flow of energy in an electromagnetic wave is described by a vector , called the
Poynting vector, defined by the expression

[24.25]

The magnitude of the Poynting vector represents the rate at which energy flows
through a unit surface area perpendicular to the flow and its direction is along the
direction of wave propagation (Fig. 24.10). Therefore, the Poynting vector repre-
sents power per unit area. The SI units of the Poynting vector are J/s 
 m2 � W/m2.

As an example, let us evaluate the magnitude of for a plane electromagnetic
wave. We have because and are perpendicular to each other. In
this case,

[24.26]

Because B � E/c, we can also express the magnitude as

These equations for S apply at any instant of time.
What is of more interest for a sinusoidal electromagnetic wave (Eqs. 24.18 and

24.19) is the time average of S over one or more cycles, which is the intensity I.
When this average is taken, we obtain an expression involving the time average of
cos2(kx � t), which equals . Therefore, the average value of S (or the intensity
of the wave) is

[24.27]

Recall that the energy per unit volume uE , which is the instantaneous energy
density associated with an electric field (Section 20.9), is given by Equation 20.32:

[24.28]

and that the instantaneous energy density uB associated with a magnetic field (Section
23.7) is given by Equation 23.22:

[24.29]uB �
B2
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AN INSTANTANEOUS VALUE The
Poynting vector given by Equation
24.25 is time-dependent. Its magni-
tude varies in time, reaching a max-
imum value at the same instant as
the magnitudes of and do. The
average rate of energy transfer will
be calculated shortly.

B
:

E
:

� PITFALL PREVENTION 24.2

� Poynting vector

y

E

c
Bz x

S

The Poynting 

vector for an electromagnetic wave
is along the direction of wave 
propagation.

S
:

FIGURE 24.10

� Intensity of electromagnetic 
radiation



Because E and B vary with time for an electromagnetic wave, the energy densi-
ties also vary with time. Using the relationships B � E/c and Equation
24.29 becomes

Comparing this result with the expression for uE , we see that

That is, for an electromagnetic wave, the instantaneous energy density associated with
the magnetic field equals the instantaneous energy density associated with the electric
field. Therefore, in a given volume the energy is equally shared by the two fields.

The total instantaneous energy density u is equal to the sum of the energy densi-
ties associated with the electric and magnetic fields:

When this expression is averaged over one or more cycles of an electromagnetic
wave, we again obtain a factor of . Therefore, the total average energy per unit vol-
ume of an electromagnetic wave is 

[24.30]

Comparing this result with Equation 24.27 for the average value of S, we see that

[24.31]

In other words, the intensity of an electromagnetic wave equals the average energy
density multiplied by the speed of light.

I � Savg � cuavg

uavg �  �0(E 2)avg � 1
2 �0E 2

max �
B2

max

2�0

1
2

u � uE � uB �  �0E 2 �
B2

�0

uB � uE

uB �
(E/c)2

2�0
�

�0�0

2�0
 E 2 � 1

2 �0E 2

c � 1/√�0�0 ,
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� Total instantaneous energy 
density of an electromagnetic
wave

� Average energy density of an
electromagnetic wave

An electromagnetic wave propagates in the � y direction. The elec-
tric field at a point in space is momentarily oriented in the � x direction. Is the magnetic
field at that point momentarily oriented in the (a) � x direction, (b) � y direction, 
(c) � z direction, or (d) �z direction?

QUICK QUIZ 24.2

Which of the following quantities does not vary in time for plane
electromagnetic waves? (a) magnitude of the Poynting vector (b) energy density uE

(c) energy density uB (d) intensity I

QUICK QUIZ 24.3

Solving for Emax gives us

� 

We calculate the maximum value of the magnetic
field using this result and Equation 24.21:

� 2.09 � 10�7 TBmax �
Emax

c
�

62.6 V/m
3.00 � 108 m/s

62.6 V/m

� √ (4� � 10�7 T 
m/A)(3.00 � 108 m/s)(800 W)
2�(3.50 m)2

 E max � √ �0c�avg

2�r 2

I �
�avg

4�r 2 �
E 2

max

2�0c

Fields Due to a Point SourceEXAMPLE 24.2
A point source of electromagnetic radiation has an 
average power output of 800 W. Calculate the 
maximum values of the electric and magnetic 
fields at a point 3.50 m from the source.

Solution For waves propagating uniformly from a point
source, the energy of the wave at a distance r from the
source is distributed over the surface area of an imagi-
nary sphere of radius r. Therefore, the intensity of the
radiation at a point on the sphere is

where �avg is the average power output of the source
and 4�r 2 is the area of the sphere centered on the
source. Because the intensity of an electromagnetic
wave is also given by Equation 24.27, we have

I �
�avg

4�r 2



MOMENTUM  AND  RADIATION  PRESSURE
Electromagnetic waves transport linear momentum as well as energy. Hence, it fol-
lows that pressure is exerted on a surface when an electromagnetic wave impinges
on it. In what follows, let us assume that the electromagnetic wave strikes a surface
at normal incidence and transports a total energy U to a surface in a time interval
�t. If the surface absorbs all the incident energy U in this time, Maxwell showed
that the total momentum delivered to this surface has a magnitude

(complete absorption) [24.32]

The pressure exerted on the surface is defined as force per unit area F/A. Let us
combine this definition with Newton’s second law:

If we now replace p, the momentum transported to the surface by radiation, from
Equation 24.32, we have

We recognize (dU/dt)/A as the rate at which energy is arriving at the surface per
unit area, which is the magnitude of the Poynting vector. Therefore, the radiation
pressure P exerted on the perfectly absorbing surface is

(complete absorption) [24.33]

An absorbing surface for which all the incident energy is absorbed (none is re-
flected) is called a black body. A more detailed discussion of a black body will be
presented in Chapter 28.

If the surface is a perfect reflector, the momentum delivered in a time interval
�t for normal incidence is twice that given by Equation 24.32, or p � 2U/c. That is,
a momentum U/c is delivered first by the incident wave and then again by the re-
flected wave, a situation analogous to a ball colliding elastically with a wall.5 Finally,
the radiation pressure exerted on a perfect reflecting surface for normal incidence
of the wave is twice that given by Equation 24.33, or P � 2S/c.

Although radiation pressures are very small (about 5 � 10�6 N/m2 for direct
sunlight), they have been measured using torsion balances such as the one shown
in Figure 24.11. Light is allowed to strike either a mirror or a black disk, both of
which are suspended from a fine fiber. Light striking the black disk is completely
absorbed, so all its momentum is transferred to the disk. Light striking the mirror
(normal incidence) is totally reflected and hence the momentum transfer is
twice as great as that transferred to the disk. The radiation pressure is determined
by measuring the angle through which the horizontal connecting rod rotates.
The apparatus must be placed in a high vacuum to eliminate the effects of air
currents.

P �
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� Momentum delivered to a 
perfectly absorbing surface

� Radiation pressure exerted on a
perfect absorbing surface

5For oblique incidence, the momentum transferred is 2U cos �/c and the pressure is given by 
P � 2S cos2 �/c, where � is the angle between the normal to the surface and the direction of propagation.

Light

Black
disk

Mirror

An apparatus for
measuring the pressure exerted by
light. In practice, the system is 
contained in a high vacuum.

FIGURE 24.11

In an apparatus such as that in Figure 24.11, suppose the black disk is
replaced by one with half the radius. Which of the following are different after the disk is
replaced? (a) radiation pressure on the disk (b) radiation force on the disk (c) radia-
tion momentum delivered to the disk in a given time interval

QUICK QUIZ 24.4



� Thinking Physics 24.2
A large amount of dust occurs in the interplanetary space in the Solar System. Al-
though this dust can theoretically have a variety of sizes, from molecular size up-
ward, very little of it is smaller than about 0.2 �m in our Solar System. Why? (Hint:
The Solar System originally contained dust particles of all sizes.)

Reasoning Dust particles in the Solar System are subject to two forces: the gravita-
tional force toward the Sun and the force from radiation pressure due to sunlight,
which is away from the Sun. The gravitational force is proportional to the cube of
the radius of a spherical dust particle because it is proportional to the particle’s
mass. The radiation force is proportional to the square of the radius because it de-
pends on the circular cross-section of the particle. For large particles, the gravita-
tional force is larger than the force from radiation pressure. For small particles, less
than about 0.2 �m, the larger force from radiation pressure sweeps these particles
out of the Solar System. �
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from solar to electric energy is typically 10% for
photovoltaic cells. Solar energy has other practical
problems that must also be considered, such as overcast
days, geographic location, and energy storage.

Determine the radiation pressure and radiation
force on the roof, assuming that the roof covering is a
perfect absorber.

Solution Using Equation 24.33 with I � 1 000 W/m2,
we find that the average radiation pressure is

Because pressure equals force per unit area, this value
of P corresponds to a radiation force of

� 5.33 � 10�4 N

F � PA � (3.33 � 10�6 N/m2)(160 m2)

3.33 � 10�6 N/m2P �
I
c

�
1 000 W/m2

3.00 � 108 m/s
�

B

Solar EnergyEXAMPLE 24.3
The Sun delivers about 1 000 W/m2 of energy to the
Earth’s surface.

Calculate the total power incident on a roof of 
dimensions 8.00 m � 20.0 m.

Solution The Poynting vector has an average magni-
tude I � Savg � 1 000 W/m2, which represents the
power per unit area. Assuming that the radiation is inci-
dent normal to the roof, we can find the power for the
whole roof:

� 

If solar energy could all be converted to electric energy,
it would provide more than enough power for the
average home. Solar energy is not easily harnessed,
however, and the prospects for large-scale conversion
are not as bright as they may appear from this simple
calculation. For example, the conversion efficiency

1.60 � 105 W

� � IA � (1 000 W/m2)(8.00 �  20.0 m2)

A

Pressure from a Laser PointerEXAMPLE 24.4INTERACTIVE

averaged power delivered via the electromagnetic wave
by the cross-sectional area of the beam. Thus,

Now we can determine the radiation pressure from 
the laser beam. A completely reflected beam would 
apply an average pressure of Pavg � 2Savg/c. We can 
model the actual reflection as follows. Imagine that 
the surface absorbs the beam, resulting in pressure 

 � 9.6 �  102 W/m2

I �
�

A
�

�

� r 2 �
3.0 �  10�3 W

� � 2.0 �  10�3 m
2 �

2

Many people giving presentations use a laser pointer to
direct the attention of their audience. If a 3.0-mW
pointer creates a spot that is 2.0 mm in diameter, deter-
mine the radiation pressure on a screen that reflects
70% of the light striking it. The power of 3.0 mW is a
time-averaged power.

Solution In conceptualizing this problem, we certainly
do not expect the pressure to be very large. We catego-
rize this problem as one in which we calculate the radi-
ation pressure by using something like Equation 24.33,
but which is complicated by the 70% reflection. To
analyze the problem, we begin by determining the
Poynting vector of the beam. We divide the time-



Space Sailing
When imagining a trip to another planet, we normally think of traditional rocket
engines that convert chemical energy in fuel carried on the spacecraft to kinetic en-
ergy of the spacecraft. An interesting alternative to this approach is that of space
sailing. A space-sailing craft includes a very large sail that reflects light. The motion
of the spacecraft depends on pressure from light, that is, the force exerted on the
sail by the reflection of light from the Sun. Calculations performed (before U.S.
government budget cutbacks shelved early space-sailing projects) showed that sail-
ing craft could travel to and from the planets in times similar to those for tradi-
tional rockets, but for less cost.

Calculations show that the radiation force from the Sun on a practical sailcraft with
large sails could be equal to or slightly larger than the gravitational force on the sail-
craft. If these two forces are equal, the sailcraft can be modeled as a particle in equilib-
rium because the inward gravitational force of the Sun balances the outward force ex-
erted by the light from the Sun. If the sailcraft has an initial velocity in some direction
away from the Sun, it would move in a straight line under the action of these two
forces, with no necessity for fuel. A traditional spacecraft with its rocket engines turned
off, on the other hand, would slow down as a result of the gravitational force on it due
to the Sun. Both the force on the sail and the gravitational force from the Sun fall off
as the inverse square of the Sun– sailcraft separation. Therefore, in theory, the
straight-line motion of the sailcraft would continue forever with no fuel requirement.

By using just the motion imparted to a sailcraft by the Sun, the craft could reach
Alpha Centauri in about 10 000 years. This time interval can be reduced to 30 to
100 years using a beamed power system. In this concept, light from the Sun is gathered
by a transformation device in orbit around the Earth and is converted to a laser
beam or microwave beam aimed at the sailcraft. The force from this intense beam
of radiation increases the acceleration of the craft, and the transit time is signifi-
cantly reduced. Calculations indicate that the sailcraft could achieve design speeds
of up to 20% of the speed of light using this technique.

THE  SPECTRUM  OF  ELECTROMAGNETIC  WAVES
Electromagnetic waves travel through vacuum with speed c, frequency f, and wave-
length �. The various types of electromagnetic waves, all produced by accelerating
charges, are shown in Figure 24.12. Note the wide range of frequencies and wave-
lengths. Let us briefly describe the wave types shown in Figure 24.12.

Radio waves are the result of charges accelerating, for example, through con-
ducting wires in a radio antenna. They are generated by such electronic devices as
LC oscillators and are used in radio and television communication systems.

24.7
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To finalize the problem, consider first the magnitude of
the Poynting vector. It is about the same as the intensity
of sunlight at the Earth’s surface. (Therefore, it is not
safe to shine the beam of a laser pointer into a person’s
eyes; that may be more dangerous than looking directly
at the Sun.) To finalize further, note that the pressure
has an extremely small value, as expected. (Recall from
Section 15.1 that atmospheric pressure is approxi-
mately 105 N/m2.)

Log into PhysicsNow at www.pop4e.com
and go to Interactive Example 24.4 to investigate the pressure
on the screen for various laser and screen parameters.

Pavg � Savg/c. Then the surface emits the beam, result-
ing in additional pressure Pavg � Savg/c. If the surface
emits only a fraction f of the beam (so that f is the
amount of the incident beam reflected), the pressure
due to the emitted beam is Pavg � f Savg/c. Therefore,
the total pressure on the surface due to absorption and
re-emission (reflection) is

For a beam that is 70% reflected, the pressure is

5.4 � 10�6 N/m2P �(1 � 0.70) 
9.6 � 102 W/m2

3.0 � 108 m/s
�

Pavg �  

Savg

c
 �  f

Savg

c
 �  (1 �  f )

Savg

c

www.pop4e.com


Microwaves (short-wavelength radio waves) have wavelengths ranging between
about 1 mm and 30 cm and are also generated by electronic devices. Because of
their short wavelengths, they are well suited for radar systems used in aircraft navi-
gation and for studying the atomic and molecular properties of matter. Microwave
ovens are a domestic application of these waves.

Infrared waves have wavelengths ranging from about 1 mm to the longest wave-
length of visible light, 7 � 10�7 m. These waves, produced by objects at room tem-
perature and by molecules, are readily absorbed by most materials. Infrared radia-
tion has many practical and scientific applications, including physical therapy,
infrared photography, and vibrational spectroscopy. Your remote control for your
TV, VCR, or DVD player likely uses an infrared beam to communicate with the
video device.

Visible light, the most familiar form of electromagnetic waves, is that part of the
spectrum the human eye can detect. Light is produced by hot objects like lightbulb
filaments and by the rearrangement of electrons in atoms and molecules. The wave-
lengths of visible light are classified by color, ranging from violet (� � 4 � 10�7 m)
to red (� � 7 � 10�7 m). The eye’s sensitivity is a function of wavelength and is a
maximum at a wavelength of about 5.5 � 10�7 m (yellow–green). Table 24.1 pro-
vides approximate correspondences between the wavelength of visible light and the
color assigned to it by humans. Light is the basis of the science of optics and optical
instruments, to be discussed in Chapters 25 through 27.

Ultraviolet light covers wavelengths ranging from about 4 � 10�7 m (400 nm)
down to 6 � 10�10 m (0.6 nm). The Sun is an important source of ultraviolet waves,
which are the main cause of suntans and sunburns. Atoms in the stratosphere absorb
most of the ultraviolet waves from the Sun (which is fortunate because ultraviolet
waves in large quantities have harmful effects on humans). One important con-
stituent of the stratosphere is ozone (O3), which results from reactions of oxygen
with ultraviolet radiation. This ozone shield converts lethal high-energy ultraviolet
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Wavelength

1 pm

1 nm

1 µm

1 cm

1 m

1 km

Long wave

AM

TV, FM

Microwaves

Infrared

Visible light

Ultraviolet

X-rays

Gamma rays

Frequency, Hz

1022

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

109

108

107

106

105

104

103

µ

Radio waves

1 mm

Violet
Blue
Green
Yellow

Orange

Red

~ 400 nm

~ 700 nm

The electromag-
netic spectrum. Note the overlap be-
tween adjacent wave types. The ex-
panded view to the right shows details
of the visible spectrum.

FIGURE 24.12

HEAT RAYS Infrared rays are often
called “heat rays.” This terminology
is a misnomer. Although infrared
radiation is used to raise or main-
tain temperature, as in the case of
keeping food warm with “heat
lamps” at a fast-food restaurant, all
wavelengths of electromagnetic 
radiation carry energy that can
cause the temperature of a system
to increase. As an example, con-
sider using your microwave oven to
bake a potato, whose temperature
increases because of microwaves.

� PITFALL PREVENTION 24.3

Wearing sunglasses that do not block
ultraviolet (UV) light is worse for your
eyes than wearing no sunglasses. The
lenses of any sunglasses absorb some
visible light, thus causing the wearer’s
pupils to dilate. If the glasses do not
also block UV light, more damage
may be done to the eye’s lens because
of the dilated pupils. If you wear no
sunglasses at all, your pupils are con-
tracted, you squint, and much less UV
light enters your eyes. High-quality
sunglasses block nearly all the eye-
damaging UV light. �
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radiation to harmless infrared radiation. A great deal of concern has arisen concern-
ing the depletion of the protective ozone layer by the use of a class of chemicals
called chlorofluorocarbons (e.g., Freon) in aerosol spray cans and as refrigerants.

X-rays are electromagnetic waves with wavelengths in the range of about 10�8 m
(10 nm) down to 10�13 m (10�4 nm). The most common source of x-rays is the ac-
celeration of high-energy electrons bombarding a metal target. X-rays are used as a
diagnostic tool in medicine and as a treatment for certain forms of cancer. Because
x-rays damage or destroy living tissues and organisms, care must be taken to avoid
unnecessary exposure and overexposure. X-rays are also used in the study of crystal
structure; x-ray wavelengths are comparable to the atomic separation distances
(� 0.1 nm) in solids.

Gamma rays are electromagnetic waves emitted by radioactive nuclei and during
certain nuclear reactions. They have wavelengths ranging from about 10�10 m to
less than 10�14 m. Gamma rays are highly penetrating and produce serious damage
when absorbed by living tissues. Consequently, those working near such dangerous
radiation must be protected with heavily absorbing materials, such as layers of lead.
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Approximate Correspondence Between 
Wavelengths of Visible Light and Color

TABLE 24.1

Wavelength Range (nm) Color Description

400–430 Violet
430–485 Blue
485–560 Green
560–575 Yellow
575–625 Orange
625–700 Red

Note: The wavelength ranges here are approximate. Different people
will describe colors differently.

In many kitchens, a microwave oven is used to cook food. The 
frequency of the microwaves is on the order of 1010 Hz. The wavelengths of these 
microwaves are on the order of (a) kilometers, (b) meters, (c) centimeters, or 
(d) micrometers.

QUICK QUIZ 24.5

A radio wave of frequency on the order of 105 Hz is used to carry a
sound wave with a frequency on the order of 103 Hz. The wavelength of this radio wave is
on the order of (a) kilometers, (b) meters, (c) centimeters, or (d) micrometers.

QUICK QUIZ 24.6

� Thinking Physics 24.3
The center of sensitivity of our eyes is close to the same frequency as the center of
the wavelength distribution of light from the Sun. Is that an amazing coincidence?

Reasoning It is not a coincidence; rather, it is the result of biological evolution.
Humans have evolved so as to be most visually sensitive to the wavelengths that are
strongest from the Sun. It is an interesting conjecture to imagine aliens from an-
other planet, with a Sun with a different temperature, arriving at Earth. Their eyes
would have the center of sensitivity at different wavelengths than ours. How would
their vision of the Earth compare with ours? �

POLARIZATION
As we learned in Section 24.3, the electric and magnetic vectors associated with an
electromagnetic wave are perpendicular to each other and also to the direction of
wave propagation as shown in Active Figure 24.3. The phenomenon of polarization

24.8

Center of eyesight sensitivity



described in this section is a property that specifies the directions of the electric
and magnetic fields associated with an electromagnetic wave.

An ordinary beam of light consists of a large number of waves emitted by the
atoms of the light source. Each atom produces a wave with its own orientation of
the electric field , corresponding to the direction of vibration in the atom. The di-
rection of polarization of the electromagnetic wave is defined to be the direction in
which is vibrating. Because all directions of vibration are possible in a group of
atoms emitting a beam of light, however, the resultant beam is a superposition of
waves produced by the individual atomic sources. The result is an unpolarized light
wave, represented schematically in Figure 24.13a. The direction of wave propaga-
tion in this figure is perpendicular to the page. The figure suggests that all direc-
tions of the electric field vector lying in a plane perpendicular to the direction of
propagation are equally probable.

A wave is said to be linearly polarized if the orientation of is the same for all in-
dividual waves at all times at a particular point as suggested in Figure 24.13b. (Some-
times such a wave is described as plane polarized.) The wave described in Active Fig-
ure 24.3 is an example of a wave linearly polarized along the y axis. As the field
propagates in the x direction, is always along the y axis. The plane formed by 
and the direction of propagation is called the plane of polarization of the wave. In
Active Figure 24.3, the plane of polarization is the xy plane. It is possible to obtain a
linearly polarized wave from an unpolarized wave by removing from the unpolarized
wave all components of electric field vectors except those that lie in a single plane.

The most common technique for polarizing light is to send it through a material
that passes only components of electric field vectors that are parallel to a characteris-
tic direction of the material called the polarizing direction. In 1938, E. H. Land dis-
covered such a material, which he called Polaroid, that polarizes light through selec-
tive absorption by oriented molecules. This material is fabricated in thin sheets of
long-chain hydrocarbons, which are stretched during manufacture so that the mole-
cules align. After a sheet is dipped into a solution containing iodine, the molecules
become good electric conductors. The conduction, however, takes place primarily
along the hydrocarbon chains because the valence electrons of the molecules can
move easily only along the chains (valence electrons are “free” electrons that can
readily move through the conductor). As a result, the molecules readily absorb light
whose electric field vector is parallel to their length and transmit light whose electric
field vector is perpendicular to their length. It is common to refer to the direction
perpendicular to the molecular chains as the transmission axis. An ideal polarizer
passes the components of electric vectors that are parallel to the transmission axis.
Components perpendicular to the transmission axis are absorbed. If light passes
through several polarizers, whatever is transmitted has the plane of polarization par-
allel to the polarizing direction of the last polarizer through which it passed.

Let us now obtain an expression for the intensity of light that passes through a
polarizing material. In Active Figure 24.14, an unpolarized light beam is incident
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E

(a)

E

(b)

(a) An unpolarized
light beam viewed along the direction
of propagation (perpendicular to the
page). The time-varying electric field
vector can be in any direction in the
plane of the page with equal probabil-
ity. (b) A linearly polarized light beam
with the time-varying electric field 
vector in the vertical direction.

FIGURE 24.13

Two polarizing sheets whose trans-
mission axes make an angle � with
each other. Only a fraction of the
polarized light incident on the ana-
lyzer is transmitted through it.

Log into
PhysicsNow at www.pop4e.com and
go to Active Figure 24.14 to rotate
the analyzer and see the effect on
the transmitted light.

ACTIVE FIGURE 24.14

Analyzer

Unpolarized
light

Transmission
axis

Polarized 
light

E0

Polarizer

θ
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on the first polarizing sheet, called the polarizer, where the transmission axis is as
indicated. The light that passes through this sheet is polarized vertically, and the
transmitted electric field vector is . A second polarizing sheet, called the analyzer,
intercepts this beam with its transmission axis at an angle of � to the axis of the po-
larizer. The component of that is perpendicular to the axis of the analyzer is com-
pletely absorbed, and the component parallel to that axis is E0 cos �. We know from
Equation 24.27 that the transmitted intensity varies as the square of the transmitted
amplitude, so we conclude that the intensity of the transmitted (polarized) light
varies as

[24.34]

where I0 is the intensity of the polarized wave incident on the analyzer. This expres-
sion, known as Malus’s law, applies to any two polarizing materials whose transmis-
sion axes are at an angle of � to each other. From this expression, note that the
transmitted intensity is a maximum when the transmission axes are parallel (� � 0
or 180°) and zero (complete absorption by the analyzer) when the transmission
axes are perpendicular to each other. This variation in transmitted intensity
through a pair of polarizing sheets is illustrated in Figure 24.15. Because the aver-
age value of cos2 � is , the intensity of initially unpolarized light is reduced by a fac-
tor of one half as the light passes through a single ideal polarizer.

1
2

I � I0 cos2 �

E
:

0

E
:

0
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� Malus’s law

CONTEXT 
connection

A polarizer for microwaves can be made as a grid of parallel metal
wires about a centimeter apart. Is the electric field vector for microwaves transmitted
through this polarizer (a) parallel or (b) perpendicular to the metal wires?

QUICK QUIZ 24.7

THE  SPECIAL  PROPERTIES  OF  LASER  LIGHT
In this chapter and the next three, we shall explore the nature of laser light and a
variety of applications of lasers in our technological society. The primary properties
of laser light that make it useful in these applications are the following:

• The light is coherent. The individual rays of light in a laser beam maintain a fixed
phase relationship with one another, resulting in no destructive interference.

• The light is monochromatic. Laser light has a very small range of wavelengths.
• The light has a small angle of divergence. The beam spreads out very little, even

over large distances.

24.9

The intensity of light transmitted through two polarizers depends on the relative ori-
entation of their transmission axes. (a) The transmitted light has maximum intensity
when the transmission axes are aligned with each other. (b) The transmitted light in-
tensity diminishes when the transmission axes are at an angle of 45° with each other.
(c) The transmitted light intensity is a minimum when the transmission axes are per-
pendicular to each other.

FIGURE 24.15
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To understand the origin of these properties, let us combine our knowledge of
atomic energy levels from Chapter 11 with some special requirements for the atoms
that emit laser light.

As we found in Chapter 11, the energies of an atom are quantized. We used a
semigraphical representation called an energy level diagram in that chapter to help us
understand the quantized energies in an atom. The production of laser light de-
pends heavily on the properties of these energy levels in the atoms, the source of
the laser light.

The word laser is an acronym for light amplification by stimulated emission of
radiation. The full name indicates one of the requirements for laser light, that the
process of stimulated emission must occur to achieve laser action.

Suppose an atom is in the excited state E2 as in Active Figure 24.16 and a
photon with energy hf � E2 � E1 is incident on it. The incoming photon can
stimulate the excited atom to return to the ground state and thereby emit a sec-
ond photon having the same energy hf and traveling in the same direction.
Note that the incident photon is not absorbed, so after the stimulated emission,
two identical photons exist: the incident photon and the emitted photon. The
emitted photon is in phase with the incident photon. These photons can stimu-
late other atoms to emit photons in a chain of similar processes. The many
photons produced in this fashion are the source of the intense, coherent light
in a laser.

For the stimulated emission to result in laser light, we must have a buildup of
photons in the system. The following three conditions must be satisfied to achieve
this buildup:

• The system must be in a state of population inversion. More atoms must be in an
excited state than in the ground state. Atoms in the ground state can absorb pho-
tons, raising them to the excited state. The population inversion assures that we
have more emission of photons from excited atoms than absorption by atoms in
the ground state.

• The excited state of the system must be a metastable state, which means that its
lifetime must be long compared with the usually short lifetime of excited states,
which is typically 10�8 s. In this case, stimulated emission is likely to occur before
spontaneous emission. The energy of a metastable state is indicated with an
asterisk, E*.

• The emitted photons must be confined in the system long enough to enable
them to stimulate further emission from other excited atoms, which is achieved
by using reflecting mirrors at the ends of the system. One end is made totally
reflecting, and the other is slightly transparent to allow the laser beam to escape
(Fig. 24.17).
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Atom in
ground state

E2E2

hf

E1 E1

Before After

hf

hf = ∆E

∆E

Atom in
excited state Stimulated emission of a photon by 

an incoming photon of energy hf. Ini-
tially, the atom is in the excited state.
The incoming photon stimulates the 
atom to emit a second photon of 
energy hf � E2 � E1.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 24.16 to adjust the en-
ergy difference between the states and
observe stimulated emission.

ACTIVE FIGURE 24.16
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One device that exhibits stimulated emission of radiation is the helium–neon
gas laser. Figure 24.18 is an energy level diagram for the neon atom in this system.
The mixture of helium and neon is confined to a glass tube that is sealed at the
ends by mirrors. A voltage applied across the tube causes electrons to sweep
through the tube, colliding with the atoms of the gases and raising them into
excited states. Neon atoms are excited to state E3* through this process and also as
a result of collisions with excited helium atoms. Stimulated emission occurs as
the neon atoms make a transition to state E2 and neighboring excited atoms are
stimulated. The result is the production of coherent light at a wavelength of
632.8 nm.

An exciting area of research and technological applications began in the 1990s
with the development of laser trapping of atoms (Fig. 24.19). One scheme, called op-
tical molasses and developed by Steven Chu of Stanford University and his col-
leagues, involves focusing six laser beams onto a small region in which atoms are to
be trapped. Each pair of lasers is along one of the x, y, and z axes and emits light in
opposite directions (Fig. 24.20). The frequency of the laser light is tuned to be just
below the absorption frequency of the subject atom. Imagine that an atom has
been placed into the trap region and moves along the positive x axis toward the
laser that is emitting light toward it (the right-hand laser on the x axis in Fig.
24.20). Because the atom is moving, the light from the laser appears Doppler
shifted upward in frequency in the reference frame of the atom. This shift creates a
match between the Doppler-shifted laser frequency and the absorption frequency
of the atom, and the atom absorbs photons.6 The momentum carried by these pho-
tons results in the atom being pushed back to the center of the trap. By incorporat-
ing six lasers, the atoms are pushed back into the trap regardless of which way they
move along any axis.

In 1986, Chu developed optical tweezers in which a single tightly focused laser
beam can be used to trap and manipulate small particles. In combination with mi-
croscopes, optical tweezers have opened up many new possibilities for biologists.
Optical tweezers have been used to manipulate live bacteria without damage, move
chromosomes within a cell nucleus, and measure the elastic properties of a single
DNA molecule. Chu shared the 1997 Nobel Prize in Physics with Claude Cohen-
Tannoudji (Collège de France) and William Phillips (National Institute of Stan-
dards and Technology) for the development of the techniques of optical trapping.

An extension of laser trapping, laser cooling, is due to the reduction of the nor-
mal high speeds of the atoms when they are restricted to the region of the trap. As
a result, the temperature of the collection of atoms can be reduced to a few

6The laser light traveling in the same direction as the atom (from the left-hand laser on the x axis in
Fig. 24.20) is Doppler shifted further downward in frequency, so no absorption occurs. Therefore, the
atom is not pushed out of the trap by the diametrically opposed laser.

Spontaneous emission,
random directions

Mirror 1

Stimulating wave
on axis

Energy input

Mirror 2

Laser 
output

A schematic of a
laser design. The tube contains atoms,
which represent the active medium.
An external source of energy (optical,
electric, etc.) is needed to “pump” the
atoms to excited energy states. The
parallel end mirrors confine the pho-
tons to the tube. Mirror 2 is slightly
transparent so that laser light leaves
the tube through this mirror.

FIGURE 24.17
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Metastable state

E3*

E2

E1

Output 
energy

Input 
energy

l = 632.8 nm

hf

Energy level dia-
gram for a neon atom in a
helium–neon laser. The atom emits
632.8-nm photons through stimulated
emission in the transition E3* : E2,
which is the source of coherent light
in the laser.

FIGURE 24.18

A staff member of
the National Institute of Standards
and Technology views a sample of
trapped sodium atoms (the small yel-
low dot in the center of the vacuum
chamber) cooled to a temperature of
less than 1 mK.

FIGURE 24.19
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An optical trap for atoms is
formed at the intersection point of six coun-
terpropagating laser beams along mutually
perpendicular axes. The frequency of the laser
light is tuned to be just below that for absorp-
tion by the trapped atoms. If an atom moves
away from the trap, it absorbs the Doppler-
shifted laser light and the momentum of the
light pushes the atom back into the trap.

FIGURE 24.20

nanokelvins. This laser cooling allows scientists to study the behavior of atoms at
extremely low temperatures.

In the 1920s, Satyendra Nath Bose (1894–1974) was studying photons and inves-
tigating collections of identical photons, which can all be in the same quantum
state. Einstein followed up on the work of Bose and predicted that a collection of
atoms could all be in the same quantum state if the temperature were low enough.
The proposed collection of atoms is called a Bose–Einstein condensate. In 1995, using
laser cooling supplemented with evaporative cooling, the first Bose–Einstein con-
densate was created in the laboratory by Eric Cornell and Carl Wieman, who won
the 2001 Nobel Prize in Physics for their work. Many laboratories are now creating
Bose–Einstein condensates and studying their properties and possible applications.
One interesting result was reported by a Harvard University group led by Lene
Vestergaard Hau in 2001. She and her colleagues announced that they were able to
bring a light pulse to a complete stop by using a Bose–Einstein condensate.7

We have explored general properties of laser light in this chapter. In the Con-
text Connection of Chapter 25, we shall explore the technology of optical fibers, in
which lasers are used in a variety of applications. �

7C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information 
storage in an atomic medium using halted light pulses,” Nature, 409, 490–493, January 25, 2001.
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SUMMARY
Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

Displacement current Id is defined as

[24.1]

and represents an effective current through a region of space
in which an electric field is changing in time.

When used with the Lorentz force law ( ),
Maxwell’s equations describe all electromagnetic phenomena:

F
:

� qE
:

� q v: �  B
:

Id � �0
d�E

dt

[24.4]

[24.5]

[24.6]

[24.7]

Electromagnetic waves, which are predicted by Maxwell’s
equations, have the following properties:

� B
:

� d s: � �0I � � 0�0
d�E

dt

� E
:

� d s: � �
d�B

dt

� B
:

� d A
:

� 0

� E
:
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:
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q
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• The electric and magnetic fields satisfy the following wave
equations, which can be obtained from Maxwell’s third and
fourth equations:

[24.15]

[24.16]

• Electromagnetic waves travel through a vacuum with the
speed of light c , where

[24.17]

• The electric and magnetic fields of an electromagnetic wave
are perpendicular to each other and perpendicular to the di-
rection of wave propagation; hence, electromagnetic waves
are transverse waves. The electric and magnetic fields of a
sinusoidal plane electromagnetic wave propagating in the
positive x direction can be written

[24.18]

[24.19]

where  is the angular frequency of the wave and k is the an-
gular wave number. These equations represent special solu-
tions to the wave equations for and .

• The instantaneous magnitudes of and in an electromag-
netic wave are related by the expression

[24.21]
E
B

� c

B
:

E
:

B
:

E
:

B � Bmax cos(kx � t)

E � Emax cos(kx � t)

c �
1

√�0�0
 

�  3.00 � 108 m/s

	2B
	x2 �  �0�0

	2B
	t2

	2E
	x2 �  �0�0

	2E
	t2

• Electromagnetic waves carry energy. The rate of flow of en-
ergy crossing a unit area is described by the Poynting vector

, where

[24.25]

The average value of the Poynting vector for a plane elec-
tromagnetic wave has the magnitude

[24.27]

The average power per unit area (intensity) of a sinu-
soidal plane electromagnetic wave equals the average value
of the Poynting vector taken over one or more cycles.

• Electromagnetic waves carry momentum and hence can
exert pressure on surfaces. If an electromagnetic wave
whose intensity is I is completely absorbed by a surface on
which it is normally incident, the radiation pressure on
that surface is

(complete absorption) [24.33]

If the surface totally reflects a normally incident wave, the
pressure is doubled.

The electromagnetic spectrum includes waves covering a
broad range of frequencies and wavelengths.

When polarized light of intensity I0 is incident on a polariz-
ing film, the light transmitted through the film has an intensity
equal to I0 cos2 �, where � is the angle between the transmis-
sion axis of the polarizing film and the electric field vector of
the incident light.

P �
S
c

I � Savg �
E maxBmax

2�0
�

E2
max

2�0c
�

cB2
max

2�0

S
:

 �  
1

�0
E
:

 �  B
:

S
:

� answer available in the Student Solutions Manual and
Study Guide

Radio station announcers often advertise “instant news.” If
they mean that you can hear the news the instant they
speak it, is their claim true? About how long would it take
for a message to travel across this country by radio waves,
assuming that the waves could be detected at this range?

2. When light (or other electromagnetic radiation) travels
across a given region, what is it that oscillates? What is it
that is transported?

3. What is the fundamental source of electromagnetic
radiation?

4. Does a wire connected to the terminals of a battery emit
electromagnetic waves? Explain.

If you charge a comb by running it through your hair and
then hold the comb next to a bar magnet, do the electric
and magnetic fields produced constitute an electromag-
netic wave?

5.

1.

6. List as many similarities and differences between sound
waves and light waves as you can.

In the LC circuit shown in Figure 24.7, the charge on the
capacitor is sometimes zero, but at such instants the cur-
rent in the circuit is not zero. How is that possible?

8. Describe the physical significance of the Poynting vector.

9. Before the advent of cable television and satellite dishes,
city dwellers often used “rabbit ears” atop their sets (Fig.
Q24.9). Certain orientations of the receiving antenna on a
television set give better reception than others. Further-
more, the best orientation varies from station to station.
Explain.

10. Often when you touch the indoor antenna on a radio or
television receiver, the reception instantly improves. Why?

What does a radio wave do to the charges in the receiving
antenna to provide a signal for your car radio?

12. An empty plastic or glass dish being removed from a mi-
crowave oven is cool to the touch. How can that be possi-
ble? (Assume that your electric bill has been paid.)

11.

7.

QUESTIONS
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Suppose a creature from another planet had eyes that
were sensitive to infrared radiation. Describe what the
alien would see if it looked around the room you are now
in. In particular, what would be bright and what would be
dim?

14. Why should an infrared photograph of a person look dif-
ferent from a photograph taken with visible light?

15. A welder must wear protective glasses and clothing to
prevent eye damage and sunburn. What does this practice
imply about the nature of the light produced by the
welding?

16. A home microwave oven uses electromagnetic waves with a
wavelength of about 12.2 cm. Some 2.4-GHz cordless tele-
phones suffer noisy interference when a microwave oven is
used nearby. Locate the waves used by both devices on the
electromagnetic spectrum. Do you expect them to inter-
fere with each other? 

17. Why is stimulated emission so important in the operation
of a laser?

18. For a given incident energy of an electromagnetic wave,
why is the radiation pressure on a perfectly reflecting
surface twice as great as that on a perfect absorbing
surface?

13.

FIGURE Q24.9 Question 24.9 and Problem 24.57.
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PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem
� paired numerical and symbolic problems

� biomedical application

Section 24.1 � Displacement Current and the 
Generalized Ampère’s Law

1. Consider the situation shown in Figure P24.1. An electric
field of 300 V/m is confined to a circular area 10.0 cm in

diameter and directed outward perpendicular to the plane
of the figure. If the field is increasing at a rate of 
20.0 V/m 
 s, what are the direction and magnitude of the
magnetic field at the point P, 15.0 cm from the center of
the circle?

Section 24.2 � Maxwell’s Equations
2. A very long, thin rod carries electric charge with the linear

density 35.0 nC/m. It lies along the x axis and moves in the
x direction at a speed of 15.0 Mm/s. (a) Find the electric
field the rod creates at the point (0, 20.0 cm, 0). (b) Find
the magnetic field it creates at the same point. (c) Find the
force exerted on an electron at this point, moving with a
velocity of .
A proton moves through a uniform electric field

and a uniform magnetic field 
. Determine the accelera-

tion of the proton when it has a velocity .

Section 24.3 � Electromagnetic Waves

Note: Assume that the medium is vacuum unless specified
otherwise.

4. (a) The distance to the North Star, Polaris, is approxi-
mately 6.44 � 1018 m. If Polaris were to burn out today, in
what year would we see it disappear? (b) How long does it
take for sunlight to reach the Earth? (c) How long does it
take for a microwave radar signal to travel from the Earth

v: �  200 î  m/s
 (0.200 î  �  0.300 ĵ  �  0.400k̂) T

B
:

 �E
:

 �  50 ĵ  V/m
3.

(240 î) Mm/s

10.0 cm

E out of 
the paper

E = 0 here B

P15.0 cm

FIGURE P24.1

www.pop4e.com


to the Moon and back? (d) How long does it take for a ra-
dio wave to travel once around the Earth in a great circle,
close to the planet’s surface? (e) How long does it take for
light to reach you from a lightning stroke 10.0 km away?

5. The speed of an electromagnetic wave traveling in a trans-
parent nonmagnetic substance is , where �
is the dielectric constant of the substance. Determine the
speed of light in water, which has a dielectric constant at
optical frequencies of 1.78.

6. An electromagnetic wave in vacuum has an electric field
amplitude of 220 V/m. Calculate the amplitude of the cor-
responding magnetic field.

Figure 24.3 shows a plane electromag-
netic sinusoidal wave propagating in the x direction. Sup-
pose the wavelength is 50.0 m and the electric field vi-
brates in the xy plane with an amplitude of 22.0 V/m.
Calculate (a) the frequency of the wave and (b) the magni-
tude and direction of when the electric field has its max-
imum value in the negative y direction. (c) Write an ex-
pression for with the correct unit vector, with numerical
values for Bmax, k, and , and with its magnitude in the
form

B � Bmax cos(kx � t)

8. In SI units, the electric field in an electromagnetic wave is
described by

Ey � 100 sin(1.00 � 107x � t)

Find (a) the amplitude of the corresponding magnetic
field oscillations, (b) the wavelength �, and (c) the fre-
quency f.

9. Verify by substitution that the following equations are solu-
tions to Equations 24.15 and 24.16, respectively:

E � Emax cos(kx � t)

B � Bmax cos(kx � t)

10. Review problem. A standing wave interference pattern is
set up by radio waves between two metal sheets 2.00 m
apart. That is the shortest distance between the plates that
will produce a standing wave pattern. What is the funda-
mental frequency?

11. A microwave oven is powered by an electron tube called a
magnetron, which generates electromagnetic waves of fre-
quency 2.45 GHz. The microwaves enter the oven and are
reflected by the walls. The standing wave pattern produced
in the oven can cook food unevenly, with hot spots in the
food at antinodes and cool spots at nodes, so a turntable is
often used to rotate the food and distribute the energy. If a
microwave oven intended for use with a turntable is in-
stead used with a cooking dish in a fixed position, the an-
tinodes can appear as burn marks on foods such as carrot
strips or cheese. The separation distance between the
burns is measured to be 6 cm � 5%. From these data, cal-
culate the speed of the microwaves.

12. Review problem. An alien civilization occupies a brown
dwarf, nearly stationary relative to the Sun, several
lightyears away. The extraterrestrials have come to love
original broadcasts of I Love Lucy, on our television channel

B
:

B
:

7.

v �  1/√�� 0�0

2, at carrier frequency 57.0 MHz. Their line of sight to us is
in the plane of the Earth’s orbit. Find the difference be-
tween the highest and lowest frequencies they receive due
to the Earth’s orbital motion around the Sun.

13. Police radar detects the speed of a car (Fig. P24.13) as
follows. Microwaves of a precisely known frequency
are broadcast toward the car. The moving car reflects the
microwaves with a Doppler shift. The reflected waves are
received and combined with an attenuated version of
the transmitted wave. Beats occur between the two micro-
wave signals. The beat frequency is measured. (a) For an
electromagnetic wave reflected back to its source from a
mirror approaching at speed v, show that the reflected
wave has frequency

where fsource is the source frequency. (b) When v is much
less than c, the beat frequency is much smaller than the
transmitted frequency. In this case, use the approximation 
f � f source � 2f source and show that the beat frequency can
be written as f beat � 2v/�. (c) What beat frequency is mea-
sured for a car speed of 30.0 m/s if the microwaves have fre-
quency 10.0 GHz? (d) If the beat frequency measurement is
accurate to � 5 Hz, how accurate is the speed measurement?

f � fsource
c � v
c � v
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14. The red shift. A light source recedes from an observer with a
speed vsource that is small compared with c. (a) Show that
the fractional shift in the measured wavelength is given by
the approximate expression

This phenomenon is known as the red shift because the
visible light is shifted toward the red. (b) Spectroscopic

��

�
�

vsource
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measurements of light at � � 397 nm coming from a
galaxy in Ursa Major reveal a red shift of 20.0 nm. What is
the recessional speed of the galaxy?

15. A physicist drives through a stop light. When he is pulled
over, he tells the police officer that the Doppler shift made
the red light of wavelength 650 nm appear green to him,
with a wavelength of 520 nm. The police officer writes out
a traffic citation for speeding. How fast was the physicist
traveling, according to his own testimony? 

16. A Doppler weather radar station broadcasts a pulse of ra-
dio waves at frequency 2.85 GHz. From a relatively small
batch of raindrops at bearing 38.6° east of north, the sta-
tion receives a reflected pulse after 180 �s with a frequency
shifted upward by 254 Hz. From a similar batch of rain-
drops at bearing 39.6° east of north, the station receives a
reflected pulse after the same time delay, with a frequency
shifted downward by 254 Hz. These pulses have the highest
and lowest frequencies the station receives. (a) Calculate
the radial velocity components of both batches of rain-
drops. (b) Assume that these raindrops are swirling in a
uniformly rotating vortex. Find the angular speed of their
rotation.

Section 24.4 � Hertz’s Discoveries
A fixed inductance L � 1.05 �H is used in series with a
variable capacitor in the tuning section of a radiotele-
phone on a ship. What capacitance tunes the circuit to the
signal from a transmitter broadcasting at 6.30 MHz?

18. Calculate the inductance of an LC circuit that oscillates at
120 Hz when the capacitance is 8.00 �F.

19. The switch in Figure P24.19 is connected to point a for
a long time. After the switch is thrown to point b, what
are (a) the frequency of oscillation of the LC circuit, 
(b) the maximum charge that appears on the capacitor,
(c) the maximum current in the inductor, and (d) the to-
tal energy the circuit possesses at t � 3.00 s?

17.

A community plans to build a facility to
convert solar radiation to electrical power. The community
requires 1.00 MW of power, and the system to be installed
has an efficiency of 30.0% (that is, 30.0% of the solar
energy incident on the surface is converted to useful energy
that can power the community). What must be the effective
area of a perfectly absorbing surface used in such an instal-
lation if sunlight has a constant intensity of 1 000 W/m2?

24. One of the weapons considered for the “Star Wars” an-
timissile system is a laser that could destroy ballistic mis-
siles. When a high-power laser is used in the Earth’s atmos-
phere, the electric field can ionize the air, turning it into a
conducting plasma that reflects the laser light. In dry air at
0°C and 1 atm, electric breakdown occurs for fields with
amplitudes above about 3.00 MV/m. (a) What laser beam
intensity will produce such a field? (b) At this maximum
intensity, what power can be delivered in a cylindrical
beam of diameter 5.00 mm?

The filament of an incandescent lamp
has a 150-� resistance and carries a direct current of 1.00 A.
The filament is 8.00 cm long and 0.900 mm in radius. 
(a) Calculate the Poynting vector at the surface of the fila-
ment, associated with the static electric field producing the
current and the current’s static magnetic field. (b) Find
the magnitude of the static electric and magnetic fields at
the surface of the filament.

26. In a region of free space, the electric field at an instant of
time is and the mag-
netic field is . 
(a) Show that the two fields are perpendicular to each
other. (b) Determine the Poynting vector for these fields.

27. At what distance from a 100-W electromagnetic wave point
source does Emax � 15.0 V/m?

28. Consider a bright star in our night sky. Assume that its
power output is 4.00 � 1028 W, about 100 times that of the
Sun, and that its distance is 20.0 ly. (a) Find the intensity of
the starlight at the Earth. (b) Find the power of the
starlight that the Earth intercepts.

Section 24.6 � Momentum and Radiation Pressure
29. A 15.0-mW helium -neon laser (� � 632.8 nm) emits a

beam of circular cross section with a diameter of 2.00 mm.
(a) Find the maximum electric field in the beam. (b) What
total energy is contained in a 1.00-m length of the beam?
(c) Find the momentum carried by a 1.00-m length of the
beam.

30. A possible means of space flight is to place a perfectly re-
flecting aluminized sheet into orbit around the Earth and
then use the light from the Sun to push this “solar sail.”
Suppose a sail of area 6.00 � 105 m2 and mass 6 000 kg is
placed in orbit facing the Sun. (a) What force is exerted
on the sail? (b) What is the sail’s acceleration? (c) How
long does it take the sail to reach the Moon, 3.84 � 108 m
away? Ignore all gravitational effects, assume that the accel-
eration calculated in part (b) remains constant, and as-
sume a solar intensity of 1 370 W/m2.

Section 24.7 � The Spectrum of Electromagnetic Waves
31. This just in! An important news announcement is transmitted

by radio waves to people sitting next to their radios 100 km

B
:

 �  (0.200 î  �  0.080 0 ĵ  �  0.290k̂) �T
E
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25.

23.

PROBLEMS ❚ 833

y g p pp

1.00 µF

10.0 Ω

S

ba

µ

0.100 H

12.0 V

FIGURE P24.19

Section 24.5 � Energy Carried by Electromagnetic Waves
20. How much electromagnetic energy per cubic meter is con-

tained in sunlight if the intensity of sunlight at the Earth’s
surface under a fairly clear sky is 1 000 W/m2?

What is the average magnitude of the Poynting vector 
5.00 miles from a radio transmitter broadcasting isotropically
(equally in all directions) with an average power of 250 kW?

22. An AM radio station broadcasts isotropically (equally in all
directions) with an average power of 4.00 kW. A dipole re-
ceiving antenna 65.0 cm long is at a location 4.00 miles
from the transmitter. Compute the amplitude of the emf
that is induced by this signal between the ends of the
receiving antenna.

21.
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from the station and by sound waves to people sitting
across the newsroom 3.00 m from the newscaster. Who
receives the news first? Explain. Take the speed of sound
in air to be 343 m/s.

32. Classify waves with frequencies of 2 Hz, 2 kHz, 2 MHz, 
2 GHz, 2 THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz on the
electromagnetic spectrum. Classify waves with wavelengths
of 2 km, 2 m, 2 mm, 2 �m, 2 nm, 2 pm, 2 fm, and 2 am.

33. The human eye is most sensitive to light having a wave-
length of 5.50 � 10�7 m, which is in the green–yellow
region of the visible electromagnetic spectrum. What is the
frequency of this light?

34. Compute an order-of-magnitude estimate for the fre-
quency of an electromagnetic wave with wavelength equal
to (a) your height and (b) the thickness of this sheet of pa-
per. How is each wave classified on the electromagnetic
spectrum?

What are the wavelengths of electromagnetic waves in free
space that have frequencies of (a) 5.00 � 1019 Hz and 
(b) 4.00 � 109 Hz?

36. A diathermy machine, used in physiotherapy, gener-
ates electromagnetic radiation that gives the effect of
“deep heat” when absorbed in tissue. One assigned fre-
quency for diathermy is 27.33 MHz. What is the wave-
length of this radiation?

37. Review problem. Accelerating charges radiate electromag-
netic waves. Calculate the wavelength of radiation pro-
duced by a proton in a cyclotron with a radius of 0.500 m
and magnetic field of 0.350 T.

38. Twelve VHF television channels (Channels 2 through 13)
lie in the range of frequencies between 54.0 MHz and
216 MHz. Each channel is assigned a width of 6.0 MHz,
with the two ranges 72.0–76.0 MHz and 88.0–174 MHz
reserved for non-TV purposes. (Channel 2, for example,
lies between 54.0 and 60.0 MHz.) Calculate the broadcast
wavelength range for (a) Channel 4, (b) Channel 6, and
(c) Channel 8.

39. Suppose you are located 180 m from a radio transmitter.
(a) How many wavelengths are you from the transmitter if
the station calls itself 1 150 AM? (The AM band frequen-
cies are in kilohertz.) (b) What if this station is 98.1 FM?
(The FM band frequencies are in megahertz.)

40. A radar pulse returns to the transmitter-receiver after a to-
tal travel time of 4.00 � 10�4 s. How far away is the object
that reflected the wave?

Section 24.8 � Polarization
Plane-polarized light is incident on a single polarizing disk
with the direction of parallel to the direction of the
transmission axis. Through what angle should the disk be
rotated so that the intensity in the transmitted beam is re-
duced by a factor of (a) 3.00, (b) 5.00, and (c) 10.0?

42. Unpolarized light passes through two Polaroid sheets. The
axis of the first is vertical and that of the second is at 30.0°
to the vertical. What fraction of the incident light is trans-
mitted?

43. In Figure P24.43, suppose the transmission axes of the left
and right polarizing disks are perpendicular to each other.

E
:

0

41.

35.

44. Two handheld radio transceivers with dipole antennas are
separated by a large fixed distance. If the transmitting
antenna is vertical, what fraction of the maximum received
power will appear in the receiving antenna when it is
inclined from the vertical by (a) 15.0°, (b) 45.0°, and 
(c) 90.0°?

45. Two polarizing sheets are placed together with their trans-
mission axes crossed so that no light is transmitted. A third
sheet is inserted between them with its transmission axis at
an angle of 45.0° with respect to each of the other axes.
Find the fraction of incident unpolarized light intensity
transmitted by the three-sheet combination. (Assume each
polarizing sheet is ideal.)

46. You want to rotate the plane of polarization of a polarized
light beam by 45.0° with a maximum intensity reduction of
10.0%. (a) How many sheets of perfect polarizers do you
need to achieve your goal? (b) What is the angle between
adjacent polarizers?

Section 24.9 � Context Connection — The Special 
Properties of Laser Light

47. Figure P24.47 shows portions of the energy level diagrams
of the helium and neon atoms in a helium–neon laser. An

Transmission axis

u � vt
Transmission

axis

I

Imax

FIGURE P24.43

In addition, let the center disk be rotated on the common
axis with an angular speed . Show that if unpolarized
light is incident on the left disk with an intensity Imax, the
intensity of the beam emerging from the right disk is

Hence, the intensity of the emerging beam is modulated at
a rate that is four times the rate of rotation of the center
disk. [Suggestion: Use the trigonometric identities cos2 � �
(1 � cos 2�)/2 and sin2 � � (1 � cos 2�)/2, and recall
that � � t.]
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electrical discharge excites the He atom from its ground
state to its excited state of 20.61 eV. The excited He atom
collides with a Ne atom in its ground state and excites this
atom to the state at 20.66 eV. Lasing action takes place for
electron transitions from E3* to E2 in the Ne atoms. From
the data in the figure, show that the wavelength of the red
He–Ne laser light is approximately 633 nm.

48. High-power lasers in factories are used to cut through
cloth and metal (Fig. P24.48). One such laser has a beam
diameter of 1.00 mm and generates an electric field having
an amplitude of 0.700 MV/m at the target. Find (a) the
amplitude of the magnetic field produced, (b) the inten-
sity of the laser, and (c) the power delivered by the laser.

53. Review problem. Figure 24.17 represents the light bounc-
ing between two mirrors in a laser cavity as two traveling
waves. These traveling waves moving in opposite directions
constitute a standing wave. If the reflecting surfaces are
metallic films, the electric field has nodes at both ends. The
electromagnetic standing wave is analogous to the standing
string wave represented in Figure 14.9. (a) Assume that a
helium–neon laser has precisely flat and parallel mirrors
35.124 103 cm apart. Assume that the active medium can
efficiently amplify only light with wavelengths between
632.808 40 nm and 632.809 80 nm. Find the number of
components that constitute the laser light, and the wave-
length of each component, precise to eight digits. (b) Find
the root-mean-square speed for a neon atom at 120°C. 
(c) Show that at this temperature the Doppler effect for
light emission by moving neon atoms should realistically
make the bandwidth of the light amplifier larger than the
0.001 40 nm assumed in part (a).

54. The number N of atoms in a particular state is called the
population of that state. This number depends on the en-
ergy of that state and the temperature. In thermal equilib-
rium, the population of atoms in a state of energy En is
given by a Boltzmann distribution expression

where T is the absolute temperature and Ng is the population
of the ground state, of energy Eg . For simplicity, we assume
that each energy level has only one quantum state associ-
ated with it. (a) Before the power is switched on, the neon
atoms in a laser are in thermal equilibrium at 27.0°C. Find
the equilibrium ratio of the populations of the states E3*
and E2 shown in Figure 24.18. Lasers operate by a clever
artificial production of a “population inversion” between
the upper and lower atomic energy states involved in the
lasing transition. Thus, more atoms are in the upper
excited state than in the lower one. Consider the
helium–neon laser transition at 632.8 nm. Assume that 2%
more atoms occur in the upper state than in the lower. 
(b) To demonstrate how unnatural such a situation is, find
the temperature for which the Boltzmann distribution
describes a 2.00% population inversion. (c) Why does such
a situation not occur naturally?

Additional Problems
55. Assume that the intensity of solar radiation incident on the

cloudtops of the Earth is 1 370 W/m2. (a) Calculate the to-
tal power radiated by the Sun, taking the average
Earth–Sun separation to be 1.496 � 1011 m. (b) Deter-
mine the maximum values of the electric and magnetic
fields in the sunlight at the Earth’s location.

56. The intensity of solar radiation at the top of the Earth’s
atmosphere is 1 370 W/m2. Assuming that 60% of the in-
coming solar energy reaches the Earth’s surface and as-
suming that you absorb 50% of the incident energy, make
an order-of-magnitude estimate of the amount of solar
energy you absorb in a 60-min sunbath.

Review problem. In the absence of cable
input or a satellite dish, a TV set can use a dipole-receiving
antenna for VHF channels and a loop antenna for UHF
channels (Fig. Q24.9). The UHF antenna produces an emf

57.

N � Nge�(En�Eg )/kBT
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FIGURE P24.48 A laser cutting device
mounted on a robot arm is being used to
cut through a metallic plate.
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49. A neodymium–yttrium–aluminum garnet laser used
in eye surgery emits a 3.00-mJ pulse in 1.00 ns, focused to a
spot 30.0 �m in diameter on the retina. (a) Find (in SI
units) the power per unit area at the retina. (This quantity
is called the irradiance in the optics industry.) (b) What
energy is delivered to an area of molecular size, taken as a
circular area 0.600 nm in diameter?

50. The carbon dioxide laser is one of the most powerful
developed. The energy difference between the two laser
levels is 0.117 eV. Determine the frequency and wavelength
of the radiation emitted by this laser. In what portion of
the electromagnetic spectrum is this radiation?

A ruby laser delivers a 10.0-ns pulse of
1.00 MW average power. If the photons have a wavelength
of 694.3 nm, how many are contained in the pulse?

52. A pulsed ruby laser emits light at 694.3 nm. For a 14.0-ps
pulse containing 3.00 J of energy, find (a) the physical
length of the pulse as it travels through space and (b) the
number of photons in it. (c) Assuming that the beam has a
circular cross-section of 0.600 cm diameter, find the num-
ber of photons per cubic millimeter.

51.
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from the changing magnetic flux through the loop. The
TV station broadcasts a signal with a frequency f, and the
signal has an electric-field amplitude Emax and a magnetic-
field amplitude Bmax at the location of the receiving an-
tenna. (a) Using Faraday’s law, derive an expression for the
amplitude of the emf that appears in a single-turn circular
loop antenna with a radius r, which is small compared with
the wavelength of the wave. (b) If the electric field in the
signal points vertically, what orientation of the loop gives
the best reception?

58. One goal of the Russian space program is to illuminate
dark northern cities with sunlight reflected to the Earth
from a 200-m diameter mirrored surface in orbit. Several
smaller prototypes have already been constructed and put
into orbit. (a) Assume that sunlight with intensity 
1 370 W/m2 falls on the mirror nearly perpendicularly and
that the atmosphere of the Earth allows 74.6% of the en-
ergy of sunlight to pass though it in clear weather. What is
the power received by a city when the space mirror is
reflecting light to it? (b) The plan is for the reflected sun-
light to cover a circle of diameter 8.00 km. What is the in-
tensity of light (the average magnitude of the Poynting vec-
tor) received by the city? (c) This intensity is what
percentage of the vertical component of sunlight at St.
Petersburg in January, when the sun reaches an angle of
7.00° above the horizon at noon?

A dish antenna having a diameter of 20.0 m receives (at
normal incidence) a radio signal from a distant source as
shown in Figure P24.59. The radio signal is a continuous si-
nusoidal wave with amplitude Emax � 0.200 �V/m. Assume
that the antenna absorbs all the radiation that falls on the
dish. (a) What is the amplitude of the magnetic field in
this wave? (b) What is the intensity of the radiation re-
ceived by this antenna? (c) What is the power received by
the antenna? (d) What force do the radio waves exert on
the antenna?

59.

head. Assume that the antenna emits energy with
cylindrical wave fronts. (The actual radiation from an-
tennas follows a more complicated pattern.) (b) The
ANSI/IEEE C95.1-1991 maximum exposure standard is
0.57 mW/cm2 for persons living near cellular telephone
base stations, who would be continuously exposed to the
radiation. Compare the answer to part (a) with this
standard.

FIGURE P24.59

60. A handheld cellular telephone operates in the 860-
to 900-MHz band and has a power output of 0.600 W
from an antenna 10.0 cm long (Fig. P24.60). (a) Find
the average magnitude of the Poynting vector 4.00 cm
from the antenna, at the location of a typical person’s

FIGURE P24.60
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In 1965, Arno Penzias and Robert Wilson discovered the
cosmic microwave radiation left over from the Big Bang ex-
pansion of the Universe. Suppose the energy density of this
background radiation is 4.00 � 10�14 J/m3. Determine the
corresponding electric field amplitude.

62. A linearly polarized microwave of wavelength 1.50 cm is
directed along the positive x axis. The electric field vec-
tor has a maximum value of 175 V/m and vibrates in the
xy plane. (a) Assume that the magnetic field component
of the wave can be written as B � Bmax sin(kx � t) and
give values for Bmax, k, and . Also determine in which
plane the magnetic field vector vibrates. (b) Calculate
the average magnitude of the Poynting vector for this
wave. (c) What radiation pressure would this wave exert
if it were directed at normal incidence onto a perfectly
reflecting sheet? (d) What acceleration would be im-
parted to a 500-g sheet (perfectly reflecting and at nor-
mal incidence) with dimensions of 1.00 m � 0.750 m?

63. Review problem. A 1.00-m-diameter mirror focuses the
Sun’s rays onto an absorbing plate 2.00 cm in radius, which
holds a can containing 1.00 L of water at 20.0°C. (a) If the
solar intensity is 1.00 kW/m2, what is the intensity on the
absorbing plate? (b) What are the maximum magnitudes
of the fields and ? (c) If 40.0% of the energy is ab-
sorbed, how long does it take to bring the water to its boil-
ing point?

64. A microwave source produces pulses of 20.0-GHz radia-
tion, with each pulse lasting 1.00 ns. A parabolic reflector
with a face area of radius 6.00 cm is used to focus the mi-
crowaves into a parallel beam of radiation as shown in
Figure P24.64. The average power during each pulse is
25.0 kW. (a) What is the wavelength of these microwaves?
(b) What is the total energy contained in each pulse? 

B
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(c) Compute the average energy density inside each pulse.
(d) Determine the amplitude of the electric and magnetic
fields in these microwaves. (e) Assuming that this pulsed
beam strikes an absorbing surface, compute the force ex-
erted on the surface during the 1.00-ns duration of each
pulse.

ity, we ignore throughout the cats’ absorption of radia-
tion from the environment.)

67. (a) An elderly couple has a solar water heater installed on
the roof of their house (Fig. P24.67). The heater consists
of a flat closed box with extraordinarily good thermal in-
sulation. Its interior is painted black, and its front face is
made of insulating glass. Assume that its emissivity for
visible light is 0.900 and its emissivity for infrared light
is 0.700. Assume that light from the noon Sun is incident
perpendicular to the glass with an intensity of 1 000 W/m2

and that no water enters or leaves the box. Find the
steady-state temperature of the interior of the box.
(b) The homeowners build an identical box with no water
tubes. It lies flat on the ground in front of the house.
They use it as a cold frame where they plant seeds in early
spring. Assuming that the same noon Sun is at an eleva-
tion angle of 50.0°, find the steady-state temperature of
the interior of this box when its ventilation slots are tightly
closed.

12.0 cm

FIGURE P24.64

65. The electromagnetic power radiated by a nonrelativistic
moving point charge q having an acceleration a is

where �0 is the permittivity of free space and c is the speed
of light in vacuum. (a) Show that the right side of this
equation has units of watts. (b) An electron is placed in a
constant electric field of magnitude 100 N/C. Determine
the acceleration of the electron and the electromagnetic
power radiated by this electron. (c) If a proton is placed in
a cyclotron with a radius of 0.500 m and a magnetic field of
magnitude 0.350 T, what electromagnetic power does this
proton radiate?

Review problems. Section 17.10 discussed electromagnetic
radiation as a mode of energy transfer. Problems 66
through 68 use ideas introduced both there and in this
chapter.

66. Eliza is a black cat with four black kittens: Penelope, Ros-
alita, Sasha, and Timothy. Eliza’s mass is 5.50 kg, and
each kitten has mass 0.800 kg. One cool night, all five
sleep snuggled together on a mat, with their bodies
forming one hemisphere. (a) Assuming that the purring
heap has uniform density 990 kg/m3, find the radius of
the hemisphere. (b) Find the area of its curved surface.
(c) Assume that the surface temperature is uniformly
31.0°C and the emissivity is 0.970. Find the intensity of
radiation emitted by the cats at their curved surface and
(d) the radiated power from this surface. (e) You may
think of the emitted electromagnetic wave as having a
single predominant frequency (of 31.2 THz). Find the
amplitude of the electric field just outside the surface of
the cozy pile and (f ) the amplitude of the magnetic
field. (g) Are the sleeping cats charged? Are they 
current-carrying? Are they magnetic? Are they a radia-
tion source? Do they glow in the dark? Give an explana-
tion for your answers so that they do not seem contradic-
tory. (h) The next night, the kittens all sleep alone,
curling up into separate hemispheres like their mother.
Find the total radiated power of the family. (For simplic-

� �
q2a2

6��0c3

FIGURE P24.67

68. The study of Creation suggests a Creator with an inordi-
nate fondness for beetles and for small red stars. A small
red star radiates electromagnetic waves with power 
6.00 � 1023 W, which is only 0.159% of the luminosity of
the Sun. Consider a spherical planet in a circular orbit
around this star. Assume that the emissivity of the planet is
equal for infrared and for visible light. Assume that the
planet has a uniform surface temperature. Identify the
projected area over which the planet absorbs starlight and
the radiating area of the planet. If beetles thrive at a tem-
perature of 310 K, what should be the radius of the
planet’s orbit?

69. An astronaut, stranded in space 10.0 m from her spacecraft
and at rest relative to it, has a mass (including equipment)
of 110 kg. Because she has a 100-W light source that forms
a directed beam, she considers using the beam as a photon
rocket to propel herself continuously toward the space-
craft. (a) Calculate the time interval required for her to
reach the spacecraft by this method. (b) Assume, instead,
that she throws the light source in the direction away from
the spacecraft. The mass of the light source is 3.00 kg and,
after being thrown, it moves at 12.0 m/s relative to the re-
coiling astronaut. After what time interval will the astro-
naut reach the spacecraft?
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ANSWERS TO QUICK QUIZZES
24.1 (i), (b). There can be no conduction current because

there is no conductor between the plates. There is a
time-varying electric field because of the decreasing
charge on the plates, and the time-varying electric flux
represents a displacement current. (ii), (c). There is a
time-varying electric field because of the decreasing
charge on the plates. This time-varying electric field pro-
duces a magnetic field.

24.2 (c). The field must be in the �z direction so that the
Poynting vector is directed along the �y direction.

24.3 (d). The first three choices are instantaneous values and
vary in time. The intensity is an average value over a full
cycle.

24.4 (b), (c). The radiation pressure (a) does not change
because pressure is force per unit area. In (b), the
smaller disk absorbs less radiation, resulting in a smaller

B
:

force. For the same reason, the momentum in (c) is
reduced.

24.5 (c). The order of magnitude of the wavelengths can be
found either from the equation c � �f or from Figure
24.12.

24.6 (a). The order of magnitude of the wavelengths can be
found either from the equation c � �f or from Figure
24.12.

24.7 (b). Electric field vectors parallel to the metal wires cause
electrons in the metal to oscillate along the wires. There-
fore, the energy from the waves with these electric field
vectors is transferred to the metal by accelerating these
electrons and is eventually transformed to internal en-
ergy through the resistance of the metal. Waves with elec-
tric field vectors perpendicular to the metal wires are not
able to accelerate electrons and pass through.



The preceding chapter serves as a bridge between electro-
magnetism and the area of physics called optics . Now that
we have established the wave nature of electromagnetic ra-

diation, we shall study the behavior of visible light and apply what
we learn to all electromagnetic radiation. Our emphasis in this
chapter will be on the behavior of light as it encounters an inter-
face between two media.

So far, we have focused on the wave nature of light and dis-
cussed it in terms of our wave simplification model. As we learn
more about the behavior of light, however, we shall return to our
particle simplification model, especially as we incorporate the no-
tions of quantum physics, beginning in Chapter 28. As we discuss
in Section 25.1, a long historical debate took place between pro-
ponents of wave and particle models for light.

Reflection and Refraction of Light

C H A P T E R 25

This photograph of a rainbow shows a distinct
secondary rainbow with the colors reversed.
The appearance of the rainbow depends on
three optical phenomena discussed in this
chapter: reflection, refraction, and dispersion.

C H A P T E R  O U T L I N E
25.1 The Nature of Light
25.2 The Ray Model in Geometric Optics
25.3 The Wave Under Reflection
25.4 The Wave Under Refraction
25.5 Dispersion and Prisms
25.6 Huygens’s Principle
25.7 Total Internal Reflection
25.8 Context Connection — Optical Fibers

SUMMARY
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THE  NATURE  OF  LIGHT
We encounter light every day, as soon as we open our eyes in the morning. This
everyday experience involves a phenomenon that is actually quite complicated.
Since the beginning of this book, we have discussed both the particle model and
the wave model as simplification models to help us gain understanding of physical
phenomena. Both of these models have been applied to the behavior of light. Until
the beginning of the 19th century, most scientists thought that light was a stream of
particles emitted by a light source. According to this model, the light particles stim-
ulated the sense of sight on entering the eye. The chief architect of this particle
model of light was Isaac Newton. The model provided a simple explanation of
some known experimental facts concerning the nature of light—namely, the laws
of reflection and refraction—to be discussed in this chapter.

Most scientists accepted the particle model of light. During Newton’s lifetime,
however, another model was proposed—a model that views light as having wave-
like properties. In 1678, a Dutch physicist and astronomer, Christiaan Huygens,
showed that a wave model of light can also explain the laws of reflection and refrac-
tion. The wave model did not receive immediate acceptance for several reasons. All
the waves known at the time (sound, water, and so on) traveled through a medium,
but light from the Sun could travel to Earth through empty space. Even though ex-
perimental evidence for the wave nature of light was discovered by Francesco
Grimaldi (1618–1663) around 1660, most scientists rejected the wave model for
more than a century and adhered to Newton’s particle model due, for the most
part, to Newton’s great reputation as a scientist.

The first clear and convincing demonstration of the wave nature of light was
provided in 1801 by Englishman Thomas Young (1773–1829), who showed that un-
der appropriate conditions, light exhibits interference behavior. That is, light waves
emitted by a single source and traveling along two different paths can arrive at
some point, combine, and cancel each other by destructive interference. Such be-
havior could not be explained at that time by a particle model, because scientists
could not imagine how two or more particles could come together and cancel one
another. Additional developments during the 19th century led to the general ac-
ceptance of the wave model of light.

A critical development concerning the understanding of light was the work of
James Clerk Maxwell, who in 1865 mathematically predicted that light is a form of
high-frequency electromagnetic wave. As discussed in Chapter 24, Hertz in 1887
provided experimental confirmation of Maxwell’s theory by producing and detect-
ing other electromagnetic waves. Furthermore, Hertz and other investigators
showed that these waves exhibited reflection, refraction, and all the other charac-
teristic properties of waves.

Although the electromagnetic wave model seemed to be well established and
could explain most known properties of light, some experiments could not be ex-
plained by the assumption that light was a wave. The most striking of these was the
photoelectric effect, discovered by Hertz, in which electrons are ejected from a metal
when its surface is exposed to light. We shall explore this experiment in detail in
Chapter 28.

In view of these developments, light must be regarded as having a dual nature.
In some cases, light acts like a wave, and in others, it acts like a particle. The classi-
cal electromagnetic wave model provides an adequate explanation of light propaga-
tion and interference, whereas the photoelectric effect and other experiments in-
volving the interaction of light with matter are best explained by assuming that
light is a particle. Light is light, to be sure. The question “Is light a wave or a parti-
cle?” is inappropriate; in some experiments, we measure its wave properties; in
other experiments, we measure its particle properties. This curious dual nature of
light may be unsettling at this point, but it will be clarified when we introduce the
notion of a quantum particle. The photon, a particle of light, is our first example of a
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quantum particle, which we shall explore more fully in Chapter 28. Until then, we
focus our attention on the properties of light that can be satisfactorily explained
with the wave model.

THE  RAY  MODEL  IN  GEOMETRIC  OPTICS
In the beginning of our study of optics, we shall use a simplification model called
the ray model or the ray approximation. A ray is a straight line drawn along the di-
rection of propagation of a single wave, showing the path of the wave as it travels
through space. The ray approximation involves geometric models based on these
straight lines. Phenomena explained with the ray approximation do not depend ex-
plicitly on the wave nature of light, other than its propagation along a straight line.

A set of light waves can be represented by wave fronts (defined in Section 24.3)
as illustrated in the pictorial representation in Figure 25.1 for a plane wave, which
was introduced in Section 24.3. The definition of a wave front requires that the rays
are perpendicular to the wave front at every location in space.

If a plane wave meets a barrier containing an opening whose size is large relative
to the wavelength as in Active Figure 25.2a, the individual waves emerging from the
opening continue to move in a straight line (apart from some small edge effects);
hence, the ray approximation continues to be valid. If the size of the opening is on
the order of the wavelength as in Active Figure 25.2b, the waves (and, consequently,
the rays we draw) spread out from the opening in all directions. We say that the in-
coming plane wave undergoes diffraction as it passes through the opening. If the
opening is small relative to the wavelength, the diffraction is so strong that the
opening can be approximated as a point source of waves (Active Fig. 25.2c). Thus,
diffraction is more pronounced as the ratio d/� approaches zero.

Suppose the opening is a circle of diameter d. The ray approximation assumes
that � �� d so that we do not concern ourselves with diffraction effects, which
depend on the full wave nature of light. We shall delay studying diffraction
until Chapter 27. The ray approximation is used in the current chapter and in
Chapter 26. The material in these chapters is often called geometric optics. The ray
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Rays

Wave fronts 

A plane wave
propagating to the right. Note that
the rays, which always point in the
direction of wave motion, are straight
lines perpendicular to the wave
fronts.

FIGURE 25.1

(a)

d

(c)

>> d

(b)

� << d ≈ d�

�

A plane wave is incident on a barrier in which an opening exists. (a) When
the wavelength of the light is much smaller than the size of the opening,
almost no observable diffraction takes place and the ray approximation
remains valid. (b) When the wavelength of the light is comparable to the size
of the opening, diffraction becomes significant. (c) When the wavelength of
the light is much larger than the size of the opening, the opening behaves as
a point source emitting spherical waves.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 25.2 to adjust the
size of the opening and observe the effect on the waves passing through.

ACTIVE FIGURE 25.2
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approximation is very good for the study of mirrors, lenses, prisms, and associated
optical instruments, such as telescopes, cameras, and eyeglasses.

THE  WAVE  UNDER  REFLECTION
In Chapter 13, we introduced a one-dimensional version of the model of a wave
under reflection by considering waves on strings. When such a wave meets a discon-
tinuity between strings representing different wave speeds, some of the energy is
reflected and some of the energy is transmitted. In that discussion, the waves are
constrained to move along the one-dimensional string. In this discussion of optics,
we are not subject to that restriction. Light waves can move in three dimensions.

Figure 25.3 shows several rays of light incident on a surface. Unless the surface is
perfectly absorbing, some portion of the light is reflected from the surface. (The
transmitted portion will be discussed in Section 25.4.) If the surface is very smooth,
the reflected rays are parallel as indicated in Figure 25.3a. Reflection of light from
such a smooth surface is called specular reflection. If the reflecting surface is rough
as in Figure 25.3b, it reflects the rays in various directions. Reflection from a rough
surface is known as diffuse reflection. A surface behaves as a smooth surface as
long as the surface variations are small compared with the wavelength of the inci-
dent light. For example, light passes through the small holes in a microwave oven
door, allowing you to see the interior because the holes are large relative to the
wavelengths of visible light. The large-wavelength microwaves, however, reflect from
the door as if it were a solid piece of metal.

Figures 25.3c and 25.3d are photographs of specular reflection and diffuse
reflection using laser light, made visible by dust in the air, which scatters the light
toward the camera. The reflected laser beam is clearly visible in Figure 25.3c. In
Figure 25.3d, the diffuse reflection has caused the incident beam to be reflected in
many directions so that no clear outgoing beam is visible.

Specular reflection is necessary for the formation of clear images from reflecting
surfaces, a topic we shall investigate in Chapter 26. Figure 25.4 shows an image result-
ing from specular reflection from a smooth water surface. If the water surface were
rough, diffuse reflection would occur and the reflected image would not be visible.

Both types of reflection can occur from a road surface that you observe when
you drive at night. On a dry night, light from oncoming vehicles is scattered off the
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(b)(a)

(c) (d)

Schematic
representation of (a) specular reflec-
tion, in which the reflected rays are all
parallel, and (b) diffuse reflection, in
which the reflected rays travel in
scattered directions. (c) and 
(d) Photographs of specular and
diffuse reflection using laser light.

FIGURE 25.3
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road in different directions (diffuse reflection) and the road is quite visible. On a
rainy night, the small irregularities in the road surface are filled with water. Because
the water surface is smooth, the light undergoes specular reflection and the glare
from reflected light makes the road less visible.

Let us now develop the mathematical representation for the wave under reflec-
tion model. Consider a light ray that travels in air and is incident at an angle on a
flat, smooth surface as in Active Figure 25.5. The incident and reflected rays make
angles of and , respectively, with a line drawn normal to the surface at
the point where the incident ray strikes the surface. Experiments show that the
incident ray, the normal to the surface, and the reflected ray all lie in the same
plane and that the angle of reflection equals the angle of incidence:

[25.1]

Equation 25.1 is called the law of reflection. By convention, the angles of incidence
and reflection are measured from the normal to the surface rather than from the
surface itself.

In diffuse reflection, the law of reflection is obeyed with respect to the local normal.
Because of the roughness of the surface, the local normal varies significantly from
one location to another. In this book, we shall concern ourselves only with specular
reflection and shall use the term reflection to mean specular reflection.

As you might guess from Equation 25.1 and the figures we have seen so far, geo-
metric models are used extensively in the study of optics. As we represent physical
situations with geometric constructions, the mathematics of triangles and the prin-
ciples of trigonometry will find many applications.

The path of a light ray is reversible. For example, the ray in Active Figure 25.5
travels from the upper left, reflects from the mirror, and then moves toward a point
at the upper right. If the ray originated at the same point at the upper right, it
would follow the same path in reverse to reach the same point at the upper left.
This reversible property will be useful when we set up geometric constructions for
finding the paths of light rays.

A practical application of the law of reflection is the digital projection of movies,
television shows, and computer presentations. A digital projector makes use of an
optical semiconductor chip called a digital micromirror device. This device contains an
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This photograph,
taken in Salamanca, Spain, shows the
reflection of the New Cathedral in the
Tormes River. Because the water is so
calm, the reflection is specular.

FIGURE 25.4
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According to the law of reflection, 
�1 � �1�. The incident ray, the
reflected ray, and the normal all lie in
the same plane.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 25.5 to vary the incident
angle and see the effect on the
reflected ray.

ACTIVE FIGURE 25.5

SUBSCRIPT NOTATION We use the
subscript 1 to refer to parameters
for the light in the initial medium.
When light travels from one
medium to another, we use the
subscript 2 for the parameters
associated with the light in the new
medium. In the current discussion,
the light stays in the same medium,
so we only have to use subscripts 1.

� PITFALL PREVENTION 25.1
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array of more than one million tiny mirrors (Fig. 25.6a) that can be individually
tilted by means of signals to an address electrode underneath the edge of the
mirror. Each mirror corresponds to a pixel in the projected image. When the pixel
corresponding to a given mirror is to be bright, the mirror is in the “on” position
and is oriented so as to reflect light from a source illuminating the array to the
screen (Fig. 25.6b). When the pixel for this mirror is to be dark, the mirror is “off ”
and is tilted so that the light is reflected away from the screen. The brightness of
the pixel is determined by the total time interval during which the mirror is in the
“on” position during the display of one image. 

Digital movie projectors use three micromirror devices, one for each of the pri-
mary colors red, blue, and green, so that movies can be displayed with up to 35 tril-
lion colors. Because there is no physical storage mechanism for the movie, a digital
movie does not degrade with time as does film. Furthermore, because the movie is
entirely in the form of computer software, it can be delivered to theaters by means
of satellites, optical discs, or optical fiber networks.

Several movies have been projected digitally to audiences and polls show that 85
percent of the viewers describe the image quality as “excellent.” The first all-digital
movie, from cinematography to postproduction to projection, was Star Wars Episode
II: Attack of the Clones in 2002.
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(a) An array of
mirrors on the surface of a digital
micromirror device. Each mirror has
an area of about 16 �m2. To provide a
sense of scale, the leg of an ant ap-
pears in the photograph. (b) A close-
up view of two single micromirrors.
The mirror on the left is “on,” and the
one on the right is “off.”

FIGURE 25.6
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In the movies, you sometimes see an actor looking in a mirror and
you can see his face in the mirror. During the filming of this scene, what does the actor
see in the mirror? (a) his face (b) your face (c) the director’s face (d) the movie
camera (e) impossible to determine

QUICK QUIZ 25.1

■ Thinking Physics 25.1
When looking through a glass window to the outdoors at night, you sometimes see
a double image of yourself. Why?

Reasoning Reflection occurs whenever light encounters an interface between two
optical media. For the glass in the window, two such interfaces exist. The first is the
inner surface of the glass and the second is the outer surface. Each interface results
in an image. ■

The Double-Reflected Light RayEXAMPLE 25.1INTERACTIVE

Solution From the law of reflection, we know that the
first reflected ray also makes an angle of 65° with the
normal. Thus, this ray makes an angle of 90° � 65°, or
25°, with the horizontal. We identify the geometric
model triangle as the triangle made by the first
reflected ray and the two mirrors in Figure 25.7. The
first reflected ray makes an angle of 35° with M2
(because the sum of the interior angles of any triangle
is 180°). Thus, this ray makes an angle of 55° with
the normal to M2. Hence, from the law of reflection,
the second reflected ray makes an angle of 55° with the
normal to M2.

Log into PhysicsNow at www.pop4e.com and
go to Interactive Example 25.1 to investigate this reflection
situation for various mirror angles.

Two mirrors make an angle of 120° with each other as
in Figure 25.7. A ray is incident on mirror M1 at an an-
gle of 65° to the normal. Find the direction of the ray
after it is reflected from mirror M2.

M1

M2

55°

65°
65°

25°

35°
120°

55°

(Interactive Example 25.1) Mirrors M1 and M2

make an angle of 120° with each other.
FIGURE 25.7
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THE  WAVE  UNDER  REFRACTION
Referring again to our discussion of string waves in Chapter 13, we discussed that
some of the energy of a wave incident on a discontinuity in the string is transmitted
through the discontinuity. As a light wave moves through three dimensions, under-
standing the transmitted light wave involves new principles that we now discuss.

When a ray of light traveling through a transparent medium is obliquely
incident on a boundary leading into another transparent medium as in Active
Figure 25.8a, part of the ray is reflected but part is transmitted into the second
medium. The ray that enters the second medium experiences a change in direction
at the boundary and is said to undergo refraction. The incident ray, the reflected
ray, and the refracted ray all lie in the same plane. The angle of refraction �2 in
Active Figure 25.8a depends on the properties of the two media and on the angle
of incidence through the relationship

[25.2]

where v1 is the speed of light in medium 1 and v2 is the speed of light in medium 2.
Equation 25.2 is a mathematical representation of the wave under refraction
model, although we find a more commonly used form in Equation 25.7.

The path of a light ray through a refracting surface is reversible, as was the case
for reflection. For example, the ray in Active Figure 25.8a travels from point A to
point B. If the ray originated at B, it would follow the same path in reverse to reach
point A. In the latter case, however, the reflected ray would be in the glass.

sin �2

sin �1
�

v2

v1
� constant
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Glass
Air

Incident 
ray

Refracted 
ray

Reflected 
ray

Normal

A

v1

v2

(a)

B

θ2θ

′θ1θθ1θ

��

��

�

(b)

(a) A light ray obliquely incident on an
air–glass interface. The refracted ray is
deviated toward the normal because 
v2 � v1. All rays and the normal lie in
the same plane. (b) (Quick Quiz 25.2)
Of light rays � through �, which are
reflected and which are refracted?

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 25.8 to vary the incident
angle and see the effect on the re-
flected and refracted rays.

ACTIVE FIGURE 25.8
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If beam � is the incoming beam in Active Figure 25.8b, which of the
other four red lines are reflected beams and which are refracted beams?
QUICK QUIZ 25.2

Equation 25.2 shows that when light moves from a material in which its speed is
high to a material in which its speed is lower, the angle of refraction �2 is less than
the angle of incidence. The refracted ray therefore deviates toward the normal as
shown in Active Figure 25.9a. If the ray moves from a material in which it travels
slowly to a material in which it travels more rapidly, �2 is greater than �1, so the ray
deviates away from the normal as shown in Active Figure 25.9b.

The behavior of light as it passes from air into another substance and then re-
emerges into air is often a source of confusion to students. Why is this behavior so dif-
ferent from other occurrences in our daily lives? When light travels in air, its speed is
c � 3.0 � 108 m/s; on entry into a block of glass, its speed is reduced to approxi-
mately 2.0 � 108 m/s. When the light re-emerges into air, its speed increases to its

The pencil partially immersed in wa-
ter appears bent because light from
the lower part of the pencil is re-
fracted as it travels across the bound-
ary between water and air. ■

(J
im

 L
eh

m
an

)

www.pop4e.com


original value 3.0 � 108 m/s. This process is very different from what happens, for ex-
ample, when a bullet is fired through a block of wood. In that case, the speed of the
bullet is reduced as it moves through the wood because some of its original energy is
used to tear apart the fibers of the wood. When the bullet enters the air again, it
emerges at a speed lower than that with which it entered the block of wood.

To see why light behaves as it does, consider Figure 25.10, which represents a
beam of light entering a piece of glass from the left. Once inside the glass, the light
may encounter an atom, represented by point A in the figure. Let us assume that
light is absorbed by the atom, causing it to oscillate (a detail represented by the
double-headed arrows in the drawing). The oscillating atom then radiates (emits)
the beam of light toward an atom at point B, where the light is again absorbed. The
details of these absorptions and emissions are best explained in terms of quantum
physics, a subject we shall study in Chapter 28. For now, think of the process as one
in which the light passes from one atom to another through the glass. (The situa-
tion is somewhat analogous to a relay race in which a baton is passed between run-
ners on the same team.) Although light travels from one atom to another through
the empty space between the atoms with a speed of c � 3.0 � 108 m/s, the absorp-
tions and emissions of light by the atoms require time to occur. Therefore, the aver-
age speed of light through the glass is lower than c. Once the light emerges into the
air, the absorptions and emissions cease and the light’s average speed returns to its
original value.1 Thus, whether the light is inside the material or outside, it always
travels through vacuum with the same speed. 

Light passing from one medium to another is refracted because the average speed
of light is different in the two media. In fact, light travels at its maximum speed in vac-
uum. It is convenient to define the index of refraction n of a medium to be the ratio

[25.3]

From this definition, we see that the index of refraction is a dimensionless number
greater than or equal to unity because v in a medium is less than c. Furthermore, n
is equal to unity for vacuum. The indices of refraction for various substances are
listed in Table 25.1.

n � 
speed of light in vacuum

average speed of light in the medium
�

c
v

846 ❚ CHAPTER 25 REFLECTION AND REFRACTION OF LIGHT

y g p pp

Glass
Air

Normal

(a)

Normal

(b)

Glass

Air

1θ

2θ

2θ1θ >

v2 < v1

v1

v2 > v1

v1 1θ

2θ

2θ1θ <

(a) When the light ray moves from air
into glass, its path deviates toward the
normal. (b) When the ray moves from
glass into air, its path deviates away
from the normal.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 25.9 to see light passing
through three layers of material. You
can vary the incident angle and see
the effect on the refracted rays for a
variety of values of the index of refrac-
tion of the three materials.

ACTIVE FIGURE 25.9

A B

Light passing from
one atom to another in a medium.
The dots are atoms, and the vertical
arrows represent their oscillations.

FIGURE 25.10

n IS NOT AN INTEGER HERE We have
seen n used in Chapter 11 to indi-
cate the quantum number of a
Bohr orbit and in Chapter 14 to in-
dicate the standing wave mode on a
string or in an air column. In those
cases, n was an integer. The index
of refraction n is not an integer.

� PITFALL PREVENTION 25.2

1As an analogy, consider a subway entering a city at a constant speed v and then stopping at several sta-
tions in the downtown region of the city. Although the subway may achieve the instantaneous speed v
between stations, the average speed across the city is less than v. Once the subway leaves the city and
makes no stops, it moves again at a constant speed v. The analogy, as is the case with many analogies, is
not perfect because the subway requires time to accelerate to the speed v between stations, whereas
light achieves speed c immediately as it travels between atoms.

■ Index of refraction
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As a wave travels from one medium to another, its frequency does not change.
Let us first consider this notion for waves passing from a light string to a heavier
string. If the frequencies of the incident and transmitted waves on the two strings at
the junction point were different, the strings could not remain tied together because
the joined ends of the two pieces of string would not move up and down in unison!

For a light wave passing from one medium to another, the frequency also re-
mains constant. To see why, consider Figure 25.11. Wave fronts pass an observer at
point A in medium 1 with a certain frequency and are incident on the boundary be-
tween medium 1 and medium 2. The frequency at which the wave fronts pass an
observer at point B in medium 2 must equal the frequency at which they arrive at
point A. If that were not the case, the wave fronts would either pile up at the
boundary or be destroyed or created at the boundary. Because this situation does
not occur, the frequency must be a constant as a light ray passes from one medium
into another.

Therefore, because the relation v � f � (Eq. 13.11) must be valid in both media
and because f1 � f2 � f , we see that

v1 � f �1 and v2 � f �2

Because , it follows that . A relationship between index of refraction
and wavelength can be obtained by dividing these two equations and making use of
the definition of the index of refraction given by Equation 25.3:

[25.4]

which gives

�1n1 � �2n2 [25.5]

It follows from Equation 25.5 that the index of refraction of any medium can be ex-
pressed as the ratio

[25.6]

where �0 is the wavelength of light in vacuum and �n is the wavelength in the
medium whose index of refraction is n.

We are now in a position to express Equation 25.2 in an alternative form. If we
combine Equation 25.3 and Equation 25.2, we find that

[25.7]n1 sin �1 � n 2 sin �2

n �
�0

�n

�1

�2
�

v1

v2
�

c/n1

c/n 2
�

n 2

n1

�1 	 �2v1 	 v2
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As a wave front
moves from medium 1 to medium 2,
its wavelength changes but its
frequency remains constant.

FIGURE 25.11

Indices of Refraction for Various SubstancesTABLE 25.1

Substance Index of Refraction Substance Index of Refraction

Solids at 20° C Liquids at 20° C
Cubic zirconia 2.20 Benzene 1.501
Diamond (C) 2.419 Carbon disulfide 1.628
Fluorite (CaF2) 1.434 Carbon tetrachloride 1.461
Fused quartz (SiO2) 1.458 Corn syrup 2.21
Gallium phosphide 3.50 Ethyl alcohol 1.361
Glass, crown 1.52 Glycerin 1.473
Glass, flint 1.66 Water 1.333
Ice (H2O) 1.309 Gases at 0°C, 1 atm
Polystyrene 1.49 Air 1.000 293
Sodium chloride (NaCl) 1.544 Carbon dioxide 1.000 45

Note: All values are for light having a wavelength of 589 nm in vacuum.

1
2

A

B
v2

v1

1

n2
c 
v2

=

n1
c 
v1

=

�

2�

AN INVERSE RELATIONSHIP The index
of refraction is inversely propor-
tional to the wave speed. As the
wave speed v decreases, the index
of refraction n increases. Thus, the
higher the index of refraction of a
material, the more it slows down
light from its speed in vacuum.
The more the light slows down, the
more �2 differs from �1 in
Equation 25.7.

� PITFALL PREVENTION 25.3

■ Law of refraction (Snell’s law)



This equation is the law of refraction and is the mathematical representation of the
wave under refraction model. The experimental discovery of this relationship is
usually credited to Willebrord Snell (1591–1626) and is therefore known as Snell’s
law.2 Equation 25.7 is the conventional form of the law of refraction used in optics,
expressed in terms of n values rather than speeds as in Equation 25.2.
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2The same law was deduced from the particle theory of light in 1637 by René Descartes (1596–1650)
and hence is known as Descartes’s law in France.

Light passes from a material with index of refraction 1.3 into one
with index of refraction 1.2. Compared with the incident ray, what happens to the re-
fracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from
the normal.

QUICK QUIZ 25.3

As light from the Sun enters the atmosphere, it refracts due to the
small difference between the speeds of light in air and in vacuum. The optical length of
the day is defined as the time interval between the instant when the top of the Sun is just
visibly observed above the horizon to the instant at which the top of the Sun just disap-
pears below the horizon. The geometric length of the day is defined as the time interval
between the instant when a geometric straight line drawn from the observer to the top of
the Sun just clears the horizon to the instant at which this line just dips below the hori-
zon. Which is longer, (a) the optical length of a day or (b) the geometric length of a day?

QUICK QUIZ 25.4

■ Thinking Physics 25.2
Why do face masks make vision clearer under water? A face mask includes a flat
piece of glass; the mask does not have lenses like those in eyeglasses.

Reasoning The refraction necessary for focused viewing in the eye occurs at the
air–cornea interface. The lens of the eye only performs some fine-tuning of this
image, allowing for accommodation for objects at various distances. When the eye
is opened underwater, the interface is water–cornea rather than air–cornea. Thus,
the light from the scene is not focused on the retina and the scene is blurry. The
face mask simply provides a layer of air in front of the eyes so that the air–cornea
interface is re-established and the refraction is correct to focus the light on the
retina. ■

Underwater vision

tion of air can be approximated as n1 � 1.00. Snell’s
law of refraction (see Eq. 25.7) with these data gives

Find the speed of light in the material.

Solution The speed of light in the material can be
easily obtained from Equation 25.3:

B

 �
0.643
0.438

� 1.47

 n2 � n1 
sin �1

sin �2
� (1.00) 

sin 40.0


sin 26.0


 n1 sin �1 � n 2 sin �2

Refraction in a MaterialEXAMPLE 25.2
A beam of light of wavelength 550 nm traveling in air is
incident on a slab of transparent material. The incident
beam makes an angle of 40.0° with the normal, and the
refracted beam makes an angle of 26.0° with the normal.

Find the index of refraction of the material.

Solution We conceptualize the problem by looking
again at Active Figure 25.9. Because the refracted angle
is smaller than the incident angle, the situation is
described by Active Figure 25.9a. The statement of the
problem tells us to categorize this problem as one
involving the model of a wave under refraction. To
analyze the problem, we note that the index of refrac-

A



THE WAVE UNDER REFRACTION ❚ 849

y g p pp

To finalize the problem, note that the wavelength in
the material in part C is shorter than that in vacuum.
That is consistent with the concept of the wave slowing
down in the material, as evidenced by the speed calcu-
lated in part B; the wave doesn’t travel as far during one
period of its oscillation.

374 nm�n �
�0

n
�

550 nm
1.47

�

What is the wavelength of the light in the material?

Solution We use Equation 25.6 to calculate the wave-
length in the material, noting that we are given the
wavelength in vacuum to be �0 � 550 nm:

C

2.04 � 108 m/sv �
c
n

�
3.00 � 108 m/s

1.47
�

Light Passing Through a SlabEXAMPLE 25.3INTERACTIVE

What if the thickness t of the slab is doubled? Does
the lateral displacement d also double?

Solution Consider the magnification of the area of the
light path within the slab in Figure 25.12b. The dis-
tance a is the hypotenuse of two right triangles. From
the gold triangle, we see that

and from the blue triangle, we see that

d � a sin � � a sin(�1 � �2)

Combining these equations, we have

For a given incident angle �1, the refracted angle �2 is
determined solely by the index of refraction, so the lat-
eral displacement d is proportional to t. If the thickness
doubles, so does the lateral displacement.

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 25.3 you
can explore refraction through slabs of various thicknesses.

d �
t

cos �2
 sin(�1 � �2)

a �
t

cos �2

BA light beam passes from medium 1 to medium 2, with
the latter being a thick slab of material whose index of
refraction is n 2 (Fig. 25.12).

Show that the emerging beam is parallel to the 
incident beam.

Solution First, let us apply Snell’s law to the upper
surface:

(1)

Applying Snell’s law to the lower surface gives

(2)

Substituting (1) into (2) gives

Thus, �3 � �1, and so the layer does not alter the direc-
tion of the beam. It does, however, produce a lateral
displacement d of the beam as shown in Figure 25.12.

sin �3 �
n2

n1
 � n1

n2
 sin �1� � sin �1

sin �3 �
n2

n1
 sin �2

sin �2 �
n1

n 2
 sin �1

A

d

2θ

θ1θ

t
a

γ
n2

n1

n1

θ1θ

2θ

3θ

(b)(a)

d

2θt

(Interactive Exam-
ple 25.3) When light passes through a
flat slab of material, the emerging
beam is parallel to the incident beam
and therefore �1 � �3. The dashed
line parallel to the ray coming out the
bottom of the slab represents the path
the light would take if the slab were
not there. (b) A magnification of the
area of the light path inside the slab.

FIGURE 25.12
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DISPERSION  AND  PRISMS
In the preceding section, we developed Snell’s law, which incorporates the index of
refraction of a material. In Table 25.1, we presented index of refraction values for a
number of materials. If we make careful measurements, however, we find that the
value of the index of refraction in anything but vacuum depends on the wavelength
of light. The dependence of the index of refraction on wavelength, which results
from the dependence of the wave speed on wavelength, is called dispersion. Figure
25.13 is a graphical representation of this variation in index of refraction with wave-
length. Because n is a function of wavelength, Snell’s law indicates that the angle of
refraction when light enters a material depends on the wavelength of the light. As
we see from Figure 25.13, the index of refraction for a material generally decreases
with increasing wavelength in the visible range. Thus, violet light (� � 400 nm) re-
fracts more than red light (� � 650 nm) when passing from air into a material.

To understand the effects of dispersion on light, consider what happens when
light strikes a prism as in Figure 25.14. The apex angle � of the prism is defined as
shown in the figure. A ray of light of a single wavelength that is incident on the
prism from the left emerges in a direction deviated from its original direction of
travel by an angle of deviation  that depends on the apex angle and the index of
refraction of the prism material. Now suppose a beam of white light (a combination
of all visible wavelengths) is incident on a prism. Because of dispersion, the differ-
ent colors refract through different angles of deviation, and the rays that emerge
from the second face of the prism spread out in a series of colors known as a visible
spectrum as shown in Figure 25.15. These colors, in order of decreasing wave-
length, are red, orange, yellow, green, blue, and violet.3 Violet light deviates the
most, red light deviates the least, and the remaining colors in the visible spectrum
fall between these extremes.

The dispersion of light into a spectrum is demonstrated most vividly in nature
through the formation of a rainbow, often seen by an observer positioned between
the Sun and a rain shower. To understand how a rainbow is formed, consider Active
Figure 25.16. A ray of light passing overhead strikes a spherical drop of water in the

25.5
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1.54

1.52

1.50

1.48

1.46

400 500 600 700

n

l, nm

Acrylic

Crown glass

Fused quartz

Variation of index
of refraction with vacuum wavelength
for three materials.

FIGURE 25.13

δ

Φ

A prism refracts
single-wavelength light and deviates
the light through an angle . The
apex angle � is the angle between the
sides of the prism through which the
light enters and leaves.

FIGURE 25.14

White light enters
a glass prism at the upper left. A re-
flected beam of light comes out of the
prism just below the incoming beam.
The beam moving toward the lower
right shows distinct colors. Different
colors are refracted at different angles
because the index of refraction of the
glass depends on wavelength. Violet
light deviates the most; red light devi-
ates the least.

FIGURE 25.15
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A RAINBOW OF MANY LIGHT RAYS Pic-
torial representations such as Active
Figure 25.16 are subject to misinter-
pretation. The figure shows one
ray of light entering the raindrop
and undergoing reflection and
refraction, exiting the raindrop in a
range of 40° to 42° from the enter-
ing ray. This figure might be
interpreted incorrectly as meaning
that all light entering the raindrop
exits in this small range of angles.
In reality, light exits the raindrop
over a much larger range of angles,
from 0° to 42°. A careful analysis
of the reflection and refraction
from the spherical raindrop shows
that the range of 40° to 42° is where
the highest intensity light exits the
raindrop.

� PITFALL PREVENTION 25.4

3In Newton’s time, the colors we now call teal and blue were called blue and indigo. Your “blue jeans”
are dyed with indigo. A mnemonic device for remembering the colors of the spectrum is the acronym
ROYGBIV, from the first letters of the colors: red, orange, yellow, green, blue, indigo, violet. Some indi-
viduals think of this acronym as the name of a person, Roy G. Biv!



atmosphere and is refracted and reflected as follows. It is first refracted at the front
surface of the drop, with the violet light deviating the most and the red light the
least. At the back surface of the drop, the light is reflected and returns to the front
surface, where it again undergoes refraction as it moves from water into air.

Because light enters the front surface of the raindrop at all locations, there is a
range of exit angles for the light leaving the raindrop after reflecting from the back
surface. A careful analysis of the spherical shape of the water drop, however, shows
that the exit angle of highest light intensity is 42° for the red light and 40° for the
violet light. Thus, the light from the raindrop seen by the observer is brightest for
these angles, and the observer sees a rainbow. Figure 25.17 shows the geometry for
the observer. The colors of the rainbow are seen in a range of 40° to 42° from the
antisolar direction, which is exactly 180° from the Sun. If red light is seen coming
from a raindrop high in the sky, the violet light from this drop passes over the ob-
server’s head and is not seen. Thus, the portion of the rainbow in the vicinity of this
drop is red. The violet portion of the rainbow seen by an observer is supplied by
drops lower in the sky, which send violet light to the observer’s eyes and red light
below the eyes.

The opening photograph for this chapter shows a double rainbow. The secondary
rainbow is fainter than the primary rainbow, and its colors are reversed. The sec-
ondary rainbow arises from light that makes two reflections from the interior sur-
face before exiting the raindrop. In the laboratory, rainbows have been observed in
which the light makes more than 30 reflections before exiting the water drop. Be-
cause each reflection involves some loss of light due to refraction out of the water
drop, the intensity of these higher-order rainbows is very small.
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Sunlight

40° 42°

V

R

V
R

Path of sunlight through a spheri-
cal raindrop. Light following this
path contributes to the visible
rainbow.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 25.16 to
vary the point at which the sun-
light enters the raindrop and ver-
ify that the angles shown are the
maximum angles.

ACTIVE FIGURE 25.16

In dispersive materials, the angle of refraction for a light ray depends
on the wavelength of the light. True or false: The angle of reflection from the surface of
the material depends on the wavelength.

QUICK QUIZ 25.5

HUYGENS’S  PRINCIPLE
In this section, we introduce a geometric construction proposed by Huygens in
1678. Huygens assumed that light consists of waves rather than a stream of parti-
cles. He had no knowledge of the electromagnetic character of light. Nevertheless,
his geometric model is adequate for understanding many practical aspects of the
propagation of light.

25.6

White

White

40° 42°

42°
40°

The formation of a
rainbow. 

FIGURE 25.17
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Huygens’s principle is a geometric model that allows us to determine the
position of a wave front from a knowledge of an earlier wave front. In Huygens’s
construction, all points on a given wave front are taken as point sources for the pro-
duction of spherical secondary waves, called wavelets, that propagate outward with
speeds characteristic of waves in that medium. After some time interval has elapsed,
the new position of the wave front is the surface tangent to the wavelets.

Figure 25.18 illustrates two simple examples of a Huygens’s principle construc-
tion. First, consider a plane wave moving through free space as in Figure 25.18a. At
t � 0, the wave front is indicated by the plane labeled AA�. Each point on this wave
front is a point source for a wavelet. Showing three of these points, we draw arcs of
circles, each of radius c �t, where c is the speed of light in free space and �t is the
time interval during which the wave propagates. The surface drawn tangent to the
wavelets is the plane BB�, which is parallel to AA�. This plane is the wave front at the
end of the time interval �t. In a similar manner, Figure 25.18b shows Huygens’s
construction for an outgoing spherical wave.

A convincing demonstration of the existence of Huygens wavelets is obtained
with water waves in a shallow tank (called a ripple tank) as in Figure 25.19. Plane
waves produced to the left of the slits emerge to the right of the slits as two-
dimensional circular waves propagating outward. In the plane wave, each point on
the wave front acts as a source of circular waves on the two-dimensional water sur-
face. At a later time, the tangent of the circular wave fronts remains a straight line.
As the wave front encounters the barrier, however, waves at all points on the wave
front, except those that encounter the openings, are reflected. For very small open-
ings, we can model this situation as if only one source of Huygens wavelets exists at
each of the two openings. As a result, the Huygens wavelets from those single
sources are seen as the outgoing circular waves in the right portion of Figure 25.19.
This is a dramatic example of diffraction that was mentioned in the opening sec-
tion of this chapter, a phenomenon we shall study in more detail in Chapter 27.
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(a) (b)

Old wave 
front

New wave 
front

c ∆ t

A B

Old wave 
front

New wave 
front

A′ B ′

c ∆ t

Huygens’s
construction for (a) a plane wave
propagating to the right and 
(b) a spherical wave.

FIGURE 25.18

toward D. At the same time, the wave at B emits a
Huygens wavelet (the circular arc centered on B)
toward C. Figure 25.20a shows these wavelets after a
time interval �t, after which ray 2 strikes the surface.
Because both rays 1 and 2 move with the same speed,
we must have AD � BC � c �t.

Deriving the Laws of Reflection and RefractionEXAMPLE 25.4
Use Huygens’s principle to derive the law of reflection.

Solution To derive the law of reflection, consider the
rays shown in Figure 25.20a. The line AB represents a
wave front of the incident light just as ray 1 strikes the
surface. At this instant, the wave at A sends out a
Huygens wavelet (the circular arc centered on A)

Water waves in a
ripple tank demonstrate Huygens
wavelets. A plane wave is incident on a
barrier with two small openings. The
openings act as sources of circular
wavelets.

FIGURE 25.19
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Christiaan Huygens (1629–1695)
Huygens, a Dutch physicist and as-
tronomer, is best known for his con-
tributions to the fields of optics and
dynamics. To Huygens, light was a
type of vibratory motion, spreading
out and producing the sensation of
sight when impinging on the eye.
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TOTAL  INTERNAL  REFLECTION
An interesting effect called total internal reflection can occur when light travels
from a medium with a high index of refraction to one with a lower index of refrac-
tion. Consider a light ray traveling in medium 1 and meeting the boundary
between media 1 and 2, where n1 � n2 (Active Fig. 25.22a). Various possible direc-
tions of the ray are indicated by rays 1 through 5. The refracted rays are bent away

25.7
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The remainder of our analysis depends on geometry,
as summarized in Figure 25.20b, in which we isolate the
triangles ABC and ADC. Note that these two triangles
are congruent because they have the same hypotenuse
AC and because AD � BC. From Figure 25.20b, we have

and

where, comparing Figures 25.20a and 25.20b, we see that
� � 90° � �1 and �� � 90° � �1�. Because AD � BC ,

cos � � cos ��

Therefore,

� � ��

90° � �1 � 90° � �1�

and

�1 � �1�

which is the law of reflection.

Use Huygens’s principle to derive the law of
refraction.

Solution For the law of refraction, consider the geo-
metric construction shown in Figure 25.21. We focus
our attention on the instant ray 1 strikes the surface
and the subsequent time interval until ray 2 strikes the
surface. During this time interval, the wave at A sends
out a Huygens wavelet (the arc centered on A) toward
D. In the same time interval, the wave at B sends out a
Huygens wavelet (the arc centered on B) toward C. Be-
cause these two wavelets travel through different media,
the radii of the wavelets are different. The radius of the
wavelet from A is AD � v2 �t, where v2 is the wave

B

cos �� �
AD
AC

cos � �
BC
AC

γ′γA C

B D

(b)(a)

A C

B D
1′θ

1θ

1

2 (Example 25.4) 
(a) Huygens’s construction for prov-
ing the law of reflection. At the in-
stant ray 1 strikes the surface, it sends
out a Huygens wavelet from A and ray
2 sends out a Huygens wavelet from B.
We choose a radius of the wavelet to
be c �t, where �t is the time interval
for ray 2 to travel from B to C . 
(b) Triangle ADC is congruent with
triangle ABC.

FIGURE 25.20

1θ C

B

1θ

1

2

2θ
2θ

A

D

(Example 25.4) Huygens’s construction for prov-
ing Snell’s law of refraction. At the instant ray 1
strikes the surface, it sends out a Huygens wavelet
from A and ray 2 sends out a Huygens wavelet
from B. The two wavelets have different radii be-
cause they travel in different media.

FIGURE 25.21

speed in the second medium. The radius of the wavelet
from B is BC � v1 �t, where v1 is the wave speed in the
original medium.

From triangles ABC and ADC, we find that

and sin �2 �
AD
AC

�
v2 �t
AC

sin �1 �
BC
AC

�
v1 �t
AC

If we divide the first equation by the second, we obtain

From Equation 25.3, however, we know that v1 � c/n1
and v2 � c/n2. Therefore,

n1 sin �1 � n2 sin �2

which is Snell’s law of refraction.

sin �1

sin �2
�

c/n1

c/n2
�

n2

n1

sin �1

sin �2
�

v1

v2



from the normal because n1 � n2. (Remember that when light refracts at the inter-
face between the two media, it is also partially reflected. For simplicity, we ignore
these reflected rays here, except for ray 5.) At some particular angle of incidence
�c , called the critical angle, the refracted light ray moves parallel to the boundary so
that �2 � 90° (Active Fig. 25.22b). For angles of incidence greater than �c , no ray is
refracted and the incident ray is entirely reflected at the boundary, as is ray 5 in
Active Figure 25.22a. This ray is reflected at the boundary as though it had struck a
perfectly reflecting surface. It obeys the law of reflection; that is, the angle of inci-
dence equals the angle of reflection.

We can use Snell’s law to find the critical angle. When �1 � �c, �2 � 90°, and
Snell’s law (Eq. 25.7) gives

[25.8]

This equation can be used only when n1 is greater than n2. That is, total internal re-
flection occurs only when light travels from a medium of high index of refraction to
a medium of lower index of refraction. That is why the word internal is in the name.
The light must initially be inside a material of higher index of refraction than the
medium outside the material. If n1 were less than n2, Equation 25.8 would give 
sin �c � 1, which is meaningless because the sine of an angle can never be greater
than unity.

The critical angle for total internal reflection is small when n1 is considerably
larger than n2. Examples of this situation are diamond (n � 2.42 and �c � 24°) and
crown glass (n � 1.52 and �c � 41°), where the angles given correspond to light re-
fracting from the material into air. Total internal reflection combined with proper
faceting causes diamonds and crystal glass to sparkle when observed in light.

sin �c �
n2

n1
  (for n1 � n2)

n1 sin �c � n2 sin 90
 � n2
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Normal

n 2
n 1

(b)

n 1 >n 2

cθ

Normal

n 2
n 1

(a)

3

2

4

5

1

2θ

1θ

n 1 >n 2

(a) Rays travel from a medium of index
of refraction n1 into a medium of index
of refraction n2, where n1 � n2. As the
angle of incidence increases, the angle
of refraction �2 increases until �2 is 90°
(ray 4). For even larger angles of inci-
dence, total internal reflection occurs
(ray 5). (b) The angle of incidence
producing an angle of refraction equal
to 90° is the critical angle �c .

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 25.22 to vary the inci-
dent angle and see the effect on the
refracted ray and the distribution of
incident energy between the reflected
and refracted rays.

ACTIVE FIGURE 25.22

(i) In Figure 25.23, five light rays enter a glass prism from the left. How
many of these rays undergo total internal reflection at the slanted surface of the prism?
(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (ii) Suppose the prism in Figure 25.23 can be rotated in
the plane of the paper. For all five rays to experience total internal reflection from the
slanted surface, should the prism be rotated (a) clockwise or (b) counterclockwise?

QUICK QUIZ 25.6

A beam of white light is incident on a crown glass–air interface as
shown in Active Figure 25.22. The incoming beam is rotated clockwise, so the incident
angle � increases. Because of dispersion in the glass, some colors of light experience total
internal reflection (ray 4 in Active Fig. 25.22a) before other colors, so the beam refracting
out of the glass is no longer white. What is the last color to refract out of the upper
surface? (a) violet (b) green (c) red (d) impossible to determine

QUICK QUIZ 25.7

(Quick Quiz 25.6) Five nonparallel
rays of light enter a glass prism from the left.

FIGURE 25.23
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CONTEXT 
connectionOPTICAL  FIBERS

An interesting application of total internal reflection is the use of glass or transpar-
ent plastic rods to “pipe” light from one place to another. In the communication in-
dustry, digital pulses of laser light move along these light pipes, carrying informa-
tion at an extremely high rate. In this Context Connection, we investigate the
physics of this technological advance.

Figure 25.25 shows light traveling within a narrow transparent rod. The light is
limited to traveling within the rod, even around gentle curves, as the result of suc-
cessive total internal reflections. Such a light pipe can be flexible if thin fibers—
called optical fibers—are used rather than thick rods. If a bundle of parallel opti-
cal fibers is used to construct an optical transmission line, images can be
transferred from one point to another as we shall discuss in the Context Connec-
tion of Chapter 26. Typical diameters for optical fibers are measured in tens of
micrometers.

A typical optical fiber consists of a transparent core surrounded by a cladding, a
material that has a lower index of refraction than the core. The combination may
be surrounded by a plastic jacket to prevent mechanical damage. Figure 25.26 shows
a cutaway view of this construction. Because the index of refraction of the cladding
is less than that of the core, light traveling in the core experiences total internal re-
flection if it arrives at the interface between the core and the cladding at an angle
of incidence that exceeds the critical angle. In this case, light “bounces” along the
core of the optical fiber, losing very little of its intensity as it travels.

Figure 25.27 shows a cross-sectional view from the side of a simple type of optical
fiber known as a multimode, stepped index fiber. The term stepped index refers to the

25.8
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the water’s surface before being refracted to the fish’s
eye; at this angle, the fish can in principle see the whole
shore of the pond. At angles greater than the critical
angle, the light reaching the fish comes by means of
internal reflection at the surface. Thus, at 60°, the fish
sees a reflection of the bottom of the pond.

A View from the Fish’s EyeEXAMPLE 25.5

Find the critical angle for a water–air boundary if
the index of refraction of water is 1.33.

Solution Applying Equation 25.8, we find the critical
angle to be

What if a fish in a still pond looks upward toward
the water’s surface at different angles relative to the
surface as in Figure 25.24? What does it see?

Solution Examine Active Figure 25.22a. Because the
path of a light ray is reversible, light traveling from
medium 2 into medium 1 in Active Figure 25.22a fol-
lows the paths shown, but in the opposite direction. A
fish looking upward toward the water surface as in
Figure 25.24 can see out of the water if it looks toward
the surface at an angle less than the critical angle.
Thus, for example, when the fish’s line of vision makes
an angle of 40° with the normal to the surface, light
from above the water reaches the fish’s eye. At 48.8°,
the critical angle for water, the light has to skim along

B

48.8
 �c �

 sin �c �
n2

n1
�

1
1.33

� 0.752

A

θ

(Example 25.5) A fish looks upward toward the
surface of the water.

FIGURE 25.24

Light travels in a
curved transparent rod by multiple
internal reflections.

FIGURE 25.25

Jacket

Cladding

Glass or plastic
core

The construction
of an optical fiber. Light travels in the
core, which is surrounded by a
cladding and a protective jacket.

FIGURE 25.26



(a) A rectangular pulse of laser light to be sent into an optical fiber. 
(b) The output pulse of light, which has been broadened due to light
taking different paths through the fiber.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 25.28/30 
to see the variation in the pulse shape as changes to the optical fiber in Active Figure 25.30
are made.

ACTIVE FIGURE 25.28

discontinuity in index of refraction between the core and the cladding, and multi-
mode means that light entering the fiber at many angles is transmitted. This type of
fiber is acceptable for transmitting signals over a short distance but not long dis-
tances because a digital pulse spreads with distance. Let us imagine that we input a
perfectly rectangular pulse of laser light to the core of the optical fiber. Active Fig-
ure 25.28a shows the idealized time behavior of the laser light intensity for the in-
put pulse. The laser light intensity rises instantaneously to its highest value, stays
constant for the duration of the pulse, and then instantaneously drops to zero. The
light from the pulse entering along the axis in Figure 25.27 travels the shortest dis-
tance and arrives at the other end first. The other light paths represent longer dis-
tance of travel because of the angled bounces. As a result, the light from the pulse
arrives at the other end over a longer period and the pulse is spread out as in Active
Figure 25.28b. If a series of pulses represents zeroes and ones for a binary signal,
this spreading could cause the pulses to overlap or might reduce the peak intensity
below the detection threshold; either situation would result in obliteration of the
information.

One way to improve optical transmission in such a situation is to use a multimode,
graded index fiber. This fiber has a core whose index of refraction is smaller at larger
radii from the center as suggested by the shading in Figure 25.29. With a graded in-
dex core, off-axis rays of light experience continuous refraction and curve gradually
away from the edges and back toward the center as shown by the light path in
Figure 25.29. Such curving reduces the transit time through the fiber for off-axis
rays and also reduces the spreading out of the pulse. The transit time is reduced for
two reasons. First, the path length is reduced, and second, much of the time the
wave travels in the lower index of refraction region, where the speed of light is
higher than at the center.

The spreading effect in Active Figure 25.28 can be further reduced and almost
eliminated by designing the fiber with two changes from the multimode, stepped
index fiber in Figure 25.27. The core is made very small so that all paths within it
are more nearly the same length, and the difference in index of refraction between
core and cladding is made relatively small so that off-axis rays enter the cladding
and are absorbed. These changes are suggested in Active Figure 25.30. This kind of
fiber is called a single-mode, stepped index fiber. It can carry information at high bit
rates because the pulses are minimally spread out.
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Strands of glass or plastic optical
fibers are used to carry voice, video,
and data signals in telecommunica-
tion networks. Typical fibers have
diameters of 60 �m. ■
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A multimode,
stepped index optical fiber. Light rays
entering over a wide range of angles
pass through the core. Those making
large angles with the axis take longer
to travel the length of the fiber than
those making small angles.
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In reality, the material of the core is not perfectly transparent. Some absorp-
tion and scattering occurs as the light travels down the fiber. Absorption trans-
forms energy being transferred by electromagnetic radiation into increased in-
ternal energy in the fiber. Scattering causes light to strike the core–cladding
interface at angles less than the critical angle for total internal reflection, result-
ing in some loss in the cladding or jacket. Even with these problems, optical fibers
can transmit about 95% of the input energy over a kilometer. The problems are
minimized by using as long a wavelength as possible for which the core material is
transparent. The scattering and absorption centers then appear as small as possi-
ble to the waves and minimize the probability of interaction. Much of optical
fiber communication occurs with light from infrared lasers, having wavelengths of
about 1 300 nm.

The field of developing applications for optical fibers is called fiber optics.
One common application is the use of optical fibers in telecommunications be-
cause the fibers can carry a much higher volume of telephone calls, or other forms
of communication, than electric wires. Optical fibers are also used in “smart
buildings.” In this application, sensors are located at various points within a build-
ing and an optical fiber carries laser light to the sensor, which reflects it back to a
control system. If any distortion occurs in the building due to earthquake or
other causes, the intensity of the reflected light from the sensor changes and the
control system locates the point of distortion by identifying the particular sensor
involved.

A single optical fiber can carry a digital signal, as we already described. If it is
desired for optical fibers to carry an image of a scene, it is necessary to use a bundle
of optical fibers. A popular use of such bundles is in the use of fiberscopes in
medicine. In the Context Connection of Chapter 26, we shall investigate these
devices. ■
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index core

Jacket

A multimode, graded
index optical fiber. Because the index of
refraction of the core varies radially, off-axis
light rays follow curved paths through the
core.

FIGURE 25.29

Cladding

Small
radius core

Jacket

A single-mode, stepped index
optical fiber. The small radius of the core and the small
difference between the indices of refraction of the core
and cladding reduce the broadening of light pulses.

Log into PhysicsNow at
www.pop4e.com and go to Active Figure 25.28/30 to
make changes to the optical fiber and see the variation
in the pulse shape in Active Figure 25.28.

ACTIVE FIGURE 25.30
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SUMMARY

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter

In geometric optics, we use the ray approximation in which we
assume that a wave travels through a medium in straight lines
in the direction of the rays of that wave. We ignore diffraction
effects, which is a good approximation as long as the wave-
length is short compared with the size of any openings.

The law of reflection states that part of a wave incident on a
surface reflects from the surface so that the angle of reflection
� �1 equals the angle of incidence �1.

The index of refraction n of a material is defined as

[25.3]

where c is the speed of light in a vacuum and v is the speed of
light in the material.

n � 
c
v

Part of a light wave striking an interface between two media
is transmitted into the second medium and undergoes a
change in the direction of propagation. The law of refraction,
or Snell’s law, states that

[25.7]

In general, n varies with wavelength, which is called dispersion.
Huygens’s principle states that all points on a wave front can be
taken as point sources for the production of secondary
wavelets. At some later time, the new position of the wave front
is the surface tangent to these secondary wavelets.

Total internal reflection can occur when light travels from a
medium of high index of refraction to one of lower index of re-
fraction. The critical angle of incidence �c for which total inter-
nal reflection occurs at an interface is

[25.8]sin �c �
n2

n1
  (for n1 � n2)

n1 sin �1 � n2 sin �2

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. Light of wavelength � is incident on a slit of width d. Un-
der what conditions is the ray approximation valid? Under
what circumstances does the slit produce enough diffrac-
tion to make the ray approximation invalid?

2. The display windows of some department stores are
slanted slightly inward at the bottom to decrease the glare
from streetlights or the Sun, which would make it difficult
for shoppers to see the display inside. Sketch a light ray re-
flecting from such a window to show how this design
works.

3. The rectangular aquarium sketched in Figure Q25.3 con-
tains only one goldfish. When the fish is near a corner of
the tank and is viewed along a direction that make an
equal angle with two adjacent faces, the observer sees
two fish mirroring each other, as shown. Explain this
observation.

4. Sound waves have much in common with light waves, in-
cluding the properties of reflection and refraction. Give
examples of these phenomena for sound waves.

As light travels from one medium to another, does the
wavelength of the light change? Does the frequency
change? Does the speed change? Explain.

6. A laser beam passing through a nonhomogeneous sugar
solution follows a curved path. Explain.

Explain why a diamond sparkles more than a glass crystal
of the same shape and size.

8. Why does a diamond show flashes of color when observed
under white light?

Explain why a diamond loses most of its sparkle when it is
submerged in carbon disulfide and why an imitation dia-
mond of cubic zirconia loses all its sparkle in corn syrup.

10. Describe an experiment in which total internal reflection
is used to determine the index of refraction of a medium.

When two colors of light (X and Y) are sent through a
glass prism, X is bent more than Y. Which color travels
more slowly in the prism?

12. Is it possible to have total internal reflection for light inci-
dent from air on water? Explain.

13. Total internal reflection is applied in the periscope of a
submarine to let the user “see around corners.” In this de-
vice, two prisms are arranged as shown in Figure Q25.13 so
that an incident beam of light follows the path shown. Par-
allel tilted silvered mirrors could be used, but glass prisms
with no silvered surfaces give higher light throughput. Pro-
pose a reason for the higher efficiency.

11.

9.

7.

5.

FIGURE Q25.3
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14. At one restaurant, a worker uses colored chalk to write the
daily specials on a blackboard illuminated with a spotlight.
At another restaurant, a worker writes with colored grease
pencils on a flat, smooth sheet of transparent acrylic plastic
with index of refraction 1.55. The plastic panel hangs in
front of a piece of black felt. Small, bright electric lights
are installed all along the edges of the plastic sheet, inside
an opaque channel. Figure Q25.14 shows a cutaway view.
Explain why viewers at both restaurants see the letters shin-
ing against a black background. Explain why the sign at
the second restaurant may use less energy from the electric
company. What would be a good choice for the index of
refraction of the material in the grease pencils?

15. How is it possible that a complete circle of a rainbow can
sometimes be seen from an airplane? With a stepladder, a
lawn sprinkler, and a sunny day, how can you show the
complete circle to children? 

16. Under what conditions is a mirage formed? On a hot day,
what are we seeing when we observe “water on the road”?

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 25.2 ■ The Ray Model in Geometric Optics
Section 25.3 ■ The Wave Under Reflection
Section 25.4 ■ The Wave Under Refraction

Note: You may look up indices of refraction in Table 25.1.

1. The two mirrors illustrated in Figure P25.1 meet at a right
angle. The beam of light in the vertical plane P strikes mir-
ror 1 as shown. (a) Determine the distance the reflected
light beam travels before striking mirror 2. (b) In what di-
rection does the light beam travel after being reflected
from mirror 2?

2. Two flat, rectangular mirrors, both perpendicular to a hor-
izontal sheet of paper, are set edge to edge with their re-

flecting surfaces perpendicular to each other. (a) A light
ray in the plane of the paper strikes one of the mirrors at
an arbitrary angle of incidence �1. Prove that the final
direction of the ray, after reflection from both mirrors, is
opposite to its initial direction. In a clothing store, such a
pair of mirrors shows you an image of yourself as others
see you, with no apparent right– left reversal. (b) Now as-
sume that the paper is replaced with a third flat mirror,
touching edges with the other two and perpendicular to
both. The set of three mirrors is called a corner-cube reflector.
A ray of light is incident from any direction within the oc-
tant of space bounded by the reflecting surfaces. Argue

Mirror
2

Mirror
1

Light 
beam

P

40.0°

1.25 m

FIGURE P25.1
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that the ray will reflect once from each mirror and that its
final direction will be opposite to its original direction.
The Apollo 11 astronauts placed a panel of corner cube
reflectors on the Moon. Analysis of timing data taken with
the panel reveals that the radius of the Moon’s orbit is in-
creasing at the rate of 3.8 cm/yr as it loses kinetic energy
because of tidal friction.

3. How many times will the incident beam shown in Figure
P25.3 be reflected by each of the parallel mirrors?

11. Find the speed of light in (a) flint glass, (b) water, and
(c) cubic zirconia.

12. A light ray initially in water enters a transparent substance
at an angle of incidence of 37.0°, and the transmitted ray is
refracted at an angle of 25.0°. Calculate the speed of light
in the transparent substance.

A ray of light strikes a flat block of glass
(n � 1.50) of thickness 2.00 cm at an angle of 30.0° with
the normal. Trace the light beam through the glass and
find the angles of incidence and refraction at each surface.

14. An opaque cylindrical tank with an open top has a diame-
ter of 3.00 m and is completely filled with water. When the
afternoon Sun reaches an angle of 28.0° above the hori-
zon, sunlight ceases to illuminate any part of the bottom of
the tank. How deep is the tank?

15. Unpolarized light in vacuum is incident onto a sheet of
glass with index of refraction n. The reflected and refracted
rays are perpendicular to each other. Find the angle of inci-
dence. This angle is called Brewster’s angle or the polarizing
angle. In this situation, the reflected light is linearly polar-
ized, with its electric field restricted to be perpendicular to
the plane containing the rays and the normal. 

16. A narrow beam of ultrasonic waves reflects off the liver
tumor in Figure P25.16. The speed of the wave is 10.0%
less in the liver than in the surrounding medium. Deter-
mine the depth of the tumor.

13.
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FIGURE P25.17 Problems 25.17 and 25.18.

4. A narrow beam of sodium yellow light, with wavelength
589 nm in vacuum, is incident from air onto a smooth wa-
ter surface at an angle of incidence of 35.0°. Determine
the angle of refraction and the wavelength of the light in
water.

5. Compare this problem with Problem 25.4. A plane sound wave
in air at 20°C, with wavelength 589 mm, is incident on a
smooth surface of water at 25°C, at an angle of incidence
of 3.50°. Determine the angle of refraction for the sound
wave and the wavelength of the sound in water.

6. The wavelength of red helium–neon laser light in air is
632.8 nm. (a) What is its frequency? (b) What is its wave-
length in glass that has an index of refraction of 1.50?
(c) What is its speed in the glass?

An underwater scuba diver sees the Sun at an apparent an-
gle of 45.0° above the horizon. What is the actual elevation
angle of the Sun above the horizon?

8. A ray of light is incident on a flat surface of a block of
crown glass that is surrounded by water. The angle of re-
fraction is 19.6°. Find the angle of reflection.

9. A laser beam with vacuum wavelength 632.8 nm is incident
from air onto a block of glass as shown in Active Figure
25.8b. The line of sight of the photograph is perpendicular
to the plane in which the light moves. Find the (a) speed,
(b) frequency, and (c) wavelength of the light in the glass.
The glass is not necessarily either of the types listed in
Table 25.1. (Suggestion: Use a protractor.)

10. A laser beam is incident at an angle of 30.0° from the verti-
cal onto a solution of corn syrup in water. The beam is
refracted to 19.24° from the vertical. (a) What is the index
of refraction of the corn syrup solution? Assume that
the light is red, with vacuum wavelength 632.8 nm. Find
its (b) wavelength, (c) frequency, and (d) speed in the
solution.

7.
17. When the light illustrated in Figure P25.17 passes through

the glass block, it is shifted laterally by the distance d. Tak-
ing n � 1.50, find the value of d .

18. Find the time interval required for the light to pass
through the glass block described in Problem 25.17.



19. The light beam shown in Figure P25.19 makes an angle of
20.0° with the normal line NN � in the linseed oil. Deter-
mine the angles � and ��. (Note: The index of refraction of
linseed oil is 1.48.)

20. A digital video disc records information in a spiral track
about 1 �m wide. The track consists of a series of pits in
the information layer (see Fig. P25.20a) that scatter
light from a laser beam sharply focused on them. The
laser shines in through transparent plastic of thickness 
t � 1.20 mm and index of refraction 1.55. Assume that the
width of the laser beam at the information layer must be

a � 1.00 �m to read from just one track and not from its
neighbors (Fig. P25.20b). Assume that the width of
the beam as it enters the transparent plastic from below is
w � 0.700 mm. A lens makes the beam converge into a
cone with an apex angle 2�1 before it enters the disk. Find
the incidence angle �1 of the light at the edge of the coni-
cal beam. Note that this design is relatively immune to
small dust particles degrading the video quality. Particles
on the plastic surface would have to be as large as 0.7 mm
to obscure the beam.

21. When you look through a window, by what time interval is
the light you see delayed by having to go through glass in-
stead of air? Make an order-of-magnitude estimate on the
basis of data you specify. By how many wavelengths is it
delayed?

22. The reflecting surfaces of two intersecting flat mirrors are
at an angle � (0° � � � 90°) as shown in Figure P25.22.
For a light ray that strikes the horizontal mirror, show that
the emerging ray will intersect the incident ray at an angle
� � 180° � 2�.
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FIGURE P25.20 (a) A micrograph of a DVD surface showing
pits along each track. (b) Cross-section of a cone-shaped laser
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Section 25.5 ■ Dispersion and Prisms
23. A narrow white light beam is incident on a block of fused

quartz at an angle of 30.0°. Find the angular width of the
light beam inside the quartz.

24. A ray of light strikes the midpoint of one face of an equian-
gular glass prism (n � 1.50) at an angle of incidence of
30.0°. Trace the path of the light ray through the glass and
find the angles of incidence and refraction at each surface.

A triangular glass prism with apex angle � � 60.0° has an
index of refraction n � 1.50 (Fig. P25.25). What is the
smallest angle of incidence �1 for which a light ray can
emerge from the other side?

25.

Φ
1θ

FIGURE P25.25 Problems 25.25 and 25.26.

A triangular glass prism with apex angle � has index of re-
fraction n. (See Fig. P25.25.) What is the smallest angle of
incidence �1 for which a light ray can emerge from the
other side?

26.



The index of refraction for violet light
in silica flint glass is 1.66 and that for red light is 1.62.
What is the angular dispersion of visible light passing
through a prism of apex angle 60.0° if the angle of inci-
dence is 50.0°? (See Fig. P25.27.)

27.

Section 25.6 ■ Huygens’s Principle
28. The speed of a water wave is described by , where d

is the water depth, assumed to be small compared to the
wavelength. Because their speed changes, water waves re-
fract when moving into a region of different depth. Sketch
a map of an ocean beach on the eastern side of a landmass.
Show contour lines of constant depth under water, assum-
ing reasonably uniform slope. (a) Suppose waves approach
the coast from a storm far away to the north–northeast.
Demonstrate that the waves will move nearly perpendicular
to the shoreline when they reach the beach. (b) Sketch a
map of a coastline with alternating bays and headlands as
suggested in Figure P25.28. Again make a reasonable guess
about the shape of contour lines of constant depth. Sup-
pose waves approach the coast, carrying energy with uni-
form density along originally straight wavefronts. Show that
the energy reaching the coast is concentrated at the head-
lands and has lower intensity in the bays.

v � √gd

angle for total internal reflection of sound at the 
concrete–air boundary. (b) In which medium must the
sound be traveling to undergo total internal reflection?
(c) “A bare concrete wall is a highly efficient mirror for
sound.” Give evidence for or against this statement.

Consider a common mirage formed by super-heated air
just above a roadway. A truck driver whose eyes are 2.00 m
above the road, where n � 1.000 3, looks forward. She per-
ceives the illusion of a patch of water ahead on the road,
where her line of sight makes an angle of 1.20° below the
horizontal. Find the index of refraction of the air just
above the road surface. (Suggestion: Treat this problem as
one about total internal reflection.)

32. In about 1965, engineers at the Toro Company invented a
gasoline gauge for small engines, diagrammed in Figure
P25.32. The gauge has no moving parts. It consists of a flat
slab of transparent plastic fitting vertically into a slot in the
cap on the gas tank. None of the plastic has a reflective
coating. The plastic projects from the horizontal top down
nearly to the bottom of the opaque tank. Its lower edge is
cut with facets making angles of 45° with the horizontal. A
lawn mower operator looks down from above and sees a
boundary between bright and dark on the gauge. The loca-
tion of the boundary, across the width of the plastic, indi-
cates the quantity of gasoline in the tank. Explain how the
gauge works. Explain the design requirements, if any, for
the index of refraction of the plastic.

31.
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Section 25.7 ■ Total Internal Reflection
29. For 589-nm light, calculate the critical angle for the follow-

ing materials surrounded by air: (a) diamond, (b) flint
glass, and (c) ice.

30. A room contains air in which the speed of sound is
343 m/s. The walls of the room are made of concrete, in
which the speed of sound is 1 850 m/s. (a) Find the critical

Section 25.8 ■ Context Connection — Optical Fibers
33. Determine the maximum angle � for which the light rays

incident on the end of the pipe in Figure P25.33 are sub-
ject to total internal reflection along the walls of the pipe.
Assume that the pipe has an index of refraction of 1.36
and that the outside medium is air. Your answer defines
the size of the cone of acceptance for the light pipe.

θ

µ2.00    m

FIGURE P25.33



34. A glass fiber (n � 1.50) is submerged in water (n � 1.33).
What is the critical angle for light to stay inside the optical
fiber?

A laser beam strikes one end of a slab of
material as shown in Figure P25.35. The index of refrac-
tion of the slab is 1.48. Determine the number of internal
reflections of the beam before it emerges from the oppo-
site end of the slab.

35.

36. An optical fiber has index of refraction n and diameter d.
It is surrounded by air. Light is sent into the fiber along its
axis as shown in Figure P25.36. (a) Find the smallest out-
side radius R permitted for a bend in the fiber if no light is
to escape. (b) Does the result for part (a) predict reason-
able behavior as d approaches zero? As n increases? As n
approaches 1? (c) Evaluate R assuming the fiber diameter
is 100 �m and its index of refraction is 1.40.

Additional Problems
37. Three sheets of plastic have unknown indices of refraction.

Sheet 1 is placed on top of sheet 2, and a laser beam is di-
rected onto the sheets from above so that it strikes the in-
terface at an angle of 26.5° with the normal. The refracted
beam in sheet 2 makes an angle of 31.7° with the normal.
The experiment is repeated with sheet 3 on top of sheet 2,
and, with the same angle of incidence, the refracted beam
makes an angle of 36.7° with the normal. If the experi-
ment is repeated again with sheet 1 on top of sheet 3, what
is the expected angle of refraction in sheet 3? Assume the
same angle of incidence.

38. Figure P25.38 shows a desk ornament globe containing a
photograph. The flat photograph is in air, inside a vertical
slot located behind a water-filled compartment having the
shape of one half of a cylinder. Suppose you are looking at
the center of the photograph and then rotate the globe

about a vertical axis. You find that the center of the photo-
graph disappears when you rotate the globe beyond a cer-
tain maximum angle (Fig. P25.38b). Account for this phe-
nomenon and calculate the maximum angle. Briefly
describe what you see when you turn the globe beyond this
angle.

39. A light ray enters the atmosphere of a planet where it de-
scends vertically to the surface a distance h below. The in-
dex of refraction where the light enters the atmosphere is
1.000, and it increases linearly to the surface where it has
the value n. (a) How long does it take the ray to traverse
this path? (b) Compare this time interval to that required
in the absence of an atmosphere.

40. (a) Consider a horizontal interface between air above
and glass of index 1.55 below. Draw a light ray incident
from the air at angle of incidence 30.0°. Determine the an-
gles of the reflected and refracted rays and show them on
the diagram. (b) Now suppose the light ray is incident
from the glass at angle of incidence 30.0°. Determine the
angles of the reflected and refracted rays and show all
three rays on a new diagram. (c) For rays incident from
the air onto the air–glass surface, determine and tabulate
the angles of reflection and refraction for all the angles of
incidence at 10.0° intervals from 0° to 90.0°. (d) Do the
same for light rays coming up to the interface through the
glass.

A small light fixture is on the bottom of
a swimming pool, 1.00 m below the surface. The light
emerging from the water forms a circle on the still water
surface. What is the diameter of this circle?

42. One technique for measuring the angle of a prism is
shown in Figure P25.42. A parallel beam of light is directed
on the angle so that parts of the beam reflect from oppo-
site sides. Show that the angular separation of the two re-
flected beams is given by B � 2A.

41.
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43. The walls of a prison cell are perpendicular to the four
cardinal compass directions. On the first day of spring,
light from the rising Sun enters a rectangular window in
the eastern wall. The light traverses 2.37 m horizontally to
shine perpendicularly on the wall opposite the window. A
young prisoner observes the patch of light moving across
this western wall and for the first time forms his own un-
derstanding of the rotation of the Earth. (a) With what
speed does the illuminated rectangle move? (b) The pris-
oner holds a small, square mirror flat against the wall at
one corner of the rectangle of light. The mirror reflects
light back to a spot on the eastern wall close beside the
window. How fast does the smaller square of light move
across that wall? (c) Seen from a latitude of 40.0° north,
the rising Sun moves through the sky along a line making
a 50.0° angle with the southeastern horizon. In what direc-
tion does the rectangular patch of light on the western wall
of the prisoner’s cell move? (d) In what direction does the
smaller square of light on the eastern wall move?

44. Figure P25.44 shows a top view of a square enclosure. The
inner surfaces are plane mirrors. A ray of light enters a
small hole in the center of one mirror. (a) At what angle
� must the ray enter so as to exit through the hole after
being reflected once by each of the other three mirrors?
(b) Are there other values of � for which the ray can exit
after multiple reflections? If so, make a sketch of one of
the ray’s paths.

intensity), S1� is the reflected intensity, and n1 and n 2 are
the refractive indices of the two media. (a) What fraction
of the incident intensity is reflected for 589-nm light nor-
mally incident on an interface between air and crown
glass? (b) Does it matter in part (a) whether the light is in
the air or in the glass as it strikes the interface? 

48. Refer to Problem 25.47 for its description of the reflected
intensity of light normally incident on an interface be-
tween two transparent media. (a) For light normally inci-
dent on an interface between vacuum and a transparent
medium of index n, show that the intensity S2 of the trans-
mitted light is given by S2/S1 � 4n/(n � 1)2. (b) Light
travels perpendicularly through a diamond slab, sur-
rounded by air, with parallel surfaces of entry and exit. Ap-
ply the transmission fraction in part (a) to find the approx-
imate overall transmission through the slab of diamond, as
a percentage. Ignore light reflected back and forth within
the slab.

49. This problem builds upon the results of Problems 25.47
and 25.48. Light travels perpendicularly through a dia-
mond slab, surrounded by air, with parallel surfaces of en-
try and exit. The intensity of the transmitted light is what
fraction of the incident intensity? Include the effects of
light reflected back and forth inside the slab.

50. Builders use a leveling instrument with the beam from a
fixed helium–neon laser reflecting in a horizontal plane
from a small, flat mirror mounted on an accurately vertical
rotating shaft. The light is sufficiently bright and the rota-
tion rate is sufficiently high that the reflected light appears
as a horizontal line wherever it falls on a wall. (a) Assume
that the mirror is at the center of a circular grain elevator
of radius R. The mirror spins with constant angular speed
�m. Find the speed of the spot of laser light on the wall.
(b) Assume  that the spinning mirror is at a perpendicular
distance d from point O on a flat vertical wall. When the
spot of laser light on the wall is at distance x from point O,
what is its speed?

The light beam in Figure P25.51 strikes surface 2 at the
critical angle. Determine the angle of incidence �1.

51.
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A hiker stands on an isolated mountain peak near sunset
and observes a rainbow caused by water droplets in the air
8.00 km away. The valley is 2.00 km below the mountain
peak and entirely flat. What fraction of the complete
circular arc of the rainbow is visible to the hiker? (See
Fig. 25.17.)

46. A 4.00-m-long pole stands vertically in a lake having a
depth of 2.00 m. The Sun is 40.0° above the horizontal.
Determine the length of the pole’s shadow on the bottom
of the lake. Take the index of refraction for water to be
1.33.

47. When light is incident normally on the interface between
two transparent optical media, the intensity of the re-
flected light is given by the expression

In this equation, S1 represents the average magnitude
of the Poynting vector in the incident light (the incident

S1� � � n 2 � n1

n 2 � n1
�

2
S1

45.

52. Refer to Quick Quiz 25.4. By how much does the duration
of an optical day exceed that of a geometric day? Model
the Earth’s atmosphere as uniform, with index of refrac-
tion 1.000 293, a sharply defined upper surface, and depth
8 614 m. Assume that the observer is at the Earth’s equator



so that the apparent path of the rising and setting Sun is
perpendicular to the horizon.

A light ray of wavelength 589 nm is inci-
dent at an angle � on the top surface of a block of poly-
styrene as shown in Figure P25.53. (a) Find the maximum
value of � for which the refracted ray undergoes total inter-
nal reflection at the left vertical face of the block. Repeat
the calculation for cases in which the polystyrene block is
immersed in (b) water and (c) carbon disulfide.

53.

54. A ray of light passes from air into water. For its deviation
angle  � ��1 � �2� to be 10.0°, what must be its angle of
incidence?

A shallow glass dish is 4.00 cm wide at the bottom as shown
in Figure P25.55. When an observer’s eye is placed as
shown, the observer sees the edge of the bottom of the
empty dish. When this dish is filled with water, the observer
sees the center of the bottom of the dish. Find the height
of the dish.

55.

56. A material having an index of refraction n is surrounded
by a vacuum and is in the shape of a quarter circle of ra-
dius R (Fig. P25.56). A light ray parallel to the base of the
material is incident from the left at a distance L above the
base and emerges from the material at the angle �. Deter-
mine an expression for �.

57. A transparent cylinder of radius R � 2.00 m has a mir-
rored surface on its right half as shown in Figure P25.57. A

light ray traveling in air is incident on the left side of the
cylinder. The incident light ray and exiting light ray are
parallel, and d � 2.00 m. Determine the index of refrac-
tion of the material.
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58. Students allow a narrow beam of laser light to strike a
water surface. They arrange to measure the angle of refrac-
tion for selected angles of incidence and record the data
shown in the accompanying table. Use the data to verify
Snell’s law of refraction by plotting the sine of the angle of
incidence versus the sine of the angle of refraction. Use the
resulting plot to deduce the index of refraction of water.

Angle of Incidence Angle of Refraction
(degrees) (degrees)

10.0 7.5
20.0 15.1
30.0 22.3
40.0 28.7
50.0 35.2
60.0 40.3
70.0 45.3
80.0 47.7

59. A light ray enters a rectangular block of plastic at an angle
�1 � 45.0° and emerges at an angle �2 � 76.0° as shown in
Figure P25.59. (a) Determine the index of refraction of
the plastic. (b) If the light ray enters the plastic at a point
L � 50.0 cm from the bottom edge, how long does it take
the light ray to travel through the plastic?



60. Review problem. A mirror is often “silvered” with alu-
minum. By adjusting the thickness of the metallic film, one
can make a sheet of glass into a mirror that reflects
anything between say 3% and 98% of the incident light,
transmitting the rest. Prove that it is impossible to con-
struct a “one-way mirror” that would reflect 90% of
the electromagnetic waves incident from one side and re-
flect 10% of those incident from the other side. (Sugges-
tion: Use Clausius’s statement of the second law of
thermodynamics.)
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ANSWERS TO QUICK QUIZZES

25.1 (d). The light rays from the actor’s face must reflect
from the mirror and into the camera. If these light rays
are reversed, light from the camera reflects from the mir-
ror into the actor’s eyes.

25.2 Beams � and � are reflected; beams � and � are re-
fracted.

25.3 (c). Because the light is entering a material in which the
index of refraction is lower, the speed of light is higher
and the light bends away from the normal.

25.4 (a). Due to the refraction of light by air, light rays from
the Sun deviate slightly downward toward the surface of
the Earth as the light enters the atmosphere. Thus, in
the morning, light rays from the upper edge of the Sun
arrive at your eyes before the geometric line from your
eyes to the top of the Sun clears the horizon. In the
evening, light rays from the top of the Sun continue to
arrive at your eyes even after the geometric line from
your eyes to the top of the Sun dips below the horizon.

25.5 False. There is no dependence of the angle of reflection
on wavelength because the light does not enter deeply
into the material during reflection; rather, it reflects

from the surface. Thus, the properties of the material do
not affect the angle of reflection.

25.6 (i), (b). The two bright rays exiting the bottom of the
prism on the right in Figure 25.23 result from total inter-
nal reflection at the right face of the prism. Note that
there is no refracted light exiting the slanted side for
these rays. The light from the other three rays is divided
into reflected and refracted parts. (ii), (b). Counter-
clockwise rotation of the prism will cause the rays to
strike the slanted side of the prism at a larger angle.
When all five rays strike at an angle larger than the criti-
cal angle, they will all undergo total internal reflection.

25.7 (c). When the outgoing beam approaches the direction
parallel to the straight side, the incident angle is ap-
proaching the critical angle for total internal reflection.
The index of refraction for light at the violet end of the
visible spectrum is larger than that at the red end. Thus,
as the outgoing beam approaches the straight side, the
violet light experiences total internal reflection first, fol-
lowed by the other colors. The red light is the last to ex-
perience total internal reflection.



This chapter is concerned with the images formed when
light interacts with flat and curved surfaces. We find that
images of an object can be formed by reflection or by re-

fraction and that mirrors and lenses work because of these phe-
nomena.

Images formed by reflection and refraction are used in a
variety of everyday devices, such as the rearview mirror in your car,
a shaving or makeup mirror, a camera, your eyeglasses, and a mag-
nifying glass. In addition, more scientific devices, such as tele-
scopes and microscopes, take advantage of the image formation
principles discussed in this chapter.

We shall make extensive use of geometric models developed
from the principles of reflection and refraction. Such construc-
tions allow us to develop mathematical representations for the
image locations of various types of mirrors and lenses.

Image Formation by Mirrors 
and Lenses

C H A P T E R 26

The light rays coming from the leaves in the
background of this scene did not form a
focused image on the film of the camera that
took this photograph. Consequently, the back-
ground appears very blurry. Light rays passing
though the raindrop, however, have been
altered so as to form a focused image of the
background leaves on the film. In this chapter,
we investigate the formation of images as
light rays reflect from mirrors and refract
through lenses.

C H A P T E R  O U T L I N E
26.1 Images Formed by Flat Mirrors
26.2 Images Formed by Spherical Mirrors
26.3 Images Formed by Refraction
26.4 Thin Lenses
26.5 Context Connection — Medical

Fiberscopes
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IMAGES  FORMED  BY  FLAT  MIRRORS
We begin by considering the simplest possible mirror, the flat mirror. Consider a
point source of light1 placed at O in Figure 26.1, a distance p in front of a flat mir-
ror. The distance p is called the object distance. Light rays leave the source and are
reflected from the mirror. Upon reflection, the rays continue to diverge (spread
apart). The dashed lines in Figure 26.1 are extensions of the diverging rays back to
a point of intersection at I. The diverging rays appear to the viewer to come from
the point I behind the mirror. Point I is called the image of the object at O. Regard-
less of the system under study, we always locate images by extending diverging rays
back to a point at which they intersect.2 Images are located either at a point from
which rays of light actually diverge or at a point from which they appear to diverge.
Because the rays in Figure 26.1 appear to originate at I, which is a distance q behind
the mirror, that is the location of the image. The distance q is called the image
distance.

Images are classified as real or virtual. A real image is formed when light rays
pass through and diverge from the image point; a virtual image is formed when the
light rays do not pass through the image point but only appear to diverge from that
point. The image formed by the mirror in Figure 26.1 is virtual. The image of an
object seen in a flat mirror is always virtual. Real images can be displayed on a
screen (as at a movie), but virtual images cannot be displayed on a screen. We shall
see an example of a real image in Section 26.2.

Active Figure 26.2 is an example of a specialized pictorial representation, called
a ray diagram, that is very useful in studies of mirrors and lenses. In a ray diagram, a
small number of the myriad rays leaving a point source are drawn, and the location
of the image is found by applying the laws of reflection (and refraction, in the case
of refracting surfaces and lenses) to these rays. A carefully drawn ray diagram allows
us to build a geometric model so that geometry and trigonometry can be used to
solve a problem mathematically.

We can use the simple geometry in Active Figure 26.2 to examine the properties
of the images of extended objects formed by flat mirrors. Let us locate the image of
the tip of the blue arrow. To find out where the image is formed, it is necessary to
follow at least two rays of light as they reflect from the mirror. One of those rays
starts at P, follows the horizontal path PQ to the mirror, and reflects back on itself.
The second ray follows the oblique path PR and reflects at the same angle accord-
ing to the law of reflection. We can extend the two reflected rays back to the point
from which they appear to diverge, point P�. A continuation of this process for
points other than P on the object would result in an image (drawn as a yellow ar-
row) to the right of the mirror. These rays and the extensions of the rays allow us to
build a geometric model for the image formation based on triangles PQR and
P�QR. Because these two triangles are identical, PQ � P�Q , or . (We use the
absolute value notation because, as we shall see shortly, a sign convention is associ-
ated with the values of p and q.) Hence, we conclude that the image formed by an
object placed in front of a flat mirror is as far behind the mirror as the object is in
front of the mirror.

Our geometric model also shows that the object height h equals the image
height h�. We define the lateral magnification (or simply the magnification) M of an

p �  �q �

26.1
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1We imagine the object to be a point source of light. It could actually be a point source, such as a very
small lightbulb, but more often is a single point on some extended object that is illuminated from the
exterior by a light source. Thus, the reflected light leaves the point on the object as if the point were a
source of light.
2Your eyes and brain interpret diverging light rays as originating at the point from which the rays
diverge. Your eye–brain system can detect the rays only as they enter your eye and has no access to infor-
mation about what experiences the rays underwent before reaching your eyes. Thus, even though the
light rays did not actually originate at point I, they enter the eye as if they had, and I is the point at which
your brain locates the object.

An image formed
by reflection from a flat mirror. The
image point I is located behind the
mirror at a distance q, which is equal
to the object distance p.

FIGURE 26.1

Mirror

O I

qp

Geometric construction used to locate
the image of an object placed in front
of a flat mirror. Because the triangles
PQR and P�QR are congruent,

and h � h�.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 26.2 to move the object
and see the effect on the image.

p �  � q �

ACTIVE FIGURE 26.2

θ
θ

Object

h h

P �P

�

Qp q

R

Image

MAGNIFICATION DOES NOT NECESSA-
RILY IMPLY ENLARGEMENT For optical
elements other than flat mirrors,
the magnification defined in Equa-
tion 26.1 can result in a number
with a magnitude larger or smaller
than 1. Thus, despite the cultural
usage of the word magnification to
mean enlargement, the image could
be smaller than the object. We shall
see examples of such a situation in
this chapter.

� PITFALL PREVENTION 26.1

www.pop4e.com


image as follows:

[26.1]

which is a general definition of the magnification for any type of image formed by a
mirror or lens. Because h� � h in this case, M � 1 for a flat mirror. We also note
that the image is upright because the image arrow points in the same direction as
the object arrow. An upright image is indicated mathematically by a positive value
of the magnification. (Later we discuss situations in which inverted images, with neg-
ative magnifications, are formed.)

Finally, note that a flat mirror produces an image having an apparent left–right
reversal. This reversal can be seen by standing in front of a mirror and raising your
right hand. The image you see raises its left hand. Likewise, your hair appears to be
parted on the opposite side, and a mole on your right cheek appears to be on your
left cheek.

This reversal is not actually a left–right reversal. Imagine, for example, lying on
your left side on the floor, with your body parallel to the mirror surface. Now, your
head is on the left and your feet are on the right as you face the mirror. If you shake
your feet, the image does not shake its head! If you raise your right hand, however,
the image raises its left hand. Thus, it again appears like a left–right reversal, but in
an up–down direction!

The apparent left–right reversal is actually a front–back reversal caused by the
light rays going forward toward the mirror and then reflecting back from it. Figure
26.3 shows a person’s right hand and its image in a flat mirror. Notice that no
left–right reversal takes place; rather, the thumbs on both the real hand and the
image are on the left side. It is the front–back reversal that makes the image of the
right hand appear similar to the real left hand at the left side of the photograph.

An interesting experience with front–back reversal is to stand in front of a mir-
ror while holding an overhead transparency in front of you so that you can read the
writing on the transparency. You are also able to read the writing on the image of
the transparency. You might have had a similar experience if you have a transparent
decal with words on it on the rear window of your car. If the decal is placed so that
it can be read from outside the car, you can also read it when looking into your
rearview mirror from the front seat.

M �
image height
object height

�
h�

h
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■ Magnification of an image

In the overhead view of Figure 26.4, the image of the stone seen by
observer 1 is at C. At which of the five points A, B, C, D, or E does observer 2 see the
image?

QUICK QUIZ 26.1

The image in the
mirror of a person’s right hand is
reversed front to back, which makes
the image in the mirror appear to be
a left hand. Notice that the thumb is
on the left side of both real hands and
on the left side of the image. That the
thumb is not on the right side of the
image indicates that the reversal is not
left–right.

FIGURE 26.3
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(Quick Quiz 26.1) Where does observer 2 see
the image of the stone?

FIGURE 26.4
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■ Thinking Physics 26.1
Most rearview mirrors on cars have a day setting and a night setting. The night set-
ting greatly diminishes the intensity of the image so that lights from trailing vehi-
cles do not blind the driver. How does such a mirror work?

Reasoning Figure 26.5 represents a cross-sectional view of the mirror for the two
settings. The mirror is a wedge of glass with a reflecting surface on the back side.
When the mirror is in the day setting, as in Figure 26.5a, the light from an object
behind the car strikes the mirror at point 1. Most of the light enters the wedge, is
refracted, and reflects from the back surface to return to the front surface, where it
is refracted again as it re-enters the air as ray B (for bright). In addition, a small por-
tion of the light is reflected at the front surface as indicated by ray D (for dim). This
dim reflected light is responsible for the image observed when the mirror is in the
night setting, as in Figure 26.5b. In this case, the wedge is rotated so that the path
followed by the bright light (ray B ) does not lead to the eye. Instead, the dim light
reflected from the front surface travels to the eye, and the brightness of trailing
headlights does not become a hazard. ■
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You are standing about 2 m away from a mirror. The mirror has water
spots on its surface. True or false: It is possible for you to see the water spots and your
image both in focus at the same time.

QUICK QUIZ 26.2

Multiple Images Formed by Two MirrorsEXAMPLE 26.1
Two flat mirrors are perpendicular to each other as
in Figure 26.6, and an object is placed at point O. In
this situation, multiple images are formed. Locate the
positions of these images.

Solution The image of the object is at I1 in 
mirror 1 and at I2 in mirror 2. In addition, a third 
image is formed at I3, which is the image of I1 in 
mirror 2 or, equivalently, the image of I2 in 
mirror 1. That is, the image at I1 (or I2) serves 
as the object for I3. Note that to form this image 
at I3, the rays reflect twice after leaving the object 
at O.

B

D
1

B

D

Incident
light

Incident
light

Daytime setting Nighttime setting

Reflecting
side of mirror

(a) (b)

(Thinking Physics
26.1) (a) Daytime and (b) nighttime
settings of a rearview mirror in an au-
tomobile.

FIGURE 26.5

Mirror 2

Mirror 1

I1 I3

I2O

(Example 26.1)
When an object is placed in front
of two mutually perpendicular 
mirrors as shown, three images are
formed.

FIGURE 26.6



IMAGES  FORMED  BY  SPHERICAL  MIRRORS
In Section 26.1, we investigated images formed by a flat reflecting surface. In this
section, we will explore images formed by curved mirrors, either from a concave
surface of the mirror or a convex surface.

Concave Mirrors
A spherical mirror, as its name implies, has the shape of a segment of a sphere.
Figure 26.7a shows the cross-section of a spherical mirror with its reflecting surface
represented by the solid curved line. Such a mirror in which light is reflected from
the inner, concave surface is called a concave mirror. The mirror’s radius of curva-
ture is R , and its center of curvature is at point C. Point V is the center of the spher-
ical segment, and a line drawn from C to V is called the principal axis of the mirror.

Now consider a point source of light placed at point O in Figure 26.7b, on the
principal axis and outside point C. Two diverging rays that originate at O are shown.
After reflecting from the mirror, these rays converge and meet at I, the image
point. They then continue to diverge from I as if a source of light existed there.
Therefore, if your eyes detect the rays diverging from point I, you would claim that
a light source is located at that point.

This example is the second one we have seen of rays diverging from an image
point. Because the light rays pass through the image point in this case, unlike the
situation in Active Figure 26.2, the image in Figure 26.7b is a real image.

In what follows, we shall adopt a simplification model that assumes that all rays
diverging from an object make small angles with the principal axis. Such rays,
called paraxial rays, always reflect through the image point as in Figure 26.7b. Rays
that make large angles with the principal axis as in Figure 26.8 converge at other
points on the principal axis, producing a blurred image.

We can use a geometric model based on the ray diagram in Figure 26.9 to calcu-
late the image distance q if we know the object distance p and radius of curvature R .
By convention, these distances are measured from point V. Figure 26.9 shows two of
the many light rays leaving the tip of the object. One ray passes through the center of
curvature C of the mirror, hitting the mirror perpendicular to the mirror surface and

26.2
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(a) A concave mir-
ror of radius R. The center of curva-
ture C is located on the principal axis.
(b) A point source of light placed at
O in front of a concave spherical mir-
ror of radius R , where O is any point
on the principal axis farther than R
from the mirror surface, forms a real
image at I. If the rays diverge from O
at small angles, they all reflect
through the same image point.

FIGURE 26.7Mirror

C V

(a)

Center of
curvature R

Principal
axis

Mirror

O VI

(b)

C

Rays diverging
from an object at large angles from
the principal axis reflect from a spher-
ical concave mirror to intersect the
principal axis at different points,
resulting in a blurred image.

FIGURE 26.8
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The image
formed by a spherical concave
mirror when the object O lies
outside the center of curvature
C. This geometric construction 
is used to derive Equation 26.4.

FIGURE 26.9



reflecting back on itself. The second ray strikes the mirror at the center point V and
reflects as shown, obeying the law of reflection. The image of the tip of the arrow is at
the point at which these two reflected rays intersect. Using these rays, we identify the
gold and blue model right triangles in Figure 26.9. From the gold triangle, we see
that tan � � h/p, whereas the blue triangle gives tan � � �h�/q. The negative sign
signifies that the image is inverted, so h� is a negative number. Therefore, from Equa-
tion 26.1 and these results, we find that the magnification of the image is

[26.2]

We can identify two additional right triangles in the figure, with a common
point at C and with angle �. These triangles tell us that

and

from which we find that

[26.3]

If we compare Equations 26.2 and 26.3, we see that

Algebra reduces this expression to

[26.4]

which is called the mirror equation. It is applicable only to the paraxial ray simplifi-
cation model.

If the object is very far from the mirror — that is, if the object distance p is large
compared with R, so that p can be said to approach infinity — 1/p : 0, and we see
from Equation 26.4 that q � R/2. In other words, when the object is very far from
the mirror, the image point is halfway between the center of curvature and the
center of the mirror as in Figure 26.10a. The rays are essentially parallel in this
figure because only those few rays traveling parallel to the axis from the distant ob-
ject encounter the mirror. Rays not parallel to the axis miss the mirror. Figure
26.10b shows an experimental setup of this situation, demonstrating the crossing of
the light rays at a single point. The point at which the parallel rays intersect after re-
flecting from the mirror is called the focal point of the mirror. The focal point is a
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■ Mirror equation in terms of the
radius of curvature

(a) Light rays from
a distant object (p � �) reflect from a
concave mirror through the focal
point F. In this case, the image dis-
tance q � R/2 � f, where f is the focal
length of the mirror. (b) Reflection of
parallel rays from a concave mirror.

FIGURE 26.10
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distance f from the mirror, called the focal length. The focal length is a parameter
associated with the mirror and is given by

[26.5]

The mirror equation can therefore be expressed in terms of the focal length:

[26.6]

This equation is the commonly used mirror equation, in terms of the focal length
of the mirror rather than its radius of curvature, as in Equation 26.4. We shall see
how to use this equation in examples that follow shortly.

Convex Mirrors
Figure 26.11 shows the formation of an image by a convex mirror, a mirror that is
silvered so that light is reflected from the outer, convex surface. Convex mirrors are
sometimes called diverging mirrors because the rays from any point on an object di-
verge after reflection as though they were coming from some point behind the mir-
ror. The image in Figure 26.11 is virtual rather than real because it lies behind the
mirror at the point from which the reflected rays appear to diverge. In general, as
shown in the figure, the image formed by a convex mirror is always upright, virtual,
and smaller than the object.

We can set up a geometric model for a convex mirror using the ray diagram in
Figure 26.11. The equations developed for concave mirrors can also be used with
convex mirrors if we adhere to a particular sign convention. Let us refer to the
region in which light rays move as the front side of the mirror and the other side,
where virtual images are formed, as the back side. For example, in Figures 26.9 and
26.11, the side to the left of the mirror is the front side and that to the right of the
mirror is the back side. Table 26.1 summarizes the sign conventions for all the nec-
essary quantities. Notice in particular that we handle a convex mirror by assigning it
a negative focal length. With this convention, the mirror equation for a convex
mirror is the same as that for a concave mirror, Equation 26.6. 

One entry in Table 26.1 that may appear strange is a “virtual object.” A virtual
object will only occur in some situations when combining two or more optical ele-
ments as we shall see in Section 26.4.

Constructing Ray Diagrams for Mirrors
We have been using the specialized pictorial representations called ray diagrams to
help us locate images for flat and curved mirrors. Let us now formalize the proce-
dure for drawing accurate ray diagrams. To construct such a diagram, we must
know the position of the object and the locations of the focal point and center of
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■ Focal length of a mirror

THE FOCAL POINT IS NOT THE FOCUS

POINT The focal point is usually not
the point at which the light rays fo-
cus to form an image. The focal
point is determined solely by the
curvature of the mirror; it does not
depend on the location of the
object at all. In general, an image
forms at a point different from the
focal point of a mirror (or a lens).
The only exception is when the
object is located infinitely far away
from the mirror.

� PITFALL PREVENTION 26.2

■ Mirror equation in terms of 
focal length

A satellite-dish antenna is a concave
reflector for television signals from a
satellite in orbit around the Earth.
The signals are carried by microwaves
that, because the satellite is so far
away, are parallel when they arrive at
the dish. These waves reflect from the
dish and are focused on the receiver
at the focal point of the dish. ■
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Formation of an image by a spherical convex mirror. The image formed by the real
object is virtual and upright.

FIGURE 26.11



curvature of the mirror. We will construct three rays in the examples shown in
Active Figure 26.12. Only two rays are necessary to locate the image, but we will in-
clude a third as a check. In each part of the figure, the right-hand portion shows a
photograph of the situation described by the ray diagram in the left-hand portion.
All three rays start from the same object point; in these examples, the top of the
arrow is chosen as the starting point. For the concave mirrors in Active Figure
26.12a and 26.12b, the rays are drawn as follows:

• Ray 1 is drawn parallel to the principal axis and is reflected back through the
focal point F. (This ray would be a light path followed by light from an object
infinitely far from the mirror.)

• Ray 2 is drawn through the focal point (or as if coming from the focal point if
p � f as in Active Fig. 26.12b). It is reflected parallel to the principal axis. (This
ray would be a light path followed by light from an object at the focal point and is
the reverse of a ray approaching the mirror from an object infinitely far away.)

• Ray 3 is drawn through the center of curvature C and is reflected back on itself. (This
ray follows the law of reflection for light incident along the normal to the surface.)

The image point obtained in this fashion must always agree with the value of q cal-
culated from the mirror equation. With concave mirrors, note what happens as the
object is moved closer to the mirror from infinity. The real, inverted image in Active
Figure 26.12a moves to the left as the object approaches the mirror. When the object
is at the center of curvature, the object and image are at the same distance from the
mirror and are the same size. When the object is at the focal point, the image is infi-
nitely far to the left. (Check these last three sentences with the mirror equation!)

When the object lies between the focal point and the mirror surface as in Active
Figure 26.12b, the image is virtual, upright, and located on the back side of the mirror.
The image is also larger than the object in this case. This situation illustrates the prin-
ciple behind a shaving mirror or a makeup mirror. Your face is located closer to the
concave mirror than the focal point, so you see an enlarged, upright image of your
face, to assist you with shaving or applying makeup. If you have such a mirror, look
into it and move your face farther from the mirror. Your head will pass through a point
at which the image is indistinct and then the image will reappear with your face upside
down as you continue to move farther away. The region where the image is indistinct is
where your head passes through the focal point and the image is infinitely far away.

Notice that the image of the camera in Active Figures 26.12a and 26.12b is
upside down. Regardless of the position of the candle, the camera remains
farther away from the mirror than the focal point, so its image is inverted.

For a convex mirror as shown in Active Figure 26.12c, the rays are drawn as follows:

• Ray 1 is drawn parallel to the principal axis and is reflected as if coming from the
focal point F.

• Ray 2 is drawn heading toward the focal point on the back side of the mirror. It is
reflected parallel to the principal axis.

• Ray 3 is drawn heading toward the center of curvature C on the back side of the
mirror and is reflected back on itself.
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Sign Conventions for MirrorsTABLE 26.1

Quantity Positive when . . . Negative when . . .

Object location (p) object is in front of object is in back of 
mirror (real object). mirror (virtual object).

Image location (q) image is in front of image is in back of mirror 
mirror (real image). (virtual image).

Image height (h�) image is upright. image is inverted.
Focal length (f ) mirror is concave. mirror is convex.

and radius (R)
Magnification (M) image is upright. image is inverted.

WATCH YOUR SIGNS Success in work-
ing mirror problems (as well as
problems involving refracting sur-
faces and thin lenses) is largely de-
termined by proper sign choices
when substituting into the equa-
tions. The best way to become
adept at these problems is to work a
multitude of them on your own.
Watching your instructor or read-
ing the example problems is no
substitute for practice.

� PITFALL PREVENTION 26.3



Ray diagrams for spherical mirrors, along with corresponding photographs of the images of a
candle as the object. (a) When the object is located so that the focal point lies between the ob-
ject and a concave mirror surface, the image is real and inverted. (b) When the object is lo-
cated between the focal point and a concave mirror surface, the image is virtual, upright, and
enlarged. (c) When the object is in front of a spherical convex mirror, the image is virtual, up-
right, and reduced in size.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 26.12 to move the objects and
change the focal lengths of the mirrors to see the effect on the images.

ACTIVE FIGURE 26.12
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The image of a real object in a convex mirror is always virtual and upright. Notice
that the images of both the candle and the camera in Active Figure 26.12c are
upright. As the object distance increases, the virtual image becomes smaller and
approaches the focal point as p approaches infinity. You should construct other
diagrams to verify how the image position varies with object position.

Convex mirrors are often used as security devices in large stores, where they are
hung at a high position on the wall. The large field of view of the store is made
smaller by the convex mirror so that store personnel can observe possible shoplift-
ing activity in several aisles at once. Mirrors on the passenger side of automobiles
are also often made with a convex surface. This type of mirror allows a wider field
of view behind the automobile to be available to the driver (Fig. 26.13) than is the
case with a flat mirror. These mirrors introduce a perceptual distortion, however, in
that they cause cars behind the viewer to appear smaller and therefore farther away.
That is why these mirrors carry the inscription, “Objects in this mirror are closer
than they appear.” 
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An approaching
truck is seen in a convex mirror on
the right side of an automobile.
Because the image is reduced in size,
the truck appears to be farther away
than it actually is. Notice also that the
image of the truck is in focus but that
the frame of the mirror is not, which
demonstrates that the image is not at
the same location as the mirror
surface.

FIGURE 26.13
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You wish to reflect sunlight from a mirror onto some paper under a
pile of wood to start a fire. Which would be the best choice for the type of mirror?
(a) flat (b) concave (c) convex

QUICK QUIZ 26.3

Consider the image in the mirror in Figure 26.14. Based on the ap-
pearance of this image, what conclusion would you make? (a) The mirror is concave and
the image is real. (b) The mirror is concave and the image is virtual. (c) The mirror is con-
vex and the image is real. (d) The mirror is convex and the image is virtual.

QUICK QUIZ 26.4

(Quick Quiz 26.4)
What type of mirror is this one?

FIGURE 26.14
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The Image Formed by a Concave MirrorEXAMPLE 26.2INTERACTIVE
Thus, we see that light rays originating from an object
located at the focal point of a mirror are reflected so
that the image is formed at an infinite distance from
the mirror; that is, the rays travel parallel to one an-
other after reflection.

Find the location of the image for an object
distance of 5.00 cm and describe the image.

Solution When the object is at the position p � 5.00 cm,
it lies between the focal point and the mirror surface.
In this case, the mirror equation gives

q �

The negative value for q tells us the image is virtual and
located on the back side of the mirror. The magnifica-
tion is

From this value, we see that the image is larger than the
object by a factor of 2.00. The positive sign for M indi-
cates that the image is upright (see Active Fig. 26.12b).

Note the characteristics of the images formed by a
concave spherical mirror. When the object is farther from
the mirror than the focal point, the image is inverted and
real; with the object at the focal point, the image is
formed at infinity; with the object between the focal point
and mirror surface, the image is upright and virtual.

Investigate the image formed for various
object positions and mirror focal lengths by logging into
PhysicsNow at www.pop4e.com and going to Interactive 
Example 26.2.

M � � 
q
p

� � � �10.0 cm
5.00 cm � � 2.00

� 10.0 cm

1
5.00 cm

�
1
q

�
1

10.0 cm

C

A concave spherical mirror has a focal length of 10.0 cm.

Find the location of the image for an object 
distance of 25.0 cm and describe the image.

Solution For an object distance of 25.0 cm, we find the
image distance using the mirror equation:

The magnification is given by Equation 26.2:

The magnitude of M less than unity tells us that the
image is smaller than the object. The negative sign for
M tells us that the image is inverted. Finally, because q is
positive, the image is located on the front side of the
mirror and is real. This situation is pictured in Active
Figure 26.12a.

Find the location of the image for an object dis-
tance of 10.0 cm and describe the image.

Solution When the object distance is 10.0 cm, the ob-
ject is located at the focal point. Substituting the values
p � 10.0 cm and f � 10.0 cm into the mirror equation,
we find that

�q �

 
1

10.0 cm
�

1
q

�
1

10.0 cm

B

M � �  
q
p

� �  
16.7 cm
25.0 cm

� �  0.668

16.7 cmq �

 
1

25.0 cm
�

1
q

�
1

10.0 cm

 
1
p

�
1
q

�
1
f

A

The Image Formed by a Convex MirrorEXAMPLE 26.3INTERACTIVE

The negative value of q indicates that the image is vir-
tual, or behind the mirror, as in Active Figure 26.12c.

Find the height of the image.

Solution The magnification is

The image is upright because M is positive. Its height is

Investigate the image formed for various
object positions and mirror focal lengths by logging into
PhysicsNow at www.pop4e.com and going to Interactive
Example 26.3.

0.858 cmh� � Mh � (0.286)(3.00 cm) �

M � � 
q
p

� �� � 5.71 cm
20.0 cm � � 0.286

B

An object 3.00 cm high is placed 20.0 cm from a convex
mirror having a focal length of 8.00 cm.

Find the position of the final image.

Solution Because the mirror is convex, its focal length
is negative. To find the image position, we use the mir-
ror equation:

� 5.71 cmq �

1
q

� � 
1

8.00 cm
�

1
20.0 cm

1
p

�
1
q

�
1
f

�
1

� 8.00 cm

A

www.pop4e.com
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IMAGES  FORMED  BY  REFRACTION
In this section, we describe how images are formed by the refraction of rays at the
surface of a transparent material. We shall apply the law of refraction and use the
simplification model in which we consider only paraxial rays.

Consider two transparent media with indices of refraction n1 and n2, where the
boundary between the two media is a spherical surface with radius of curvature R
(Fig. 26.15). We shall assume that the object at point O is in the medium with index
of refraction n1. As we shall see, all paraxial rays are refracted at the spherical sur-
face and converge to a single point I, the image point.

Let us proceed by considering the geometric construction in Figure 26.16,
which shows a single ray leaving point O and passing through point I. Snell’s law ap-
plied to this refracted ray gives

Because the angles �1 and �2 are small for paraxial rays, we can use the approxima-
tion sin � � � (angles in radians). Therefore, Snell’s law becomes

Now we make use of geometric model triangles and recall that an exterior angle of
any triangle equals the sum of the two opposite interior angles. Applying this rule
to the triangles OPC and PIC in Figure 26.16 gives

If we combine the last three equations and eliminate �1 and �2, we find that

[26.7]

In the small angle approximation, tan � � �, and so from Figure 26.16 we can write
the approximate relations

where d is the distance shown in Figure 26.16. We substitute these equations into
Equation 26.7 and divide through by d to give

[26.8]

Because this expression does not involve any angles, all paraxial rays leaving an
object at distance p from the refracting surface will be focused at the same distance
q from the surface on the back side.

By setting up a geometric construction with an object and a refracting surface,
we can show that the magnification of an image due to a refracting surface is

n1

p
�

n2

q
�

n2 � n1

R

tan 	 � 	 �
d
q

tan 
 � 
 �
d
R

tan � � � �
d
p

n1� � n2	 � (n2 � n1)


 
 � �2 � 	

 �1 � � � 


n1�1 � n2�2

n1 sin �1 � n2 sin �2

26.3
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n1 < n2

O I

p q

n2n1
R

An image formed by
refraction at a spherical surface. Rays
making small angles with the principal
axis diverge from a point object at O and
are refracted through the image point I.

FIGURE 26.15

■ Images formed by a refracting
surface



[26.9]

As with mirrors, we must use a sign convention if we are to apply Equations 26.8
and 26.9 to a variety of circumstances. Note that real images are formed on the side
of the surface that is opposite the side from which the light comes. That is in contrast
to mirrors, for which real images are formed on the side where the light originates.
Therefore, the sign conventions for spherical refracting surfaces are similar to the
conventions for mirrors, recognizing the change in sides of the surface for real and
virtual images. For example, in Figure 26.16, p, q, and R are all positive.

The sign conventions for spherical refracting surfaces are summarized in Table
26.2. The same conventions will be used for thin lenses discussed in the next sec-
tion. As with mirrors, we assume that the front of the refracting surface is the side
from which the light approaches the surface.

Flat Refracting Surfaces
If the refracting surface is flat, R approaches infinity and Equation 26.8 reduces to

or

[26.10]

From Equation 26.10, we see that the sign of q is opposite that of p. Thus, the image
formed by a flat refracting surface is on the same side of the surface as the object.
This situation is illustrated in Active Figure 26.17 for the case in which n1 is greater
than n2, where a virtual image is formed between the object and the surface. Note
that the refracted ray bends away from the normal in this case because n1 � n2.

The value of q given by Equation 26.10 is always smaller in magnitude than p
whenn1 � n2. This fact indicates that the image of an object located within a mater-
ial with higher index of refraction than that of the material from which it is viewed
is always closer to the flat refracting surface than the object. Thus, transparent bod-
ies of water such as streams and swimming pools always appear shallower than they
are because the image of the bottom of the body of water is closer to the surface
than the bottom is in reality.

q � � 
n2

n1
 p

n1

p
� �  

n2

q

M � � 
n1q
n2 p
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d

p q

γα β
I

θ1 θ2

Geometry used to
derive Equation 26.8, assuming that
n1 � n2.

FIGURE 26.16

Sign Conventions for Refracting SurfacesTABLE 26.2

Quantity Positive when . . . Negative when . . .

Object location (p) object is in front of object is in back of 
surface (real object). surface (virtual object).

Image location (q) image is in back of surface image is in front of 
(real image). surface (virtual image).

Image height (h�) image is upright. image is inverted.
Radius (R) center of curvature is in center of curvature is 

back of surface. in front of surface.

■ Magnification of an image
formed by a refracting surface

The image formed by a flat refracting
surface is virtual; that is, it forms on
the same side of the refracting surface
as the object. All rays are assumed to
be paraxial.

Log into 
PhysicsNow at www.pop4e.com and
go to Active Figure 26.17 to move the
object and see the effect on the
location of the image.

ACTIVE FIGURE 26.17
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and diverge outward. Hence, the image is formed in-
side the paperweight and is virtual. Applying Equation
26.8, we have

where the radius of curvature is indicated as negative
because the center of curvature is in front of the con-
cave surface (see Table 26.2). Solving for q gives

q �

The negative sign indicates that the image is in the
same medium as the object (the side of the incident
light), in agreement with our ray diagram. Because the
light rays do not pass through the image point, the
image is virtual. The coin appears to be closer to the
paperweight surface than it actually is.

What is the magnification of the image?

Solution Using Equation 26.9, we have

Thus, the image is 28% larger than the actual object.

1.28M � � 
n1q
n2 p

� � 
(1.50)(�1.7 cm)
(1.00)(2.0 cm)

�

B

� 1.7 cm

1.50
2.0 cm

�
1.00

q
�

1.00 � 1.50
� 3.0 cm

 
n1

p
�

n2

q
�

n2 � n1

R

Gaze into the Crystal BallEXAMPLE 26.4
A set of coins is embedded in a spherical plastic paper-
weight having a radius of 3.0 cm. The index of refrac-
tion of the plastic is n1 � 1.50. One coin is located 
2.0 cm from the edge of the sphere (Fig. 26.18).

Find the position of the coin’s image.

Solution Because n1 � n2, where n2 � 1.00 is the in-
dex of refraction for air, the rays originating from the
coin are refracted away from the normal at the surface

A

3.0 cm

2.0 cm

q

n2
n1

n1 > n2

(Example 26.4) Light rays from a coin embedded
in a plastic sphere form a virtual image between
the surface of the object and the sphere surface.
Because the object is inside the sphere, the front
of the refracting surface is the interior of the
sphere.

FIGURE 26.18

determine the location of the image. Using that 
n1 � 1.33 for water and p � d gives

Again, because q is negative, the image is virtual as indi-
cated in Figure 26.19a. The apparent depth is approxi-
mately three-fourths the actual depth.

� 0.752dq � � 
n2

n1
 p � � 

1.00
1.33

 d �

The One That Got AwayEXAMPLE 26.5
A small fish is swimming at a depth d below the surface
of a pond (Fig. 26.19).

What is the apparent depth of the fish as viewed
from directly overhead?

Solution In this example, the refracting surface is flat,
so R is infinite. Therefore, we can use Equation 26.10 to

A

(Example 26.5) (a) The apparent depth q
of the fish is less than the true depth d. All
rays are assumed to be paraxial. (b) Your
face appears to the fish to be higher above
the surface than it is.

FIGURE 26.19

d

q

n2 = 1.00

n1 = 1.33

(a)

q

d

n1 = 1.00

n2 = 1.33

(b)



f f

f f

(a)

(b)

F1 F2F1 F2

F1
F2F1 F2

Cross sectional
shapes of various lenses. (a) Converging
lenses have a positive focal length and
are thickest at the middle. (b) Diverg-
ing lenses have a negative focal length
and are thickest at the edges.

THIN  LENSES
A typical thin lens consists of a piece of glass or plastic, ground so that its two surfaces
are either segments of spheres or planes. Lenses are commonly used in optical instru-
ments such as cameras, telescopes, and microscopes to form images by refraction.

Figure 26.20 shows some representative shapes of lenses. These lenses have been
placed in two groups. Those in Figure 26.20a are thicker at the center than at the
rim, and those in Figure 26.20b are thinner at the center than at the rim. The lenses
in the first group are examples of converging lenses, and those in the second group
are called diverging lenses. The reason for these names will become apparent shortly.

As with mirrors, it is convenient to define a point called the focal point for a
lens. For example, in Figure 26.21a, a group of rays parallel to the principal axis
passes through the focal point after being converged by the lens. The distance from
the focal point to the lens is again called the focal length f . The focal length is the
image distance that corresponds to an infinite object distance.

To avoid the complications arising from the thickness of the lens, we adopt a
simplification model called the thin lens approximation, in which the thickness of
the lens is assumed to be negligible. As a result, it makes no difference whether we
take the focal length to be the distance from the focal point to the surface of the
lens or from the focal point to the center of the lens because the difference in

26.4
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than it actually is. Using Equation 26.10, 

The negative sign indicates that the image is in the
medium from which the light originated, which is the
air above the water.

�1.33dq � � 
n2

n1
p � � 

1.33
1.00

d �

If your face is a distance d above the water surface,
at what apparent distance above the surface does the
fish see your face?

Solution The light rays from your face are shown 
in Figure 26.19b. Because the rays refract toward the
normal, your face will appear higher above the surface

B

Biconvex Convex–
concave

Plano–
convex

(a)

Biconcave Convex–
concave

Plano–
concave

(b)

FIGURE 26.20

(Left) Effects of a converging lens (top) and a diverging lens (bottom) on parallel rays. (Right) Light rays
passing through (a) a converging lens and (b) a diverging lens. The focal length is the same for light rays passing through a
given lens in either direction. Both focal points F1 and F 2 are the same distance from the lens.

FIGURE 26.21

(C
ou

rte
sy

 o
f H

en
ry

 L
ea

p 
an

d 
Ji

m
 L

eh
m

an
)



these two lengths is assumed to be negligible. (We will draw lenses in the diagrams
with a thickness so that they can be seen.) A thin lens has one focal length and two
focal points as illustrated in Figure 26.21, corresponding to parallel light rays travel-
ing from the left or right.

Rays parallel to the axis diverge after passing through a lens of the shape shown
in Figure 26.21b. In this case, the focal point is defined as the point from which the
diverging rays appear to originate, as in Figure 26.21b. Figures 26.21a and 26.21b
indicate why the names converging and diverging are applied to these lenses in
Figure 26.20.

Consider now the ray diagram in Figure 26.22. Ray 1 passes through the center of
the lens. Ray 2 is parallel to the principal axis of the lens (the horizontal axis passing
through the center of the lens), and as a result it passes through the focal point F af-
ter refraction. The point at which these two rays intersect is the image point.

The tangent of the angle � can be found by using the blue and gold geometric
model triangles in Figure 26.22:

and

from which

[26.11]

Thus, the equation for magnification of an image by a lens is the same as the equa-
tion for magnification due to a mirror (Eq. 26.2). We also note from Figure 26.22
that

and

The height d, however, is the same as h. Therefore,

Using this expression in combination with Equation 26.11 gives us

which reduces to

[26.12]
1
p

�
1
q

�
1
f

q
p

�
q � f

f

h�

h
� � 

q � f
f

 
h
f

� � 
h�

q � f

tan � � � 
h�

q � f
tan � �

d
f

M �
h�

h
� � 

q
p

tan � � �  
h�

q
tan � �

h
p
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FrontA geometric
construction for developing the
thin lens equation.

FIGURE 26.22

■ Thin lens equation



This equation, called the thin lens equation (which is identical to the mirror equa-
tion, Eq. 26.6), can be used with either converging or diverging lenses if we adhere
to a set of sign conventions. Figure 26.23 is useful for obtaining the signs of p andq.
(As with mirrors, we call the side from which the light approaches the front of the
lens.) The complete sign conventions for lenses are provided in Table 26.3. Note
that a converging lens has a positive focal length under this convention and a di-
verging lens has a negative focal length. Hence, the names positive and negative are
often given to these lenses.

The focal length for a lens in air is related to the curvatures of its surfaces and
to the index of refraction n of the lens material by

[26.13]

where R1 is the radius of curvature of the front surface and R 2 is the radius of 
curvature of the back surface. Equation 26.13 enables us to calculate the focal
length from the known properties of the lens. It is called the lens makers’ equa-
tion. Table 26.3 includes the sign conventions for determining the signs of the
radii R1 and R2.

Ray Diagrams for Thin Lenses
Our specialized pictorial representations called ray diagrams are very convenient for
locating the image of a thin lens or system of lenses. They should also help clarify the
sign conventions we have already discussed. Active Figure 26.24 illustrates this method
for three single-lens situations. To locate the image of a converging lens (Active Figs.
26.24a and 26.24b), the following three rays are drawn from the top of the object:

• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens, this
ray passes through the focal point on the back side of the lens.

• Ray 2 is drawn through the center of the lens and continues in a straight line.
• Ray 3 is drawn through the focal point on the front side of the lens (or as if com-

ing from the focal point if p � f , as in Active Fig. 26.24b) and emerges from the
lens parallel to the principal axis.

To locate the image of a diverging lens (Active Fig. 26.24c), the following three rays
are drawn from the top of the object:

• Ray 1 is drawn parallel to the principal axis. After being refracted by the lens, this
ray emerges directed away from the focal point on the front side of the lens.

• Ray 2 is drawn through the center of the lens and continues in a straight line.
• Ray 3 is drawn in the direction toward the focal point on the back side of the lens

and emerges from the lens parallel to the principal axis.

In these ray diagrams, the point of intersection of any two of the rays can be used
to locate the image. The third ray serves as a check of construction.

1
f

� (n � 1) � 1
R1

�
1

R 2
�
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■ Lens makers’ equation

Front

Incident light

Back

p negative
q positive

p positive
q negative

Refracted light

A diagram for
obtaining the signs of p and q for a
thin lens or a refracting surface.

FIGURE 26.23

Sign Conventions for Thin LensesTABLE 26.3

Quantity Positive when . . . Negative when . . .

Object location (p) object is in front of object is in back of lens 
lens (real object). (virtual object).

Image location (q) image is in back of image is in front of 
lens (real image). lens (virtual image).

Image height (h�) image is upright. image is inverted.
R1 and R2 center of curvature is center of curvature is 

in back of lens. in front of lens.
Focal length ( f ) a converging lens. a diverging lens.

LENS HAVE TWO FOCAL POINTS BUT

ONE FOCAL LENGTH A lens has a
focal point on each side, front and
back. There is, however, only one
focal length for a thin lens. Each of
the two focal points is located the
same distance from the lens 
(Fig. 26.21), as can be seen mathe-
matically by interchanging R1 and
R2 in Equation 26.13 (and chang-
ing the signs of the radii because
back and front have been inter-
changed). As a result, the lens
forms an image of an object at the
same point if it is turned around. In
practice, that might not happen
because real lenses are not infinites-
imally thin.

� PITFALL PREVENTION 26.4



For the converging lens in Active Figure 26.24a where the object is outside the
front focal point ( p �f ), the image is real and inverted and is located on the back
side of the lens. This diagram would be representative of a movie projector, for
which the film is the object, the lens is in the projector, and the image is projected
on a large screen for the audience to watch. The film is placed in the projector with
the scene upside down so that the inverted image is right side up for the audience.

When the object is inside the front focal point (p � f ) as in Active Figure 26.24b,
the image is virtual and upright. When used in this way, the lens is acting as a
magnifying glass, providing an enlarged upright image for closer study of an object.
The object might be a stamp, a fingerprint, or a printed page for someone with
failing eyesight.

For the diverging lens of Active Figure 26.24c, the image is virtual and upright for
all object locations. A diverging lens is used in a security peephole in a door to give a
wide-angle view. Nearsighted individuals use diverging eyeglass lenses or contact
lenses. Another use is for a panoramic lens for a camera (although a sophisticated
camera “lens” is actually a combination of several lenses). A diverging lens in this
application creates a small image of a wide field of view.
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F2

Back

I

1

2
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What is the focal length of a pane of window glass? (a) zero
(b) infinity (c) the thickness of the glass (d) impossible to determine
QUICK QUIZ 26.5

If you cover the top half of the lens in Active Figure 26.24a with a
piece of paper, which of the following happens to the appearance of the image of the ob-
ject? (a) The bottom half disappears. (b) The top half disappears. (c) The entire image is
visible but dimmer. (d) There is no change. (e) The entire image disappears.

QUICK QUIZ 26.6

Ray diagrams for locating the image formed by a thin lens. (a) When the object is in front of and outside the focal
point F1 of a converging lens, the image is real, inverted, and on the back side of the lens. (b) When the object is
between F1 and a converging lens, the image is virtual, upright, larger than the object and on the front side of the
lens. (c) When an object is anywhere in front of a diverging lens, the image is virtual, upright, smaller than the
object and is on the front side of the lens.

Log into PhysicsNow at www.pop4e.com and go to Active Figure 26.24 to move the objects and change the focal lengths
of the lenses to see the effect on the images.

ACTIVE FIGURE 26.24
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■ Thinking Physics 26.2
Diving masks often have lenses built into the glass for divers who do not have per-
fect vision. This kind of mask allows the individual to dive without the necessity for
glasses because the lenses in the faceplate perform the necessary refraction to pro-
vide clear vision. Normal glasses have lenses that are curved on both the front and
rear surfaces. The lenses in a diving mask faceplate often only have curved surfaces
on the inside of the glass. Why is this design desirable?

Reasoning The main reason for curving only the inner surface of the lenses in the
diving mask faceplate is so that the diver can see clearly when looking at objects
straight ahead while underwater and in the air. Consider light rays approaching the
mask along a normal to the plane of the faceplate. If curved surfaces were on both
the front and the back of the diving lens on the faceplate, refraction would occur at
each surface. The lens could be designed so that these two refractions would give
clear vision while the diver is in air. When the diver is underwater, however, the re-
fraction between the water and the glass at the first interface is now different be-
cause the index of refraction of water is different from that of air. Thus, the vision
would not be clear underwater.

By making the outer surface of the lens flat, light is not refracted at normal inci-
dence to the faceplate at the outer surface in either air or water; all the refraction oc-
curs at the inner glass–air surface. Thus, the same refractive correction exists in wa-
ter and in air, and the diver can see clearly in both environments. ■

Corrective lenses on diving masks

surface is 10 cm and that of the back surface is 15 cm.
Find the focal length of the lens.

Solution From the sign conventions in Table 26.3 we
find that R1 � � 10 cm and R 2 � � 15 cm. Thus, using
the lens makers’ equation, we have

12 cmf �

 � (1.50 � 1) � 1
10 cm

�
1

�15 cm �

1
f

� (n � 1) � 1
R1

�
1

R2
�

The Lens Makers’ EquationEXAMPLE 26.6
The biconvex lens of Figure 26.25 has an index of re-
fraction of 1.50. The radius of curvature of the front

R2

R1 C1C2

Front Back

(Example 26.6) This lens has two curved surfaces
with radii of curvature R1 and R2.

FIGURE 26.25

The Image Formed by a Converging LensEXAMPLE 26.7INTERACTIVE

The positive sign for the image distance tells us that the
image is indeed real and on the back side of the lens.
The magnification of the image is

Thus, the image is reduced in size by one half, and
the negative sign for M tells us that the image is
inverted.

� 0.500M � � 
q
p

� �  
15.0 cm
30.0 cm

�

15.0 cmq �

1
30.0 cm

�
1
q

�
1

10.0 cm
A converging lens of focal length 10.0 cm forms an

image of an object placed 30.0 cm from the lens.
Construct a ray diagram, find the image distance, and
describe the image.

Solution First we construct a ray diagram as shown 
in Figure 26.26a. The diagram shows that we should 
expect a real, inverted, smaller image to be formed 
on the back side of the lens. The thin lens equation,
Equation 26.12, can be used to find the image 
distance:

 
1
p

�
1
q

�
1
f

A
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Combinations of Thin Lenses
If two thin lenses are used to form an image, the system can be treated in the
following manner. The position of the image of the first lens is calculated as
though the second lens were not present. The light then approaches the sec-
ond lens as if it had originally come from the image formed by the first lens.
Hence, the image of the first lens is treated as the object of the second lens.
The image of the second lens is the final image of the system. If the image of
the first lens lies on the back side of the second lens, the image is treated as a
virtual object for the second lens (i.e., p is negative). The same procedure can

and the magnification of the image is

The negative image distance tells us that the image is
virtual and formed on the side of the lens from which
the light is incident, the front side. The image is
enlarged, and the positive sign for M tells us that the
image is upright.

Investigate the image formed for various
object positions and lens focal lengths by logging into 
PhysicsNow at www.pop4e.com and going to Interactive 
Example 26.7.

2.00M � � 
q
p

� �� �10.0 cm
5.00 cm � �

�10.0 cmq �

1
5.00 cm

�
1
q

�
1

10.0 cm
The object is now placed 10.0 cm from the lens.

Construct a ray diagram, find the image distance, and
describe the image.

Solution No calculation is necessary for this case because
we know that when the object is placed at the focal point,
the image is formed at infinity. That is verified by substi-
tuting p � 10.0 cm into the lens equation.

Finally, the object is placed 5.00 cm from the lens.
Construct a ray diagram, find the image distance, and
describe the image.

Solution We now move inside the focal point. The ray
diagram in Figure 26.26b shows that in this case the
lens acts as a magnifying glass; that is, the image is 
magnified, upright, on the same side of the lens as 
the object, and virtual. Because the object distance is
5.00 cm, the thin lens equation gives us

C

B

(b)

O F2I, F1

10.0 cm5.00 cm

10.0 cm

(a)

O F1

F2 I

15.0 cm

30.0 cm

10.0 cm

(Interactive Example 26.7) An image is formed by a converging lens. (a) The object is
farther from the lens than the focal point. (b) The object is closer to the lens than the
focal point.

FIGURE 26.26

Light from a distant object brought
into focus by two converging lenses. ■
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be extended to a system of three or more lenses. The overall magnification of a
system of thin lenses equals the product of the magnifications of the separate
lenses.

Where Is the Final Image?EXAMPLE 26.8INTERACTIVE

second lens. We categorize this problem as one in
which we apply the thin lens equation to the two
lenses, but in stepwise fashion. To analyze the prob-
lem, we first draw a ray diagram (Fig. 26.27b) showing
where the image from the first lens falls and how it
acts as the object for the second lens. The location of
the image formed by lens 1 is found from the thin
lens equation:

 q1 � 15.0 cm

1
30.0 cm

�
1
q1

�
1

10.0 cm

 
1
p1

�
1
q1

�  
1
f

Two thin converging lenses of focal lengths 10.0 cm and
20.0 cm are separated by 20.0 cm as in Figure 26.27a.
An object is placed 30.0 cm to the left of the first lens.
Find the position and magnification of the final image.

Solution Conceptualize by imagining light rays pass-
ing through the first lens and forming a real image
(because p � f ) in the absence of the second lens.
Figure 26.27b shows these light rays forming the
inverted image I1. Once the light rays converge to the
image point, they do not stop. They continue
through the image point and interact with the second
lens. The rays leaving the image point behave in the
same way as the rays leaving an object. Thus, the
image of the first lens serves as the object of the

30.0 cm 20.0 cm

Object

f1 = 10.0 cm f2 = 20.0 cm

(a)

(b)

I2 I1

Lens 1 Lens 2
20.0 cm

6.67 cm

15.0 cm10.0 cm

O1

30.0 cm

(Interactive Example 26.8) (a) A combination of two converging lenses. (b) The ray diagram showing the
location of the final image due to the combination of lenses. The black dots are the focal points of lens 1, and
the red dots are the focal points of lens 2.

FIGURE 26.27
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The total magnification M of the image due to the two
lenses is the product

M � M1M2 � (� 0.500)(1.33) � � 0.667

To finalize the problem, note that the negative sign on
the overall magnification indicates that the final image
is inverted with respect to the initial object. That the ab-
solute value of the magnification is less than 1 tells us
that the final image is smaller than the object. That q2
is negative tells us that the final image is on the front,
or left, side of lens 2. All these conclusions are consis-
tent with the ray diagram in Figure 26.27b.

Investigate the image formed by a combi-
nation of lenses by logging into PhysicsNow at www.pop4e.com
and going to Interactive Example 26.8.

M2 � � 
q2

p2
� � 

(� 6.67 cm)
5.00 cm

� � 1.33
where q1 is measured from the first lens. The magnifica-
tion of this image is

The image formed by this lens acts as the object for
the second lens. The object distance for the second lens
is 20.0 cm � 15.0 cm � 5.00 cm from the second lens.
We again apply the thin lens equation to find the loca-
tion of the final image:

Therefore, the final image lies 6.67 cm to the left of the
second lens. The magnification of the second image is

� 6.67  cmq2 �

1
5.00 cm

�
1
q2

�
1

20.0 cm

M1 � � 
q1

p1
� � 

15.0 cm
30.0 cm

� � 0.500

MEDICAL  FIBERSCOPES
Electromagnetic radiation has played a role in the transfer of information in medi-
cine for decades. Of particular interest is the ability to gain information about the
relatively inaccessible regions inside the body without using invasive procedures
such as surgery. An early advance in this area was the use of x-rays to create shadowy
images of bones and other internal structures. In this section, we consider advances
that have been made in image formation using optical fibers in medical instru-
ments. These advances have in turn opened up new uses for lasers in medicine.

The first use of optical fibers in medicine appeared with the invention of the
fiberscope in 1957. Figure 26.28 indicates the construction of a fiberscope, which con-
sists of two bundles of optical fibers. The illuminating bundle is an incoherent bundle,
meaning that no effort is made to match the relative positions of the fibers at the
two ends. This matching is not necessary because the sole purpose of this bundle is
to deliver light to illuminate the scene. A lens (called the objective lens) is used at the
internal end of the fiberscope to create a real image of the illuminated scene on
the ends of the viewing bundle of fibers. The light from the image is transmitted
along the fibers to the viewing end. An eyepiece lens is used at this end to magnify
the image appearing on the ends of the fibers in the viewing bundle.

The viewing bundle is coherent, so the fibers have the same relative relation-
ships at both ends of the bundle. If one end of an individual fiber is at the very top

26.5 CONTEXT 
connection

Electromagnetic radiation in 
medicine

Viewing bundle

Objective lens

Object

Lens

Lamp

Illuminating
bundle

Eyepiece

Image

The construction
of a fiberscope for viewing the inte-
rior of the body. The objective lens
forms a real image of the scene on the
end of a bundle of optical fibers. This
image is carried to the other end of
the bundle, where an eyepiece lens is
used to magnify the image for the
physician.

FIGURE 26.28

Medical uses of the fiberscope
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of the eyepiece end of the bundle, the other end of the fiber must be at the very
top of the interior end of the bundle. This alignment is necessary because each
fiber in the viewing bundle collects light from a particular part of the real image of
the scene formed by the objective lens on the ends of the fibers. That part of the
scene’s image must appear in the correct place with all the parts at the other end
for the image to make sense!

The diameter of such a fiberscope can be as small as 1 mm and still provide ex-
cellent optical imaging of the scene to be viewed. Therefore, the fiberscope can be
inserted through very small surgical openings in the skin and threaded through
narrow areas such as arteries. Fiber densities are currently about 10 000 fibers for a
1-mm-diameter scope. Resolution is as high as 70 �m.

As another example, a fiberscope can be passed through the esophagus and
into the stomach to enable a physician to look for ulcers. The resulting image can
be viewed directly by the physician through the eyepiece lens, but most often it is
displayed on a television monitor, captured on film, or digitized for computer stor-
age and display.

Endoscopes are fiberscopes with additional channels besides those for the illumi-
nating and viewing fibers. These channels may be used for

withdrawing fluids
introducing fluids
vacuum suction
wire manipulators
scalpels for cutting tissue
needles for injections
lasers for surgical applications

Because these additional channels require more room, endoscopes range from 2 to
15 mm in diameter. Despite this larger size, however, endoscopes can be used to
perform surgery within the body using incisions that are much smaller than those
in traditional surgery.

Lasers are used with endoscopes in a variety of medical diagnostic and treat-
ment procedures. As a diagnostic example, the dependence on wavelength of the
amount of reflection from a surface allows a fiberscope to be used to make a direct
measurement of the blood’s oxygen content. Using two laser sources, red light and
infrared light are both sent into the blood through optical fibers. Hemoglobin re-
flects a known fraction of infrared light, regardless of the oxygen carried. Thus, the
measurement of the infrared reflection gives a total hemoglobin count. Red light is
reflected much more by hemoglobin carrying oxygen than by hemoglobin that
does not. Therefore, the amount of red laser light reflected allows a measurement
of the ability of the patient’s blood to carry oxygen.

Lasers are used to treat medical conditions such as hydrocephalus, which occurs
in about 0.1% of births. This condition involves an increase in intracranial pressure
due to an overproduction of cerebrospinal fluid (CSF), an obstruction of the flow
of CSF, or insufficient absorption of CSF. In addition to congenital hydrocephalus,
the condition can be acquired later in life due to trauma to the head, brain tumors,
or other factors.

The older treatment method for obstructive hydrocephalus involved placing a
shunt (tube) between ventricular chambers in the brain to allow passage of CSF. A
new alternative is laser-assisted ventriculostomy, in which a new pathway for CSF is
made with an infrared laser beam and an endoscope having a spherical end as
shown in Figure 26.29. As the laser beam strikes the spherical end, refraction at the
spherical surface causes light waves to spread out in all directions as if the end of
the endoscope were a point source of radiation. The result is a rapid decrease in in-
tensity with distance from the sphere, avoiding damage to vital structures in the
brain that are close to the area in which a new passageway is to be made. The sur-
face of the spherical end is coated with an infrared radiation-absorbing material,
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Medical uses of the endoscope

Use of lasers in treating 
hydrocephalus

Optical
fiber bundle

Spherical
end

Endoscope
covering

An endoscope
probe used to open new passageways
for cerebrospinal fluid in the treat-
ment of hydrocephalus. Laser light
raises the temperature of the sphere
and radiates from the sphere to pro-
vide energy to tissues for cutting the
new passageway.

FIGURE 26.29



and the absorbed laser energy raises the temperature of the sphere. As the sphere
is placed in contact with the location of the desired passageway, the combination of
the high temperature and laser radiation leaving the sphere burns a new passage-
way for the CSF. This treatment requires much less recovery time as well as signifi-
cantly less postoperative care than that associated with the placement of shunts.

In Chapter 27, we shall investigate another application of lasers — the technol-
ogy of holography — that has grown tremendously in recent years. In holography,
three-dimensional images of objects are recorded on film. ■
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SUMMARY

Take a practice test by logging into 
PhysicsNow at www.pop4e.com and clicking
on the Pre-Test link for this chapter.

An image of an object is a point from which light either di-
verges or seems to diverge after interacting with a mirror or
lens. If light passes through the image point, the image is a real
image. If light only appears to diverge from the image point,
the image is a virtual image.

In the paraxial ray simplification model, the object distance
p and image distance q for a spherical mirror of radius R are re-
lated by the mirror equation

[26.4, 26.6]

where f � R/2 is the focal length of the mirror.
The magnification M of a mirror or lens is defined as the ra-

tio of the image height h� to the object height h :

[26.2, 26.11]

An image can be formed by refraction from a spherical sur-
face of radius R. The object and image distances for refraction

M �
h�

h
� �  

q
p

1
p

�
1
q

�
2
R

�
1
f

from such a surface are related by

[26.8]

where the light is incident from the medium of index of refrac-
tion n1 and is refracted in the medium whose index of refrac-
tion is n2.

For a thin lens, and in the paraxial ray approximation, the
object and image distances are related by the thin lens
equation:

[26.12]

The focal length f of a thin lens in air is related to the curva-
ture of its surfaces and to the index of refraction n of the lens
material by

[26.13]

Converging lenses have positive focal lengths, and diverging
lenses have negative focal lengths.

1
f

� (n � 1)� 1
R1

�
1

R2
�

1
p

�
1
q

�
1
f

n1

p
�

n2

q
�

n2 � n1

R

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. Consider a concave spherical mirror with a real object. Is
the image always inverted? Is the image always real? Give
conditions for your answers.

2. Repeat Question 26.1 for a convex spherical mirror.

3. Do the equations 1/p � 1/q � 1/f or M � �q/p apply to
the image formed by a flat mirror? Explain your answer.

4. Why does a clear stream, such as a creek, always appear to
be shallower than it actually is? By how much is its depth
apparently reduced?

5. Consider the image formed by a thin converging lens.
Under what conditions is the image (a) inverted,(b)upright,
(c) real, (d) virtual, (e) larger than the object, and
(f) smaller than the object?

6. Repeat Question 26.5 for a thin diverging lens.

7. Use the lens makers’ equation to verify the sign of the
focal length of each of the lenses in Figure 26.20.

8. If a solid cylinder of glass or clear plastic is placed above
the words LEAD OXIDE and viewed from above as shown
in Figure Q26.8, the LEAD appears inverted but the
OXIDE does not. Explain.

FIGURE Q26.8
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9. Consider a spherical concave mirror with the object
located to the left of the mirror beyond the focal point.
Using ray diagrams, show that the image moves to the left
as the object approaches the focal point.

Explain why a fish in a spherical goldfish bowl appears
larger than it really is.

11. Why do some emergency vehicles have the symbol
written on the front?

Lenses used in eyeglasses, whether converging or
diverging, are always designed so that the middle of the
lens curves away from the eye, like the center lenses of
Figure 26.20a and 26.20b. Why?

13. In Active Figure 26.24a, assume that the blue object arrow
is replaced by one that is much taller than the lens. How
many rays from the object will strike the lens? How many
principal rays can be drawn in a ray diagram?

14. In a Jules Verne novel, a piece of ice is shaped to form a mag-
nifying lens to focus sunlight to start a fire. Is that possible?

15. Explain this statement: “The focal point of a lens is the lo-
cation of the image of a point object at infinity.” Discuss
the notion of infinity in real terms as it applies to object
distances. Based on this statement, can you think of a
“quick and dirty” method for determining the focal length
of a converging lens?

16. Discuss the proper position of a photographic slide relative
to the lens in a slide projector. What type of lens must the
slide projector have?

17. A solar furnace can be constructed by using a concave mir-
ror to reflect and focus sunlight into a furnace enclosure.
What factors in the design of the reflecting mirror would
guarantee very high temperatures?

18. Figure Q26.18 shows a lithograph by M. C. Escher titled
Hand with Reflection Sphere (Self-Portrait in Spherical Mirror).
Escher had this to say about the work:

The picture shows a spherical mirror, resting on a left
hand. But as a print is the reverse of the original drawing
on stone, it was my right hand that you see depicted. (Be-

12.

AMBULANCE

10.

ing left-handed, I needed my left hand to make the draw-
ing.) Such a globe reflection collects almost one’s whole
surroundings in one disk-shaped image. The whole room,
four walls, the floor, and the ceiling, everything, albeit dis-
torted, is compressed into that one small circle. Your own
head, or more exactly the point between your eyes, is the
absolute center. No matter how you turn or twist yourself,
you can’t get out of that central point. You are immovably
the focus, the unshakable core, of your world.

Comment on the accuracy of Escher’s description.
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FIGURE Q26.18
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19. You can make a corner reflector by placing three flat
mirrors in the corner of a room where the ceiling meets
the walls. Show that no matter where you are in the room,
you can see yourself reflected in the mirrors, upside down.

1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 26.1 ■ Images Formed by Flat Mirrors
1. Does your bathroom mirror show you older or younger

than you actually are? Compute an order-of-magnitude
estimate for the age difference, based on data you specify.

2. In a church choir loft, two parallel walls are 5.30 m apart.
The singers stand against the north wall. The organist faces

the south wall, sitting 0.800 m away from it. To enable her
to see the choir, a flat mirror 0.600 m wide is mounted on
the south wall, straight in front of her. What width of the
north wall can she see? (Suggestion: Draw a top-view
diagram to justify your answer.)

Determine the minimum height of a vertical flat mirror in
which a person 5�10 in height can see his or her full
image. (A ray diagram would be helpful.)

4. Two flat mirrors have their reflecting surfaces facing each
other, with the edge of one mirror in contact with an edge
of the other, so that the angle between the mirrors is �.
When an object is placed between the mirrors, a number
of images are formed. In general, if the angle � is such that
n� � 360°, where n is an integer, the number of images
formed is n – 1. Graphically, find all the image positions
for the case n � 6 when a point object is between the
mirrors (but not on the angle bisector).

3.

PROBLEMS
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5. A person walks into a room with two flat mirrors on oppo-
site walls, which produce multiple images. When the per-
son is 5.00 ft from the mirror on the left wall and 10.0 ft
from the mirror on the right wall, find the distance from
the person to the first three images seen in the mirror on
the left.

6. A periscope (Fig. P26.6) is useful for viewing objects that
cannot be seen directly. It finds use in submarines and in
watching golf matches or parades from behind a crowd of
people. Suppose the object is a distance p1 from the upper
mirror and the two flat mirrors are separated by a distance
h. (a) What is the distance of the final image from the
lower mirror? (b) Is the final image real or virtual? (c) Is
it upright or inverted? (d) What is its magnification?
(e) Does it appear to be left–right reversed? 

object placed in front of the mirror at distances of
(a) 90.0 cm and (b) 20.0 cm. (c) Draw ray diagrams to
obtain the image characteristics in each case.

12. A dentist uses a mirror to examine a tooth. The tooth
is 1.00 cm in front of the mirror, and the image is formed
10.0 cm behind the mirror. Determine (a) the mirror’s ra-
dius of curvature and (b) the magnification of the image.

13. A certain Christmas tree ornament is a silver sphere having
a diameter of 8.50 cm. Determine an object location for
which the size of the reflected image is three-fourths the
size of the object. Use a principal-ray diagram to arrive at a
description of the image.

14. (a) A concave mirror forms an inverted image four times
larger than the object. Find the focal length of the mirror,
assuming that the distance between object and image is
0.600 m. (b) A convex mirror forms a virtual image half
the size of the object. Assuming that the distance between
image and object is 20.0 cm, determine the radius of curva-
ture of the mirror.

15. To fit a contact lens to a patient’s eye, a keratometer can
be used to measure the curvature of the front surface of
the eye, the cornea. This instrument places an illuminated
object of known size at a known distance p from the
cornea. The cornea reflects some light from the object,
forming an image of the object. The magnification M of
the image is measured by using a small viewing telescope
that allows comparison of the image formed by the cornea
with a second calibrated image projected into the field of
view by a prism arrangement. Determine the radius of
curvature of the cornea for the case p � 30.0 cm and
M � 0.013 0.

16. An object 10.0 cm tall is placed at the zero mark of a meter
stick. A spherical mirror located at some point on the
meter stick creates an image of the object that is upright,
4.00 cm tall, and located at the 42.0-cm mark of the meter
stick. (a) Is the mirror convex or concave? (b) Where is
the mirror? (c) What is the mirror’s focal length? 

A spherical mirror is to be used to form, on a screen located
5.00 m from the object, an image five times the size of the
object. (a) Describe the type of mirror required. (b) Where
should the mirror be positioned relative to the object?

17.
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FIGURE P26.6

Section 26.2 ■ Images Formed by Spherical Mirrors
7. A concave spherical mirror has a radius of curvature of

20.0 cm. Find the location of the image for object distances
of (a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. For each
case, state whether the image is real or virtual and upright
or inverted. Find the magnification in each case.

8. At an intersection of hospital hallways, a convex mirror is
mounted high on a wall to help people avoid collisions.
The mirror has a radius of curvature of 0.550 m. Locate
and describe the image of a patient 10.0 m from the
mirror. Determine the magnification.

A spherical convex mirror (Fig. P26.9)
has a radius of curvature with a magnitude of 40.0 cm.
Determine the position of the virtual image and the magni-
fication for object distances of (a) 30.0 cm and (b) 60.0 cm.
(c) Are the images upright or inverted?

10. A large church has a niche in one wall. On the floor plan it
appears as a semicircular indentation of radius 2.50 m.
A worshiper stands on the center line of the niche, 2.00 m
out from its deepest point, and whispers a prayer. Where is
the sound concentrated after reflection from the back wall
of the niche?

A concave mirror has a radius of curvature of 60.0 cm.
Calculate the image position and magnification of an

11.

9.

FIGURE P26.9 Convex mirrors, often used
for security in department stores, provide
wide-angle viewing.
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18. A dedicated sports car enthusiast polishes the inside and
outside surfaces of a hubcap that is a section of a sphere.
When she looks into one side of the hubcap, she sees an
image of her face 30.0 cm in back of the hubcap. She then
flips the hubcap over and sees another image of her face
10.0 cm in back of the hubcap. (a) How far is her face
from the hubcap? (b) What is the radius of curvature of
the hubcap?

19. You unconsciously estimate the distance to an object from
the angle it subtends in your field of view. This angle � in
radians is related to the linear height of the object h and to
the distance d by � � h/d. Assume that you are driving a
car and that another car, 1.50 m high, is 24.0 m behind
you. (a) Suppose your car has a flat passenger-side rearview
mirror, 1.55 m from your eyes. How far from your eyes is
the image of the car following you? (b) What angle does
the image subtend in your field of view? (c) Suppose
instead your car has a convex rearview mirror with a radius
of curvature of magnitude 2.00 m (Fig. 26.13 and 
Fig. P26.19). How far from your eyes is the image of the
car behind you? (d) What angle does the image subtend at
your eyes? (e) Based on its angular size, how far away does
the following car appear to be?

of the speck as viewed from above. The index of refraction
of ice is 1.309.

22. A flint glass plate (n � 1.66) rests on the bottom of an
aquarium tank. The plate is 8.00 cm thick (vertical dimen-
sion) and is covered with a layer of water (n � 1.33)
12.0 cm deep. Calculate the apparent thickness of the
plate as viewed from straight above the water.

A glass sphere (n � 1.50) with a radius of 15.0 cm has a
tiny air bubble 5.00 cm above its center. The sphere is
viewed looking down along the extended radius contain-
ing the bubble. What is the apparent depth of the bubble
below the surface of the sphere?

24. A simple model of the human eye ignores its lens
entirely. Most of what the eye does to light happens at the
outer surface of the transparent cornea. Assume that this
surface has a radius of curvature of 6.00 mm and that the
eyeball contains just one fluid with a refractive index of
1.40. Prove that a very distant object will be imaged on the
retina, 21.0 mm behind the cornea. Describe the image.

25. One end of a long glass rod (n � 1.50) is formed into a
convex surface with a radius of curvature of 6.00 cm. An
object is located in air along the axis of the rod. Find the
image positions corresponding to object distances of
(a) 20.0 cm, (b) 10.0 cm, and (c) 3.00 cm from the end of
the rod.

26. A goldfish is swimming at 2.00 cm/s toward the front wall
of a rectangular aquarium. What is the apparent speed of
the fish measured by an observer looking in from outside
the front wall of the tank? The index of refraction of water
is 1.33.

Section 26.4 ■ Thin Lenses
The left face of a biconvex lens has a

radius of curvature of magnitude 12.0 cm, and the right
face has a radius of curvature of magnitude 18.0 cm. The
index of refraction of the glass is 1.44. (a) Calculate the
focal length of the lens. (b) Calculate the focal length the
lens has after is turned around to interchange the radii of
curvature of the two faces.

28. A contact lens is made of plastic with an index of refrac-
tion of 1.50. The lens has an outer radius of curvature of
�2.00 cm and an inner radius of curvature of �2.50 cm.
What is the focal length of the lens?

29. A thin lens has a focal length of 25.0 cm. Locate and de-
scribe the image when the object is placed (a) 26.0 cm and
(b) 24.0 cm in front of the lens.

30. A converging lens has a focal length of 20.0 cm. Locate the
image for object distances of (a) 40.0 cm, (b) 20.0 cm, and
(c) 10.0 cm. For each case, state whether the image is real
or virtual and upright or inverted. Find the magnification
in each case.

The nickel’s image in Figure P26.31 has
twice the diameter of the nickel and is 2.84 cm from the
lens. Determine the focal length of the lens.

32. An object located 32.0 cm in front of a lens forms an im-
age on a screen 8.00 cm behind the lens. (a) Find the focal
length of the lens. (b) Determine the magnification. (c) Is
the lens converging or diverging?

31.

27.

23.

FIGURE P26.19

20. Review problem. A ball is dropped at t � 0 from rest
3.00 m directly above the vertex of a concave mirror that
has a radius of curvature of 1.00 m and lies in a horizontal
plane. (a) Describe the motion of the ball’s image in the
mirror. (b) At what time do the ball and its image
coincide?

Section 26.3 ■ Images Formed by Refraction
21. A cubical block of ice 50.0 cm on a side is placed on a level

floor over a speck of dust. Find the location of the image



33. Suppose an object has thickness dp so that it extends from
object distance p to p � dp. Prove that the thickness dq
of its image is given by (�q 2/p2)dp. Then the longitudinal
magnification is dq/dp � � M 2, where M is the lateral
magnification.

34. The projection lens in a certain slide projector is a single
thin lens. A slide 24.0 mm high is to be projected so that its
image fills a screen 1.80 m high. The slide-to-screen
distance is 3.00 m. (a) Determine the focal length of the
projection lens. (b) How far from the slide should the lens
of the projector be placed so as to form the image on the
screen?

An object is located 20.0 cm to the left of a diverging lens
having a focal length f � � 32.0 cm. Determine (a) the lo-
cation and (b) the magnification of the image. (c) Con-
struct a ray diagram for this arrangement.

36. The use of a lens in a certain situation is described by the
equation

Determine (a) the object distance and (b) the image dis-
tance. (c) Use a ray diagram to obtain a description of the
image. (d) Identify a practical device described by the
given equation and write the statement of a problem for
which the equation appears in the solution.

37. An antelope is at a distance of 20.0 m from a converging
lens of focal length 30.0 cm. The lens forms an image of
the animal. If the antelope runs away from the lens at a
speed of 5.00 m/s, how fast does the image move? Does
the image move toward or away from the lens?

38. Figure P26.38 shows a thin glass (n � 1.50) converging
lens for which the radii of curvature are R1 � 15.0 cm and

1
p

�
1

� 3.50p
�

1
7.50 cm

35.

R2 � �12.0 cm. To the left of the lens is a cube having a
face area of 100 cm2. The base of the cube is on the axis of
the lens, and the right face is 20.0 cm to the left of the
lens. (a) Determine the focal length of the lens. (b) Draw
the image of the square face formed by the lens. What type
of geometric figure is it? (c) Determine the area of the
image.

39. An object is at a distance d to the left of a flat screen. A
converging lens with focal length f � d/4 is placed be-
tween object and screen. (a) Show that two lens positions
exist that form an image on the screen and determine how
far these positions are from the object. (b) How do the two
images differ from each other?

40. Figure P26.40 diagrams a cross-section of a camera. It has a
single lens of focal length 65.0 mm, which is to form an
image on the film at the back of the camera. Suppose the
position of the lens has been adjusted to focus the image
of a distant object. How far and in what direction must the
lens be moved to form a sharp image of an object that is
2.00 m away?
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FIGURE P26.40

Section 26.5 ■ Context Connection — Medical 
Fiberscopes

41. You are designing an endoscope for use inside an air-
filled body cavity. A lens at the end of the endoscope will
form an image covering the end of a bundle of optical
fibers. This image will then be carried by the optical fibers
to an eyepiece lens at the outside end of the fiberscope.
The radius of the bundle is 1.00 mm. The scene within the
body that is to appear within the image fills a circle of
radius 6.00 cm. The lens will be located 5.00 cm from the
tissues you wish to observe. (a) How far should the lens be
located from the end of an optical fiber bundle? (b) What
is the focal length of the lens required?

42. Consider the endoscope probe used for treating hy-
drocephalus and shown in Figure 26.29. The spherical
end, with refractive index 1.50, is attached to an optical
fiber bundle of radius 1.00 mm, which is smaller than the
radius of the sphere. The center of the spherical end is on
the central axis of the bundle. Consider laser light that
travels precisely parallel to the central axis of the bundle
and then refracts out from the surface of the sphere into
air. (a) In Figure 26.29, does light that refracts out of the
sphere and travels toward the upper right come from
the top half of the sphere or from the bottom half of the
sphere? (b) If laser light that travels along the edge of the
optical fiber bundle refracts out of the sphere tangent to



the surface of the sphere, what is the radius of the sphere?
(c) Find the angle of deviation of the ray considered in
part (b), that is, the angle by which its direction changes as
it leaves the sphere. (d) Show that the ray considered in
part (b) has a greater angle of deviation than any other
ray. Show that the light from all parts of the optical fiber
bundle does not refract out of the sphere with spherical
symmetry, but rather fills a cone around the forward direc-
tion. Find the angular diameter of the cone. (e) In reality,
however, laser light can diverge from the sphere with ap-
proximate spherical symmetry. What considerations that
we have not addressed will lead to this approximate spheri-
cal symmetry in practice?

Additional Problems
43. The distance between an object and its upright image is d.

If the magnification is M, what is the focal length of the
lens being used to form the image?

44. The lens and mirror in Figure P26.44 have focal lengths of
� 80.0 cm and � 50.0 cm, respectively. An object is placed
1.00 m to the left of the lens as shown. Locate the final im-
age, formed by light that has gone through the lens twice.
State whether the image is upright or inverted, and deter-
mine the overall magnification.

with a simple two-lens system. An object, two converging
lenses, and a screen are mounted on an optical bench.
The first lens, which is to the right of the object, has a focal
length of 5.00 cm, and the second lens, which is to the
right of the first lens, has a focal length of 10.0 cm. The
screen is to the right of the second lens. Initially, an object
is situated at a distance of 7.50 cm to the left of the first
lens, and the image formed on the screen has a magnifica-
tion of �1.00. (a) Find the distance between the object
and the screen. (b) Both lenses are now moved along their
common axis, while the object and the screen maintain
fixed positions, until the image formed on the screen has a
magnification of �3.00. Find the displacement of each
lens from its initial position in part (a). Can the lenses be
displaced in more than one way?

48. The object in Figure P26.48 is midway between the lens and
the mirror. The mirror’s radius of curvature is 20.0 cm,
and the lens has a focal length of �16.7 cm. Considering
only the light that leaves the object and travels first toward
the mirror, locate the final image formed by this system. Is
this image real or virtual? Is it upright or inverted? What is
the overall magnification?
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Object
MirrorLens

1.00 m 1.00 m

FIGURE P26.44

45. A real object is located at the zero end of a meter stick. A
large concave mirror at the 100-cm end of the meter stick
forms an image of the object at the 70.0-cm position. A
small convex mirror placed at the 20.0-cm position forms a
final image at the 10.0-cm point. What is the radius of cur-
vature of the convex mirror?

46. Derive the lens makers’ equation as follows. Consider an
object in vacuum at p1 � � from a first refracting surface
of radius of curvature R1. Locate its image. Use this image
as the object for the second refracting surface, which has
nearly the same location as the first because the lens is
thin. Locate the final image, proving it is at the image dis-
tance q2 given by

47. A zoom lens system is a combination of lenses that produces
a variable magnification while maintaining fixed object
and image positions. The magnification is varied by mov-
ing one or more lenses along the axis. Although multiple
lenses are used in practice to obtain high-quality images,
the effect of zooming in on an object can be demonstrated

� (n � 1)� 1
R1

�
1

R2
�1

q2

Lens Object
Mirror

25.0 cm

FIGURE P26.48

A parallel beam of light enters a glass
hemisphere perpendicular to the flat face as shown in Fig-
ure P26.49. The magnitude of the radius is 6.00 cm, and
the index of refraction is 1.560. Determine the point at
which the beam is focused. (Assume paraxial rays.)

49.

n

R

I

q

Air

FIGURE P26.49

50. Review problem. A spherical lightbulb of diameter 3.20 cm
radiates light equally in all directions, with power 4.50 W.
(a) Find the light intensity at the surface of the lightbulb.
(b) Find the light intensity 7.20 m away from the center of
the lightbulb. (c) At this 7.20-m distance, a lens is set up
with its axis pointing toward the lightbulb. The lens has a
circular face with a diameter 15.0 cm and has a focal



length of 35.0 cm. Find the diameter of the image of the
bulb. (d) Find the light intensity at the image.

An object is placed 12.0 cm to the left of a diverging lens
of focal length� 6.00 cm. A converging lens of focal length
12.0 cm is placed a distance d to the right of the diverging
lens. Find the distance d so that the final image is at infin-
ity. Draw a ray diagram for this case.

52. An observer to the right of the mirror– lens combination
shown in Figure P26.52 sees two real images that are the
same size and in the same location. One image is upright
and the other is inverted. Both images are 1.50 times
larger than the object. The lens has a focal length of 
10.0 cm. The lens and mirror are separated by 40.0 cm.
Determine the focal length of the mirror. Do not assume
that the figure is drawn to scale.

51.

57. The lens makers’ equation applies to a lens immersed in a
liquid if n in the equation is replaced by n2/n1. Here n2
refers to the refractive index of the lens material and n1 is
that of the medium surrounding the lens. (a) A certain
lens has focal length 79.0 cm in air and refractive index
1.55. Find its focal length in water. (b) A certain mirror has
focal length 79.0 cm in air. Find its focal length in water.

58. Figure P26.58 shows a thin converging lens for which the
radii of curvature are R1 � 9.00 cm and R2 � � 11.0 cm.
The lens is in front of a concave spherical mirror with the
radius of curvature �R � � 8.00 cm. (a) Assume that its focal
points F1 and F2 are 5.00 cm from the center of the lens.
Determine its index of refraction. (b) The lens and mirror
are 20.0 cm apart, and an object is placed 8.00 cm to the
left of the lens. Determine the position of the final image
and its magnification as seen by the eye in the figure. (c) Is
the final image inverted or upright? Explain.
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FIGURE P26.52

The disk of the Sun subtends an angle
of 0.533° at the Earth. What are the position and diameter
of the solar image formed by a concave spherical mirror
with a radius of curvature of 3.00 m?

54. Assume that the intensity of sunlight is 1.00 kW/m2 at a
particular location. A highly reflecting concave mirror is to
be pointed toward the Sun to produce a power of at least
350 W at the image. (a) Find the required radius Ra of the
circular face area of the mirror. (b) Now suppose the light
intensity is to be at least 120 kW/m2 at the image. Find the
required relationship between Ra and the radius of curva-
ture R of the mirror. The disk of the Sun subtends an an-
gle of 0.533° at the Earth.

In a darkened room, a burning candle is placed 1.50 m
from a white wall. A lens is placed between candle and wall
at a location that causes a larger, inverted image to form
on the wall. When the lens is moved 90.0 cm toward the
wall, another image of the candle is formed. Find (a) the
two object distances that produce the specified images and
(b) the focal length of the lens. (c) Characterize the sec-
ond image.

56. In many applications, it is necessary to expand or to de-
crease the diameter of a beam of parallel rays of light. This
change can be made by using a converging lens and a di-
verging lens in combination. Suppose you have a converg-
ing lens of focal length 21.0 cm and a diverging lens of fo-
cal length �12.0 cm. How can you arrange these lenses to
increase the diameter of a beam of parallel rays? By what
factor will the diameter increase?

55.

53.

F2

C

F1

FIGURE P26.58

59. A floating strawberry illusion is achieved with two parabolic
mirrors, each having a focal length 7.50 cm, facing each
other so that their centers are 7.50 cm apart (Fig. P26.59).
If a strawberry is placed on the lower mirror, an image of

Small hole

Strawberry

FIGURE P26.59
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26.1 At C . A ray traced from the stone to the mirror and then
to observer 2 looks like this illustration:

26.3 (b). A concave mirror will focus the light from a large
area of the mirror onto a small area of the paper, result-
ing in a very high power input to the paper.

26.4 (b). A convex mirror always forms an image with a mag-
nification less than one, so the mirror must be concave.
In a concave mirror, only virtual images are upright. This
particular photograph is of the Hubble Space Telescope
primary mirror.

26.5 (b). Because the flat surfaces of the pane have infinite
radii of curvature, Equation 26.13 indicates that the focal
length is also infinite. Parallel rays striking the pane fo-
cus at infinity, which means that they remain parallel af-
ter passing through the glass.

26.6 (c). The entire image is visible but has half the intensity.
Each point on the object is a source of rays that travel in
all directions. Thus, light from all parts of the object goes
through all parts of the lens and forms an image. If you
block part of the lens, you are blocking some of the rays,
but the remaining ones still come from all parts of the
object.

ANSWERS TO QUICK QUIZZES

the strawberry is formed at the small opening at the center
of the top mirror. Show that the final image is formed at
that location and describe its characteristics. (Note: A very
startling effect is to shine a flashlight beam on this image.
Even at a glancing angle, the incoming light beam is seem-
ingly reflected from the image! Do you understand why?)

60. An object 2.00 cm high is placed 40.0 cm to the left of a
converging lens having a focal length of 30.0 cm. A diverg-

ing lens with a focal length of � 20.0 cm is placed 110 cm
to the right of the converging lens. (a) Determine the posi-
tion and magnification of the final image. (b) Is the image
upright or inverted? (c) Repeat parts (a) and (b) for the
case where the second lens is a converging lens having a
focal length of � 20.0 cm.

C

2 1

26.2 False. The water spots are 2 m away from you and your
image is 4 m away. You cannot focus your eyes on both at
the same time.



In Chapters 25 and 26, we used the ray approximation to ex-
amine what happens when light reflects from a surface or re-
fracts into a new medium. We used the general term geometric

optics for these discussions. This chapter is concerned with wave
optics, a subject that addresses the optical phenomena of inter-
ference and diffraction. These phenomena cannot be adequately
explained with the ray approximation. We must address the wave
nature of light to be able to understand these phenomena.

We introduced the concept of wave interference in Chapter
14 for one-dimensional waves. This phenomenon depends on the
principle of superposition, which tells us that when two or more
traveling mechanical waves combine at a given point, the resul-
tant displacement of the elements of the medium at that point is
the sum of the displacements due to the individual waves.

We shall see the full richness of the waves in interfer-
ence model in this chapter as we apply it to light. We used one-
dimensional waves on strings to introduce interference in Figures
14.1 and 14.2. As we discuss the interference of light waves, two
major changes from this previous discussion must be noted. First,

Wave Optics

C H A P T E R 27

Interference in soap bubbles. The col-
ors are due to interference between
light rays reflected from the front and
back surfaces of the thin film of soap
making up the bubble. The color de-
pends on the thickness of the film,
ranging from black where the film is
thinnest to red where it is thickest.

C H A P T E R  O U T L I N E
27.1 Conditions for Interference
27.2 Young’s Double-Slit Experiment
27.3 Light Waves in Interference
27.4 Change of Phase Due to Reflection
27.5 Interference in Thin Films
27.6 Diffraction Patterns
27.7 Resolution of Single-Slit and 

Circular Apertures
27.8 The Diffraction Grating
27.9 Diffraction of X-Rays by Crystals
27.10 Context Connection — Holography
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we shall no longer focus on one-dimensional waves, so we must build geometric
models to analyze the situation in two or three dimensions. Second, we shall study
electromagnetic waves rather than mechanical waves. Therefore, the principle of
superposition needs to be cast in terms of addition of field vectors rather than dis-
placements of the elements of the medium.

CONDITIONS  FOR  INTERFERENCE
In our discussion of wave interference for mechanical waves in Chapter 14, we
found that two waves can add together constructively or destructively. In construc-
tive interference between waves, the amplitude of the resultant wave is greater than
that of either individual wave, whereas in destructive interference, the resultant am-
plitude is less than that of either individual wave. Electromagnetic waves also un-
dergo interference. Fundamentally, all interference associated with electromag-
netic waves arises as a result of combining the electric and magnetic fields that
constitute the individual waves.

In Figure 14.4, we described a device that allows interference to be observed for
sound waves. Interference effects in visible electromagnetic waves are not easy to
observe because of their short wavelengths (from about 4 � 10�7 to 7 � 10�7 m).
Two sources producing two waves of identical wavelengths are needed to create in-
terference. To produce a stable interference pattern, however, the individual waves
must maintain a constant phase relationship with one another; they must be coher-
ent. As an example, the sound waves emitted by two side-by-side loudspeakers dri-
ven by a single amplifier can produce interference because the two loudspeakers
respond to the amplifier in the same way at the same time.

If two separate light sources are placed side by side, no interference effects are
observed because the light waves from one source are emitted independently of the
other source; hence, the emissions from the two sources do not maintain a constant
phase relationship with each other over the time of observation. An ordinary light
source undergoes random changes in time intervals less than a nanosecond. There-
fore, the conditions for constructive interference, destructive interference, or some
intermediate state are maintained only for such short time intervals. The result is
that no interference effects are observed because the eye cannot follow such rapid
changes. Such light sources are said to be incoherent.

YOUNG’S  DOUBLE-SLIT  EXPERIMENT
A common method for producing two coherent light sources is to use a monochro-
matic source to illuminate a barrier containing two small openings (usually in the
shape of slits). The light emerging from the two slits is coherent because a single
source produces the original light beam and the two slits serve only to separate the
original beam into two parts (which, after all, is what was done to the sound signal
from the side-by-side loudspeakers at the end of the preceding section). Any ran-
dom change in the light emitted by the source occurs in both beams at the same
time, and, as a result, interference effects can be observed when the light from the
two slits arrives at a viewing screen.

If the light traveled only in its original direction after passing through the slits as
shown in Figure 27.1a, the waves would not overlap and no interference pattern
would be seen. Instead, as we have discussed in our treatment of Huygens’s princi-
ple (Section 25.6), the waves spread out from the slits as shown in Figure 27.1b. In
other words, the light deviates from a straight-line path and enters the region that
would otherwise be shadowed. As noted in Section 25.2, this divergence of light
from its initial line of travel is called diffraction.

Interference in light waves from two sources was first demonstrated by Thomas
Young in 1801. A schematic diagram of the apparatus that Young used is shown in

27.2

27.1
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(a)

(b)

(a) If light waves
did not spread out after passing
through the slits, no interference
would occur. (b) The light waves from
the two slits overlap as they spread
out, filling what we expect to be shad-
owed regions with light and produc-
ing interference fringes on a screen
placed to the right of the slits.

FIGURE 27.1



(a) Constructive interference occurs at point O when the waves combine. 
(b) Constructive interference also occurs at point P. (c) Destructive interference occurs
at R because the wave from the upper slit falls half a wavelength behind the wave from
the lower slit. (All figures not to scale.)

Active Figure 27.2a. Plane light waves arrive at a barrier that contains two parallel
slits S1 and S2. These two slits serve as a pair of coherent light sources because
waves emerging from them originate from the same wave front and therefore main-
tain a constant phase relationship. The light from S1 and S2 produces on a viewing
screen a visible pattern of bright and dark parallel bands called fringes (Active Fig.
27.2b). When the light from S1 and that from S2 both arrive at a point on the
screen such that constructive interference occurs at that location, a bright fringe
appears. When the light from the two slits combines destructively at any location on
the screen, a dark fringe results.

Figure 27.3 is a schematic diagram that allows us to generate a mathematical rep-
resentation by modeling the interference as if waves combine at the viewing screen.1
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(a) Schematic diagram of Young’s
double-slit experiment. Slits S1

and S2 behave as coherent sources
of light waves that produce an in-
terference pattern on the viewing
screen (drawing not to scale). 
(b) An enlargement of the center
of a fringe pattern formed on the
viewing screen could look like this
photograph.

Log into
PhysicsNow at www.pop4e.com
and go to Active Figure 27.2 to
adjust the slit separation and the
wavelength of the light to see the
effect on the interference pattern.

ACTIVE FIGURE 27.2
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FIGURE 27.3

1The interference occurs everywhere between the slits and the screen, not only at the screen. See
Thinking Physics 27.1. The model we have proposed will give us a valid result.
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(a) Geometric construction for describing Young’s double-slit experiment (not to
scale). (b) When we assume that r1 is parallel to r2, the path difference between the
two rays is � � r 2 � r1 � d sin �. For this approximation to be valid, it is essential that 
L �� d.

In Figure 27.3a, two waves leave the two slits in phase and strike the screen at the
central point O. Because these waves travel equal distances, they arrive in phase at O.
As a result, constructive interference occurs at this location and a bright fringe is
observed. In Figure 27.3b, the two light waves again start in phase, but the lower
wave has to travel one wavelength farther to reach point P on the screen. Because
the lower wave falls behind the upper one by exactly one wavelength, they still arrive
in phase at P. Hence, a second bright fringe appears at this location. Now consider
point R located between O and P in Figure 27.3c. At this location, the lower wave has
fallen half a wavelength behind the upper wave when they arrive at the screen.
Hence, the trough from the lower wave overlaps the crest from the upper wave,
giving rise to destructive interference at R. For this reason, one observes a dark
fringe at this location.

Young’s double-slit experiment is the prototype for many interference effects.
Interference of waves occurs relatively commonly in technological applications, so
this phenomenon represents an important analysis model to understand. In the
next section, we develop the mathematical representation for interference of light.

LIGHT  WAVES  IN  INTERFERENCE
We can obtain a quantitative description of Young’s experiment with the help of a
geometric model constructed from Figure 27.4a. The viewing screen is located a
perpendicular distance L from the slits S1 and S2, which are separated by a distance
d. Consider point P on the screen. Angle � is measured from a line perpendicular
to the screen from the midpoint between the slits and a line from the midpoint to
point P. We identify r1 and r2 as the distances the waves travel from slit to screen.
Let us assume that the source is monochromatic. Under these conditions, the waves
emerging from S1 and S2 have the same wavelength and amplitude and are in
phase. The light intensity on the screen at P is the result of the superposition of the
light coming from both slits. Note from the geometric model triangle in gold in
Figure 27.4a that a wave from the lower slit travels farther than a wave from the up-
per slit by an amount �. This distance is called the path difference.

27.3

LIGHT WAVES IN INTERFERENCE ❚ 901

y g p pp

(b)

r2 – r1 = d sin

S1

S2

θ
d

r2

r1

(a)

d

S1

S2

Q

L
Viewing screen

θ

θ

P

O

δ

y

r1

r2

θ

FIGURE 27.4



If L is much greater than d, the two paths are very close to being parallel. We
shall adopt a simplification model in which the two paths are exactly parallel. In
this case, from Figure 27.4b, we see that

[27.1]

In Figure 27.4a, the condition L �� d is not satisfied because the figure is not to
scale; in Figure 27.4b, the rays leave the slits as if the condition is satisfied. As noted
earlier, the value of this path difference determines whether the two waves are in
phase or out of phase when they arrive at P. If the path difference is either zero or
some integral multiple of the wavelength, the two waves are in phase at P and
constructive interference results. The condition for bright fringes at P is therefore

[27.2]

The number m is an integer called the order number. The central bright fringe at
�bright � 0 is associated with the order number m � 0 and is called the zeroth-order
maximum. The first maximum on either side, for which m � � 1, is called the first-
order maximum, and so forth.

Similarly, when the path difference is an odd multiple of �/2, the two waves
arriving at P are 180° out of phase and give rise to destructive interference.
Therefore, the condition for dark fringes at P is

[27.3]

These equations provide the angular positions of the fringes. It is also useful to
obtain expressions for the linear positions measured along the screen from O to P.
From the geometric model triangle OPQ in Figure 27.4a, we see that

[27.4]

Using this result, we can see that the linear positions of bright and dark fringes are
given by

[27.5]

[27.6]

where �bright and �dark are given by Equations 27.2 and 27.3.
When the angles to the fringes are small, the positions of the fringes are linear

near the center of the pattern. To verify this statement, note that, for small angles,
tan � � sin � and Equation 27.5 gives the positions of the bright fringes as ybright �
L sin �bright. Incorporating Equation 27.2, we find that

and we see that y bright is linear in the order number m, so the fringes are equally
spaced.

As we shall demonstrate in Interactive Example 27.1, Young’s double-slit experi-
ment provides a method for measuring the wavelength of light. In fact, Young used
this technique to make the first measurement of the wavelength of light. Young’s ex-
periment gave the wave model of light a great deal of credibility. Today we still use the
phenomenon of interference to describe many observations of wave-like behavior.

ybright � L � m�

d �   (small  angles)

ydark � L  tan �dark

ybright � L tan �bright

tan � �
y
L

� � d sin �dark � (m 	 1
2)�    (m � 0, � 1, � 2, . . .)

� � d sin �bright � m�    (m � 0, � 1, � 2, . . .)

� � r2 � r1 � d sin �
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■ Path difference

■ Conditions for constructive 
interference for two slits

■ Conditions for destructive 
interference for two slits



■ Thinking Physics 27.1
Consider a double-slit experiment in which a laser beam is passed through a pair of
very closely spaced slits and a clear interference pattern is displayed on a distant
screen. Now suppose you place smoke particles between the double slit and
the screen. With the presence of the smoke particles, will you see the effects of the
interference in the space between the slits and the screen, or will you only see the
effects on the screen?

Reasoning You see the effects in the area filled with smoke. Bright beams of light
are directed toward the bright areas on the screen, and dark regions are directed
toward the dark areas on the screen. The geometrical construction shown in
Figure 27.4a is important for developing the mathematical description of interfer-
ence. It is subject to misinterpretation, however, because it might suggest that the
interference can only occur at the position of the screen. A better diagram for this
situation is Active Figure 27.2a, which shows paths of destructive and constructive
interference all the way from the slits to the screen. These paths are made visible
by the smoke. ■

LIGHT WAVES IN INTERFERENCE ❚ 903
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Which of the following will cause the fringes in a two-slit interference
pattern to move farther apart? (a) decreasing the wavelength of the light (b) decreas-
ing the screen distance L (c) decreasing the slit spacing d (d) immersing the entire
apparatus in water

QUICK QUIZ 27.1

Measuring the Wavelength of Laser LightEXAMPLE 27.1INTERACTIVE

Calculate the distance between adjacent bright
fringes near the center of the interference pattern.

Solution The position of the m � 2 fringe, 5.1 cm, is
much smaller than the screen distance, 1.2 m. There-
fore, the angular positions of the fringes near the cen-
ter of the pattern are small. Consequently, these fringes
are equally spaced, so the distance between fringes can
be found by dividing the distance between the m � 0
and m � 2 fringes by 2:

Investigate the double-slit interference
pattern by logging into PhysicsNow at www.pop4e.com and
going to Interactive Example 27.1.

2.6  cm
y �  
y2 �  y0

2
 �  

5.1 cm �  0
2

 �  

BA laser is used to illuminate a double slit. The distance
between the two slits is 0.030 mm. A viewing screen is
separated from the double slit by 1.2 m. The second-
order bright fringe (m � 2) is 5.1 cm from the center
line.

Determine the wavelength of the laser light.

Solution Because the distance between the screen and
the slits is much larger than the slit separation, Equa-
tion 27.2 is a valid mathematical representation of this
situation. Incorporating Equation 27.5, with m � 2, 
y2 � 5.1 � 10�2 m, L � 1.2 m, and d � 3.0 � 10�5 m, 
we have

6.4 � 102 nm� 6.4 � 10�7 m �

 �  

(3.0 � 10�5 m)sin�tan�1 
5.1 � 10�2 m

1.2 m �
2

� �  

d sin �bright

m
 �  

d sin�tan�1 
ybright

L �
m

  

A
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Intensity Distribution of the Double-Slit
Interference Pattern
We shall now discuss briefly the distribution of light intensity I (the energy deliv-
ered by the light per unit area per unit time) associated with the double-slit inter-
ference pattern. Again, suppose the two slits represent coherent sources of sinu-
soidal waves. In this case, the two waves have the same angular frequency � and a
constant phase difference �. Although the waves have equal phase at the slits, their
phase difference � at P depends on the path difference � � r 2 � r1 � d sin �.
Because a path difference of � corresponds to a phase difference of 2 rad, we can
establish the equality of the ratios:

[27.7]

This equation tells us how the phase difference � depends on the angle �.
Although we shall not prove it here, a careful analysis of the electric fields arriv-

ing at the screen from the two very narrow slits shows that the time-averaged light
intensity at a given angle � is

[27.8]

where Imax is the intensity at point O in Figure 27.4a, directly behind the midpoint
between the slits. Intensity versus d sin � is plotted in Figure 27.5.

CHANGE  OF  PHASE  DUE  TO  REFLECTION
Young’s method of producing two coherent light sources involves illuminating a
pair of slits with a single source. Another simple arrangement for producing an in-
terference pattern with a single light source is known as Lloyd’s mirror. A light source
is placed at point S close to a mirror as illustrated in Figure 27.6. Waves can reach
the point P either by the direct path SP or by the indirect path involving reflection

27.4

Iavg � Imax cos2 � d sin �
� �

 � �
2

�
 � �

2

�
 d sin �

�

�
�

�

2
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I

–2 –�� � 2

Imax

d sin θ

�

Light intensity
versus d sin � for the double-slit inter-
ference pattern when the screen is far
from the two slits (L �� d ).

FIGURE 27.5
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S ′

S

Real
source

Viewing
screen

Mirror

P

Lloyd’s mirror. An
interference pattern is produced on a
screen at point P as a result of the
combination of the direct ray (blue)
and the reflected ray (brown). The
reflected ray undergoes a phase
change of 180°.

FIGURE 27.6

■ Phase difference



from the mirror. The reflected ray strikes the screen as if it originated from a
source at S� located below the mirror.

At points far from the source, one would expect an interference pattern due to
waves from S and S�, just as is observed for two real coherent sources at these
points. An interference pattern is indeed observed. The positions of the dark and
bright fringes, however, are reversed relative to the pattern of two real coherent
sources (Young’s experiment) because the coherent sources at S and S� differ in
phase by 180°. This 180° phase change is produced on reflection. In general, an
electromagnetic wave undergoes a phase change of 180° on reflection from a
medium of higher index of refraction than the one in which it is traveling.

It is useful to draw an analogy between reflected light waves and the reflections
of a transverse wave on a stretched string when the wave meets a boundary (Section
13.5) as in Figure 27.7. The reflected pulse on a string undergoes a phase change
of 180° when it is reflected from a rigid end, and no phase change when it is re-
flected from a free end, as illustrated in Figures 13.12 and 13.13. If the boundary is
between two strings, the transmitted wave exhibits no phase change. Similarly, an
electromagnetic wave undergoes a 180° phase change when reflected from the
boundary of a medium of higher index of refraction than the one in which it is
traveling. There is no phase change for the reflected ray when the wave is incident
on a boundary leading to a medium of lower index of refraction. In either case, the
transmitted wave exhibits no phase change.

INTERFERENCE  IN  THIN  FILMS
Interference effects can be observed in many situations in which one beam of light
is split and then recombined. A common occurrence is the appearance of colored
bands in a film of oil on water or in a soap bubble illuminated with white light. The
colors in these situations result from the interference of waves reflected from the
opposite surfaces of the film.

Consider a film of uniform thickness t and index of refraction n as in Figure 27.8.
We adopt a simplification model in which the light ray is incident on the film from
above and nearly normal to the surface of the film. Two rays are reflected from the
film, one from the upper surface and one from the lower surface after the refracted
ray has traveled through the film. Because the film is thin and has parallel sides, the
reflected rays are parallel. Hence, rays reflected from the top surface can interfere
with rays reflected from the bottom surface. To determine whether the reflected
rays interfere constructively or destructively, we first note the following facts:

27.5
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180° phase change

(a)

No phase change

(b)

Free support
n1

n1

n2

n2>Rigid support
n1

n1

n2

n2<

(a) For n1 � n2, a light ray traveling in medium 1 and reflected from the surface of
medium 2 undergoes a 180° phase change. The same thing happens with a reflected
pulse traveling along a string fixed at one end. (b) For n1 � n2, a light ray traveling
in medium 1 undergoes no phase change when reflected from the surface of
medium 2. The same is true of a reflected wave pulse on a string whose supported
end is free to move.

FIGURE 27.7



• An electromagnetic wave traveling from a medium of index of refraction n1
toward a medium of index of refraction n2 undergoes a 180° phase change on re-
flection when n2 � n1. No phase change occurs in the reflected wave if n 2 � n1.

• The wavelength �n of light in a medium whose index of refraction n is

[27.9]

where � is the wavelength of light in free space.

Let us apply these rules to the film of Figure 27.8. According to the first rule, ray
1, which is reflected from the upper surface (A), undergoes a phase change of 180°
with respect to the incident wave. Ray 2, which is reflected from the lower surface
(B), undergoes no phase change with respect to the incident wave. Therefore,
ignoring the path difference for now, outgoing ray 1 is 180° out of phase with re-
spect to ray 2, a phase difference that is equivalent to a path difference of �n/2. We
must also consider, however, that ray 2 travels an extra distance approximately
equal to 2t before the waves recombine. The total phase difference arises from a
combination of the path difference and the 180° phase change on reflection. For
example, if 2t � �n/2, rays 1 and 2 will recombine in phase and constructive inter-
ference will result. In general, the condition for constructive interference is

[27.10]

This condition takes into account two factors: (a) the difference in optical path
length for the two rays (the term m�n) and (b) the 180° phase change on reflection
(the term �n/2). Because �n � �/n, we can write Equation 27.10 in the form

[27.11]

If the extra distance 2t traveled by ray 2 corresponds to a multiple of �n, the two
waves will combine out of phase and destructive interference results. The general
equation for destructive interference is

2nt � m� (m � 0, 1, 2, . . .) [27.12]

The preceding conditions for constructive and destructive interference are
valid when the medium above the top surface of the film is the same as the
medium below the bottom surface. The surrounding medium may have a refrac-
tive index less than or greater than that of the film. In either case, the rays re-
flected from the two surfaces will be out of phase by 180°. The conditions are also
valid if different media are above and below the film and if both have n less than
or larger than that of the film.

If the film is placed between two different media, one with n � n film and the
other with n � n film, the conditions for constructive and destructive interference are
reversed. In this case, either a phase change of 180° takes place for both ray 1 reflect-
ing from surface A and ray 2 reflecting from surface B, or no phase change occurs for
either ray; hence, the net change in relative phase due to the reflections is zero.

Rays 3 and 4 in Figure 27.8 lead to interference effects in the light transmitted
through the thin film. The analysis of these effects is similar to that of the reflected
light.

2nt � (m 	 1
2)�   (m � 0, 1, 2, . . .)

2t � (m 	 1
2)�n   (m � 0, 1, 2, . . .)

�n �  
�

n
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In a laboratory accident, you spill two liquids onto water, neither of
which mixes with the water. They both form thin films on the water surface. When the
films become very thin as they spread, you observe that one film becomes bright and the
other dark in reflected light. The film that appears dark (a) has an index of refraction
higher than that of water, (b) has an index of refraction lower than that of water, (c) has
an index of refraction equal to that of water, or (d) has an index of refraction lower than
that of the bright film.

QUICK QUIZ 27.2

■ Condition for constructive 
interference in thin films

■ Condition for destructive 
interference in thin films

No phase
change

Air

180° phase
change

1
2

A

t
Film

Air

B

3 4

Interference in
light reflected from a thin film is due
to a combination of rays 1 and 2 re-
flected from the upper and lower sur-
faces of the film. Rays 3 and 4 lead to
interference effects for light transmit-
ted through the film.

FIGURE 27.8
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One microscope slide is placed on top of another with their left
edges in contact and a human hair under the right edge of the upper slide. As a result, a
wedge of air exists between the slides. An interference pattern results when monochro-
matic light is incident on the wedge. At the left edges of the slides, what kind of fringe is
there? (a) a dark fringe (b) a bright fringe (c) impossible to determine

QUICK QUIZ 27.3

The following suggestions should be kept in mind while work-
ing thin-film interference problems:

1. Conceptualize Think about what is going on physically in
the problem. Identify the light source and the location of the
observer.

2. Categorize Confirm that you should use the techniques
for thin film interference by identifying the thin film causing
the interference.

3. Analyze The type of interference that occurs is deter-
mined by the phase relationship between the portion of the
wave reflected at the upper surface of the film and the portion
reflected at the lower surface. Phase differences between the

two portions of the wave have two causes: (a) differences in the
distances traveled by the two portions and (b) phase changes
occurring on reflection. Both causes must be considered when
determining which type of interference occurs. If the media
above and below the film both have index of refraction larger
than that of the film or if both indices are smaller, use Equa-
tion 27.11 for constructive interference and Equation 27.12 for
destructive interference. If the film is located between two dif-
ferent media, one with n � nfilm and the other with n � nfilm,
reverse these two equations for constructive and destructive in-
terference.

4. Finalize Inspect your final results to see if they make sense
physically and are of an appropriate size.

Thin-Film InterferencePROBLEM-SOLVING STRATEGY

in Equation 27.11, which gives 2nt � �/2, or

113 nmt �
�

4n
�

600 nm
4(1.33)

�

Interference in a Soap FilmEXAMPLE 27.2
Calculate the minimum thickness of a soap film 
(n � 1.33) that results in constructive interference in
reflected light if the film is illuminated with light whose
wavelength in free space is 600 nm.

Solution The minimum film thickness for constructive
interference in the reflected light corresponds to m � 0

Nonreflecting Coatings for Solar CellsEXAMPLE 27.3INTERACTIVE
interference. Note that both rays undergo a 180° phase
change on reflection in this case, one from the upper
surface and one from the lower surface. Hence, the net
change in phase is zero due to reflection, and the
condition for a reflection minimum requires a path
difference of �n/2; thus, 2t � �/2n. Therefore, the
required thickness is

Typically, such antireflecting coatings reduce the 
reflective loss from 30% (with no coating) to 10% 
(with coating), thereby increasing the cell’s efficiency 
because more light is available to provide energy to 
the cell. In reality, the coating is never perfectly 

94.8 nmt �
�

4n
�

550 nm
4(1.45)

�

Semiconductors such as silicon are used to fabricate so-
lar cells, devices that absorb energy by electromagnetic
radiation (e.g., sunlight), resulting in a potential differ-
ence so that the cell can transfer energy to a device by
electrical transmission. Solar cells are often coated with
a transparent thin film, such as silicon monoxide (SiO,
n � 1.45), to minimize reflective losses from the sur-
face. Suppose a silicon solar cell (n � 3.5) is coated
with a thin film of silicon monoxide for this purpose
(Fig. 27.9). Determine the minimum film thickness
that produces the least reflection at a wavelength of 
550 nm, which is the center of the visible spectrum.

Solution The reflected light is a minimum when rays 1
and 2 in Figure 27.9 meet the condition of destructive
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The coating on the lens is designed with a thickness
such that light near the center of the visible spectrum
experiences little reflection. Light near the ends of the
spectrum is reflected from the coating. The combina-
tion of red and violet light from the ends of the
spectrum provides the purple tinge.

Investigate the interference for various
film properties by logging into PhysicsNow at www.pop4e.com
and going to Interactive Example 27.3.

nonreflecting for all light because the required 
thickness is wavelength dependent and the incident
light covers a wide range of wavelengths.

Glass lenses used in cameras and other optical 
instruments are usually coated with a transparent thin
film, such as magnesium fluoride (MgF2), to reduce or
eliminate unwanted reflection. The result is the
enhancement of the transmission of light through the
lenses. Figure 27.10 shows such a camera lens. Notice
that the light reflecting from the lens is tinged purple.

Si

180° phase
change

1 2

SiO

Air

n = 3.5

n = 1.45

n = 1

180° phase
change

(Interactive Example 27.3) Reflective losses from a
silicon solar cell are minimized by coating it with a
thin film of silicon monoxide.

FIGURE 27.9

(Interactive Example 27.3) This camera lens has
several coatings (of different thicknesses) that
minimize reflection of light waves having wave-
lengths near the center of the visible spectrum. As
a result, the little light that is reflected by the lens
has a greater proportion of the far ends of the
spectrum and appears purple.

FIGURE 27.10
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Interference in a Wedge-Shaped FilmEXAMPLE 27.4
A thin, wedge-shaped film of refractive index n is illu-
minated with monochromatic light of wavelength � as
illustrated in Figure 27.11a. Describe the interference
pattern observed for this case.

Solution The interference pattern is that of a thin film
of variable thickness surrounded by air. Hence, the
pattern is a series of alternating bright and dark parallel
bands. A dark band corresponding to destructive inter-
ference appears at point O (where the path length
difference is zero) because the ray reflected from the
first surface undergoes a 180° phase change but the one
reflected from the second surface does not. According
to Equation 27.12, other dark bands appear when 2nt �
m�, so that t1 � �/2n, t 2 � �/n, t3 � 3�/2n, and so on.
Similarly, bright bands are observed when the thickness
satisfies the condition , corresponding
to thicknesses of �/4n, 3�/4n, 5�/4n, and so on. If white
light is used, bands of different colors are observed at
different points, corresponding to the different wave-
lengths of light. This situation is shown in the soap film
in Figure 27.11b.

2nt � (m 	  
1
2)�

t1

O

t2

t3

Incident
light

(a)

n

(b)

(Example 27.4) (a) Interference bands in 
reflected light can be observed by illuminating a
wedge-shaped film with monochromatic light. 
The darker areas correspond to regions at which
rays cancel due to destructive interference. 
(b) Interference in a vertical film of variable 
thickness. The top of the film appears darkest
where the film is thinnest.

FIGURE 27.11
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DIFFRACTION  PATTERNS
In Sections 25.2 and 27.2, we discussed briefly the phenomenon of diffraction, and
now we shall investigate this phenomenon more fully for light waves. In general,
diffraction occurs when waves pass through small openings, around obstacles, or by
sharp edges.

We might expect that the light passing through one such small opening would
simply result in a broad region of light on a screen due to the spreading of the light
as it passes through the opening. We find something more interesting, however. A
diffraction pattern consisting of light and dark areas is observed, somewhat similar
to the interference patterns discussed earlier. For example, when a narrow slit is
placed between a distant light source (or a laser beam) and a screen, the light pro-
duces a diffraction pattern like that in Figure 27.12. The pattern consists of a
broad, intense central band (called the central maximum), flanked by a series of
narrower, less intense additional bands (called side maxima) and a series of dark
bands (or minima).

Figure 27.13 shows the shadow of a penny, which displays bright and dark rings
of a diffraction pattern. The bright spot at the center (called the Arago bright spot
after its discoverer, Dominique Arago) can be explained using the wave theory of
light. Waves that diffract from all points on the edge of the penny travel the same
distance to the midpoint on the screen. Thus, the midpoint is a region of construc-
tive interference and a bright spot appears. In contrast, from the viewpoint of geo-
metric optics, the center of the pattern would be completely screened by the penny,
and so an approach that does not include the wave nature of light would not pre-
dict a central bright spot.

Let us consider a common situation, that of light passing through a narrow
opening modeled as a slit and projected onto a screen. As a simplification model,
we assume that the observing screen is far from the slit so that the rays reaching the
screen are approximately parallel. This situation can also be achieved experimen-
tally by using a converging lens to focus the parallel rays on a nearby screen. In this
model, the pattern on the screen is called a Fraunhofer diffraction pattern.2

Active Figure 27.14a shows light entering a single slit from the left and diffract-
ing as it propagates toward a screen. Active Figure 27.14b is a photograph of a

27.6
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The diffraction
pattern that appears on a screen when
light passes through a narrow vertical
slit. The pattern consists of a broad
central band and a series of less in-
tense and narrower side bands.

FIGURE 27.12

Diffraction pattern
of a penny, taken with the penny 
midway between screen and source. 

FIGURE 27.13

2If the screen were brought close to the slit (and no lens is used), the pattern is a Fresnel diffraction
pattern. The Fresnel pattern is more difficult to analyze, so we shall restrict our discussion to Fraun-
hofer diffraction.

(a) Fraunhofer diffraction pattern of
a single slit. The pattern consists of a
central bright region flanked by much
weaker maxima alternating with dark
bands. (Drawing not to scale.) 
(b) Photograph of a single-slit 
Fraunhofer diffraction pattern.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 27.14 to adjust the slit
width and the wavelength of the light
to see the effect on the diffraction 
pattern.

ACTIVE FIGURE 27.14

Slit

Incoming
wave

Viewing screen

(a)

θ

(b)

DIFFRACTION VERSUS DIFFRACTION

PATTERN The word diffraction refers
to the general behavior of waves
spreading out as they pass through a
slit. We used diffraction in explain-
ing the existence of an interference
pattern. A diffraction pattern is actu-
ally a misnomer, but it is deeply
entrenched in the language of
physics. We describe here the dif-
fraction pattern seen on a screen
when a single slit is illuminated. In
reality, it is another interference
pattern. The interference is be-
tween parts of the incident light
illuminating different regions of the
slit.

� PITFALL PREVENTION 27.1
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single-slit Fraunhofer diffraction pattern. A bright fringe is observed along the axis
at � � 0, with alternating dark and bright fringes on each side of the central bright
fringe.

Until now, we assumed that slits act as point sources of light. In this section, we
shall determine how their finite widths are the basis for understanding the nature
of the Fraunhofer diffraction pattern produced by a single slit. We can deduce
some important features of this problem by examining waves coming from various
portions of the slit as shown in the geometric model of Figure 27.15. According to
Huygens’s principle, each portion of the slit acts as a source of waves. Hence, light
from one portion of the slit can interfere with light from another portion, and the
resultant intensity on the screen depends on the direction �.

To analyze the diffraction pattern, it is convenient to divide the slit into two
halves as in Figure 27.15. All the waves that originate at the slit are in phase. Con-
sider waves 1 and 3, which originate at the bottom and center of the slit, respec-
tively. To reach the same point on the viewing screen, wave 1 travels farther than
wave 3 by an amount equal to the path difference (a/2) sin �, where a is the width
of the slit. Similarly, the path difference between waves 3 and 5 is also (a/2) sin �. If
the path difference between two waves is exactly one half of a wavelength (corre-
sponding to a phase difference of 180°), the two waves cancel each other and
destructive interference results. That is true, in fact, for any two waves that originate
at points separated by half the slit width because the phase difference between two
such points is 180°. Therefore, waves from the upper half of the slit interfere de-
structively with waves from the lower half of the slit when

or when

If we divide the slit into four parts rather than two and use similar reasoning, we
find that the screen is also dark when

Likewise, we can divide the slit into six parts and show that darkness occurs on
the screen when

Therefore, the general condition for destructive interference is

[27.13]

Equation 27.13 gives the values of � for which the diffraction pattern has zero in-
tensity, that is, a dark fringe is formed. Equation 27.13, however, tells us nothing
about the variation in intensity along the screen. The general features of the inten-
sity distribution are shown in Figure 27.16: a broad central bright fringe flanked by
much weaker, alternating bright fringes. The various dark fringes (points of zero
intensity) occur at the values of � that satisfy Equation 27.13. The position of the
points of constructive interference lie approximately halfway between the dark
fringes. Note that the central bright fringe is twice as wide as the weaker maxima.

sin �dark � m 
�

a
   (m � � 1, � 2, � 3, . . .)

sin � �
3�

a

sin � �
2�

a

sin � �
�

a

a
2

 sin � �
�

2
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a/2

a

a/2

a
2

sin

3

2

5

4

1

θ

θ

Diffraction of light
by a narrow slit of width a. Each por-
tion of the slit acts as a point source of
waves. The path difference between
rays 1 and 3, rays 2 and 4, or rays 3
and 5 is (a/2) sin �. (Drawing not to
scale.)

FIGURE 27.15

SIMILAR EQUATIONS Equation 27.13
has exactly the same form as Equa-
tion 27.2, with d, the slit separation,
used in Equation 27.2 and a, the slit
width, in Equation 27.13. Keep in
mind, however, that Equation 27.2
describes the bright regions in a two-
slit interference pattern, whereas
Equation 27.13 describes the dark
regions in a single-slit diffraction
pattern. Furthermore, m � 0 does
not represent a dark fringe in the
diffraction pattern.

� PITFALL PREVENTION 27.2

■ Condition for destructive inter-
ference in a diffraction pattern



■ Thinking Physics 27.2
If a classroom door is open slightly, you can hear sounds coming from the hallway. Yet
you cannot see what is happening in the hallway. What accounts for the difference?

Reasoning The space between the slightly open door and the wall is acting as a sin-
gle slit for waves. Sound waves have wavelengths larger than the slit width, so sound
is effectively diffracted by the opening and spread throughout the room. The
sound is then reflected from walls, floor, and ceiling, further distributing the sound
throughout the room. Light wavelengths are much smaller than the slit width, so
virtually no diffraction for the light occurs. You must have a direct line of sight to
detect the light waves. ■

DIFFRACTION PATTERNS ❚ 911
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θ

sin   dark = 2  /a

sin   dark =   /a

sin   dark = –  /a

sin   dark = –2  /aL

a 0

y2

y1

– y1

– y2

Viewing screen

θ

θ

θ

θ

�

�

�

�

Light intensity distribu-
tion for the Fraunhofer diffraction pattern
from a single slit of width a. The positions of
two minima on each side of the central max-
imum are labeled. (Drawing not to scale.)

FIGURE 27.16

(i) Suppose the slit width in Figure 27.16 is made half as wide. The
central bright fringe (a) becomes wider, (b) remains the same, or (c) becomes narrower.
(ii) From the same choices, what happens to the central bright fringe when the 
wavelength of the light is made half as great?

QUICK QUIZ 27.4

Where Are the Dark Fringes?EXAMPLE 27.5INTERACTIVE

Therefore, the positions of the first minima measured
from the central axis are given by

�

The positive and negative signs correspond to the dark
fringes on either side of the central bright fringe.
Hence, the width of the central bright fringe is equal to
2 �y1� � 7.74 � 10�3 m � To finalize this prob-
lem, note that this value is much greater than the width
of the slit. We finalize further by exploring what hap-
pens if we change the slit width in part B.

What if the slit width is increased by an order of
magnitude to 3.00 mm? What happens to the diffrac-
tion pattern?

Solution Based on Equation 27.13, we expect that the
angles at which the dark bands appear will decrease as
a increases. Thus, the diffraction pattern narrows. For 
a � 3.00 mm, the sines of the angles �dark for the 
m � � 1 dark fringes are

B

7.74 mm.

� 3.87 � 10�3 m

y1 � L sin �dark � (2.00 m)(�1.933 � 10�3)

Light of wavelength 580 nm is incident on a slit of
width 0.300 mm. The observing screen is 2.00 m from
the slit.

Find the positions of the first dark fringes and the
width of the central bright fringe.

Solution The problem statement cues us to conceptu-
alize a single-slit diffraction pattern similar to that in
Figure 27.16. We categorize it as a straightforward 
application of our discussion of single-slit diffraction
patterns. To analyze the problem, note that the two
dark fringes that flank the central bright fringe 
correspond to m � � 1 in Equation 27.13. Hence, we
find that

From the triangle in Figure 27.16, note that tan �dark �
y1/L . Because �dark is very small, we can use the approx-
imation sin �dark � tan �dark; thus, sin �dark � y1/L .

 � � 1.933 � 10�3

 sin �dark � �
�

a
� �

5.80 � 10�7 m
0.300 � 10�3 m

A



RESOLUTION  OF  SINGLE-SLIT  
AND  CIRCULAR  APERTURES

Imagine you are driving in the middle of a dark desert at night, along a road that is
perfectly straight and flat for many kilometers. You see another vehicle coming
toward you from a distance. When the vehicle is far away, you might be unable to
determine whether it is an automobile with two headlights or a motorcycle with
one. As it approaches you, at some point you will be able to distinguish the two
headlights and determine that it is an automobile. Once you are able to see two
separate headlights, you describe the light sources as being resolved.

The ability of optical systems to distinguish between closely spaced objects is
limited because of the wave nature of light. To understand this limitation, consider
Figure 27.17, which shows two light sources far from a narrow slit. The sources can
be considered as two point sources S1 and S2 that are incoherent. For example,
they could be two distant stars observed through the aperture of a telescope tube. If
no diffraction occurred, one would observe two distinct bright spots (or images) on
the screen at the right in the figure. Because of diffraction, however, each source is
imaged as a bright central region flanked by weaker bright and dark bands. What is
observed on the screen is the sum of two diffraction patterns: one from S1 and the
other from S2.

If the two sources are far enough apart to ensure that their central maxima do
not overlap as in Figure 27.17a, their images can be distinguished and are said to
be resolved. If the sources are close together, however, as in Figure 27.17b, the two

27.7
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In general, for large values of a, the various maxima
and minima are so closely spaced that only a large, 
central bright area resembling the geometric image of
the slit is observed. This behavior is very important in
the performance of optical instruments such as 
telescopes.

Investigate the single-slit diffraction
pattern by logging into PhysicsNow at www.pop4e.com and
going to Interactive Example 27.5.

The positions of the first minima measured from the
central axis are given by

y1 � L sin �dark � (2.00 m)(� 1.933 � 10�4)

� � 3.87 � 10�4 m

and the width of the central bright fringe is equal to
2 �y1� � 7.74 � 10�4 m � 0.774 mm. Notice that this
result is smaller than the width of the slit.

 � �1.933 � 10�4

 sin �dark � �
�

a
� �

5.80 � 10�7 m
3.00 � 10�3 m

S1

S2

S1

S2

Slit Viewing screen

(a) (b)

Slit Viewing screen

θ θ

Two point sources
far from a narrow slit each produce a
diffraction pattern. (a) The angle sub-
tended by the sources at the slit is
large enough for the diffraction pat-
terns to be distinguishable. (b) The
angle subtended by the sources is so
small that their diffraction patterns
overlap and the images are not well
resolved. (Note that the angles are
greatly exaggerated. The drawings are
not to scale.)

FIGURE 27.17

www.pop4e.com


central maxima may overlap and the sources are not resolved. To decide when two
sources are resolved, the following condition is often used:

When the central maximum of the diffraction pattern of one source falls on
the first minimum of the diffraction pattern of another source, the sources
are said to be just resolved. This limiting condition of resolution is known as
Rayleigh’s criterion.

Figure 27.18 shows the diffraction patterns from circular apertures for three
situations. When the objects are far apart, they are well resolved (Fig. 27.18a). They
are just resolved when their angular separation satisfies Rayleigh’s criterion 
(Fig. 27.18b). Finally, the sources are not resolved in Figure 27.18c.

From Rayleigh’s criterion, we can determine the minimum angular separation
�min subtended by the sources at a slit such that the sources are just resolved. In
Section 27.4, we found that the first minimum in a single-slit diffraction pattern oc-
curs at the angle that satisfies the relationship

where a is the width of the slit. According to Rayleigh’s criterion, this expression
gives the smallest angular separation for which the two sources are resolved. Be-
cause � �� a in most situations, sin � is small and we can use the approximation sin
� � �. Therefore, the limiting angle of resolution for a slit of width a is

[27.14]

where �min is expressed in radians. Hence, the angle subtended by the two sources
at the slit must be greater than �/a if the sources are to be resolved.

Many optical systems use circular apertures rather than slits. The diffraction pat-
tern of a circular aperture, as seen in Figure 27.18, consists of a central circular

�min �
�

a

sin � �
�

a
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(a) (b) (c)

Individual diffrac-
tion patterns of two point sources
(solid curves) and the resultant pat-
tern (dashed curves) for various angu-
lar separations of the sources. In each
case, the dashed curve is the sum of
the two solid curves. (a) The sources
are far apart, and the images are well
resolved. (b) The sources are closer
together such that the patterns satisfy
Rayleigh’s criterion, and the images
are just resolved. (c) The sources are
so close together that their images are
not resolved.

FIGURE 27.18
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■ Rayleigh’s criterion

■ Limiting angle of resolution for 
a slit



bright disk surrounded by progressively fainter rings. Analysis shows that the limit-
ing angle of resolution of the circular aperture is

[27.15]

where D is the diameter of the aperture. Note that Equation 27.15 is similar to Equa-
tion 27.14 except for the factor of 1.22, which arises from a mathematical analysis of
diffraction from a circular aperture. This equation is related to the difficulty we had
seeing the two headlights at the beginning of this section. When observing with the
eye, D in Equation 27.15 is the diameter of the pupil. The diffraction pattern formed
when light passes through the pupil causes the difficulty in resolving the headlights.

Another example of the effect of diffraction on resolution for circular apertures
is the astronomical telescope. The end of the tube through which the light passes is
circular, so the ability of the telescope to resolve light from closely spaced stars is
limited by the diameter of this opening.

�min � 1.22 
�

D
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Suppose you are observing a binary star with a telescope and are 
having difficulty resolving the two stars. You decide to use a colored filter to maximize the
resolution. (A filter of a given color transmits only that color of light.) What color filter
should you choose? (a) blue (b) green (c) yellow (d) red

QUICK QUIZ 27.5

■ Thinking Physics 27.3
Cats’ eyes have pupils that can be modeled as vertical slits. At night, are cats more
successful in resolving headlights on a distant car or vertically separated lights on
the mast of a distant boat?

Reasoning The effective slit width in the vertical direction of the cat’s eye is larger
than that in the horizontal direction. Thus, the eye has more resolving power for
lights separated in the vertical direction and would be more effective at resolving
the mast lights on the boat. ■

Any two stars that subtend an angle greater than or
equal to this value are resolved (if atmospheric condi-
tions are ideal).

The Keck telescope can never reach its diffraction
limit because the limiting angle of resolution is always
set by atmospheric blurring at optical wavelengths. This
seeing limit is usually about 1 s of arc and is never
smaller than about 0.1 s of arc. (That is one reason for
the superiority of photographs from the Hubble Space
Telescope, which views celestial objects from an orbital
position above the atmosphere.)

Resolution of a TelescopeEXAMPLE 27.6
The Keck telescope at Mauna Kea, Hawaii, has an effec-
tive diameter of 10 m. What is its limiting angle of reso-
lution for 600-nm light?

Solution Because D � 10 m and � � 6.00 � 10�7 m,
Equation 27.15 gives

0.015 s of arc � 7.3 � 10�8 rad �

�min � 1.22  
�

D
� 1.22 � 6.00 � 10�7 m

10 m �

As an example of the effects of atmospheric turbulence discussed in Example
27.6, consider telescopic images of Pluto and its moon Charon. Figure 27.19a shows
the image taken in 1978 that represents the discovery of Charon. In this photo-
graph from an Earth-based telescope, atmospheric turbulence results in Charon
appearing only as a bump on the edge of Pluto. In comparison, Figure 27.19b
shows a photograph taken with the Hubble Space Telescope in 1994. Without the
problems of atmospheric turbulence, Pluto and its moon are clearly resolved.

■ Limiting angle of resolution for a
circular aperture



THE  DIFFRACTION  GRATING
The diffraction grating, a useful device for analyzing light sources, consists of a
large number of equally spaced parallel slits. A grating can be made by cutting par-
allel, equally spaced grooves on a glass or metal plate with a precision ruling ma-
chine. In a transmission grating, the spaces between lines are transparent to the light
and hence act as separate slits. In a reflection grating, the spaces between lines are
highly reflective. Gratings with many lines very close to one another can have very
small slit spacings. For example, a grating ruled with 5 000 lines/cm has a slit spac-
ing of d � (1/5 000) cm � 2 � 10�4 cm.

Figure 27.20 shows a pictorial representation of a section of a flat diffraction
grating. A plane wave is incident from the left, normal to the plane of the grating.
The pattern observed on the screen at the right in Figure 27.20 is the result of the
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(a) (b)

Plu
to

C
haron

(a) The photo-
graph on which Charon, the moon of
Pluto, was discovered in 1978. From
an Earth-based telescope, atmos-
pheric turbulence results in Charon
appearing only as a subtle bump on
the edge of Pluto. (b) A Hubble
Space Telescope photo of Pluto and
Charon, clearly resolving the two 
objects.

FIGURE 27.19
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A DIFFRACTION GRATING IS AN INTER-
FERENCE GRATING As with the term
diffraction pattern, diffraction grating
is a misnomer but is deeply en-
trenched. The diffraction grating
depends on diffraction in the same
way as the double slit, spreading the
light so that light from different
slits can interfere. It would be more
correct to call it an interference grat-
ing. It is unlikely, however, that you
will hear anything other than dif-
fraction grating for this device.

� PITFALL PREVENTION 27.3

d
θ

   = d sin θδ

P

First-order
maximum

(m = 1)

Central or
zeroth-order
maximum

(m = 0)

First-order
maximum
(m = –1)

Incoming plane
wave of light

P

Diffraction
grating

θ

Side view of a dif-
fraction grating. The slit separation is
d and the path difference between ad-
jacent slits is d sin �.

FIGURE 27.20



combined effects of interference and diffraction. Each slit produces diffraction,
and the diffracted beams interfere with one another to produce the final pattern.
Each slit acts as a source of waves, and all waves start at the slits in phase. For some
arbitrary direction � measured from the horizontal, however, the waves must travel
different path lengths before reaching a particular point on the screen. From Fig-
ure 27.20, note that the path difference between waves from any two adjacent slits
is equal to d sin �. (We assume once again that the distance L to the screen is
much larger than d.) If this path difference equals one wavelength or some inte-
gral multiple of a wavelength, waves from all slits will be in phase at the screen and
a bright line will be observed. When the light is incident normally on the plane of
the grating, the condition for maxima in the interference pattern at the angle � is
therefore3

[27.16]

This expression can be used to calculate the wavelength from a knowledge of
the grating spacing d and the angle of deviation �. If the incident radiation con-
tains several wavelengths, the mth-order maximum for each wavelength occurs at
an angle determined from Equation 27.16. All wavelengths are mixed together at
� � 0, corresponding to m � 0.

The intensity distribution for a diffraction grating is shown in Active Figure
27.21. If the source contains various wavelengths, a spectrum of lines at different
positions for different order numbers will be observed. Note the sharpness of
the principal maxima and the broad range of dark areas, which are in contrast to
the broad, bright fringes characteristic of the two-slit interference pattern (see 
Fig. 27.5).

A simple arrangement for measuring the wavelength of light is shown in Active
Figure 27.22. This arrangement is called a diffraction grating spectrometer. The light to
be analyzed passes through a slit,4 and a parallel beam of light exits from the
collimator perpendicular to the grating. The diffracted light leaves the grating and

d sin �bright � m�    (m � 0, 1, 2, 3, . . .)
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Intensity versus sin � for a diffraction
grating. The zeroth-, first-, and sec-
ond-order maxima are shown.

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 27.21 to choose the
number of slits to be illuminated to
see the effect on the interference
pattern.

ACTIVE FIGURE 27.21

_2 _1  0  1  2

 0

m

2λ
d

_  λ
d

_  λ
d

2λ
d

sin θ

 �  �  � �

 

Diagram of a diffraction grating
spectrometer. The collimated beam
incident on the grating is spread into
its various wavelength components
with constructive interference for a
particular wavelength occurring at the
angles �bright that satisfy the equation 
d sin �bright � m�, where 
m � 0, 1, 2, . . . .

Log into Physics-
Now at www.pop4e.com and go to
Active Figure 27.22 to use the spec-
trometer to observe constructive
interference for various wavelengths.

ACTIVE FIGURE 27.22

Telescope

Slit

Source

Grating

θ

Collimator

3Notice that this equation is identical to Equation 27.2. This equation can be used for a number of slits
from two to any number N. The intensity distribution will change with the number of slits, but the
locations of the maxima are the same.

4A long, narrow slit enables us to observe line spectra in the light coming from atomic and molecular
systems, as discussed in Chapter 11.

www.pop4e.com
www.pop4e.com


exhibits constructive interference at angles that satisfy Equation 27.16. A telescope
is used to view the image of the slit. The wavelength can be determined by
measuring the precise angles at which the images of the slit appear for the various
orders.

The spectrometer is a useful tool in atomic spectroscopy, in which the light from an
atom is analyzed to find the wavelength components. These wavelength compo-
nents can be used to identify the atom as discussed in Section 11.5. We will investi-
gate atomic spectra further in Chapter 29.

Another application of diffraction gratings is in the recently developed grating
light valve (GLV), which may compete in the near future in video projection with
the digital micromirror devices (DMD) discussed in Section 25.3. The grating light
valve consists of a silicon microchip fitted with an array of parallel silicon nitride
ribbons coated with a thin layer of aluminum (Fig. 27.23). Each ribbon is about
20 �m long and about 5 �m wide and is separated from the silicon substrate by an
air gap on the order of 100 nm. With no voltage applied, all ribbons are at the same
level. In this situation, the array of ribbons acts as a flat surface, specularly reflect-
ing incident light.

When a voltage is applied between a ribbon and the electrode on the silicon
substrate, an electric force pulls the ribbon downward, closer to the substrate.
Alternate ribbons can be pulled down, while those in between remain in the higher
configuration. As a result, the array of ribbons acts as a diffraction grating, such
that the constructive interference for a particular wavelength of light can be
directed toward a screen or other optical display system. By using three such de-
vices, one each for red, blue, and green light, full color display is possible.

The GLV tends to be simpler to fabricate and higher in resolution than compa-
rable DMD devices. On the other hand, DMD devices have already made an entry
into the market. It will be interesting to watch this technology competition in
future years.
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A small portion of a
grating light valve. The alternating reflec-
tive ribbons at different levels act as a dif-
fraction grating, offering very high speed
control of the direction of light toward a
digital display device.

FIGURE 27.23
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Ultraviolet light of wavelength 350 nm is incident on a diffraction
grating with slit spacing d and forms an interference pattern on a screen a distance L
away. The angular positions �bright of the interference maxima are large. The locations of
the bright fringes are marked on the screen. Now red light of wavelength 700 nm is used
with a diffraction grating to form another diffraction pattern on the screen. The bright
fringes of this pattern will be located at the marks on the screen if (a) the screen is moved
to a distance 2L from the grating, (b) the screen is moved to a distance L/2 from the
grating, (c) the grating is replaced with one of slit spacing 2d, (d) the grating is replaced
with one of slit spacing d/2, or (e) nothing is changed
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■ Thinking Physics 27.4
White light reflected from the surface of a compact disc has a multicolored appear-
ance as shown in Figure 27.24. Furthermore, the observation depends on the orien-
tation of the disc relative to the eye and the position of the light source. Explain
how that works.

Reasoning The surface of a compact disc has a spiral track with a spacing of ap-
proximately 1 �m that acts as a reflection grating. The light scattered by these
closely spaced tracks interferes constructively in directions that depend on the
wavelength and on the direction of the incident light. Any one section of the disc
serves as a diffraction grating for white light, sending beams of constructive inter-
ference for different colors in different directions. The different colors you see
when viewing one section of the disc change as the light source, the disc, or you
move to change the angle of incidence or the viewing angle. ■
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(Thinking Physics
27.4)  A compact disc observed under
white light. The colors observed in
the reflected light and their intensi-
ties depend on the orientation of the
disc relative to the eye and relative to
the light source.

FIGURE 27.24
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The Orders of a Diffraction GratingEXAMPLE 27.7INTERACTIVE
For m � 2, we find that

For m � 3, we find that sin �3 � 1.139. Because sin �
cannot exceed unity, this result does not represent a
realistic solution. Hence, only zeroth-, first-, and
second-order maxima are observed for this situation.

Investigate the interference pattern 
from a diffraction grating by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 27.7.

49.39��2 �

sin �2 �
2�

d
�

2(632.8 nm)
1 667 nm

� 0.759 2

Monochromatic light from a helium–neon laser 
(� � 632.8 nm) is incident normally on a diffraction
grating containing 6 000 lines/cm. Find the angles at
which the first-order, second-order, and third-order
maxima can be observed.

Solution First, we calculate the slit separation, which is
equal to the inverse of the number of lines per cm:

d � (1/6 000) cm � 1.667 � 10�4 cm � 1 667 nm

For the first-order maximum (m � 1), we find that

22.31��1 �

sin �1 �
�

d
�

632.8 nm
1 667 nm

� 0.379 6

DIFFRACTION  OF  X-RAYS  BY  CRYSTALS
In principle, the wavelength of any electromagnetic wave can be determined if a
grating of the proper spacing (on the order of �) is available. X-rays, discovered in
1895 by Wilhelm Roentgen (1845–1923), are electromagnetic waves with very short
wavelengths (on the order of 10�10 m � 0.1 nm). In 1913, Max von Laue
(1879–1960) suggested that the regular array of atoms in a crystal, whose spacing is
known to be about 10�10 m, could act as a three-dimensional diffraction grating for
x-rays. Subsequent experiments confirmed his prediction. The observed diffraction
patterns are complicated because of the three-dimensional nature of the crystal.
Nevertheless, x-ray diffraction is an invaluable technique for elucidating crystalline
structures and for understanding the structure of matter.

Figure 27.25 is one experimental arrangement for observing x-ray diffraction
from a crystal. A collimated beam of x-rays with a continuous range of wavelengths is
incident on a crystal. The diffracted beams are very intense in certain directions, cor-
responding to constructive interference from waves reflected from layers of atoms in
the crystal. The diffracted beams, which can be detected by a photographic film,

27.9
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form an array of spots known as a Laue pattern, as in Figure 27.26a. One can deduce
the crystalline structure by analyzing the positions and intensities of the various spots
in the pattern. Figure 27.26b shows a Laue pattern from a crystalline enzyme, using
a wide range of wavelengths so that a swirling pattern results.

The arrangement of atoms in a crystal of NaCl is shown in Figure 27.27. The red
spheres represent Na	 ions, and the blue spheres represent Cl� ions. Each unit cell
(the geometric shape that repeats through the crystal) contains four Na	 and four
Cl� ions. The unit cell is a cube whose edge length is a.

The ions in a crystal lie in various planes as shown in Figure 27.28. Suppose an
incident x-ray beam makes an angle � with one of the planes as in Figure 27.28.
(Note that the angle � is traditionally measured from the reflecting surface rather
than from the normal, as in the case of the law of reflection in Chapter 25.) The
beam can be reflected from both the upper plane and the lower one; the geometric
construction in Figure 27.28, however, shows that the beam reflected from the
lower surface travels farther than the beam reflected from the upper surface. The
path difference between the two beams is 2d sin �, where d is the distance between
the planes. The two beams reinforce each other (constructive interference) when
this path difference equals some integral multiple of the wavelength �. The same is
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Photographic 
film

Crystal

X-ray beamX-ray source

Schematic diagram
of the technique used to observe the
diffraction of x-rays by a crystal. The
array of spots formed on the film is
called a Laue pattern.

FIGURE 27.25

(a) (b)

(a) A Laue pattern
of a single crystal of the mineral beryl
(beryllium aluminum silicate). (b) A
Laue pattern of the enzyme Rubisco,
produced with a wide-band x-ray 
spectrum. This enzyme is present in
plants and takes part in the process of
photosynthesis. The Laue pattern is
used to determine the crystal
structure of Rubisco.

FIGURE 27.26
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true of reflection from the entire family of parallel planes. Hence, the condition for
constructive interference (maxima in the reflected wave) is

2d sin � � m� (m � 1, 2, 3, . . .) [27.17]

This condition is known as Bragg’s law after W. Lawrence Bragg (1890–1971), who
first derived the relationship. If the wavelength and diffraction angle are measured,
Equation 27.17 can be used to calculate the spacing between atomic planes.

HOLOGRAPHY
One interesting application of the laser is holography, the production of three-
dimensional images of objects. The physics of holography was developed by Dennis
Gabor (1900–1979) in 1948, for which he was awarded the 1971 Nobel Prize in
Physics. The requirement of coherent light for holography, however, delayed the
realization of holographic images from Gabor’s work until the development of
lasers in the 1960s. Figure 27.29 shows a hologram and the three-dimensional char-
acter of its image.

Figure 27.30 shows how a hologram is made. Light from the laser is split into
two parts by a half-silvered mirror at B. One part of the beam reflects off the object
to be photographed and strikes an ordinary photographic film. The other half of
the beam is diverged by lens L2, reflects from mirrors M1 and M2, and finally
strikes the film. The two beams overlap to form an extremely complicated interfer-
ence pattern on the film. Such an interference pattern can be produced only if the
phase relationship of the two waves is constant throughout the exposure of the
film. This condition is met by illuminating the scene with light coming through a
pinhole or with coherent laser radiation. The hologram records not only the

27.10
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a

Crystalline struc-
ture of sodium chloride (NaCl). The
blue spheres represent Cl� ions, and
the red spheres represent Na	 ions.

FIGURE 27.27

θ

Incident
beam

Reflected
beam

Upper plane

Lower plane

d

θ θ

d sin θ

A two-dimensional
description of the reflection of an 
x-ray beam from two parallel crystal-
line planes separated by a distance d.
The beam reflected from the lower
plane travels farther than the one 
reflected from the upper plane by 
a distance equal to 2d sin �.

FIGURE 27.28

In this hologram, a circuit board is shown from two different views. Notice the differ-
ence in the appearance of the measuring tape and the view through the magnifying lens.

FIGURE 27.29
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intensity of the light scattered from the object (as in a conventional photograph),
but also the phase difference between the reference beam and the beam scattered
from the object. This phase difference results in an interference pattern that pro-
duces an image with full three-dimensional perspective.

In a normal photographic image, a lens is used to focus the image so that each
point on the object corresponds to a single point on the film. Notice that no lens is
used in Figure 27.30 to focus the light onto the film. Thus, light from each point on
the object reaches all points on the film. As a result, each region of the photo-
graphic film on which the hologram is recorded contains information about all illu-
minated points on the object, which leads to a remarkable result: If a small section
of the hologram is cut from the film, the complete image can be formed from this
small piece!

A hologram is best viewed by allowing coherent light to pass through the devel-
oped film as one looks back along the direction from which the beam comes. The
interference pattern on the film acts as a diffraction grating. Figure 27.31 shows
two rays of light striking the film and passing through. For each ray, the m � 0 and
m � � 1 rays in the diffraction pattern are shown emerging from the right side of
the film. Notice that the m � 	 1 rays converge to form a real image of the scene,
which is not the image that is normally viewed. By extending the light rays corre-
sponding to m � � 1 back behind the film, we see that there is a virtual image
located there, with light coming from it in exactly the same way that light came
from the actual object when the film was exposed. This image is the one we see by
looking through the holographic film.

Holograms are finding a number of applications in displays and in precision
measurements. You may have a hologram on your credit card. This special type of
hologram is called a rainbow hologram, designed to be viewed in reflected white
light.

Holograms represent a means of storing visual information using lasers. In the
Context Conclusion, we will investigate means of using lasers to store digital infor-
mation that can be converted into sound waves or video displays.
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Experimental
arrangement for producing a 
hologram.

FIGURE 27.30

Two light rays
strike a hologram at normal inci-
dence. For each ray, outgoing rays
corresponding to m � 0 and m � � 1
are shown. If the m � � 1 rays are ex-
tended backward, a virtual image of
the object photographed in the holo-
gram exists on the front side of the
hologram.

FIGURE 27.31
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Incoming light ray

m = 0

m = –1
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SUMMARY

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

Interference of light waves is the result of the linear superposi-
tion of two or more waves at a given point. A sustained interfer-
ence pattern is observed if (1) the sources have identical
wavelengths and (2) the sources are coherent.

In Young’s double-slit experiment, two slits separated by a
distance d are illuminated by a monochromatic light source.
An interference pattern consisting of bright and dark fringes is
observed on a screen that is a distance of L �� d from the slits.
The condition for constructive interference is

[27.2]

The number m is called the order number of the fringe.
The condition for destructive interference is

[27.3]

The time-averaged light intensity of the double-slit interfer-
ence pattern is

[27.8]

where Imax is the maximum intensity on the screen.
An electromagnetic wave traveling from a medium with an

index of refraction n1 toward a medium with index of
refraction n2 undergoes a 180° phase change on reflection
when n2 � n1. No phase change occurs in the reflected wave if
n2 � n1.

The condition for constructive interference in a film of
thickness t and refractive index n with the same medium on
both sides of the film is given by

Iavg � Imax cos2 � d sin �
� �

� � d sin �dark � (m 	 1
2) �  (m � 0, � 1, � 2, . . .)

� � d sin �bright � m�  (m � 0, � 1, � 2, . . .)

[27.11]

Similarly, the condition for destructive interference is

2nt � m� (m � 0, 1, 2, . . .) [27.12]

Diffraction is the spreading of light from a straight-line path
when the light passes through an aperture or around obstacles.
A diffraction pattern can be analyzed as the interference of a
large number of coherent Huygens sources spread across the
aperture.

The diffraction pattern produced by a single slit of width a
on a distant screen consists of a central, bright maximum and
alternating bright and dark regions of much lower intensities.
The angles � at which the diffraction pattern has zero intensity
are given by

[27.13]

Rayleigh’s criterion, which is a limiting condition of resolu-
tion, says that two images formed by an aperture are just distin-
guishable if the central maximum of the diffraction pattern for
one image falls on the first minimum of the other image. The
limiting angle of resolution for a slit of width a is given by
�min � �/a, and the limiting angle of resolution for a circular
aperture of diameter D is given by �min � 1.22�/D.

A diffraction grating consists of a large number of equally
spaced, identical slits. The condition for intensity maxima in
the interference pattern of a diffraction grating for normal in-
cidence is

[27.16]

where d is the spacing between adjacent slits and m is the order
number of the diffraction maximum.

d sin �bright � m�  (m � 0, 1, 2, 3, . . .)

sin �dark � m 
�

a
  (m � � 1, � 2, � 3, . . .)

2nt � (m 	 1
2) �  (m � 0, 1, 2, . . .)

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

What is the necessary condition on the path length differ-
ence between two waves that interfere (a) constructively
and (b) destructively?

2. Explain why two flashlights held close together do not pro-
duce an interference pattern on a distant screen.

In Young’s double-slit experiment, why do we use mono-
chromatic light? If white light is used, how would the pat-
tern change?

4. If Young’s double-slit experiment were performed under
water, how would the observed interference pattern be
affected?

5. A simple way to observe an interference pattern is to
look at a distant light source through a stretched hand-
kerchief or an opened umbrella. Explain how that
works.

3.

1.

6. A certain oil film on water appears brightest at the outer
regions, where it is thinnest. From this information, what
can you say about the index of refraction of oil relative to
that of water?

7. As a soap bubble evaporates, it appears black just before it
breaks. Explain this phenomenon in terms of the phase
changes that occur on reflection from the two surfaces of
the soap film.

8. If we are to observe interference in a thin film, why must
the film not be very thick (with thickness only on the order
of a few wavelengths)?

9. Suppose reflected white light is used to observe a thin
transparent coating on glass as the coating material is grad-
ually deposited by evaporation in a vacuum. Describe color
changes that might occur during the process of building
up the thickness of the coating.

10. Holding your hand at arm’s length, you can readily block
sunlight from your eyes. Why can you not block sound
from reaching your ears this way?

www.pop4e.com
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Why can you hear around corners, but not see around
corners?

12. When you receive a chest x-ray at a hospital, the rays
pass through a series of parallel ribs in your chest. Do the
ribs act as a diffraction grating for x-rays?

Describe the change in width of the central maximum of
the single-slit diffraction pattern as the width of the slit is
made narrower.

13.

11. 14. John William Strutt, Lord Rayleigh (1842–1919), is known
as the last person to understand all of physics and all of
mathematics. He invented an improved foghorn. To warn
ships of a coastline, a foghorn should radiate sound in a
wide horizontal sheet over the ocean’s surface. It should
not waste energy by broadcasting sound upward. It should
not emit sound downward because the water in front of
the foghorn would reflect that sound upward. Rayleigh’s
foghorn trumpet is shown in Figure Q27.14. Is it installed
in the correct orientation? Decide whether the long di-
mension of the rectangular opening should be horizontal
or vertical, and argue for your decision.

15. A laser produces a beam a few millimeters wide, with uni-
form intensity across its width. A hair is stretched vertically
across the front of the laser to cross the beam. How is the
diffraction pattern it produces on a distant screen related
to that of a vertical slit equal in width to the hair? How
could you determine the width of the hair from measure-
ments of its diffraction pattern?

16. A radio station serves listeners in a city to the northeast of
its broadcast site. It broadcasts from three adjacent towers
on a mountain ridge, along a line running east and west.
Show that by introducing time delays among the signals
the individual towers radiate, the station can maximize net
intensity in the direction toward the city (and in the oppo-
site direction) and minimize the signal transmitted in
other directions. The towers together are said to form a
phased array.

PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 27.1 ■ Conditions for Interference
Section 27.2 ■ Young’s Double-Slit Experiment
Section 27.3 ■ Light Waves in Interference

Note: Problems 14.8, 14.10, and 14.11 in Chapter 14 can be
assigned with this section.

1. A Young’s interference experiment is performed with
monochromatic light. The separation between the slits is
0.500 mm, and the interference pattern on a screen
3.30 m away shows the first side maximum 3.40 mm from
the center of the pattern. What is the wavelength?

2. In a location where the speed of sound is 354 m/s, a 
2 000-Hz sound wave impinges on two slits 30.0 cm apart.

(a) At what angle is the first maximum located? (b) If the
sound wave is replaced by 3.00-cm microwaves, what slit
separation gives the same angle for the first maximum? (c)
If the slit separation is 1.00 �m, what frequency of light
gives the same first maximum angle?

Two radio antennas separated by 300 m as shown in 
Figure P27.3 simultaneously broadcast identical signals at
the same wavelength. A radio in a car traveling due north

3.

FIGURE Q27.14

400 m

1000 m
300 m

FIGURE P27.3
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receives the signals. (a) If the car is at the position of the
second maximum, what is the wavelength of the signals?
(b) How much farther must the car travel to encounter the
next minimum in reception? 

4. The two speakers of a boom box are 35.0 cm apart. A
single oscillator makes the speakers vibrate in phase at a
frequency of 2.00 kHz. At what angles, measured from the
perpendicular bisector of the line joining the speakers,
would a distant observer hear maximum sound intensity?
Minimum sound intensity? (Take the speed of sound as
340 m/s.)

Young’s double-slit experiment is per-
formed with 589-nm light and a distance of 2.00 m
between the slits and the screen. The tenth interference
minimum is observed 7.26 mm from the central maxi-
mum. Determine the spacing of the slits.

6. A riverside warehouse has two open doors as shown in Fig-
ure P27.6. Its walls are lined with sound-absorbing mater-
ial. A boat on the river sounds its horn. To person A the
sound is loud and clear. To person B the sound is barely
audible. The principal wavelength of the sound waves is
3.00 m. Assuming that person B is at the position of the
first minimum, determine the distance between the doors,
center to center.

5.

centerline will the plane be when it is 2.00 km from the
antennas? (c) It is possible to tell the pilot that she is on
the wrong maximum by sending out two signals from each
antenna and equipping the aircraft with a two-channel
receiver. The ratio of the two frequencies must not be the
ratio of small integers (such as 3/4). Explain how this two-
frequency system would work and why it would not
necessarily work if the frequencies were related by an inte-
ger ratio.
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20.0 m

150 m

A

B

FIGURE P27.6

7. Two slits are separated by 0.320 mm. A beam of 500-nm
light strikes the slits, producing an interference pattern.
Determine the number of maxima observed in the angular
range �30.0° � � � 30.0°.

8. Young’s double-slit experiment underlies the instrument
landing system used to guide aircraft to safe landings when
the visibility is poor. Although real systems are more
complicated than the example described here, they oper-
ate on the same principles. A pilot is trying to align her
plane with a runway, as suggested in Figure P27.8a. Two
radio antennas A1 and A2 are positioned adjacent to the
runway, separated by 40.0 m. The antennas broadcast
unmodulated coherent radio waves at 30.0 MHz. (a) Find
the wavelength of the waves. The pilot “locks onto” the
strong signal radiated along an interference maximum
and steers the plane to keep the received signal strong. If
she has found the central maximum, the plane will have
just the right heading to land when it reaches the runway.
(b) Suppose instead the plane is flying along the first side
maximum (Fig. P27.8b). How far to the side of the runway

(a)

A1

A2

A1

A2

40 m

(b)

FIGURE P27.8

9. In Figure 27.4, let L � 1.20 m and d � 0.120 mm and
assume that the slit system is illuminated with monochro-
matic 500-nm light. Calculate the phase difference between
the two wave fronts arriving at P when (a) � � 0.500° and
(b) y � 5.00 mm. (c) What is the value of � for which the
phase difference is 0.333 rad? (d) What is the value of � for
which the path difference is �/4?

10. Coherent light rays of wavelength � strike a pair of slits sep-
arated by distance d at an angle �1 as shown in Figure
P27.10. Assume that an interference maximum is formed
at an angle �2 a great distance from the slits. Show that

, where m is an integer.d(sin �2 � sin �1) � m�

1

d

2

θ

θ

FIGURE P27.10
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In Figure 27.4, let L � 120 cm and d � 0.250 cm. The slits
are illuminated with coherent 600-nm light. Calculate the
distance y above the central maximum for which the aver-
age intensity on the screen is 75.0% of the maximum.

12. The intensity on the screen at a certain point in a double-
slit interference pattern is 64.0% of the maximum value.
(a) What minimum phase difference (in radians) between
sources produces this result? (b) Express this phase differ-
ence as a path difference for 486.1-nm light.

13. Two slits are separated by 0.180 mm. An interference pat-
tern is formed on a screen 80.0 cm away by 656.3-nm light.
Calculate the fraction of the maximum intensity 0.600 cm
above the central maximum.

Section 27.4 ■ Change of Phase Due to Reflection 
Section 27.5 ■ Interference in Thin Films
14. A soap bubble (n � 1.33) is floating in air. If the thickness

of the bubble wall is 115 nm, what is the wavelength of the
light that is most strongly reflected?

An oil film (n � 1.45) floating on water is illuminated by
white light at normal incidence. The film is 280 nm thick.
Find (a) the color of the light in the visible spectrum most
strongly reflected and (b) the color of the light in the spec-
trum most strongly transmitted. Explain your reasoning.

16. A possible means for making an airplane invisible to radar
is to coat the plane with an antireflective polymer. If radar
waves have a wavelength of 3.00 cm and the index of re-
fraction of the polymer is n � 1.50, how thick would you
make the coating?

17. A material having an index of refraction of 1.30 is used as
an antireflective coating on a piece of glass (n � 1.50).
What should be the minimum thickness of this film to min-
imize reflection of 500-nm light?

18. Astronomers observe the chromosphere of the Sun with a
filter that passes the red hydrogen spectral line of wave-
length 656.3 nm, called the H� line. The filter consists of a
transparent dielectric of thickness d held between two par-
tially aluminized glass plates. The filter is held at a constant
temperature. (a) Find the minimum value of d that pro-
duces maximum transmission of perpendicular H� light if
the dielectric has index of refraction 1.378. (b) If the tem-
perature of the filter increases above the normal value,
what happens to the transmitted wavelength? (Its index of
refraction does not change significantly.) (c) The dielec-
tric will also pass what near-visible wavelength? One of the
glass plates is colored red to absorb this light.

An air wedge is formed between two
glass plates separated at one edge by a very fine wire as
shown in Figure P27.19. When the wedge is illuminated
from above by 600-nm light and viewed from above, 30
dark fringes are observed. Calculate the radius of the wire.

19.

15.

11. Section 27.6 ■ Diffraction Patterns
20. Helium–neon laser light (� � 632.8 nm) is sent through a

0.300-mm-wide single slit. What is the width of the central
maximum on a screen 1.00 m from the slit?

A screen is placed 50.0 cm from a single
slit, which is illuminated with 690-nm light. If the distance
between the first and third minima in the diffraction pat-
tern is 3.00 mm, what is the width of the slit?

22. A beam of monochromatic green light is diffracted by a slit
of width 0.550 mm. The diffraction pattern forms on a wall
2.06 m beyond the slit. The distance between the positions
of zero intensity on both sides of the central bright fringe
is 4.10 mm. Calculate the wavelength of the light.

23. Coherent microwaves of wavelength 5.00 cm enter a long,
narrow window in a building otherwise essentially opaque
to the microwaves. If the window is 36.0 cm wide, what is
the distance from the central maximum to the first-order
minimum along a wall 6.50 m from the window?

24. Sound with a frequency 650 Hz from a distant source
passes through a doorway 1.10 m wide in a sound-absorb-
ing wall. Find the number and approximate directions of
the diffraction-maximum beams radiated into the space
beyond.

25. A beam of laser light of wavelength 632.8 nm has a circular
cross-section 2.00 mm in diameter. A rectangular aperture
is to be placed in the center of the beam so that when the
light falls perpendicularly on a wall 4.50 m away, the cen-
tral maximum fills a rectangle 110 mm wide and 6.00 mm
high. The dimensions are measured between the minima
bracketing the central maximum. Find the required width
and height of the aperture.

Section 27.7 ■ Resolution of Single-Slit
and Circular Apertures

26. The pupil of a cat’s eye narrows to a vertical slit of
width 0.500 mm in daylight. What is the angular resolution
for horizontally separated mice? Assume that the average
wavelength of the light is 500 nm.

A helium–neon laser emits light that
has a wavelength of 632.8 nm. The circular aperture
through which the beam emerges has a diameter of
0.500 cm. Estimate the diameter of the beam 10.0 km from
the laser.

28. Narrow, parallel, glowing gas-filled tubes in a variety of col-
ors form block letters to spell out the name of a nightclub.
Adjacent tubes are all 2.80 cm apart. The tubes forming
one letter are filled with neon and radiate predominantly
red light with a wavelength of 640 nm. For another letter,
the tubes emit predominantly violet light at 440 nm. The
pupil of a dark-adapted viewer’s eye is 5.20 mm in diame-
ter. If she is in a certain range of distances away, the viewer
can resolve the separate tubes of one color but not the
other. Which color is easier to resolve? The viewer’s dis-
tance must be in what range for her to resolve the tubes of
only one of these two colors?

The Impressionist painter Georges Seurat created paint-
ings with an enormous number of dots of pure pigment,
each of which was approximately 2.00 mm in diameter.

29.

27.

21.

FIGURE P27.19



30. A spy satellite can consist essentially of a large-diameter
concave mirror forming an image on a digital-camera
detector and sending the picture to a ground receiver by
radio waves. In effect, it is an astronomical telescope in
orbit, looking down instead of up. Can a spy satellite read a
license plate? Can it read the date on a dime? Argue for
your answers by making an order-of-magnitude calculation,
specifying the data you estimate.

31. A circular radar antenna on a Coast Guard ship has a di-
ameter of 2.10 m and radiates at a frequency of 15.0 GHz.
Two small boats are located 9.00 km away from the ship.
How close together could the boats be and still be detected
as two objects?

Section 27.8 ■ The Diffraction Grating

Note: In the following problems, assume that the light is inci-
dent normally on the gratings.

32. Light from an argon laser strikes a diffraction grating that
has 5 310 grooves per centimeter. The central and first-
order principal maxima are separated by 0.488 m on a wall
1.72 m from the grating. Determine the wavelength of the
laser light.

The hydrogen spectrum has a red line
at 656 nm and a blue line at 434 nm. What are the angular
separations between two spectral lines obtained with a dif-
fraction grating that has 4 500 grooves/cm?

34. A helium–neon laser (� � 632.8 nm) is used to calibrate a
diffraction grating. If the first-order maximum occurs at
20.5°, what is the spacing between adjacent grooves in the
grating?

A grating with 250 grooves/mm is used with an incandes-
cent light source. Assume that the visible spectrum ranges
in wavelength from 400 to 700 nm. In how many orders
can one see (a) the entire visible spectrum and (b) the
short-wavelength region?

35.

33.

36. Show that whenever white light is passed through a diffrac-
tion grating of any spacing size, the violet end of the con-
tinuous visible spectrum in third order always overlaps with
red light at the other end of the second-order spectrum.

37. A refrigerator shelf is an array of parallel wires with uni-
form spacing of 1.30 cm between centers. In air at 20°C,
ultrasound with a frequency of 37.2 kHz from a distant
source falls perpendicularly on the shelf. Find the number
of diffracted beams leaving the other side of the shelf. Find
the direction of each beam.

Section 27.9 ■ Diffraction of X-Rays by Crystals
38. Potassium iodide (KI) has the same crystalline structure as

NaCl, with atomic planes separated by 0.353 nm. A mono-
chromatic x-ray beam shows a first-order diffraction maxi-
mum when the grazing angle is 7.60°. Calculate the x-ray
wavelength.

If the interplanar spacing of NaCl is 0.281 nm, what is the
predicted angle at which 0.140-nm x-rays are diffracted in a
first-order maximum?

40. In water of uniform depth, a wide pier is supported on
pilings in several parallel rows 2.80 m apart. Ocean waves
of uniform wavelength roll in, moving in a direction that
makes an angle of 80.0° with the rows of posts. Find the
three longest wavelengths of waves that will be strongly
reflected by the pilings.

Section 27.10 ■ Context Connection — Holography
41. A wide beam of laser light with a wavelength of 632.8 nm is

directed through several narrow parallel slits, separated by
1.20 mm, and falls on a sheet of photographic film 1.40 m
away. The exposure time is chosen so that the film stays
unexposed everywhere except at the central region of each
bright fringe. (a) Find the distance between these interfer-
ence maxima. The film is printed as a transparency; it is
opaque everywhere except at the exposed lines. Next, the
same beam of laser light is directed through the trans-
parency and is allowed to fall on a screen 1.40 m beyond.
(b) Argue that several narrow parallel bright regions,
separated by 1.20 mm, will appear on the screen as real
images of the original slits. If at last the screen is removed,
light will diverge from the images of the original slits with
the same reconstructed wave fronts as the original slits
produced. (Suggestion: You may find it useful to draw a
diagram similar to Fig. 27.20. A similar train of thought, at
a soccer game, led Dennis Gabor to the invention of holog-
raphy.)

42. A helium–neon laser can produce a green laser beam in-
stead of red. Refer to Figure 24.18, which omits some en-
ergy levels between E2 and E1. After a population inversion
is established, neon atoms make a variety of downward
transitions in falling from the state labeled E3* down even-
tually to level E1. The atoms emit both red light with a
wavelength of 632.8 nm and green light with a wavelength
of 543 nm in a competing transition. Assume that the
atoms are in a cavity between mirrors designed to reflect
the green light with high efficiency but to allow the red
light to leave the cavity immediately. Then stimulated emis-
sion can lead to the buildup of a collimated beam of green

39.
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FIGURE P27.29 Sunday Afternoon on the Isle of La Grande Jatte, by
Georges Seurat.
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The idea was to have colors such as red and green next to
each other to form a scintillating canvas (Fig. P27.29). Out-
side what distance would one be unable to discern individ-
ual dots on the canvas? (Assume that � � 500 nm and that
the pupil diameter is 4.00 mm.)



light between the mirrors, having a greater intensity than
does the red light. A small fraction of the green light can
be permitted to escape by transmission through one mir-
ror to constitute the radiated laser beam. The mirrors
forming the resonant cavity are not made of shiny metal,
but of layered dielectrics, say silicon dioxide and titanium
dioxide. (a) How thick a layer of silicon dioxide, between
layers of titanium dioxide, would minimize reflection of
the red light? (b) What should be the thickness of a similar
but separate layer of silicon dioxide to maximize reflection
of the green light? 

Additional Problems
43. Review problem. This problem extends the result of Prob-

lem 14.11. Figure P27.43 shows two adjacent vibrating balls
dipping into a tank of water. At distant points they produce
an interference pattern as diagrammed in Figure 27.2. Let
� represent the wavelength of the ripples. Show that the
two sources produce a standing wave along the line seg-
ment, of length d, between them. In terms of � and d, find
the number of nodes and the number of antinodes in the
standing wave. Find the number of zones of constructive
and of destructive interference in the interference pattern
far away from the sources. Each line of destructive interfer-
ence springs from a node in the standing wave, and each
line of constructive interference springs from an antinode.

reflected light when it is illuminated by light of wavelength
500 nm. As the temperature is slowly increased by 25.0°C,
the film changes from bright to dark and back to bright
200 times. What is the coefficient of linear expansion of
the metal?

46. Laser light with a wavelength of 632.8 nm is directed
through one slit or two slits and allowed to fall on a screen
2.60 m beyond. Figure P27.46 shows the pattern on the
screen, nearly actual size, with a centimeter rule below it.
Did the light pass through one slit or two slits? If one, find
its width. If two, find the distance between their centers.
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FIGURE P27.43

44. Raise your hand and hold it flat. Think of the space
between your index finger and your middle finger as one
slit, and think of the space between middle finger and ring
finger as a second slit. (a) Consider the interference result-
ing from sending coherent visible light perpendicularly
through this pair of openings. Compute an order-of-
magnitude estimate for the angle between adjacent zones
of constructive interference. (b) To make the angles in the
interference pattern easy to measure with a plastic protrac-
tor, you should use an electromagnetic wave with fre-
quency of what order of magnitude? How is this wave
classified on the electromagnetic spectrum?

45. Review problem. A flat piece of glass is held stationary and
horizontal above the flat top end of a 10.0-cm-long vertical
metal rod that has its lower end rigidly fixed. The thin film
of air between the rod and glass is observed to be bright by

5      6       7       8       9       10     11     12    13 

FIGURE P27.46

47. Interference effects are produced at point P on a screen as
a result of direct rays from a 500-nm source and reflected
rays from the mirror as shown in Figure P27.47. Assume
that the source is 100 m to the left of the screen and
1.00 cm above the mirror. Find the distance y to the first
dark band above the mirror.

48. The waves from a radio station can reach a home receiver
by two paths. One is a straight-line path from transmitter
to home, a distance of 30.0 km. The second path is by re-
flection from the ionosphere (a layer of ionized air mole-
cules high in the atmosphere). Assume that this reflection
takes place at a point midway between receiver and trans-
mitter and that the wavelength broadcast by the radio sta-
tion is 350 m. Find the minimum height of the ionospheric
layer that produces destructive interference between the
direct and reflected beams. (Assume that no phase change
occurs on reflection.)

49. Many cells are transparent and colorless. Structures of
great interest in biology and medicine can be practically
invisible to ordinary microscopy. An interference microscope
reveals a difference in refractive index as a shift in interfer-
ence fringes to indicate the size and shape of cell struc-
tures. The idea is exemplified in the following problem.

O
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An air wedge is formed between two glass plates in contact
along one edge and slightly separated at the opposite
edge. When the plates are illuminated with monochro-
matic light from above, the reflected light has 85 dark
fringes. Calculate the number of dark fringes that appear if
water (n � 1.33) replaces the air between the plates.

50. (a) Both sides of a uniform film that has index of refrac-
tion n and thickness d are in contact with air. For nor-
mal incidence of light, an intensity minimum is ob-
served in the reflected light at � 2 and an intensity
maximum is observed at �1, where �1 � � 2. Assuming
that no intensity minima are observed between �1 and
�2, show that the integer m in Equations 27.11 and 27.12
is given by m � �1/2(�1 � � 2). (b) Determine the thick-
ness of the film, assuming that n � 1.40, �1 � 500 nm,
and � 2 � 370 nm.

The condition for constructive interference by reflection
from a thin film in air as developed in Section 27.5 as-
sumes nearly normal incidence. Show that if the light is
incident on the film at a nonzero angle �1 (relative to the
normal), the condition for constructive interference is 
2nt cos �2 � (m 	 )�, where �2 is the angle of refraction.

52. A soap film (n � 1.33) is contained within a rectangular
wire frame. The frame is held vertically so that the film
drains downward and forms a wedge with flat faces. The
thickness of the film at the top is essentially zero. The film
is viewed in reflected white light with near-normal
incidence, and the first violet (� � 420 nm) interference
band is observed 3.00 cm from the top edge of the film.
(a) Locate the first red (� � 680 nm) interference band.
(b) Determine the film thickness at the positions of the
violet and red bands. (c) What is the wedge angle of the
film?

53. Light from a helium–neon laser (� � 632.8 nm) is inci-
dent on a single slit. What is the maximum width of the slit
for which no diffraction minima are observed?

54. Figure P27.54 shows a megaphone in use. Construct a the-
oretical description of how a megaphone works. You may
assume that the sound of your voice radiates just through
the opening of your mouth. Most of the information in
speech is carried not in a signal at the fundamental fre-
quency, but in noises and in harmonics, with frequencies
of a few thousand hertz. Does your theory allow any predic-
tion that is simple to test? 

1
2

51.

55. Review problem. A beam of 541-nm light is incident on a
diffraction grating that has 400 grooves/mm. (a) Deter-
mine the angle of the second-order ray. (b) If the entire
apparatus is immersed in water, what is the new second-
order angle of diffraction? (c) Show that the two diffracted
rays of parts (a) and (b) are related through the law of
refraction.

56. The Very Large Array (VLA) is a set of 27 radio tele-
scope dishes in Caton and Socorro counties, New Mexico
(Fig P27.56). The antennas can be moved apart on rail-
road tracks, and their combined signals give the resolving
power of a synthetic aperture 36.0 km in diameter. (a) If
the detectors are tuned to a frequency of 1.40 GHz, what is
the angular resolution of the VLA? (b) Clouds of hydrogen
radiate at this frequency. What must be the separation dis-
tance of two clouds at the center of the galaxy, 26 000
lightyears away, if they are to be resolved? (c) As the tele-
scope looks up, a circling hawk looks down. Find the angu-
lar resolution of the hawk’s eye. Assume that that the hawk
is most sensitive to green light having wavelength 500 nm
and that it has a pupil of diameter 12.0 mm. (d) A mouse
is on the ground 30.0 m below. By what distance must the
mouse’s whiskers be separated if the hawk can resolve
them?
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FIGURE P27.54

FIGURE P27.56 A rancher in New Mexico rides past one
of the 27 radio telescopes that make up the Very Large
Array (VLA).

57. Light of wavelength 500 nm is incident normally on a
diffraction grating. If the third-order maximum of the
diffraction pattern is observed at 32.0°, (a) what is the
number of rulings per centimeter for the grating? (b) De-
termine the total number of primary maxima that can be
observed in this situation.

58. Iridescent peacock feathers are shown in Figure
P27.58a. The surface of one microscopic barbule is com-
posed of transparent keratin that supports rods of dark
brown melanin in a regular lattice, represented in Figure
P27.58b. (Your fingernails are made of keratin, and
melanin is the dark pigment giving color to human skin.)
In a portion of the feather that can appear turquoise,
assume that the melanin rods are uniformly separated by
0.25 �m, with air between them. (a) Explain how this
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27.1 (c). Equation 27.2 shows that decreasing � will decrease
the angle �bright and bring the fringes closer together.
Equation 27.5 shows that decreasing L decreases y bright
and brings the fringes closer together. Immersing the ap-
paratus in water decreases the wavelength so that the
fringes move closer together.

27.2 (a). One of the materials has a higher index of refraction
than water, the other lower. For the material with a

higher index of refraction, there is a 180° phase shift for
the light reflected from the upper surface but no such
phase change from the lower surface because the index
of refraction for water on the other side is lower than
that of the film. Thus, the two reflections are out of
phase and interfere destructively.

27.3 (a). At the left edge, the air wedge has zero thickness and
the only contribution to the interference is the 180°

distance L away. If D is too large, the display on the screen
will be fuzzy because a bright point in the field of view will
send light onto a circle of diameter slightly larger than D.
On the other hand, if D is too small, diffraction will blur
the display on the screen. The screen shows a reasonably
sharp image if the diameter of the central disk of the dif-
fraction pattern, specified by Equation 27.15, is equal to D
at the screen. (a) Show that for monochromatic light with
plane wave fronts and L �� D, the condition for a sharp
view is fulfilled if D2 � 2.44 �L . (b) Find the optimum pin-
hole diameter for 500-nm light projected onto a screen
15.0 cm away.

61. Two wavelengths � and � 	 
� (with 
� �� �) are inci-
dent on a diffraction grating. Show that the angular sepa-
ration between the spectral lines in the mth-order spec-
trum is

where d is the slit spacing and m is the order number.


� �

�

√(d/m)2 � �2

structure can appear blue–green when it contains no blue
or green pigment. (b) Explain how it can also appear
violet if light falls on it in a different direction. (c) Explain
how it can present different colors to your two eyes at the
same time, a characteristic of iridescence. (d) A compact
disc can appear to be any color of the rainbow. Explain
why this portion of the feather cannot appear yellow or
red. (e) What could be different about the array of
melanin rods in a portion of the feather that does appear
to be red? 

59. A beam of bright red light of wavelength 654 nm passes
through a diffraction grating. Enclosing the space beyond
the grating is a large screen forming one half of a cylinder
centered on the grating, with its axis parallel to the slits in
the grating. Fifteen bright spots appear on the screen. Find
the maximum and minimum possible values for the slit
separation in the diffraction grating.

60. A pinhole camera has a small circular aperture of diameter
D. Light from distant objects passes through the aperture
into an otherwise dark box, falling on a screen located a

(a) (b)

FIGURE P27.58 (a) Iridescence in peacock feathers. (b) Microscopic section of a feather
showing dark melanin rods in a pale keratin matrix.
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phase shift as the light reflects from the upper surface of
the glass slide.

27.4 (i), (a). Equation 27.13 shows that a decrease in a results
in an increase in the angles at which the dark fringes
appear. (ii), (c). Equation 27.13 shows that a decrease in
� results in a decrease in the angles at which the dark
fringes appear.

27.5 (a). We would like to reduce the minimum angular sepa-
ration for two objects below the angle subtended by the
two stars in the binary system. We can do that by reduc-
ing the wavelength of the light, which in essence makes
the aperture larger, relative to the light wavelength,

increasing the resolving power. Thus, we should choose a
blue filter.

27.6 (c). With the doubled wavelength, the pattern will be
wider. Choices (a) and (d) make the pattern even wider.
From Equation 27.16, we see that choice (b) causes 
sin �bright to be twice as large. Because we cannot use the
small angle approximation, however, a doubling of
sin �bright is not the same as a doubling of �bright, which
would translate to a doubling of the position of a maxi-
mum along the screen. If we only consider small-angle
maxima, choice (b) would work, but it does not work in
the large-angle case.
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Using Lasers to Record and 
Read Digital Information
We have now investigated the principles of optics and can respond to our central
question for the Lasers Context:

What is special about laser light and how is it used in technological applications?

In the Context Connections in Chapters 24 to 27, we discussed two primary techno-
logical applications of lasers: optical fibers and holography. In this Context Conclu-
sion, we will choose one more from the vast number of possibilities, the storage and
retrieval of information on compact discs (as well as CD-ROMs and digital video, or
versatile, discs, DVDs).

The storage of information in a small volume of space is a goal toward which hu-
mans have worked for several decades. In the early days of computing, information
was stored on punched cards. This method seems humorous in today’s world, espe-
cially because the area taken up by laying the cards representing a page of text out
on a table was larger than the original page of text.

The magnetic disc recording and storage technique introduced in the 1950s al-
lowed a reduction in space over that taken up by the original data. The beginning
of optical storage occurred in the 1970s with the introduction of videodiscs. These
plastic discs included encoded pits representing the analog information associated
with a video signal. A laser, focused by lenses to a spot about 1 micrometer (�m) in
diameter, is used to read the data. When the laser light reflects off the flat area of
the disc, the light is reflected back into the system and is detected. When the light
encounters a pit, some of it is scattered. The light reflected from the bottom of the
pit interferes destructively with that reflected from the surface, and very little of the
incident light finds its way back to the detection system.

The next step in the optical recording story involves the digital revolution, ex-
emplified by the introduction of the compact disc, or CD. The reading of the disc is
similar to that of the videodisc, but the information is stored in a digital format.
Musical CDs were rapidly accepted by the public with much more enthusiasm than
videodiscs. Shortly after the introduction of CDs, plans were announced to market
an optical disc for storage of information for computers, the CD-ROM.

Digital Recording
In digital recording, information is converted to binary
code (ones and zeros), similar to the dots and dashes of
Morse code. First, the waveform of the sound is sampled, typ-
ically at the rate of 44 100 times per second. Figure 1 illus-
trates this process. The sampling frequency is much higher
than the upper range of hearing, about 20 000 Hz, so all au-
dible frequencies of sound are sampled at this rate. During
each sampling, the pressure of the wave is measured and
converted to a voltage. Thus, there are 44 100 numbers as-
sociated with each second of the sound being sampled. 

These measurements are then converted to binary
numbers, which are numbers expressed to base 2 rather
than base 10. Table 1 shows some sample binary numbers.

C O N T E X T CONCLUSION8

Sound is digitized by sampling the sound waveform at
periodic intervals. During each interval, a number is
recorded for the average voltage during the interval.
The sampling rate shown here is much slower than the
actual sampling rate of 44 100 per second.

FIGURE 1



Generally, voltage measurements are recorded in 16-bit “words,” where each bit is a
one or a zero. Thus, the number of different voltage levels that can be assigned
codes is 216 � 65 536. The number of bits in 1 second of sound is 16 � 44 100 �
705 600. These strings of ones and zeros, in 16-bit words, are recorded on the sur-
face of a CD.

Figure 2 shows a magnification of the surface of a CD. There are two types of ar-
eas that are detected by the laser playback system: lands and pits. The lands are un-
touched regions of the disc surface that are highly reflective. The pits are areas that
have been burned into the surface by a recording laser. The playback system, de-
scribed below, converts the pits and lands into binary ones and zeros.

The binary numbers read from the CD are converted back to voltages, and the
waveform is reconstructed as shown in Figure 3. Because the sampling rate is so
high—44 100 voltage readings each second—the step-wise nature of the recon-
structed waveform is not evident in the sound.

The advantage of digital recording is in the high fidelity of the sound. With ana-
log recording, any small imperfection in the record surface or the recording equip-
ment can cause a distortion of the waveform. If all peaks of a maximum in a wave-
form are clipped off so as to be only 90% as high, for example, there will be a major
effect on the spectrum of the sound in an analog recording. With digital recording,

however, it takes a major imperfection to turn a one into a zero. If
an imperfection causes the magnitude of a one to be 90% of the
original value, it still registers as a one and there is no distortion.
Another advantage of digital recording is that the information is
extracted optically, so there is no mechanical wear on the disc.

Digital Playback
Figure 4 shows the detection system of a CD player. The optical
components are mounted on a track (not shown in the figure) that
rolls radially so that the system can access all regions of the disc.
The laser is located near the bottom of the figure, directing its
light upward. The light is collimated by a lens into a parallel beam
and passes through a beam splitter. The beam splitter serves no

purpose for light on the way up, but it is important for the return light. The laser
beam is then focused to a very small spot on the disc by the objective lens.

If the light encounters a pit in the disc, the light is scattered and very little light
returns along the original path. If the light encounters a flat region of the disc at
which a pit has not been recorded, the light reflects back along its original path.
The reflected light moves downward in the diagram, arriving at the beam splitter so
that it is partially reflected to the right. Lenses focus the beam, which is then de-
tected by the photocell.

The playback system samples the reflected light 705 600 times per second.
When the laser moves from a pit to a land or from a land to a pit, the reflected light
changes during the sampling and the bit is recorded as a one. If there is no change

932 ❚ CONTEXT 8 CONCLUSION

y g p pp

The surface of a
compact disc, showing the pits.
Transitions between pits and lands
correspond to ones. Regions without
transitions correspond to zeros.

FIGURE 2

The reconstruction of the sound wave
sampled in Figure 1. Notice that the
reconstruction is step-wise, rather than the
continuous waveform in Figure 1.

FIGURE 3
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Sample Binary NumbersTABLE 1

Number in Base 10 Number in Binary Sum

1 0000000000000001 1
2 0000000000000010 2 � 0
3 0000000000000011 2 � 1

10 0000000000001010 8 � 0 � 2 � 0
37 0000000000100101 32 � 0 � 0 � 4 � 0 � 1

275 0000000100010011 256 � 0 � 0 � 0 � 16 � 0 � 0 � 2 � 1



during the sampling, the bit is recorded as a zero. The electronic
circuitry in the CD player converts the series of zeros and ones back
into an audible signal. This technology can also be used to store video
information on a disc, leading to the rapid growth of DVD in the later
years of the 20th century.

Problems
1. Compact disc (CD) and digital video disc (DVD) players use inter-

ference to generate a strong signal from a tiny bump. The depth of
a pit is chosen to be one quarter of the wavelength of the laser
light used to read the disc. Then light reflected from the pit and
light reflected from the adjoining land differ in path length trav-
eled by one-half wavelength, to interfere destructively at the detec-
tor. As the disc rotates, the light intensity drops significantly when-
ever light is reflected from near a pit edge. The space between the
leading and trailing edges of a pit determines the time interval
between the fluctuations. The series of time intervals is decoded
into a series of zeros and ones that carries the stored information.
Assume that infrared light with a wavelength of 780 nm in vacuum
is used in a CD player. The disc is coated with plastic having a re-
fractive index of 1.50. What should be the depth of each pit? A
DVD player uses light of a shorter wavelength, and the pit dimen-
sions are correspondingly smaller, one factor that results in greater
storage capacity on a DVD compared with a CD.

2. The laser in a CD player must precisely follow the spiral track,
along which the distance between one loop of the spiral and the
next is only about 1.25 �m. A feedback mechanism lets the player know if the
laser drifts off the track so that the player can steer it back again. 
Figure 5 shows how a diffraction grating is used to provide information to keep
the beam on track. The laser light passes through a diffraction grating just
before it reaches the disc. The strong central maximum of the diffraction pat-
tern is used to read the information in the track of pits. The two first-order side
maxima are used for steering. The grating is designed so that the first-order
maxima fall on the flat surfaces on both sides of the information track. Both
side beams are reflected into their own detectors. As long as
both beams are reflecting from smooth, nonpitted surfaces
they are detected with constant high intensity. If the main
beam wanders off the track, however, one of the side beams
will begin to strike pits on the information track and the
reflected light will diminish. This change is used with an
electronic circuit to guide the beam back to the desired loca-
tion. Assume that the laser light has a wavelength of 780 nm
and that the diffraction grating is positioned 6.90 �m from
the disc. Assume that the first-order beams are to fall on the
disc 0.400 �m on either side of the information track.
What should be the number of grooves per millimeter in the
grating?

3. The speed with which the surface of a compact disc passes the
laser is 1.3 m/s. What is the average length of the audio track
on a CD associated with each bit of the audio 
information?

4. Consider the photograph of the compact disc surface in 
Figure 2. Audio data undergoes complicated processing to
reduce a variety of errors in reading the data. Therefore, an
audio “word” is not laid out linearly on the disc. Suppose data
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CD

Objective
lensSome incoming laser

light is reflected away
by beam splitter

Beam
splitter

Collimating
lens

Laser
(on radial
track)

Focusing
lens

Photocell

The detection system of a compact disc
player. The laser (bottom) sends a beam
of light upward. Laser light reflected
back from the disc and then reflected to
the right by the beam splitter enters a
photocell. The digital information enter-
ing the photocell as pulses of light is
converted to audio information.

FIGURE 4

Laser

Diffraction
grating

Central
maximum

First-order
maxima

Compact disc

A tracking system in a CD player.FIGURE 5



has been read from the disc, the error coding has been removed, and the result-
ing audio word is

1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

What is the decimal number represented by this 16-bit word?
5. Lasers are also used in the recording process for a magnetooptical disc. To record

a pit, its location on the ferromagnetic layer of the disc must be raised above a
minimum temperature called the Curie temperature. Imagine that the surface
moves past the laser at a speed on the order of 1 m/s and that the pit is mod-
eled as a cylinder 1 �m deep with a radius of 1 �m. The ferromagnetic material
has the following properties: its Curie temperature is 600 K, its specific heat is
300 J/kg�°C, and its density is 2 � 103 kg/m3. What is the order of magnitude
of the intensity of the laser beam necessary to raise the pit above the Curie tem-
perature?

934 ❚ CONTEXT 8 CONCLUSION
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C O N T E X T

The Cosmic Connection
In this final Context, we investigate the
principles included in the area of
physics commonly called modern physics.
Modern physics encompasses the revo-
lution in physics that commenced at
the beginning of the 20th century. We
began our discussion of modern
physics in Chapter 9 in our study of rel-
ativity. Other aspects of modern
physics—including atomic spectra and
the Bohr model in Chapter 11, quanti-
zation of angular momentum and en-
ergy in Chapter 11, black holes in
Chapter 11, black bodies in Chapter 24,
and the discussion of the photon in
Chapter 24—have appeared at various
locations throughout the book. 

In this book, we stress the importance
of models in understanding physical
phenomena. At the turn of the 20th
century, classical physics was well estab-
lished and provided many principles on
which models for phenomena could be
built. Many experimental observations,
however, could not be brought into
agreement with theory using classical
models. Attempts to apply the laws of
classical physics to atomic systems were
consistently unsuccessful in making ac-
curate predictions of the behavior of
matter on the atomic scale. Various phe-
nomena such as blackbody radiation,

the photoelectric effect, and the emis-
sion of sharp spectral lines by atoms in a
gas discharge could not be understood
within the framework of classical
physics. Between 1900 and 1930, how-
ever, new models collectively called
quantum physics or quantum mechanics
were highly successful in explaining the
behavior of atoms, molecules, and nu-
clei. Like relativity, quantum physics re-
quires a modification of our ideas con-
cerning the physical world. Quantum
mechanics does not, however, directly
contradict or invalidate classical me-
chanics. As with relativity, the equations
of quantum physics reduce to classical
equations in the appropriate realm, that
is, when the quantum equations are
used to describe macroscopic systems.

An extensive study of quantum
physics is certainly beyond the scope of
this book and therefore this Context is
simply an introduction to its underlying
ideas. One of the true successes of quan-
tum physics is the connection it makes
between microscopic phenomena and
the structure and evolution of the Uni-
verse. Ironically, recent developments in
physics that probe smaller and smaller
scales allow us to advance our under-
standing of the larger and larger systems
that are familiar to us. This connection

9

A person works on a
personal digital assistant. The appear-
ance of information on the display is
due to the behavior of microscopic
electrons in the circuitry of the
microprocessor. 
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(a) (b)

Supernova 1987A. (a) The region of the Tarantula Nebula (lower right) of the Large
Magellanic Cloud before the supernova. (b) The supernova appears at the upper left
on February 24, 1987. An understanding of this cosmic explosion is found in the inter-
actions between the microscopic particles within the nucleus. 

FIGURE 2



between the small and the large is the
theme of this Context.

Let us consider some examples of
macroscopic systems and their connec-
tion to the behavior of microscopic
particles. Consider your experiences
with common electronic devices that
are used today to view information on a
liquid crystal display: handheld calcula-
tors, personal digital assistants (PDAs),
cell phones, and video monitors. The
events you observe—the appearance of
numbers, to-do lists, or photographs on
an LCD display—are macroscopic, but
what controls these macroscopic events?
They are controlled by a microproces-
sor within the electronic device. The op-
eration of the microprocessor depends
on the behavior of electrons within the
solid-state material in an integrated cir-
cuit chip. The design and manufacture
of the macroscopic electronic device
are not possible without an understand-
ing of the behavior of the electrons.

As a second example, a supernova

explosion is clearly a macroscopic
event; it is a star with a radius on the or-
der of billions of meters undergoing a
violent event. We have been able to ad-
vance our understanding of such events
by studying the atomic nucleus, which
is on the order of 10�15 m in size.

If we imagine an even larger system
than a star—the entire Universe—we
can advance our understanding of its
origin by thinking about particles even
smaller than the nucleus. Consider the
constituents of protons and neutrons,
called quarks. Models based on quarks
provide further understanding of a the-
ory of the origin of the Universe called
the Big Bang. In this Context, we shall
study both quarks and the Big Bang.

It seems that the larger the system
we wish to investigate, the smaller are
the particles whose behavior we must
understand! We shall explore this rela-
tionship and study the principles of
quantum physics as we respond to our
central question:

y g p pp

How can we connect the physics of microscopic particles to the physics
of the Universe?

An image taken by the Hubble Space Telescope in January 2004 of galaxy AM 0644-741,
called a “ring galaxy.” Such a galaxy is formed from a collision with a second galaxy,
called the intruder. The intruder punches through the center of the target galaxy, leav-
ing a yellow nucleus in the case of AM 0644-741. The surrounding ring is expanding,
similar to a ripple expanding outward from a disturbance in a pond. In the chaos in the
ring, gas clouds collide and collapse gravitationally into new stars of large mass and high
temperature, emitting light that is strong in the blue part of the visible spectrum. Several
other galaxies are also visible in this photograph. Across the entire sky, it is estimated
that the Hubble Space Telescope can detect 100 billion galaxies. It is also estimated that
this is a very small fraction of all the galaxies in the visible part of the Universe. To de-
velop a theory of the origin of this tremendously large system, we need to understand
quarks, the most fundamental theorized particles. 

FIGURE 3
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In the earlier chapters of this book, we focused on the physics
of particles. The particle model was a simplification model
that allowed us to ignore the unnecessary details of an object

when studying its behavior. We later combined particles into
additional simplification models of systems and rigid objects. In
Chapter 13, we introduced the wave as yet another simplification
model and found that we could understand the motion of vibrat-
ing strings and the intricacies of sound by studying simple waves.
In Chapters 24 to 27, we found that the wave model for light
helped us understand many phenomena associated with optics.

It is hoped that you now have confidence in your abilities to
analyze problems in the very different worlds of particles and
waves. Your confidence may have been shaken somewhat by the
discussion at the beginning of Chapter 25 in which we indicated
that light has both wave-like and particle-like behaviors.

In this chapter, we return to this dual nature of light and study
it in more detail. This study leads to two final analysis models: the
quantum particle and the quantum particle under boundary con-
ditions. A careful analysis of these two models shows that particles
and waves are not as unrelated as you might expect.

Quantum Physics

C H A P T E R 28

A color-enhanced electron microscope
photograph shows significant detail of
a storage mite, Lepidoglyphus destruc-
tor. The mite is so small, with a maxi-
mum length of 0.75 mm, that ordinary
microscopes do not reveal minute
anatomical details. The operation of
the electron microscope is based on
the wave nature of electrons, a central
feature in quantum physics.

C H A P T E R  O U T L I N E
28.1 Blackbody Radiation and Planck’s Theory
28.2 The Photoelectric Effect
28.3 The Compton Effect
28.4 Photons and Electromagnetic Waves
28.5 The Wave Properties of Particles
28.6 The Quantum Particle
28.7 The Double-Slit Experiment Revisited
28.8 The Uncertainty Principle
28.9 An Interpretation of Quantum Mechanics
28.10 A Particle in a Box
28.11 The Quantum Particle Under 

Boundary Conditions
28.12 The Schrödinger Equation
28.13 Tunneling Through a Potential 

Energy Barrier
28.14 Context Connection — The Cosmic

Temperature
SUMMARY
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BLACKBODY  RADIATION  AND  PLANCK’S  THEORY
As we discussed in Chapter 17, an object at any temperature emits energy referred to
as thermal radiation. The characteristics of this radiation depend on the tempera-
ture and properties of the surface of the object. If the surface is at room tempera-
ture, the wavelengths of the thermal radiation are primarily in the infrared region
and hence are not observed by the eye. As the temperature of the surface increases,
the object eventually begins to glow red. At sufficiently high temperatures, the object
appears to be white, as in the glow of the hot tungsten filament of a lightbulb. A
careful study of thermal radiation shows that it consists of a continuous distribution
of wavelengths from all portions of the electromagnetic spectrum.

From a classical viewpoint, thermal radiation originates from accelerated
charged particles near the surface of the object. The thermally agitated charges can
have a distribution of accelerations, which accounts for the continuous spectrum of
radiation emitted by the object. By the end of the 19th century, it had become
apparent that this classical explanation of thermal radiation was inadequate. The
basic problem was in understanding the observed distribution of wavelengths in
the radiation emitted by an ideal object called a black body. As mentioned in
Chapter 24, a black body is an ideal system that absorbs all radiation incident on it.
A good approximation of a black body is a small hole leading to the inside of a
hollow object as shown in Figure 28.1. The nature of the radiation emitted from
the hole depends only on the temperature of the cavity walls.

The wavelength distribution of radiation from cavities was studied extensively in
the late 19th century. Experimental data for the distribution of energy in blackbody
radiation at three temperatures are shown in Active Figure 28.2. The distribution of
radiated energy varies with wavelength and temperature. Two regular features of
the distribution were noted in these experiments.

1. The total power of emitted radiation increases with temperature. We discussed
this feature briefly in Chapter 17, where we introduced Stefan’s law, Equation
17.36, for the power emitted from a surface of area A and temperature T :

For a black body, the emissivity is e � 1 exactly.
2. The peak of the wavelength distribution shifts to shorter wavelengths as the

temperature increases. This shift was found experimentally to obey the follow-
ing relationship, called Wien’s displacement law:

[28.1]

where �max is the wavelength at which the curve peaks and T is the absolute
temperature of the surface emitting the radiation.

�maxT � 2.898 � 10�3 m �K

� � �AeT 4

28.1
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EXPECT TO BE CHALLENGED If the
discussions of quantum physics 
in this chapter seem strange and
confusing to you, it’s because your
whole life experience has taken
place in the macroscopic world,
where quantum effects are not 
evident.

� PITFALL PREVENTION 28.1

The opening to
the cavity inside a hollow object is a
good approximation of a black body.
Light entering the small opening
strikes the interior walls, where some
is absorbed and some is reflected at 
a random angle. The cavity walls 
re-radiate at wavelengths correspond-
ing to their temperature. Some of the
energy from these standing waves can
leave through the opening.

FIGURE 28.1

� Stefan’s law

Intensity of blackbody radiation
versus wavelength at three temperatures. Note that the
amount of radiation emitted (the area under a curve) in-
creases with increasing temperature. The visible range of
wavelengths is between 0.4 �m and 0.7 �m. Therefore, the
4 000-K curve has a peak that is near the visible range and
represents an object that would glow with a yellowish-white
appearance. At about 6 000 K, the peak is in the center of
the visible wavelengths and the object appears white.

By logging into PhysicsNow at
www.pop4e.com and going to Active Figure 28.2, you can
adjust the temperature of the black body and study the 
radiation emitted from it.

ACTIVE FIGURE 28.2
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The glow emanating from the spaces
between these hot charcoal briquettes
is, to a close approximation, black-
body radiation. The color of the light
depends on the temperature of the
briquettes. �
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A successful theoretical model for blackbody radiation must predict the shape of
the curve in Active Figure 28.2, the temperature dependence expressed in Stefan’s
law, and the shift of the peak with temperature described by Wien’s displacement
law. Early attempts to use classical ideas to explain the shapes of the curves in Active
Figure 28.2 failed. Figure 28.3 shows an experimental plot of the blackbody radia-
tion spectrum (red curve) together with the curve predicted by classical theory
(blue curve). At long wavelengths, classical theory is in good agreement with the
experimental data. At short wavelengths, however, major disagreement exists be-
tween classical theory and experiment. This disagreement is often called the ultravi-
olet catastrophe. (This “catastrophe”— infinite energy—occurs as the wavelength
approaches zero; the word “ultraviolet” was applied because ultraviolet wavelengths
are short.)

In 1900, Max Planck developed a structural model for blackbody radiation that
leads to a theoretical equation for the wavelength distribution that is in complete
agreement with experimental results at all wavelengths. In his model, which repre-
sented the dawn of quantum physics, Planck imagined that oscillators exist at the
surface of the black body, related to the charges within the molecules. He made two
bold and controversial assumptions concerning the nature of these oscillators:

• The energy of the oscillator is quantized; that is, it can have only certain discrete
amounts of energy En given by

En � nhf [28.2]

where n is a positive integer called a quantum number,1 f is the frequency of
oscillation of the oscillator, and h is Planck’s constant, first introduced in Chapter
11. Because the energy of each oscillator can have only discrete values given by
Equation 28.2, we say that the energy is quantized. Each discrete energy value cor-
responds to a different quantum state, represented by the quantum number n.
When the oscillator is in the n � 1 quantum state, its energy is hf ; when it is in
the n � 2 quantum state, its energy is 2hf ; and so on.

• The oscillators emit or absorb energy in discrete units. They emit or absorb these
energy units by making a transition from one quantum state to another, similar to
the transitions discussed in the Bohr model in Chapter 11. The entire energy dif-
ference between the initial and final states in the transition is emitted as a single
quantum of radiation. If the transition is from one state to an adjacent state— say,
from the n � 3 state to the n � 2 state—Equation 28.2 shows that the amount of
energy radiated by the oscillator is

E � hf [28.3]

An oscillator radiates or absorbs energy only when it changes quantum states. If
it remains in one quantum state, no energy is absorbed or emitted. Figure 28.4
shows the quantized energy levels and allowed transitions proposed by Planck.

These assumptions may not sound bold to you because we have seen them in
the Bohr model of the hydrogen atom in Chapter 11. It is important to keep in
mind, however, that the Bohr model was not introduced until 1913, whereas Planck
made his assumptions in 1900. The key point in Planck’s theory is the radical as-
sumption of quantized energy states. This development marked the birth of the
quantum theory. Using these assumptions, Planck was able to generate a theoretical
expression for the wavelength distribution that agreed remarkably well with the ex-
perimental curves in Active Figure 28.2. When Planck presented his theory, most
scientists (including Planck!) did not consider the quantum concept realistic. It was
believed to be a mathematical trick that happened to predict the correct results.
Hence, Planck and others continued to search for what they believed to be a more
rational explanation of blackbody radiation. Subsequent developments, however,
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1We first introduced the notion of a quantum number for microscopic systems in Section 11.5, in which
we incorporated it into the Bohr model of the hydrogen atom. We put it in bold again here because it
is an important notion for the remaining chapters in this book.
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Comparison of the
experimental results with the curve
predicted by classical theory for the
distribution of blackbody radiation.

FIGURE 28.3

Max Planck (1858 – 1947)
Planck introduced the concept of a
“quantum of action” (Planck’s con-
stant, h) in an attempt to explain
the spectral distribution of black-
body radiation, which laid the foun-
dations for quantum theory. In 1918,
he was awarded the Nobel Prize in
Physics for this discovery of the
quantized nature of energy.
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showed that a theory based on the quantum concept (rather than on classical con-
cepts) was required to explain a number of other phenomena at the atomic level.

We don’t see quantum effects on an everyday basis because the energy change
in a macroscopic system due to a transition between adjacent states is such a small
fraction of the total energy of the system that we could never expect to detect the
change. (See Example 28.2 for a numerical example.) Therefore, even though
changes in the energy of a macroscopic system are indeed quantized and proceed
by small quantum jumps, our senses perceive the decrease as continuous. Quantum
effects become important and measurable only on the submicroscopic level of
atoms and molecules. Furthermore, quantum results must blend smoothly with
classical results when the quantum number becomes large. This statement is known
as the correspondence principle.

You may have had your body temperature measured at the doctor’s office by an
ear thermometer, which can read your temperature in a matter of seconds (Fig. 28.5).
This type of thermometer measures the amount of infrared radiation emitted by
the eardrum in a fraction of a second. It then converts the amount of radiation into
a temperature reading. This thermometer is very sensitive because temperature is
raised to the fourth power in Stefan’s law. Problem 28.1 allows you to explore the
sensitivity of this device.

940 ❚ CHAPTER 28 QUANTUM PHYSICS
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An ear thermome-
ter measures a patient’s temperature
by detecting the intensity of infrared
radiation leaving the eardrum.

FIGURE 28.5

Figure 28.6 shows two stars in the constellation Orion. Betelgeuse
appears to glow red, whereas Rigel looks blue in color. Which star has a higher surface
temperature? (a) Betelgeuse (b) Rigel (c) both have the same surface temperature
(d) impossible to determine

QUICK QUIZ 28.1

Betelgeuse

Rigel

(Quick Quiz 28.1) Which star is hotter?FIGURE 28.6
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n IS AGAIN AN INTEGER In the pre-
ceding chapters on optics, we used
the symbol n for the index of refrac-
tion, which was not an integer. We
are now using n again in the man-
ner in which it was used in Chapter
11 to indicate the quantum number
of a Bohr orbit and in Chapter 14
to indicate the standing wave mode
on a string or in an air column. In
quantum physics, n is often used as
an integer quantum number to
identify a particular quantum state
of a system.

� PITFALL PREVENTION 28.2

� Thinking Physics 28.1
You are observing a yellow candle flame, and your laboratory partner claims that
the light from the flame is atomic in origin. You disagree, claiming that the candle
flame is hot, so the radiation must be thermal in origin. Before this disagreement
leads to fisticuffs, how could you determine who is correct?

Reasoning A simple determination could be made by observing the light from the
candle flame through a diffraction grating spectrometer, which was discussed in
Section 27.8. If the spectrum of the light is continuous, it is thermal in origin. If the
spectrum shows discrete lines, it is atomic in origin. The results of the experiment
show that the light is primarily thermal in origin and originates in the hot particles
of soot in the candle flame. �
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box of height 2 m, width 0.3 m, and depth 0.2 m, the
total surface area is

Therefore, from Stefan’s law, we have

Based on your answer to part B, why don’t you glow
as brightly as several lightbulbs?

Solution The answer to part B indicates that your skin
is radiating energy at approximately the rate as that
which enters ten 100-W lightbulbs by electrical transmis-
sion. You are not visibly glowing, however, because most
of this radiation is in the infrared range, as we found 
in part A, and our eyes are not sensitive to infrared 
radiation.

C

103 W�

� � �AeT 4 � (5.7 � 10�8 W/m2�K4)(2 m2)(1)(308 K)4

 � 2 m2

 A � 2(2 m)(0.3 m)	 2(2 m)(0.2 m)	 2(0.2 m)(0.3 m)

Thermal Radiation from the Human BodyEXAMPLE 28.1
The temperature of your skin is approximately 35°C.

What is the peak wavelength of the radiation it
emits?

Solution From Wien’s displacement law (Eq. 28.1), we
have

�maxT � 2.898 � 10�3 m � K

Solving for �max and noting that 35°C corresponds to
an absolute temperature of 308 K, we have

This radiation is in the infrared region of the spectrum.

What total power is emitted by your skin, assuming
that it emits like a black body?

Solution We need to make an estimate of the surface
area of your skin. If we model your body as a rectangular

B

9.41 �m�max �
2.898 � 10�3 m �K

308 K
�

A

problem, we note that the energy of the oscillator is
quantized according to Equation 28.2. Therefore,

Solving for n ,

How much energy is carried away when the oscilla-
tor makes a transition to the next lowest quantum state?

Solution The energy difference between adjacent
quantum states is 
E � hf . Therefore, the energy car-
ried away is

To finalize the problem, note that the energy carried
away in part C due to a transition between adjacent
states is a small fraction of the total energy of the oscil-
lator (about one part in ten million billion billion bil-
lion, or 1:1034!). Consequently, we do not see the quan-
tized nature of the oscillator for such a large quantum
number as we found in part B, in agreement with the
correspondence principle.

3.7 � 10�34 J�

E � hf � (6.63 � 10�34 J �s)(0.56 Hz)

C

5.4 � 1033n �
2.0 J

(6.63 � 10�34 J �s)(0.56 Hz)
�

En � nhf � n(6.63 � 10�34 J �s)(0.56 Hz) � 2.0 J

The Quantized OscillatorEXAMPLE 28.2
A 2.0-kg block is attached to a massless spring of force
constant k � 25 N/m. The spring is stretched 0.40 m
from its equilibrium position and released.

Find the total energy and frequency of oscillation
according to classical calculations.

Solution Because of our study of oscillating blocks in
Chapter 12, this problem is easy to conceptualize. The
phrase “according to classical calculations” tells us that
we should categorize this part of the problem as a clas-
sical analysis of the oscillator. To analyze the problem,
we know that the total energy of a simple harmonic 
oscillator having an amplitude A is (Eq. 12.21).
Therefore,

The frequency of oscillation is, from Equation 12.14,

Assuming that the energy is quantized, find the
quantum number n for the system.

Solution This part of the problem is categorized as 
a quantum analysis of the oscillator. To analyze the

B

0.56 Hzf �
1

2�
 √ k

m
�

1
2�

 √ 25 N/m
2.0 kg

�

2.0 JE � 1
2kA2 � 1

2(25 N/m)(0.40 m)2 �

1
2kA2

A



THE  PHOTOELECTRIC  EFFECT
Blackbody radiation was historically the first phenomenon to be explained with
a quantum model. In the latter part of the 19th century, at the same time as
data were being taken on thermal radiation, experiments showed that light inci-
dent on certain metallic surfaces causes electrons to be emitted from the
surfaces. As mentioned in Section 25.1, this phenomenon, first discovered by
Hertz, is known as the photoelectric effect. The emitted electrons are called
photoelectrons.2

Active Figure 28.7 is a schematic diagram of a photoelectric effect apparatus. An
evacuated glass or quartz tube contains a metal plate E connected to the negative
terminal of a battery. Another metal plate C is maintained at a positive potential by
the battery. When the tube is kept in the dark, the ammeter reads zero, indicating
that there is no current in the circuit. When light of the appropriate wavelength
shines on plate E, however, a current is detected by the ammeter, indicating a flow
of charges across the gap between E and C. This current arises from electrons emit-
ted from the negative plate E (the emitter) and collected at the positive plate C
(the collector).

Active Figure 28.8, a graphical representation of the results of a photoelectric
experiment, plots the photoelectric current versus the potential difference 
V be-
tween E and C for two light intensities. For large positive values of 
V, the current
reaches a maximum value. In addition, the current increases as the incident light
intensity increases, as you might expect. Finally, when 
V is negative— that is, when
the battery polarity is reversed to make E positive and C negative— the current
drops because many of the photoelectrons emitted from E are repelled by the neg-
ative collecting plate C. Only those electrons ejected from the metal with a kinetic
energy greater than will reach C, where e is the magnitude of the charge on
the electron. When the magnitude of 
V is equal to 
Vs , the stopping potential, no
electrons reach C and the current is zero.

Let us consider the combination of the electric field between the plates and an
electron ejected from plate E with the maximum kinetic energy to be an isolated
system. Suppose this electron stops just as it reaches plate C. Applying the isolated

e �
V �

28.2
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2Photoelectrons are not different from other electrons. They are given this name solely because of
their ejection from the metal by photons in the photoelectric effect.

V

A

Light

Variable power
supply

C E

Photoelectrons

A circuit diagram for studying the
photoelectric effect. When light
strikes the plate E (the emitter),
photoelectrons are ejected from the
plate. Electrons moving from plate
E to plate C (the collector) consti-
tute a current in the circuit.

By logging
into PhysicsNow at www.pop4e.com
and going to Active Figure 28.7, you
can observe the motion of electrons
for various frequencies and 
voltages.

ACTIVE FIGURE 28.7
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system model, the total energy of the system must be conserved:

where the initial configuration of the system refers to the instant that the electron
leaves the metal with the maximum possible kinetic energy Kmax and the final con-
figuration is when the electron stops just before touching plate C. If we define the
electric potential energy of the system in the initial configuration to be zero, we
have

[28.4]

This equation allows us to measure Kmax experimentally by measuring the voltage
at which the current drops to zero.

The following are several features of the photoelectric effect in which the pre-
dictions made by a classical approach are compared, using the wave model for
light, with the experimental results. Notice the strong contrast between the predic-
tions and the results.

1. Dependence of photoelectron kinetic energy on light intensity
Classical prediction: Electrons should absorb energy continuously from the

electromagnetic waves. A more intense light should transfer energy into the
metal faster, and the electrons should be ejected with more kinetic energy.

Experimental result: The maximum kinetic energy of the photoelectrons is 
independent of light intensity. This result is shown in Active Figure 28.8 by both
curves falling to zero at the same negative voltage.

2. Time interval between incidence of light and ejection of photoelectrons
Classical prediction: For very weak light, a measurable time interval should pass

between the incidence of the light and the ejection of an electron. This time
interval is required for the electron to absorb the incident radiation before it
acquires enough energy to escape from the metal.

Experimental result: Electrons are emitted from the surface almost instanta-
neously (less than 10�9 s after the surface is illuminated), even at very low light
intensities.

3. Dependence of ejection of electrons on light frequency
Classical prediction: Electrons should be ejected at any frequency of the 

incident light, as long as the intensity is high enough, because energy is being
transferred to the metal regardless of the frequency.

Experimental result: No electrons are emitted if the incident light frequency
falls below some cutoff frequency fc, which is characteristic of the material 
being illuminated. No electrons are ejected below this cutoff frequency 
regardless of how intense the light is.

4. Dependence of photoelectron kinetic energy on light frequency
Classical prediction: No relationship should exist between the frequency of the

light and the electron kinetic energy. The kinetic energy should be related to
the intensity of the light.

Experimental result: The maximum kinetic energy of the photoelectrons 
increases with increasing light frequency.

Notice that all four predictions of the classical model are incorrect. A successful
explanation of the photoelectric effect was given by Einstein in 1905, the same year
he published his special theory of relativity. As part of a general paper on electro-
magnetic radiation, for which he received the Nobel Prize in Physics in 1921,
Einstein extended Planck’s concept of quantization to electromagnetic waves. He as-
sumed that light (or any other electromagnetic wave) of frequency f can be consid-
ered to be a stream of quanta, regardless of the source of the radiation. Today we
call these quanta photons. Each photon has an energy E given by Equation 28.3,
E � hf, and moves in a vacuum at the speed of light c, where is c � 3.00 � 108 m/s.

 Kmax � e 
Vs

0 	 (� e)(� 
Vs) � Kmax 	 0

Ef � Ei : Kf 	 Uf � Ki 	 Ui
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Photoelectric current versus applied
potential difference for two light in-
tensities. The current increases with
intensity but reaches a saturation level
for large values of 
V. At voltages
equal to or more negative than �
Vs,
where 
Vs is the stopping potential,
the current is zero.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 28.8, you can
sweep through the voltage range and
observe the current curve for differ-
ent intensities of radiation.

ACTIVE FIGURE 28.8

High intensity

Low intensity

Applied voltage–
Vs

Current
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In Einstein’s model, a photon of the incident light gives all its energy hf to a single
electron in the metal. Therefore, the absorption of energy by the electrons is not a
continuous process as envisioned in the wave model, but rather a discontinuous
process in which energy is delivered to the electrons in bundles. The energy trans-
fer is accomplished via a one-photon/one-electron event.

Electrons ejected from the surface of the metal possess the maximum kinetic
energy Kmax. According to Einstein, the maximum kinetic energy for these liber-
ated electrons is

[28.5]

where � is called the work function of the metal. The work function represents the
minimum energy with which an electron is bound in the metal and is on the order
of a few electron volts. Table 28.1 lists selected values.

Equation 28.5 is a statement of the continuity equation for energy, Equation
6.20, from Chapter 6:

We imagine the system to consist of an electron that is to be ejected and the re-
mainder of the metal, and then apply the nonisolated system model for energy. En-
ergy is transferred into the system by electromagnetic radiation, the photon. The
system has two types of energy: the potential energy of the metal–electron system
and the kinetic energy of the electron. Therefore, we can write the continuity equa-
tion as


K 	 
U � TER [28.6]

The energy transfer is that of the photon, TER � hf . During the process, the kinetic
energy of the electron increases from zero to its final value, which we assume to be
the maximum possible value Kmax. The potential energy of the system increases
because the electron is pulled away from the metal to which it is attracted. We define
the potential energy of the system when the electron is outside the metal as zero.
The potential energy of the system when the electron is in the metal is U � � �,
where � is the work function. Therefore, the increase in potential energy when the
electron is removed from the metal is the work function �. Substituting these
energies into Equation 28.6, we have

Kmax 	 � � hf

which is the same as Equation 28.5. If the electron makes collisions with other 
electrons or metal ions as it is being ejected, some of the incoming energy is
transferred to the metal and the electron is ejected with less kinetic energy than
Kmax.

With the photon model of light, one can explain the observed features of the
photoelectric effect that cannot be understood using classical concepts:

1. Dependence of photoelectron kinetic energy on light intensity
That Kmax is independent of the light intensity can be understood with the

following argument. The maximum kinetic energy of any one electron, which
equals hf � �, depends only on the light frequency and the work function, not
on the light intensity. If the light intensity is doubled, the number of photons


E system � �T

Kmax � hf � �
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While standing outdoors on a dark night, you are subjected to the
following four types of electromagnetic radiation: yellow light from a sodium street lamp,
radio waves from a nearby AM radio station, radio waves from a nearby FM radio station,
and microwaves from a nearby antenna of a communications system. Rank these types of
waves in terms of increasing photon energy, lowest first.

QUICK QUIZ 28.2

� Photoelectric effect equation

Work Functions 
of Selected Metals

TABLE 28.1

Metal � (eV)

Na 2.46
Al 4.08
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14
Fe 4.50



arriving per unit time interval is doubled, which doubles the rate at which
photoelectrons are emitted. The maximum possible kinetic energy of any one
emitted electron, however, is unchanged.

2. Time interval between incidence of light and ejection of photoelectrons
That the electrons are emitted almost instantaneously is consistent with the

photon model of light, in which the incident energy appears in small packets
and the interaction between photons and electrons is one to one. Therefore,
for very weak incident light, very few photons may arrive per unit time interval,
but each one has sufficient energy to eject an electron immediately.

3. Dependence of ejection of electrons on light frequency
That the effect is not observed below a certain cutoff frequency follows 

because the photon must have energy greater than the work function � to 
eject an electron. If the energy of an incoming photon does not satisfy this 
requirement, an electron cannot be ejected from the surface, regardless of
light intensity.

4. Dependence of photoelectron kinetic energy on light frequency
That Kmax increases with increasing frequency is easily understood with

Equation 28.5.

Einstein’s theoretical result (Eq. 28.5) predicts a linear relationship between the
maximum electron kinetic energy Kmax and the light frequency f. Experimental ob-
servation of such a linear relationship would be a final confirmation of Einstein’s the-
ory. Indeed, such a linear relationship is observed as sketched in Active Figure 28.9.
The slope of the curves for all metals is Planck’s constant h. The absolute value of
the intercept on the vertical axis is the work function �, which varies from one
metal to another. The intercept on the horizontal axis is the cutoff frequency,
which is related to the work function through the relation fc � �/h. This cutoff fre-
quency corresponds to a cutoff wavelength of

[28.7]

where c is the speed of light. Light with wavelength greater than �c incident on a ma-
terial with a work function of � does not result in the emission of photoelectrons.

The combination hc occurs often when relating the energy of a photon to its
wavelength. A common shortcut to use in solving problems is to express this combi-
nation in useful units according to the numerical value

hc � 1 240 eV � nm

One of the first practical uses of the photoelectric effect was as a detector in a
light meter of a camera. Light reflected from the object to be photographed strikes
a photoelectric surface in the meter, causing it to emit photoelectrons that then
pass through a sensitive ammeter. The magnitude of the current in the ammeter
depends on the light intensity.

The phototube, another early application of the photoelectric effect, acts much
like a switch in an electric circuit. It produces a current in the circuit when light of
sufficiently high frequency falls on a metal plate in the phototube, but produces no
current in the dark. Phototubes were used in burglar alarms and in the detection of
the soundtrack on motion picture film. Modern semiconductor devices have now
replaced older devices based on the photoelectric effect.

The photoelectric effect is used today in the operation of photomultiplier tubes.
Figure 28.10 shows the structure of such a device. A photon striking the photocath-
ode ejects an electron by means of the photoelectric effect. This electron is acceler-
ated across the potential difference between the photocathode and the first dynode,
shown as being at 	 200 V relative to the photocathode in Figure 28.10. This high-
energy electron strikes the dynode and ejects several more electrons. This process is
repeated through a series of dynodes at ever higher potentials until an electrical
pulse is produced as millions of electrons strike the last dynode. Thus, the tube is

�c �
c
fc

�
c

�/h
�

hc
�
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A plot of results for Kmax of photo-
electrons versus frequency of incident
light in a typical photoelectric effect
experiment. Photons with frequency
less than the cutoff frequency for a
given metal do not have sufficient 
energy to eject an electron from the
metal.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 28.9, you can
sweep through the frequency range
and observe the curve for different
target metals.

ACTIVE FIGURE 28.9
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called a multiplier because one photon at the input has resulted in millions of elec-
trons at the output.

The photomultiplier tube is used in nuclear detectors to detect the presence of
gamma rays emitted from radioactive nuclei, which we will study in Chapter 30. It is
also used in astronomy in a technique called photoelectric photometry. In this tech-
nique, the light collected by a telescope from a single star is allowed to fall on a
photomultiplier tube for a time interval. The tube measures the total light energy
during the time interval, which can then be converted to a luminosity of the star.

The photomultiplier tube is being replaced in many astronomical observations
with a charge-coupled device (CCD), which is the same device that is used in a digital
camera. In this device, an array of pixels are formed on the silicon surface of an in-
tegrated circuit. When the surface is exposed to light from an astronomical scene
through a telescope or a terrestrial scene through a digital camera, electrons gener-
ated by the photoelectric effect are caught in “traps” beneath the surface. The
number of electrons is related to the intensity of the light striking the surface. A sig-
nal processor measures the number of electrons associated with each pixel and
converts this information into a digital code that a computer can use to reconstruct
and display the scene.

The electron bombardment CCD camera allows higher sensitivity than a conventional
CCD. In this device, electrons ejected from a photocathode by the photoelectric effect
are accelerated through a high voltage before striking a CCD array. The higher en-
ergy of the electrons results in a very sensitive detector of low-intensity radiation.

The explanation of the photoelectric effect with a quantum model, combined
with Planck’s quantum model for blackbody radiation, laid a strong foundation for
further investigation into quantum physics. In the next section, we present a third
experimental result that provides further strong evidence of the quantum nature of
light.
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The multiplication of electrons in a photomultiplier tube.FIGURE 28.10

Photocathode

0 V +400 V +800 V +1 200 V +1 600 V

+200 V +600 V +1 000 V +1 400 V Vacuum

Output
to counter

Incoming
photon

Consider one of the curves in Active Figure 28.8. Suppose the inten-
sity of the incident light is held fixed but its frequency is increased. The stopping potential
in Active Figure 28.8 (a) remains fixed, (b) moves to the right, or (c) moves to the left.

QUICK QUIZ 28.3



THE  COMPTON  EFFECT
In 1919, Einstein proposed that a photon of energy E carries a momentum equal to
E/c � hf/c. In 1923, Arthur Holly Compton carried Einstein’s idea of photon
momentum further with the Compton effect.

Prior to 1922, Compton and his coworkers had accumulated evidence that
showed that the classical wave theory of light failed to explain the scattering of
x-rays from electrons. According to classical theory, incident electromagnetic waves
of frequency f0 should have two effects: (1) the electrons should accelerate in the
direction of propagation of the x-ray by radiation pressure (see Section 24.6), and (2)
the oscillating electric field should set the electrons into oscillation at the apparent
frequency of the radiation as detected by the moving electron. The apparent
frequency detected by the electron differs from f0 due to the Doppler effect (see
Section 24.3) because the electron absorbs as a moving particle. The electron then
re-radiates as a moving particle, exhibiting another Doppler shift in the frequency
of emitted radiation.

Because different electrons move at different speeds, depending on the
amount of energy absorbed from the electromagnetic waves, the scattered wave
frequency at a given angle should show a distribution of Doppler-shifted values.
Contrary to this prediction, Compton’s experiment showed that, at a given an-
gle, only one frequency of radiation was observed that was different from that of
the incident radiation. Compton and his coworkers realized that the scattering
of x-ray photons from electrons could be explained by treating photons as
point-like particles with energy hf and momentum hf/c and by assuming that
the energy and momentum of the isolated system of the photon and the
electron are conserved in a collision. By doing so, Compton was adopting a
particle model for something that was well known as a wave, as had Einstein
in his explanation of the photoelectric effect. Figure 28.11 shows the quantum
picture of the exchange of momentum and energy between an individual
x-ray photon and an electron. In the classical model, the electron is

28.3
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Suppose classical physicists had come up with the idea of predicting
the appearance of a plot of Kmax versus f as in Active Figure 28.9. What would their ex-
pected plot look like, based on the wave model for light?

QUICK QUIZ 28.4

The Photoelectric Effect for SodiumEXAMPLE 28.3INTERACTIVE

Find the cutoff wavelength for sodium.

Solution The cutoff wavelength can be calculated from
Equation 28.7:

This wavelength is in the yellow–green region of the
visible spectrum.

Investigate the photoelectric effect for dif-
ferent materials and different wavelengths of light by logging
into PhysicsNow at www.pop4e.com and going to Interactive
Example 28.3.

504 nm�c �
hc
�

�
1  240 eV �nm

2.46 eV
�

BA sodium surface is illuminated with light of wave-
length 300 nm. The work function for sodium metal 
is 2.46 eV.

Find the maximum kinetic energy of the ejected
photoelectrons.

Solution The energy of photons in the illuminating
light beam is

Using Equation 28.5 gives

Kmax � hf � � � 4.13 eV � 2.46 eV � 1.67 eV

E � hf �
hc
�

�
1  240 eV �nm

300 nm
� 4.13 eV

A

Arthur Holly Compton
(1892 – 1962)

Compton measured and explained
the effect named for him at the
University of Chicago in 1923 and
shared the 1927 Nobel Prize in
Physics. He went on to demon-
strate that cosmic rays are
charged particles and to direct
research on producing plutonium
for nuclear weapons.

(C
ou

rte
sy

 o
f A

IP
 N

ie
ls

 B
oh

r L
ib

ra
ry

)

www.pop4e.com


pushed along the direction of propagation of the incident x-ray by radiation
pressure. In the quantum model in Figure 28.11, the electron is scattered
through an angle � with respect to this direction as if it were a billiard-ball type
collision.

Figure 28.12 is a schematic diagram of the apparatus used by Compton. In his
original experiment, Compton measured how scattered x-ray intensity depends on
wavelength at various scattering angles. The incident beam consisted of monochro-
matic x-rays of wavelength �0 � 0.071 nm. The experimental plots of intensity
versus wavelength obtained by Compton for four scattering angles are shown in
Figure 28.13. They show two peaks, one at �0 and the other at a longer wavelength
�. The peak at �0 is caused by x-rays scattered from electrons that are tightly
bound to the target atoms, and the shifted peak at � is caused by x-rays scattered
from free electrons in the target. In his analysis, Compton predicted that the
shifted peak should depend on scattering angle � as

[28.8]

In this expression, known as the Compton shift equation, me is the mass of the 
electron; h/mec is called the Compton wavelength �C for the electron and has the
value 

[28.9]�C �
h

mec
� 0.002  43 nm

� � �0 �
h

mec
 (1 � cos �)
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Recoiling electron

φ

θ
f0,   0�

f ′, λ′�

The quantum
model for x-ray scattering from an
electron. The collision of the photon
with the electron displays the particle-
like nature of the photon.

FIGURE 28.11

Rotating crystal

Ionization
chamber

Carbon
target

X-ray
source

= 90°

′�

0�

θ

′�

Schematic diagram
of Compton’s apparatus. Photons are
scattered through 90° from a carbon
target. The wavelength is measured
with a rotating crystal spectrometer
using Bragg’s law (Section 27.9).

FIGURE 28.12

� Compton shift equation

� Compton wavelength



Compton’s measurements were in excellent agreement with the predictions of
Equation 28.8. They were the first experimental results to convince most physicists
of the fundamental validity of the quantum theory!

The Compton effect should be kept in mind by x-ray technicians working in
hospitals and radiology laboratories. X-rays directed into the patient’s body are
Compton scattered by electrons in the body in all directions. Equation 28.8 shows
that the scattered wavelength is still well within the x-ray region so that these
scattered x-rays can damage human tissue. In general, technicians operate the
x-ray machine from behind an absorbing wall to avoid exposure to the scattered
x-rays. Furthermore, when dental x-rays are taken, a lead apron is placed over the
patient to reduce the absorption of scattered x-rays by other parts of the patient’s
body.

� Thinking Physics 28.2
The Compton effect involves a change in wavelength as photons are scattered
through different angles. Suppose we illuminate a piece of material with a beam of
light and then view the material from different angles relative to the beam of light.
Will we see a color change corresponding to the change in wavelength of the scat-
tered light?

Reasoning Visible light scattered by the material undergoes a change in wave-
length, but the change is far too small to detect as a color change. The largest
possible change in wavelength, at 180° scattering, is twice the Compton
wavelength, about 0.005 nm, which represents a change of less than 0.001% of
the wavelength of red light. The Compton effect is only detectable for wave-
lengths that are very short to begin with, so the Compton wavelength is an
appreciable fraction of the incident wavelength. As a result, the usual radiation
for observing the Compton effect is in the x-ray range of the electromagnetic
spectrum. �
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Scatteredx-ray inten-
sity versus wavelength for Compton 
scattering at � � 0°, 45°, 90°, and 135°.

FIGURE 28.13

Compton Scattering at 45°EXAMPLE 28.4INTERACTIVE

Hence, the wavelength of the scattered x-rays at this 
angle is

� � 
� 	 �0 �

Study Compton scattering for different
angles by logging into PhysicsNow at www.pop4e.com and 
going to Interactive Example 28.4.

0.200  710 nm

X-rays of wavelength �0 � 0.200 000 nm are scattered from
a block of material. The scattered x-rays are observed at an
angle of 45.0° to the incident beam. Calculate the wave-
length of the x-rays scattered at this angle.

Solution The shift in wavelength of the scattered x-rays 
is given by Equation 28.8:

 � 7.10 � 10�13 m � 0.000 710 nm

 �
6.626 � 10�34 J �s

(9.11 � 10�31 kg)(3.00 � 108 m/s)
 (1 � cos 45�)

 
� �
h

mec
 (1 � cos �)

PHOTONS  AND  ELECTROMAGNETIC  WAVES
The agreement between experimental measurements and theoretical predictions
based on quantum models for phenomena such as the photoelectric effect and the
Compton effect offers clear evidence that when light and matter interact, the light
behaves as if it were composed of particles with energy hf and momentum hf/c. An
obvious question at this point is, “How can light be considered a photon when it

28.4
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exhibits wave-like properties?” We describe light in terms of photons having energy
and momentum, which are parameters of the particle model. Remember, however,
that light and other electromagnetic waves exhibit interference and diffraction 
effects, which are consistent only with the wave model.

Which model is correct? Is light a wave or a particle? The answer depends on
the phenomenon being observed. Some experiments can be explained better, or
solely, with the photon model, whereas others are best described, or can only be
described, with a wave model. The end result is that we must accept both models
and admit that the true nature of light is not describable in terms of any single clas-
sical picture. Hence, light has a dual nature in that it exhibits both wave and parti-
cle characteristics. You should recognize, however, that the same beam of light that
can eject photoelectrons from a metal can also be diffracted by a grating. In other
words, the particle model and the wave model of light complement each other.

The success of the particle model of light in explaining the photoelectric effect
and the Compton effect raises many other questions. Because a photon is a particle,
what is the meaning of its “frequency” and “wavelength,” and which determines its
energy and momentum? Is light in some sense simultaneously a wave and a particle?
Although photons have no rest energy, can some simple expression describe the ef-
fective mass of a “moving” photon? If a “moving” photon has mass, do photons expe-
rience gravitational attraction? What is the spatial extent of a photon, and how does
an electron absorb or scatter one photon? Some of these questions can be answered,
but others demand a view of atomic processes that is too pictorial and literal. Further-
more, many of these questions stem from classical analogies such as colliding billiard
balls and water waves breaking on a shore. Quantum mechanics gives light a more
fluid and flexible nature by treating the particle model and wave model of light as
both necessary and complementary. Neither model can be used exclusively to de-
scribe all properties of light. A complete understanding of the observed behavior of
light can be attained only if the two models are combined in a complementary man-
ner. Before discussing this combination in more detail, we now turn our attention
from electromagnetic waves to the behavior of entities that we have called particles.

THE  WAVE  PROPERTIES  OF  PARTICLES
We feel quite comfortable in adopting a particle model for matter because we have
studied such concepts as conservation of energy and momentum for particles as
well as extended objects. It might therefore be even more difficult to accept that
matter also has a dual nature!

In 1923, in his doctoral dissertation, Louis Victor de Broglie postulated that 
because photons have wave and particle characteristics, perhaps all forms of matter
have wave as well as particle properties. This postulate was a highly revolutionary
idea with no experimental confirmation at that time. According to de Broglie, an
electron in motion exhibits both wave and particle characteristics. De Broglie 
explained the source of this assertion in his 1929 Nobel Prize acceptance speech:

On the one hand the quantum theory of light cannot be considered satisfac-
tory since it defines the energy of a light corpuscle by the equation E � hf
containing the frequency f . Now a purely corpuscular theory contains noth-
ing that enables us to define a frequency; for this reason alone, therefore, we
are compelled, in the case of light, to introduce the idea of a corpuscle and
that of periodicity simultaneously. On the other hand, determination of the
stable motion of electrons in the atom introduces integers, and up to this
point the only phenomena involving integers in physics were those of inter-
ference and of normal modes of vibration. This fact suggested to me the idea
that electrons too could not be considered simply as corpuscles, but that 
periodicity must be assigned to them also.

28.5
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Louis de Broglie (1892 – 1987)
A French physicist, de Broglie was
awarded the Nobel Prize in Physics
in 1929 for his prediction of the
wave nature of electrons.
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In Chapter 9, we found that the relationship between energy and momentum
for a photon is p � E/c. We also know from Equation 28.3 that the energy of a pho-
ton is E � hf � hc/�. Therefore, the momentum of a photon can be expressed as

From this equation, we see that the photon wavelength can be specified by its
momentum: � � h/p. De Broglie suggested that material particles of momentum p
should also have wave properties and a corresponding wavelength. Because
the magnitude of the momentum of a nonrelativistic particle of mass m and speed
v is p � mv, the de Broglie wavelength of that particle is3

[28.10]

Furthermore, in analogy with photons, de Broglie postulated that particles obey
the Einstein relation E � hf, so the frequency of a particle is

[28.11]

The dual nature of matter is apparent in these last two equations because each
contains both particle concepts (p and E ) and wave concepts (� and f ). That these
relationships are established experimentally for photons makes the de Broglie hy-
pothesis that much easier to accept.

The Davisson – Germer Experiment
De Broglie’s proposal that any kind of particle exhibits both wave and particle prop-
erties was first regarded as pure speculation. If particles such as electrons had wave-
like properties, under the correct conditions they should exhibit diffraction effects.
In 1927, three years after de Broglie published his work, C. J. Davisson and L. H.
Germer of the United States succeeded in measuring the wavelength of electrons.
Their important discovery provided the first experimental confirmation of the wave
nature of particles proposed by de Broglie.

Interestingly, the intent of the initial Davisson–Germer experiment was not to
confirm the de Broglie hypothesis. In fact, the discovery was made by accident (as is
often the case). The experiment involved the scattering of low-energy electrons
(� 54 eV) projected toward a nickel target in a vacuum. During one experiment,
the nickel surface was badly oxidized because of an accidental break in the vacuum
system. After the nickel target was heated in a flowing stream of hydrogen to remove
the oxide coating, electrons scattered by it exhibited intensity maxima and minima
at specific angles. The experimenters finally realized that the nickel had formed
large crystal regions on heating and that the regularly spaced planes of atoms in the
crystalline regions served as a diffraction grating (Section 27.8) for electrons.

Shortly thereafter, Davisson and Germer performed more extensive diffraction
measurements on electrons scattered from single-crystal targets. Their results
showed conclusively the wave nature of electrons and confirmed the de Broglie
relation p � h/�. A year later in 1928, G. P. Thomson of Scotland observed electron
diffraction patterns by passing electrons through very thin gold foils. Diffraction
patterns have since been observed for helium atoms, hydrogen atoms, and
neutrons. Hence, the wave nature of particles has been established in a variety 
of ways.

f �
E
h

� �
h
p

�
h

mv

p �
E
c

�
hf
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�
hc
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�
h
�
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3The de Broglie wavelength for a particle moving at any speed v, including relativistic speeds, is 
� � h/�mv, where � � (1 � v2/c2)�1/2.

� De Broglie wavelength of 
a particle

� Frequency of a particle

WHAT’S WAVING? If particles have
wave properties, what’s waving? You
are familiar with waves on strings,
which are very concrete. Sound
waves are more abstract, but you 
are likely comfortable with them.
Electromagnetic waves are even
more abstract, but at least they can
be described in terms of physical
variables, electric and magnetic
fields. Waves associated with parti-
cles are very abstract and cannot be
associated with a physical variable.
Later in this chapter, we will de-
scribe the wave associated with a
particle in terms of probability.

� PITFALL PREVENTION 28.3
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An electron and a proton both moving at nonrelativistic speeds have
the same de Broglie wavelength. Which of the following are also the same for the two 
particles? (a) speed (b) kinetic energy (c) momentum (d) frequency

QUICK QUIZ 28.5

We have discussed two wavelengths associated with the electron, the
Compton wavelength and the de Broglie wavelength. Which is an actual physical wave-
length associated with the electron? (a) the Compton wavelength (b) the de Broglie
wavelength (c) both wavelengths (d) neither wavelength

QUICK QUIZ 28.6

This wavelength corresponds to that of typical x-rays in
the electromagnetic spectrum. Furthermore, note that
the calculated wavelength is on the order of the spacing
of atoms in a crystalline substance such as sodium 
chloride.

The Wavelength of an ElectronEXAMPLE 28.5
Calculate the de Broglie wavelength for an electron (me �
9.11 � 10�31 kg) moving with a speed of 1.00 � 107 m/s.

Solution Equation 28.10 gives

7.27 � 10�11 m�

 �
6.626 � 10�34 J �s

(9.11 � 10�31 kg)(1.00 � 107 m/s)

 � �
h

mev

This wavelength is much smaller than any aperture
through which the rock could possibly pass. Thus, we
could not observe diffraction effects, and as a result 
the wave properties of large-scale objects cannot be 
observed.

The Wavelength of a RockEXAMPLE 28.6
A rock of mass 50.0 g is thrown with a speed of 40.0 m/s.
What is its de Broglie wavelength?

Solution From Equation 28.10, we have

3.31 � 10�34 m�

� �
h

mv
�

6.626 � 10�34 J �s
(50.0 � 10�3 kg)(40.0 m/s)

the system in the initial configuration to be zero, we
have

where the negative sign indicates that a positive charge
accelerates in the direction of decreasing potential. 
Because p � mv, we can express this equation in the form

Substituting this expression for p in the de Broglie 
relation � � h/p gives

h

√2mq 
V
� �

p2

2m
� q 
V  or  p � √2mq 
V

1
2 mv2 	 q(�
V ) � 0 	 0

An Accelerated ChargeEXAMPLE 28.7
A particle of charge q and mass m is accelerated from
rest through a potential difference 
V. Assuming that
the particle moves with a nonrelativistic speed, find its
de Broglie wavelength.

Solution We apply the isolated system model for the
particle and the electric field associated with the poten-
tial difference. The total energy of the system must be
conserved:

where the initial configuration of the system refers to
the instant the particle begins to move from rest and
the final configuration is when the particle reaches its
final speed after accelerating through the potential dif-
ference 
V. If we define the electric potential energy of

Kf 	 Uf � Ki 	 Ui



The Electron Microscope
A practical device that relies on the wave characteristics of electrons is the
electron microscope. A transmission electron microscope, used for viewing flat,
thin samples, is shown in Figure 28.14. In many respects, it is similar to an optical
microscope, but the electron microscope has a much greater resolving power be-
cause it can accelerate electrons to very high kinetic energies, giving them very
short wavelengths. No microscope can resolve details that are significantly smaller
than the wavelength of the waves used to illuminate the object. Typically, the
wavelengths of electrons are about 100 times shorter than those of the visible
light used in optical microscopes. As a result, an electron microscope with ideal
lenses would be able to distinguish details about 100 times smaller than those dis-
tinguished by an optical microscope. (Electromagnetic radiation of the same
wavelength as the electrons in an electron microscope is in the x-ray region of the
spectrum.)

The electron beam in an electron microscope is controlled by electrostatic or
magnetic deflection, which acts on the electrons to focus the beam and form an
image. Rather than examining the image through an eyepiece as in an optical
microscope, the viewer looks at an image formed on a monitor or other type of
display screen. The photograph at the beginning of this chapter shows the amazing
detail available with an electron microscope.
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(a) Diagram of a transmission electron microscope for viewing a thinly sectioned sam-
ple. The “lenses” that control the electron beam are magnetic deflection coils. (b) An
electron microscope in use.

FIGURE 28.14

The electron microscope



THE  QUANTUM  PARTICLE
The discussions presented in previous sections may be quite disturbing because we
considered the particle and wave models to be distinct in earlier chapters. The
notion that both light and material particles have both particle and wave properties
does not fit with this distinction. We have experimental evidence, however, that this
dual nature is just what we must accept. This acceptance leads to a new simplifica-
tion model, the quantum particle model. In this model, entities have both particle
and wave characteristics, and we must choose one appropriate behavior—particle
or wave— to understand a particular phenomenon.

In this section, we shall investigate this model, which might bring you more
comfort with this idea. As we shall demonstrate, we can construct from waves an en-
tity that exhibits properties of a particle.

Let us first review the characteristics of ideal particles and waves. An ideal parti-
cle has zero size. As mentioned in Section 13.2, an ideal wave has a single frequency
and is infinitely long. Therefore, an essential identifying feature of a particle that
differentiates it from a wave is that it is localized in space. Let us show that we can
build a localized entity from infinitely long waves. Imagine drawing one wave along
the x axis, with one of its crests located at x � 0, as in Figure 28.15a. Now, draw a
second wave, of the same amplitude but a different frequency, with one of its crests
also at x � 0. The result of the superposition of these two waves is a beat because the
waves are alternately in phase and out of phase. (Beats were discussed in Section
14.6.) Figure 28.15b shows the results of superposing these two waves.

Notice that we have already introduced some localization by doing so. A single
wave has the same amplitude everywhere in space; no point in space is any different
from any other point. By adding a second wave, however, something is different
between the in-phase and the out-of-phase points.

28.6
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x

(a)

0

(b)

Wave 1:

Wave 2:

Superposition:

x
0

x
0

x
0

(a) An idealized
wave of an exact single frequency is
the same throughout space and time.
(b) If two ideal waves with slightly dif-
ferent frequencies are combined,
beats result (Section 14.6). The re-
gions of space at which there is con-
structive interference are different
from those at which there is destruc-
tive interference.

FIGURE 28.15



Now imagine that more and more waves are added to our original two, each
new wave having a new frequency. Each new wave is added so that one of its crests is
at x � 0. The result at x � 0 is that all the waves add constructively. When we
consider a large number of waves, the probability of a positive value of a wave
function at any point x is equal to the probability of a negative value and destructive
interference occurs everywhere except near x � 0, where we superposed all
the crests. The result is shown in Active Figure 28.16. The small region of construc-
tive interference is called a wave packet. This wave packet is a localized region of
space that is different from all other regions, because the result of the superposi-
tion of the waves everywhere else is zero. We can identify the wave packet as a
particle because it has the localized nature of what we have come to recognize as a
particle!

The localized nature of this entity is the only characteristic of a particle that was
generated with this process. We have not addressed how the wave packet might
achieve such particle characteristics as mass, electric charge, spin, and so on. There-
fore, you may not be completely convinced that we have built a particle. As further
evidence that the wave packet can represent the particle, let us show that the wave
packet has another characteristic of a particle.

Let us return to our combination of only two waves so as to make the mathemat-
ical representation simple. Consider two waves with equal amplitudes but different
frequencies f1 and f2. We can represent the waves mathematically as

y1 � A cos(k1x � �1t) and y2 � A cos(k2x � �2t)

where, as in Chapter 13, � � 2�f and k � 2�/�. Using the superposition principle,
we add the waves:

y � y1 	 y2 � A cos(k1x � �1t) 	 A cos(k2x � �2t)

It is convenient to write this expression in a form that uses the trigonometric identity

Letting a � k1x � �1t and b � k2x � �2t, we find that

[28.12]

The second cosine factor represents a wave with a wave number and frequency
equal to the averages of the values for the individual waves.

The factor in brackets represents the envelope of the wave as shown in Active
Figure 28.17. Notice that this factor also has the mathematical form of a wave. This
envelope of the combination can travel through space with a different speed than
the individual waves. As an extreme example of this possibility, imagine combining
two identical waves moving in opposite directions. The two waves move with the

 � �2A cos � 
k
2

 x �

�

2
 t�� cos � k1 	 k2

2
 x �  

�1 	 �2

2
 t�

 y � 2A cos � (k1x � �1t)�(k2x � �2t)
2 � cos � (k1x � �1t) 	 (k2x � �2t)

2 �

cos a 	 cos b � 2 cos � a � b
2 � cos � a 	 b

2 �
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If a large number of
waves are combined, the result is a wave packet,
which represents a particle.

Choose the number of waves
to add together and observe the resulting wave packet
by logging into PhysicsNow at www.pop4e.com and
going to Active Figure 28.16.

ACTIVE FIGURE 28.16

www.pop4e.com


same speed, but the envelope has a speed of zero because we have built a standing
wave, which we studied in Section 14.3.

For an individual wave, the speed is given by Equation 13.10:

It is called the phase speed because it is the rate of advance of a crest on a single
wave, which is a point of fixed phase. This equation can be interpreted as the
following: the phase speed of a wave is the ratio of the coefficient of the time
variable t to the coefficient of the space variable x in the equation for the wave, 
y � A cos(kx � �t).

The factor in brackets in Equation 28.12 is of the form of a wave, so it moves
with a speed given by this same ratio:

The subscript g on the speed indicates that it is commonly called the group speed,
or the speed of the wave packet (the group of waves) that we have built. We
have generated this expression for a simple addition of two waves. For a superposi-
tion of a very large number of waves to form a wave packet, this ratio becomes a
derivative:

[28.13]

Let us multiply the numerator and the denominator by where � h/2� :

[28.14]

We look at the terms in the parentheses in the numerator and denominator in this
equation separately. For the numerator

For the denominator,

Therefore, Equation 28.14 can be written as

[28.15]

Because we are exploring the possibility that the envelope of the combined
waves represents the particle, consider a free particle moving with a speed u
that is small compared with that of light. The energy of the particle is its 

vg �
d(��)
d(�k)

�
dE
dp

�k �
h

2�
 � 2�

� � �
h
�

� p

�� �
h

2�
 (2�f ) � hf � E

vg �
� d�

� dk
�

d(��)
d(�k)

��,

vg �
d�

dk

vg �
coefficient of time variable t

coefficient of space variable x
�

(
�/2)
(
k/2)

�

�


k

vphase �
�

k
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∆ωt2A cosThe beat

pattern of Figure 28.15b, with an envelope
function (blue curve) superimposed.

Observe the movement
of the waves and the envelope by logging
into PhysicsNow at www.pop4e.com and
going to Active Figure 28.17.

ACTIVE FIGURE 28.17

� Phase speed for a wave

� Group speed for a wave packet

www.pop4e.com


kinetic energy:

Differentiating this equation with respect to p, where p � mu, gives

[28.16]

Therefore, the group speed of the wave packet is identical to the speed of the parti-
cle that it is modeled to represent! Thus, we have further confidence that the wave
packet is a reasonable way to build a particle.

vg �
dE
dp

�
d
dp

 � p 2

2m � �
1

2m
 (2p) � u

E � 1
2mu2 �

p2

2m
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As an analogy to wave packets, consider an “automobile packet” that
occurs near the scene of an accident on a freeway. The phase speed is analogous to the
speed of individual automobiles as they move through the backup caused by the accident.
The group speed can be identified as the speed of the leading edge of the packet of cars.
For the automobile packet, is the group speed (a) the same as the phase speed, (b) less
than the phase speed, or (c) greater than the phase speed?

QUICK QUIZ 28.7

THE  DOUBLE-SLIT  EXPERIMENT  REVISITED
One way to crystallize our ideas about the electron’s wave–particle duality is to
consider a hypothetical experiment in which electrons are fired at a double slit.
Consider a parallel beam of monoenergetic electrons that is incident on a double
slit as in Figure 28.18. We shall assume that the slit widths are small compared with
the electron wavelength, so we need not worry about diffraction maxima and min-
ima as discussed for light in Section 27.6. An electron detector is positioned far
from the slits at a distance much greater than the separation distance d of the slits.
If the detector collects electrons for a long enough time interval, one finds a typical
wave interference pattern for the counts per minute, or probability of arrival of

28.7

Number of electrons
detected per minute

A

B

Electron
detector

θ

x

y

θd

Electrons

Electron interfer-
ence. The slit separation d is much
greater than the individual slit widths
and much less than the distance 
between the slit and the detector. The
electron detector is movable along
the y direction in the drawing and so
can detect electrons diffracted at 
different values of �. The detector 
acts like the “viewing screen” of
Young’s double-slit experiment with
light discussed in Chapter 27.

FIGURE 28.18



(a) After 28 electrons

(b) After 1000 electrons

(c) After 10000 electrons

(d) Two-slit electron pattern

(a, b, c) Computer-simulated interfer-
ence patterns for a beam of electrons
incident on a double slit. (d) Photo-
graph of a double-slit interference
pattern produced by electrons. 

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 28.19, you can
watch the interference pattern de-
velop over time and see how it is de-
stroyed by the action of keeping track
of which slit an electron goes
through.

ACTIVE FIGURE 28.19

electrons. Such an interference pattern would not be expected if the electrons be-
haved as classical particles. It is clear that electrons are interfering, which is a dis-
tinct wave-like behavior.

If the experiment is carried out at lower electron beam intensities, the interfer-
ence pattern is still observed if the time interval of the measurement is sufficiently
long as illustrated by the computer-simulated patterns in Active Figure 28.19. Note
that the interference pattern becomes clearer as the number of electrons reaching
the screen increases.

If one imagines a single electron in the beam producing in-phase “wavelets” as it
reaches one of the slits, the waves in interference model (Section 27.3) can be used
to find the angular separation � between the central probability maximum and its
neighboring minimum. The minimum occurs when the path length difference be-
tween A and B is half a wavelength, or when

Because an electron’s wavelength is given by � � h/px , we see that for small �,

Thus, the dual nature of the electron is clearly shown in this experiment. The elec-
trons are detected as particles at a localized spot at some instant of time, but the
probability of arrival at that spot is determined by finding the intensity of two inter-
fering waves.

Let us now look at this experiment from another point of view. If one slit is cov-
ered during the experiment, a symmetric curve peaked around the center of the
open slit is observed; it is the central maximum of the single-slit diffraction pattern.
Plots of the counts per minute (probability of arrival of electrons) with the lower or
upper slit closed are shown as blue curves in the central part of Figure 28.20.

If another experiment is now performed with slit 2 of Figure 28.20 blocked half
of the time and then slit 1 blocked during the remaining time, the accumulated
pattern of counts per minute shown by the blue curve on the right side of the

sin � � � �
h

2pxd

d sin � �
�

2
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Results of the two-slit electron diffraction experiment with each slit closed half the
time (blue). The result with both slits open is shown in brown.

FIGURE 28.20
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figure is completely different from the case with both slits open (brown curve). A
maximum probability of arrival of an electron at � � 0 no longer exists. In fact, the
interference pattern has been lost, and the accumulated result is simply the sum of
the individual results. When only one slit is open at a time, we know that the elec-
tron has the same localizability and indivisibility at the slits as we measure at the de-
tector because the electron clearly goes through slit 1 or slit 2. Therefore, the total
must be analyzed as the sum of those electrons that come through slit 1 and those
that come through slit 2.

When both slits are open, it is tempting to assume that the electron goes through
either slit 1 or slit 2 and that the counts per minute are again given by the combina-
tion of the single-slit distributions. We know, however, that the experimental results
indicated by the brown interference pattern in Figure 28.20 contradict this assump-
tion. Hence, our assumption that the electron is localized and goes through only
one slit when both slits are open must be wrong (a painful conclusion!).

To interpret these results, we are forced to conclude that an electron interacts
with both slits simultaneously. If we attempt to determine experimentally which slit
the electron goes through, the act of measuring destroys the interference pattern.
It is impossible to determine which slit the electron goes through. In effect, we can
say only that the electron passes through both slits! The same arguments apply to
photons.

If we restrict ourselves to a pure particle model, it is an uncomfortable notion
that the electron can be present at both slits at once. From the quantum particle
model, however, the particle can be considered to be built from waves that exist
throughout space. Therefore, the wave components of the electron are present at
both slits at the same time, and this model leads to a more comfortable interpreta-
tion of this experiment.

THE  UNCERTAINTY  PRINCIPLE
Whenever one measures the position or velocity of a particle at any instant, experi-
mental uncertainties are built into the measurements. According to classical me-
chanics, there is no fundamental barrier to an ultimate refinement of the apparatus
or experimental procedures. In other words, it is possible, in principle, to make
such measurements with arbitrarily small uncertainty. Quantum theory predicts,
however, that it is fundamentally impossible to make simultaneous measurements
of a particle’s position and momentum with infinite accuracy.

In 1927, Werner Heisenberg introduced this notion, which is now known as the
Heisenberg uncertainty principle:

If a measurement of the position of a particle is made with uncertainty 
x
and a simultaneous measurement of its momentum is made with uncertainty

px , the product of the two uncertainties can never be smaller than /2:

[28.17]

That is, it is physically impossible to simultaneously measure the exact position and
exact momentum of a particle. Heisenberg was careful to point out that the in-
escapable uncertainties 
x and 
px do not arise from imperfections in practical
measuring instruments. Furthermore, they do not arise due to any perturbation of
the system that we might cause in the measuring process. Rather, the uncertainties
arise from the quantum structure of matter.

To understand the uncertainty principle, consider a particle for which we know
the wavelength exactly. According to the de Broglie relation � � h/p, we would
know the momentum to infinite accuracy, so 
px � 0.


x 
px �
�

2

�
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Werner Heisenberg (1901 – 1976)
A German theoretical physicist,
Heisenberg made many significant
contributions to physics, including
his famous uncertainty principle, for
which he received the Nobel Prize in
Physics in 1932; the development of
an abstract model of quantum me-
chanics called matrix mechanics;
the prediction of two forms of 
molecular hydrogen; and theoretical
models of the nucleus.
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� Uncertainty principle for 
momentum and position



In reality, as we have mentioned, a single-wavelength wave would exist through-
out space. Any region along this wave is the same as any other region (see Fig.
28.15a). If we were to ask, “Where is the particle that this wave represents?” no
special location in space along the wave could be identified with the particle
because all points along the wave are the same. Therefore, we have infinite
uncertainty in the position of the particle and we know nothing about where it is.
Perfect knowledge of the momentum has cost us all information about the
position.

In comparison, now consider a particle with some uncertainty in momentum so
that a range of values of momentum are possible. According to the de Broglie rela-
tion, the result is a range of wavelengths. Therefore, the particle is not represented
by a single wavelength, but a combination of wavelengths within this range. This
combination forms a wave packet as we discussed in Section 28.6 and illustrated in
Active Figure 28.16. Now, if we are asked to determine the location of the particle,
we can only say that it is somewhere in the region defined by the wave packet be-
cause a distinct difference exists between this region and the rest of space. There-
fore, by losing some information about the momentum of the particle, we have
gained information about its position.

If we were to lose all information about the momentum, we would be adding to-
gether waves of all possible wavelengths. The result would be a wave packet of zero
length. Therefore, if we know nothing about the momentum, we know exactly
where the particle is.

The mathematical form of the uncertainty principle argues that the product of
the uncertainties in position and momentum will always be larger than some mini-
mum value. This value can be calculated from the types of arguments discussed ear-
lier, which result in the value of /2 in Equation 28.17.

Another form of the uncertainty principle can be generated by reconsidering
Active Figure 28.16. Imagine that the horizontal axis is time rather than spatial posi-
tion x. We can then make the same arguments that we made about knowledge of
wavelength and position in the time domain. The corresponding variables would
be frequency and time. Because frequency is related to the energy of the particle by
E � hf, the uncertainty principle in this form is

[28.18]

This form of the uncertainty principle suggests that energy conservation can ap-
pear to be violated by an amount 
E as long as it is only for a short time interval 
t
consistent with Equation 28.18. We shall use this notion to estimate the rest ener-
gies of particles in Chapter 31.


E 
t �
�

2

�
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THE UNCERTAINTY PRINCIPLE Some
students incorrectly interpret the
uncertainty principle as meaning
that a measurement interferes with
the system. For example, if an elec-
tron is observed in a hypothetical
experiment using an optical micro-
scope, the photon used to see the
electron collides with it and makes
it move, giving it an uncertainty in
momentum. That is not the idea of
the uncertainty principle. The
uncertainty principle is indepen-
dent of the measurement process
and is grounded in the wave nature
of matter.

� PITFALL PREVENTION 28.4

� Uncertainty principle for energy
and time

have

The minimum uncertainty in position can now be 
calculated by using this value of 
p and Equation 28.17:

0.384 mm� 0.384 � 10�3 m �


x �
�

2 
p
�

1.05 � 10�34 J �s
2(1.37 � 10�31 kg�m/s)


p � 0.000  03p � 1.37 � 10�31 kg�m/s

Locating an ElectronEXAMPLE 28.8
The speed of an electron is measured to be 
5.00 � 103 m/s � 0.003%. Within what limits could
one determine the position of this electron along the
direction of its velocity vector?

Solution The momentum of the electron is

Because the uncertainty is 0.003% of this value, we

 � 4.56 � 10�27 kg�m/s

 p � mev � (9.11 � 10�31 kg)(5.00 � 103 m/s)



AN  INTERPRETATION  OF  QUANTUM  MECHANICS
We have been introduced to some new and strange ideas so far in this chapter. In
an effort to understand the concepts of quantum physics better, let us investigate
another bridge between particles and waves. We first think about electromagnetic
radiation from the particle point of view. The probability per unit volume of
finding a photon in a given region of space at an instant of time is proportional to
the number of photons per unit volume at that time:

The number of photons per unit volume is proportional to the intensity of the
radiation:

Now, we form the bridge to the wave model by recalling that the intensity of elec-
tromagnetic radiation is proportional to the square of the electric field amplitude
for the electromagnetic wave (Section 24.5):

Equating the beginning and the end of this string of proportionalities, we have

[28.19]

Therefore, for electromagnetic radiation, the probability per unit volume of find-
ing a particle associated with this radiation (the photon) is proportional to the
square of the amplitude of the wave associated with the particle. 

Recognizing the wave–particle duality of both electromagnetic radiation and
matter, we should suspect a parallel proportionality for a material particle. That is,
the probability per unit volume of finding the particle is proportional to the square
of the amplitude of a wave representing the particle. In Section 28.5 we learned
that there is a de Broglie wave associated with every particle. The amplitude of the
de Broglie wave associated with a particle is not a measurable quantity (because the
wave function representing a particle is generally a complex function, as we discuss
below). In contrast, the electric field is a measurable quantity for an electromag-
netic wave. The matter analog to Equation 28.19 relates the square of the wave’s
amplitude to the probability per unit volume of finding the particle. As a result, we
call the amplitude of the wave associated with the particle the probability ampli-
tude, or the wave function, and give it the symbol �. In general, the complete wave
function � for a system depends on the positions of all the particles in the system
and on time; therefore, it can be written , where

is the position vector of the jth particle in the system. For many systems of inter-
est, including all those in this text, the wave function � is mathematically separable
in space and time and can be written as a product of a space function � for one par-
ticle of the system and a complex time function:4

[28.20]

where � (� 2�f ) is the angular frequency of the wave function and .i � √�1

�( r:1, r:2, r:3, . . . ,  r:j , . . . , t) � �( r:j)e�i�t

r:j

�( r:1, r:2, r:3, . . . ,  r:j , . . . , t)

probability
V

 � E 2

I � E 2

N
V

 � I

probability
V

 � 
N
V
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4The standard form of a complex number is a 	 ib. The notation e i� is equivalent to the standard form
as follows:

e i� � cos � 	 i sin �

Therefore, the notation e�i�t in Equation 28.20 is equivalent to cos(��t) 	 i sin(��t) � cos �t � i sin �t.

� Space- and time-dependent
wave function �



For any system in which the potential energy is time-independent and depends
only on the positions of particles within the system, the important information
about the system is contained within the space part of the wave function. The time
part is simply the factor e�i�t. Therefore, the understanding of � is the critical as-
pect of a given problem. 

The wave function � is often complex-valued. The quantity where
�* is the complex conjugate5 of �, is always real and positive and is proportional to
the probability per unit volume of finding a particle at a given point at some
instant. The wave function contains within it all the information that can be known
about the particle.

This probability interpretation of the wave function was first suggested by Max
Born (1882–1970) in 1928. In 1926, Erwin Schrödinger (1887–1961) proposed a
wave equation that describes the manner in which the wave function changes in
space and time. The Schrödinger wave equation, which we shall examine in Section
28.12, represents a key element in the theory of quantum mechanics.

In Section 28.5, we found that the de Broglie equation relates the momentum
of a particle to its wavelength through the relation p � h/�. If an ideal free particle
has a precisely known momentum px, its wave function is a sinusoidal wave of wave-
length � � h/px and the particle has equal probability of being at any point along
the x axis. The wave function for such a free particle moving along the x axis can be
written as

�(x) � Aeikx [28.21]

where k � 2�/� is the angular wave number and A is a constant amplitude.6

Although we cannot measure �, we can measure the quantity , the absolute
square of �, which can be interpreted as follows. If � represents a single particle,

— called the probability density— is the relative probability per unit volume
that the particle will be found at any given point in the volume. This interpretation
can also be stated in the following manner. If dV is a small volume element sur-
rounding some point, the probability of finding the particle in that volume element
is dV. In this section, we deal only with one-dimensional systems, where the par-
ticle must be located along the x axis, and we therefore replace dV with dx. In this
case, the probability P(x) dx that the particle will be found in the infinitesimal
interval dx around the point x is

[28.22]

Because the particle must be somewhere along the x axis, the sum of the probabili-
ties over all values of x must be 1:

[28.23]

Any wave function satisfying Equation 28.23 is said to be normalized. Normalization
is simply a statement that the particle exists at some point at all times.

Although it is not possible to specify the position of a particle with complete cer-
tainty, it is possible through to specify the probability of observing it in a small� � �2

	�

��
 � � �2 dx � 1

P(x)dx � � � �2 dx

� � �2

� � �2

� � �2

� � �2 � � *�,
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5For a complex number z � a 	 ib, the complex conjugate is found by changing i to �i: z* � a � ib.
The product of a complex number and its complex conjugate is always real and positive: 
z*z � (a � ib)(a 	 ib) � a2 � (ib)2 � a2 � (i)2b2 � a2 	 b2.
6For the free particle, the full wave function, based on Equation 28.20, is 

�(x, t) � Aeikxe�i�t � Aei(kx ��t) � A[cos(kx � �t) 	 i sin(kx � �t)]

The real part of this wave function has the same form as the waves that we added together to form wave
packets in Section 28.6.

THE WAVE FUNCTION BELONGS TO A

SYSTEM The common language in
quantum mechanics is to associate a
wave function with a particle. The
wave function, however, is deter-
mined by the particle and its inter-
action with its environment, so it
more rightfully belongs to a system.
In many cases, the particle is the
only part of the system that experi-
ences a change, which is why the
common language has developed.
You will see examples in the future
in which it is more proper to think
of the system wave function rather
than the particle wave function.

� PITFALL PREVENTION 28.5

� Wave function for a free particle

� Normalization condition on �



region surrounding a given point. The probability of finding the particle in the
arbitrarily sized interval a � x � b is

[28.24]

The probability Pab is the area under the curve of versus x between the points
x � a and x � b as in Figure 28.21.

Experimentally, the probability is finite of finding a particle in an interval near
some point at some instant. The value of that probability must lie between the lim-
its 0 and 1. For example, if the probability is 0.3, there is a 30% chance of finding
the particle in the interval.

The wave function � satisfies a wave equation, just as the electric field associated
with an electromagnetic wave satisfies a wave equation that follows from Maxwell’s
equations. The wave equation satisfied by � is the Schrödinger equation (Section
28.12), and � can be computed from it. Although � is not a measurable quantity, all
the measurable quantities of a particle, such as its energy and momentum, can be
derived from a knowledge of �. For example, once the wave function for a particle
is known, it is possible to calculate the average position at which you would find the
particle after many measurements. This average position is called the expectation
value of x and is defined by the equation

[28.25]

where brackets 
 � are used to denote expectation values. Furthermore, one can
find the expectation value of any function f (x) associated with the particle by using
the following equation:

[28.26]

A  PARTICLE  IN  A  BOX
In this section, we shall apply some of the ideas we have developed to a sample
problem. Let us choose a simple problem: a particle confined to a one-dimensional
region of space, called the particle in a box (even though the “box” is one-dimen-
sional!). From a classical viewpoint, if a particle is confined to bouncing back and
forth along the x axis between two impenetrable walls as in the pictorial representa-
tion in Figure 28.22a, its motion is easy to describe. If the speed of the particle is v,
the magnitude of its momentum mv remains constant, as does its kinetic energy.
Classical physics places no restrictions on the values of a particle’s momentum and
energy. The quantum mechanics approach to this problem is quite different and
requires that we find the appropriate wave function consistent with the conditions
of the situation.7

Because the walls are impenetrable, the probability of finding the particle
outside the box is zero, so the wave function �(x) must be zero for x � 0 and for
x � L, where L is the distance between the two walls. A mathematical condition for
any wave function is that it must be continuous in space.8 Therefore, if � is zero
outside the walls, it must also be zero at the walls; that is, �(0) � 0 and �(L) � 0.
Only those wave functions that satisfy this condition are allowed.

28.10


 f (x)� � 	�

��
 �*f (x)� dx


x� � 	�

��
 �*x� dx

� � �2

Pab � 	b

a
� � �2 dx
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x
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ψ2ψ

The probability of
a particle being in the interval 
a � x � b is the area under the proba-
bility density curve from a to b.

FIGURE 28.21

� Expectation value for position x

(b)

∞

x
0 L

U

∞

m
v

x

(a)

L

7Before continuing, you might want to review Sections 14.3 and 14.4 on standing mechanical waves.
8If the wave function is not continuous at a point, the derivative of the wave function at that point is 
infinite. This issue leads to problems in the Schrödinger equation, for which the wave function is a 
solution and which is discussed in Section 28.12.

(a) A particle of 
mass m and velocity , confined to
bouncing between two impenetrable
walls separated by a distance L. (b) The
potential energy function for the system.

v:
FIGURE 28.22



Figure 28.22b shows a graphical representation of the particle in a box problem,
which graphs the potential energy of the particle–environment system as a function
of the position of the particle. When the particle is inside the box, the potential
energy of the system does not depend on the particle’s location and we can choose its
value to be zero. Outside the box, we have to ensure that the wave function is zero. We
can do so by defining the potential energy of the system as infinitely large if the parti-
cle were outside the box. Because kinetic energy is necessarily positive, the only way a
particle could be outside the box is if the system has an infinite amount of energy.

The wave function for a particle in the box can be expressed as a real sinusoidal
function:9

[28.27]

This wave function must satisfy the boundary conditions at the walls. The boundary
condition at x � 0 is satisfied already because the sine function is zero when x � 0.
For the boundary condition at x � L, we have

which can only be true if

[28.28]

where n � 1, 2, 3, . . . . Therefore, only certain wavelengths for the particle are al-
lowed! Each of the allowed wavelengths corresponds to a quantum state for the
system, and n is the quantum number. Expressing the wave function in terms of the
quantum number n, we have

[28.29]

Active Figures 28.23a and 28.23b are graphical representations of � versus x and
versus x for n � 1, 2, and 3 for the particle in a box. Note that although � can

be positive or negative, is always positive. Because represents a probability
density, a negative value for is meaningless.

Further inspection of Active Figure 28.23b shows that is zero at the boundaries,
satisfying our boundary condition. In addition, is zero at other points, depend-
ing on the value of n. For n � 2, � 0 at x � L/2; for n � 3, � 0 at x �
L/3 and x � 2L/3. The number of zero points increases by one each time the
quantum number increases by one.

Because the wavelengths of the particle are restricted by the condition 
� � 2L/n, the magnitude of the momentum of the particle is also restricted to
specific values that we can find from the expression for the de Broglie wavelength,
Equation 28.10:

From this expression, we find that the allowed values of the energy, which is simply
the kinetic energy of the particle, are

[28.30] � � h2

8mL2 � n2  n � 1, 2, 3, . . .

 En � 1
2mv2 �

p2

2m
�

(nh/2L)2

2m

p �
h
�

�
h

2L/n
�

nh
2L

� � �2� � �2
� � �2

� � �2
� � �2

� � �2� � �2
� � �2

�(x) � A sin � 2�x
� � � A sin � 2�x

2L/n � � A sin � n�x
L �

2�L
�

� n�   :    � �
2L
n

�(L) � 0 � A sin � 2�L
� �

�(x) � A sin � 2�x
� �
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9We show that this function is the correct one explicitly in Section 28.12.

� Allowed wave functions for a
particle in a box

REMINDER: ENERGY BELONGS TO A

SYSTEM We describe Equation 28.30
as representing the energy of the
particle; it is commonly used lan-
guage for the particle in a box prob-
lem. In reality, we are analyzing the
energy of the system of the particle
and whatever environment is estab-
lishing the impenetrable walls. In
the case of a particle in a box, the
only nonzero type of energy is ki-
netic and it belongs to the particle.
In general, energies that we calcu-
late using quantum physics are asso-
ciated with a system of interacting
particles, such as the electron and
proton in the hydrogen atom stud-
ied in Chapter 11.

� PITFALL PREVENTION 28.6

� Allowed energies for a particle 
in a box



Energy level diagram for a particle
confined to a one-dimensional box of
length L. The lowest allowed energy is
E1 � h2/8mL2.

Adjust the
length of the box and the mass of the
particle to see the effect on the energy
levels by logging into PhysicsNow at
www.pop4e.com and going to Active
Figure 28.24.

ACTIVE FIGURE 28.24

As we see from this expression, the energy of the particle is quantized, similar to
our quantization of energy in the hydrogen atom in Chapter 11. The lowest
allowed energy corresponds to n � 1, for which E1 � h2/8mL2. Because En � n2E1,
the excited states corresponding to n � 2, 3, 4, . . . have energies given by 4E1,
9E1, 16E1, . . . .

Active Figure 28.24 is an energy level diagram10 describing the energy values of
the allowed states. Note that the state n � 0, for which E would be equal to zero, is
not allowed. Thus, according to quantum mechanics, the particle can never be at
rest. The least energy it can have, corresponding to n � 1, is called the zero-point
energy. This result is clearly contradictory to the classical viewpoint, in which E � 0
is an acceptable state, as are all positive values of E.
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10We introduced the energy level diagram as a specialized semigraphical representation in Chapter 11.
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1

2

3

E4 = 16E1

E3 = 9E1

E2 = 4E1

E1
E = 0

Ground-state energy > 0

n

Redraw Active Figure 28.23b, the probability of finding a particle at a
particular location in a box, on the basis of expectations from classical physics rather than
quantum physics.

QUICK QUIZ 28.8

A particle is in a box of length L. Suddenly, the length of the box 
is increased to 2L. What happens to the energy levels shown in Active Figure 28.24? 
(a) Nothing happens; they are unaffected. (b) They move farther apart. (c) They move
closer together.

QUICK QUIZ 28.9

(a)
0 L

x x
n = 1

n = 2

n = 3

ψ2ψ

ψ1ψ

ψ3ψ

∞∞

(b)

∞

0 L

n = 1

n = 2

n = 3

ψ3ψ   2

ψ2ψ   2

ψ1ψ   2

∞

The first three allowed states for a particle confined to a one-dimensional
box. The states are shown superimposed on the potential energy function of
Figure 28.22b. (a) The wave functions � for n � 1, 2, and 3. (b) The proba-
bility densities for n � 1, 2, and 3. The wave functions and probability
densities are plotted vertically from separate axes that are offset vertically for
clarity. The positions of these axes on the potential energy function suggest
the relative energies of the states, but the positions are not shown to scale.

By logging into PhysicsNow at www.pop4e.com and going to Active Figure 28.23,
you can measure the probability of a particle being between two points for the three quantum states in
the figure.

� � �2

ACTIVE FIGURE 28.23

www.pop4e.com
www.pop4e.com
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A Bound ElectronEXAMPLE 28.9INTERACTIVE

For n � 2 and n � 3, we find that E2 � 4E1 �
and E3 � 9E1 �

Investigate the energy levels of various 
particles trapped in a box by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 28.9.

84.8 eV.
37.7 eVAn electron is confined between two impenetrable walls

0.200 nm apart. Determine the allowed energies of the par-
ticle for the quantum states described by n � 1, 2, and 3.

Solution We apply Equation 28.30, using the value 
me � 9.11 � 10�31 kg for the electron. For the state 
described by n � 1, we have

9.42 eV� 1.51 � 10�18 J �

 E1 �
h2

8meL2 �
(6.63 � 10�34 J �s)2

8(9.11 � 10�31 kg)(2.00 � 10�10 m)2

Solution The kinetic energy of the object is

Because En � n2E1 and E1 � 5.49 � 10�58 J, we find
that

�

This value of n is so large that we would never be able
to distinguish the quantized nature of the energy levels.
That is, the difference in energy between the two states
n1 � 9.05 � 1023 and n2 � (9.05 � 1023) 	 1 is too
small to be detected experimentally. Like Example
28.2, this example illustrates the working of the corre-
spondence principle; that is, as m or L become large,
the quantum description must agree with the classical
result.

9.05 � 1023

 n � � 4.50 � 10�10 J
E1

�
1/2

� � 4.50 � 10�10 J
5.49 � 10�58 J �

1/2

 K � En � n2E1 � 4.50 � 10�10 J

� 4.50 � 10�10 J

K � 1
2mv2 � 1

2(1.00 � 10�6 kg)(3.00 � 10�2 m/s)2

Energy Quantization for a Macroscopic ObjectEXAMPLE 28.10
A 1.00-mg object is confined between two rigid walls
separated by 1.00 cm.

Calculate its minimum speed.

Solution The minimum speed corresponds to the state
for which n � 1. Using Equation 28.30 with n � 1 gives
the zero-point energy:

Because , we can find v as follows:

This speed is so small that the object appears to be at
rest, which is what one would expect for the zero-point
speed of a macroscopic object.

If the speed of the object is 3.00 � 10�2 m/s, find
the corresponding value of n.

B

3.31 � 10�26 m/sv � � 2(5.49 � 10�58 J)
1.00 � 10�6 kg �

1/2
�

1
2mv2 � 5.49 � 10�58 J

E � K � 1
2mv2

 � 5.49 � 10�58 J

 E1 �
h2

8mL2 �
(6.63 � 10�34 J �s)2

8(1.00 � 10�6 kg)(1.00 � 10�2 m)2

A

THE  QUANTUM  PARTICLE  UNDER  
BOUNDARY  CONDITIONS

The particle in a box discussed in Section 28.10 is an example of how all quantum
problems can be addressed. To begin, consider Equation 28.28 and compare it with
Equation 14.6. The allowed wavelengths for the particle in a box are identical to
the allowed wavelengths for mechanical waves on a string fixed at both ends. In
both the string wave and the particle wave, we apply boundary conditions to deter-
mine the allowed states of the system. For the string fixed at both ends, the bound-
ary condition is that the displacement of the string at the boundaries is zero. For
the particle in a box, the probability amplitude at the boundaries is zero. In both
cases, the result is quantized wavelengths. In the case of the vibrating string,

28.11
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wavelength is related to the frequency, so we have a set of harmonics, or quantized
frequencies, given by Equation 14.8. In the case of the particle in a box, we also
have quantized frequencies. We can go further in this case, however, because the
frequency is related to the energy through E � hf, and we generate a set of quan-
tized energies.

The quantization of energy for a quantum particle is therefore no more surpris-
ing than the quantization of frequencies for the vibrating guitar string. The essen-
tial feature of the analysis model of the quantum particle under boundary condi-
tions is the recognition that an interaction of a particle with its environment
represents one or more boundary conditions and, if the interaction restricts the
particle to a finite region of space, results in quantization of the energy of the sys-
tem. Because particles have wave-like characteristics, the allowed quantum states of
a system are those in which the boundary conditions on the wave function repre-
senting the system are satisfied.

The only quantization of energy we have seen before this chapter is that of the
hydrogen atom in Chapter 11. In that case, the electric force between the proton
and the electron creates a constraint that requires the electron and the proton to
stay near each other (assuming that we have not supplied enough energy to ionize
the atom). This constraint results in boundary conditions that limit the energies of
the atom to those corresponding to specific allowed wave functions.

In general, boundary conditions are related to the coordinates describing the
problem. For the particle in a box, we required a zero value of the wave function at
two values of x. In the case of the hydrogen atom, the problem is best presented in
spherical coordinates. These coordinates are an extension of the polar coordinates in-
troduced in Chapter 1 and consist of a radial coordinate r and two angular coordi-
nates. Boundary conditions on the wave function related to r are that the radial
part of the wave function must approach zero as r : � (so that the wave function
can be normalized) and remain finite as r : 0. A boundary condition on the wave
function related to an angular coordinate is that adding 2� to the angle must re-
turn the wave function to the same value because an addition of 2� results in the
same angular position. The generation of the wave function and application of the
boundary conditions for the hydrogen atom are beyond the scope of this book. We
shall, however, examine the behavior of some of the wave functions in Section 29.3.

THE  SCHRÖDINGER  EQUATION
In Section 24.3, we discussed a wave equation for electromagnetic radiation. The
waves associated with particles also satisfy a wave equation. We might guess that the
wave equation for material particles is different from that associated with photons
because material particles have a nonzero rest energy. The appropriate wave equa-
tion was developed by Schrödinger in 1926. In analyzing the behavior of a quantum
system, the approach is to determine a solution to this equation and then apply the
appropriate boundary conditions to the solution. The solution yields the allowed
wave functions and energy levels of the system under consideration. Proper manip-
ulation of the wave function then enables one to calculate all measurable features
of the system.

The Schrödinger equation as it applies to a particle of mass m confined to mov-
ing along the x axis and interacting with its environment through a potential
energy function U(x) is

[28.31]

where E is the total energy of the system (particle and environment). Because this
equation is independent of time, it is commonly referred to as the time-independent

� 
�2

2m
 
d2�

dx2 	 U� � E�
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QUANTUM STATES ARE NOT NECESSAR-
ILY STANDING WAVES Although there
are many similarities between the
quantization of states for quantum
systems and the quantization of fre-
quencies for waves on a string
(Chapter 14), quantum states are
not necessarily standing waves.
There may be no stationary “nodes”
and no sinusoidal shape associated
with a quantum wave function un-
der boundary conditions. Systems
more complicated than the particle
in a box will have more compli-
cated wave functions, and some
boundary conditions will not lead
to zeros of the wave function at
fixed points.

� PITFALL PREVENTION 28.7

Erwin Schrödinger (1887 – 1961)
An Austrian theoretical physicist,
Schrödinger is best known as the
creator of quantum mechanics. He
also produced important papers in
the fields of statistical mechanics,
color vision, and general relativity.
Schrödinger did much to hasten the
universal acceptance of quantum
theory by demonstrating the math-
ematical equivalence between his
wave mechanics and the more ab-
stract matrix mechanics developed
by Heisenberg.
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� Time-independent Schrödinger
equation



Schrödinger equation. (We shall not discuss the time-dependent Schrödinger equa-
tion, whose solution is �, Eq. 28.20, in this text.)

This equation is consistent with the energy version of the isolated system model.
The system is the particle and its environment. Problem 28.44 shows, both for a
free particle and a particle in a box, that the first term in the Schrödinger equation
reduces to the kinetic energy of the particle multiplied by the wave function. There-
fore, Equation 28.31 tells us that the total energy is the sum of the kinetic energy
and the potential energy and that the total energy is a constant: K 	 U � E �
constant.

In principle, if the potential energy U(x) for the system is known, one can
solve Equation 28.31 and obtain the wave functions and energies for the
allowed states of the system. Because U may vary with position, it may be neces-
sary to solve the equation separately for various regions. In the process, the
wave functions for the different regions must join smoothly at the boundaries
and we require that �(x) be continuous. Furthermore, so that �(x) obeys the
normalization condition, we require that �(x) approach zero as x approaches
� �. Finally, �(x) must be single-valued and d�/dx must also be continuous11 for
finite values of U(x).

The task of solving the Schrödinger equation may be very difficult, depending
on the form of the potential energy function. As it turns out, the Schrödinger equa-
tion has been extremely successful in explaining the behavior of atomic and nu-
clear systems, whereas classical physics has failed to do so. Furthermore, when
quantum mechanics is applied to macroscopic objects, the results agree with classi-
cal physics, as required by the correspondence principle.

The Particle in a Box via the Schrödinger Equation
To see how the Schrödinger equation is applied to a problem, let us return to our
particle in a one-dimensional box of width L (see Fig. 28.22) and analyze it with the
Schrödinger equation. In association with Figure 28.22b, we discussed the potential
energy diagram that describes the problem. A potential energy diagram such as this
one is a useful representation for understanding and solving problems with the
Schrödinger equation.

Because of the shape of the curve in Figure 28.22b, the particle in a box is some-
times said to be in a square well,12 where a well is an upward-facing region of the
curve in a potential energy diagram. (A downward-facing region is called a barrier,
which we shall investigate in Section 28.13.)

In the region 0 � x � L, where U � 0, we can express the Schrödinger equation
in the form

[28.32]

where

[28.33]

The solution to Equation 28.32 is a function whose second derivative is the negative
of the same function multiplied by a constant k2. We recognize both the sine and
cosine functions as satisfying this requirement. Therefore, the most general solution

k �
√2mE

�

d 2�

dx2 � � 
2mE
�2  � � � k2�
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11If d�/dx were not continuous, we would not be able to evaluate d2�/dx2 in Equation 28.31 at the
point of discontinuity.
12It is called a square well even if it has a rectangular shape in a potential energy diagram.



to the equation is a linear combination of both solutions:

�(x) � A sin kx 	 B cos kx

where A and B are constants determined by the boundary conditions.
Our first boundary condition is that �(0)� 0:

�(0) � A sin 0 	 B cos 0 � 0 	 B � 0

Therefore, our solution reduces to

�(x) � A sin kx

The second boundary condition, �(L) � 0, when applied to the reduced solution,
gives

�(L) � A sin kL � 0

which is satisfied only if kL is an integral multiple of �, that is, if kL � n�, where n
is an integer. Because , we have

For each integer choice for n, this equation determines a quantized energy En. Solv-
ing for the allowed energies En gives

[28.34]

which are identical to the allowed energies in Equation 28.30.
Substituting the values of k in the wave function, the allowed wave functions

�n(x) are given by

[28.35]

This wave function agrees with Equation 28.29.
Normalizing this relationship shows that . (See Problem 28.46.)

Therefore, the normalized wave function is

[28.36]

The notion of trapping particles in potential wells is used in the burgeoning
field of nanotechnology, which refers to the design and application of devices hav-
ing dimensions ranging from 1 to 100 nm. The fabrication of these devices often in-
volves manipulating single atoms or small groups of atoms to form structures such
as the quantum corral in Figure 28.25.

One area of nanotechnology of interest to researchers is the quantum dot. The
quantum dot, a small region that is grown in a silicon crystal, acts as a potential
well. This region can trap electrons into states with quantized energies. The wave
functions for a particle in a quantum dot look similar to those in Active Figure
28.23a if L is on the order of nanometers. The storage of binary information using
quantum dots is an active field of research. A simple binary scheme would involve
associating a one with a quantum dot containing an electron and a zero with an
empty dot. Other schemes involve cells of multiple dots such that arrangements of
electrons among the dots correspond to ones and zeros. Several research laborato-
ries are studying the properties and potential applications of quantum dots. Infor-
mation should be forthcoming from these laboratories at a steady rate in the next
few years.

�(x) � √ 2
L

 sin � n�x
L �

A � √(2/L)

�n(x) � A sin � n�x
L �

En � � h2

8mL2 � n2

kL �
√2mE

�
 L � n�

k � √2mE/�
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This photograph is
a demonstration of a quantum corral
consisting of a ring of 48 iron atoms
located on a copper surface. The 
diameter of the ring is 143 nm, and
the photograph was obtained using a
low-temperature scanning tunneling
microscope (STM) as mentioned in
Section 28.13. Corrals and other
structures are able to confine surface
electron waves. The study of such
structures will play an important role
in determining the future of small
electronic devices.

FIGURE 28.25
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TUNNELING  THROUGH  A  POTENTIAL  
ENERGY  BARRIER

Consider the potential energy function shown in Figure 28.26, in which the poten-
tial energy of the system is zero everywhere except for a region of width L where
the potential energy has a constant value of U. This type of potential energy func-
tion is called a square barrier, and U is called the barrier height. A very interesting
and peculiar phenomenon occurs when a moving particle encounters such a bar-
rier of finite height and width. Consider a particle of energy E � U that is incident
on the barrier from the left (see Fig. 28.26). Classically, the particle is reflected by
the barrier. If the particle were to exist in region II, its kinetic energy would be neg-
ative, which is not allowed classically. Therefore, region II, and in turn region III,
are both classically forbidden to the particle incident from the left. According to
quantum mechanics, however, all regions are accessible to the particle, regardless
of its energy. (Although all regions are accessible, the probability of the particle be-
ing in a region that is classically forbidden is very low.) According to the uncertainty
principle, the particle can be within the barrier as long as the time interval during
which it is in the barrier is short and consistent with Equation 28.18. If the barrier is

28.13

elsewhere. Evaluating the integral by consulting an inte-
gral table or by mathematical integration13 gives

Notice that the expectation value is right at the center
of the box, which we would expect from the symmetry
of the square of the wave function about the center
(see Active Fig. 28.23b). Because the squares of all wave
functions are symmetric about the midpoint, the expec-
tation value does not depend on n.

L
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The Expectation Values for the Particle in a BoxEXAMPLE 28.11
A particle of mass m is confined to a one-dimensional
box between x � 0 and x � L. Find the expectation
value of the position x of the particle for a state with
quantum number n.

Solution Using Equation 28.25 and the wave function
in Equation 28.36, we can set up the expectation value
for x :

where we have reduced the limits on the integral to 0 
to L because the value of the wave function is zero 

�
2
L

 	L

0
x sin2 � n�x

L � dx

�√ 2
L

  sin � n�x
L ��

2
 dx
x � � 	�

��
 � *x� dx � 	L

0
 x

13To integrate this function, first replace sin2(�x/L) with (Table B.3 in Appendix B).
That step will allow to be expressed as two integrals. The second integral can then be evaluated by
partial integration (Section B.7 in Appendix B).


x�

1
2 (1 � cos 2�x/L)

x

L

U

I

ψ

II III

ψ I

ψ II
ψ III

UWave function � for a
particle incident from the left on a barrier
of height U and width L. The wave func-
tion is sinusoidal in regions I and III but
exponentially decaying in region II. The
wave function is plotted vertically from an
axis positioned at the energy of the 
particle.

FIGURE 28.26



relatively narrow, this short time interval can allow the particle to move across the
barrier. Therefore, it is possible for us to understand the passing of the particle
through the barrier with the help of the uncertainty principle.

Let us approach this situation using a mathematical representation. The
Schrödinger equation has valid solutions in all three regions I, II, and III. The solu-
tions in regions I and III are sinusoidal as in Equation 28.21. In region II, the solu-
tion is exponential. Applying the boundary conditions that the wave functions in
the three regions must join smoothly at the boundaries, we find that a full solution
can be found such as that represented by the curve in Figure 28.26. Therefore,
Schrödinger’s equation and the boundary conditions are satisfied, which tells us
mathematically that such a process can theoretically occur according to the quan-
tum theory.

Because the probability of locating the particle is proportional to , we
conclude that the chance of finding the particle beyond the barrier in region III
is nonzero. This result is in complete disagreement with classical physics. The
movement of the particle to the far side of the barrier is called tunneling or barrier
penetration.

The probability of tunneling can be described with a transmission coefficient T
and a reflection coefficient R. The transmission coefficient represents the probabil-
ity that the particle penetrates to the other side of the barrier, and the reflection 
coefficient is the probability that the particle is reflected by the barrier. Because 
the incident particle is either reflected or transmitted, we require that T 	 R � 1.
An approximate expression for the transmission coefficient, obtained when T �� 1
(a very wide barrier or a very high barrier, that is, U �� E), is

T � e�2CL [28.37]

where

[28.38]

According to quantum physics, Equation 28.37 tells us that T can be nonzero,
which is in contrast to the classical point of view that requires that T � 0. That we
experimentally observe the phenomenon of tunneling provides further confidence
in the principles of quantum physics.

Figure 28.26 shows the wave function of a particle tunneling through a barrier
in one dimension. A similar wave function having spherical symmetry describes the
barrier penetration of a particle leaving a radioactive nucleus, which we will study
in Chapter 30. The wave function exists both inside and outside the nucleus, and its
amplitude is constant in time. In this way, the wave function correctly describes the
small but constant probability that the nucleus will decay. The moment of decay
cannot be predicted. In general, quantum mechanics implies that the future is in-
determinate. (This feature is in contrast to classical mechanics, from which the tra-
jectory of an object can be calculated to arbitrarily high precision from precise
knowledge of its initial position and velocity and of the forces exerted on it.) We
must conclude that the fundamental laws of nature are probabilistic.

A radiation detector can be used to show that a nucleus decays by radiating a
particle at a particular moment and in a particular direction. To point out the con-
trast between this experimental result and the wave function describing it,
Schrödinger imagined a box containing a cat, a radioactive sample, a radiation
counter, and a vial of poison. When a nucleus in the sample decays, the counter
triggers the administration of lethal poison to the cat. Quantum mechanics
correctly predicts the probability of finding the cat dead when the box is opened.
Before the box is opened, does the animal have a wave function describing it as a
fractionally dead cat, with some chance of being alive?

This question is currently under investigation, never with actual cats, but some-
times with interference experiments building upon the experiment described in

C �
√2m(U � E)

�

� � �2
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“HEIGHT” ON AN ENERGY DIAGRAM

The word height (as in barrier height)
refers to an energy in discussions of
barriers in potential energy dia-
grams. For example, we might say
the height of the barrier is 10 eV.
On the other hand, the barrier
width refers to our traditional usage
of such a word. It is an actual physi-
cal length measurement between
the two locations of the vertical
sides of the barrier.

� PITFALL PREVENTION 28.8



Section 28.7. Does the act of measurement change the system from a probabilistic
to a definite state? When a particle emitted by a radioactive nucleus is detected at
one particular location, does the wave function describing the particle drop instan-
taneously to zero everywhere else in the Universe? (Einstein called such a state
change a “spooky action at a distance.”) Is there a fundamental difference between
a quantum system and a macroscopic system? The answers to these questions are
basically unknown.
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Which of the following changes would increase the probability of 
transmission of a particle through a potential barrier? (You may choose more than one
answer.) (a) decreasing the width of the barrier (b) increasing the width of the barrier
(c) decreasing the height of the barrier (d) increasing the height of the barrier
(e) decreasing the kinetic energy of the incident particle (f ) increasing the kinetic 
energy of the incident particle

QUICK QUIZ 28.10

Transmission Coefficient for an ElectronEXAMPLE 28.12INTERACTIVE

That is, the electron has only about 1 chance in 1014 to
tunnel through the 1.0-nm-wide barrier.

What is the probability that the electron will 
tunnel through if the barrier width is 0.10 nm?

Solution For L � 0.10 nm, we find 2CL � 3.24, and

T � e�2CL � e�3.24 �

This result shows that the electron has a relatively high
probability, about 4%, compared with 10�12% in part
A, of penetrating the 0.10-nm barrier. Notice an impor-
tant behavior that leads to effective practical applica-
tions for tunneling: that reducing the width of the 
barrier by only one order of magnitude increases 
the probability of tunneling by about 12 orders of 
magnitude!

Investigate the tunneling of particles
through barriers by logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 28.12.

0.039

B

A 30-eV electron is incident on a square barrier of height
40 eV.

What is the probability that the electron will tunnel
through if the barrier width is 1.0 nm?

Solution Let us assume that the probability of transmission 
is low so that we can use the approximation in Equation
28.37. For the given barrier height and electron energy, 
the quantity U � E has the value

U � E � (40 eV � 30 eV) � 10 eV � 1.6 � 10�18 J

Using Equation 28.38, the quantity 2CL is

Therefore, the probability of tunneling through the 
barrier is

T � e�2CL � e�32.4 � 8.5 � 10�15

 � 32.4

 2CL � 2 
√2(9.11 � 10�31 kg)(1.6 � 10�18 J)

1.054 � 10�34 J �s
 (1.0 � 10�9 m)

A

Applications of Tunneling
As we have seen, tunneling is a quantum phenomenon, a result of the wave nature
of matter. Many applications may be understood only on the basis of tunneling.

• Alpha decay. One form of radioactive decay is the emission of alpha particles (the
nuclei of helium atoms) by unstable, heavy nuclei (Chapter 30). For an alpha par-
ticle to escape from the nucleus, it must penetrate a barrier whose height is several
times larger than the energy of the nucleus–alpha particle system. The barrier is
due to a combination of the attractive nuclear force (discussed in Chapter 30) and
the Coulomb repulsion (discussed in detail in Chapter 19) between the alpha 
particle and the rest of the nucleus. Occasionally, an alpha particle tunnels
through the barrier, which explains the basic mechanism for this type of decay
and the large variations in the mean lifetimes of various radioactive nuclei.

• Nuclear fusion. The basic reaction that powers the Sun and, indirectly, almost
everything else in the solar system is fusion, which we will study in Chapter 30. In

www.pop4e.com


one step of the process that occurs at the core of the Sun, protons must approach
each other to within such a small distance that they fuse to form a deuterium 
nucleus. According to classical physics, these protons cannot overcome and 
penetrate the barrier caused by their mutual electrical repulsion. Quantum-
mechanically, however, the protons are able to tunnel through the barrier and
fuse together.

• Scanning tunneling microscope. The scanning tunneling microscope, or STM, is
a remarkable device that uses tunneling to create images of surfaces with resolu-
tion comparable to the size of a single atom. A small probe with a very fine tip is
made to scan very close to the surface of a specimen. A tunneling current is
maintained between the probe and specimen; the current (which is related to the
probability of tunneling) is very sensitive to the barrier height (which is related to
the separation between the tip and specimen) as seen in Interactive Example
28.12. Maintaining a constant tunneling current produces a feedback signal that
is used to raise and lower the probe as the surface is scanned. Because the vertical
motion of the probe follows the contour of the specimen’s surface, an image of
the surface is obtained. The image of the quantum corral shown in Figure 28.25
is made with a scanning tunneling microscope.

THE  COSMIC  TEMPERATURE
Now that we have introduced the concepts of quantum physics for microscopic par-
ticles and systems, let us see how we can connect these concepts to processes occur-
ring on a cosmic scale. For our first such connection, consider the Universe as a sys-
tem. It is widely believed that the Universe began with a cataclysmic explosion
called the Big Bang, first mentioned in Chapter 5. Because of this explosion, all the
material in the Universe is moving apart. This expansion causes a Doppler shift in
radiation left over from the Big Bang such that the wavelength of the radiation
lengthens. In the 1940s, Ralph Alpher, George Gamow, and Robert Hermann
developed a structural model of the Universe in which they predicted that the ther-
mal radiation from the Big Bang should still be present and that it should now have
a wavelength distribution consistent with a black body with a temperature of a few
kelvins.

In 1965, Arno Penzias and Robert Wilson of Bell Telephone Laboratories were
measuring radiation from the Milky Way galaxy using a special 20-ft antenna as a ra-
dio telescope. They noticed a consistent background “noise” of radiation in the sig-
nals from the antenna. Despite their great efforts to test alternative hypotheses for
the origin of the noise in terms of interference from the Sun, an unknown source
in the Milky Way, structural problems in the antenna, and even the presence of pi-
geon droppings in the antenna, none of the hypotheses was sufficient to explain
the noise.

What Penzias and Wilson were detecting was the thermal radiation from the Big
Bang. That it was detected by their system regardless of the direction of the an-
tenna was consistent with the radiation being spread throughout the Universe, as
the Big Bang model predicts. A measurement of the intensity of this radiation sug-
gested that the temperature associated with the radiation was about 3 K, consistent
with Alpher, Gamow, and Hermann’s prediction from the 1940s. Although the mea-
sured intensity was consistent with their prediction, the measurement was taken at
only a single wavelength. Full agreement with the model of the Universe as a black
body would come only if measurements at many wavelengths demonstrated a distri-
bution in wavelengths consistent with Active Figure 28.2.

In the years following Penzias and Wilson’s discovery, other researchers made
measurements at different wavelengths. In 1989, the COBE (COsmic Background
Explorer) satellite was launched by NASA and added critical measurements at
wavelengths below 0.1 cm. The results of these measurements are shown in 

28.14
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Figure 28.27. The series of measurements taken since 1965 are consistent with ther-
mal radiation associated with a temperature of 2.7 K. The whole story of the cosmic
temperature is a remarkable example of science at work: building a model, making
a prediction, taking measurements, and testing the measurements against the 
predictions.

The first chapter of our Cosmic Connection Context describes the first example of
this connection. By studying the thermal radiation from microscopic vibrating ob-
jects, we learn something about the origin of our Universe. In Chapter 29, we shall
see more examples of this fascinating connection.
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FIGURE 28.27

SUMMARY
Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The characteristics of blackbody radiation cannot be explained
by classical concepts. Planck introduced the first model of quan-
tum physics when he argued that the atomic oscillators respon-
sible for this radiation exist only in discrete quantum states.

In the photoelectric effect, electrons are ejected from a
metallic surface when light is incident on that surface. Einstein
provided a successful explanation of this effect by extending
Planck’s quantum theory to the electromagnetic field. In this
model, light is viewed as a stream of particles called photons,
each with energy E � hf, where f is the frequency and h is
Planck’s constant. The maximum kinetic energy of the ejected
photoelectron is given by

Kmax � hf � � [28.5]

where � is the work function of the metal.
X-rays striking a target are scattered at various angles

by electrons in the target. A shift in wavelength is observed for

the scattered x-rays, and the phenomenon is known as the
Compton effect. Classical physics does not correctly explain
the experimental results of this effect. If the x-ray is treated as a
photon, conservation of energy and momentum applied to the
isolated system of the photon and the electron yields for the
Compton shift the expression

[28.8]

where me is the mass of the electron, c is the speed of light, and
� is the scattering angle.

Every object of mass m and momentum p has wave-like prop-
erties, with a de Broglie wavelength given by the relation

[28.10]

The wave–particle duality is the basis of the quantum particle
model. It can be interpreted by imagining a particle to be
made up of a combination of a large number of waves. These
waves interfere constructively in a small region of space called a
wave packet.

� �
h
p

�
h

mv

�� � �0 �
h

mec
 (1 � cos �)
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� answer available in the Student Solutions Manual and
Study Guide

1. What assumptions did Planck make in dealing with the
problem of blackbody radiation? Discuss the consequences
of these assumptions.

2. Which is more likely to cause sunburn because individ-
ual molecules in skin cells absorb more energy: (a) infrared
light, (b) visible light, or (c) ultraviolet light?

If the photoelectric effect is observed for one metal, can
you conclude that the effect will also be observed for
another metal under the same conditions? Explain.

4. How does the Compton effect differ from the photoelec-
tric effect?

Why does the existence of a cutoff frequency in the photo-
electric effect favor a particle theory for light over a wave
theory?

6. Suppose a photograph were made of a person’s face using
only a few photons. Would the result be simply a very faint
image of the face? Explain your answer.

An x-ray photon is scattered by an electron. What happens
to the frequency of the scattered photon relative to that of
the incident photon?

8. Is light a wave or a particle? Support your answer by citing
specific experimental evidence.

7.

5.

3.
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y g p pp

The uncertainty principle states that if a measurement of
position is made with uncertainty 
x and a simultaneous mea-
surement of momentum is made with uncertainty 
px , the
product of the two uncertainties can never be less than /2:

[28.17]

The uncertainty principle is a natural outgrowth of the wave
packet model.

Particles are represented by a wave function �(x, y, z). The
probability density that a particle will be found at a point is

. If the particle is confined to moving along the x axis,
the probability that it will be located in an interval dx is
given by dx. Furthermore, the wave function must be
normalized:

[28.23]

The measured position x of the particle, averaged over many
trials, is called the expectation value of x and is defined by

[28.25]

If a particle of mass m is confined to moving in a one-dimen-
sional box of width L whose walls are perfectly rigid, the al-
lowed wave functions for the particle are

[28.29]�(x) � A sin � n�x
L �


x � � 	�

��
 �*x� dx

	�

��
 � � �2 dx � 1 

� � �2

� � �2


x 
px �
�

2

�

where n is an integer quantum number starting at 1. The parti-
cle has a well-defined wavelength � whose values are such that
the width L of the box is equal to an integral number of half
wavelengths, that is, L � n�/2. The energies of a particle in a
box are quantized and are given by

[28.30]

Quantum systems generally involve a particle under some
constraints imposed by the environment, which is the basis
of the quantum particle under boundary conditions model.
In this model, the wave function for a system is found and ap-
plication of boundary conditions on the system allows a deter-
mination of the allowed energies and unknown constants in
the wave function.

The wave function must satisfy the Schrödinger equation.
The time-independent Schrödinger equation for a particle con-
fined to moving along the x axis is

[28.31]

where E is the total energy of the system and U is the potential
energy of the system.

When a particle of energy E meets a barrier of height U,
where E � U, the particle has a finite probability of penetrating
the barrier. This process, called tunneling, is the basic mecha-
nism that explains the operation of the scanning tunneling
microscope and the phenomenon of alpha decay in some
radioactive nuclei.

� 
�2

2m
 
d2�

dx2 	 U� � E�

En � � h2

8mL2 � n2  n � 1, 2, 3, . . .

QUESTIONS

9. Is an electron a wave or a particle? Support your answer by
citing some experimental results.

10. Why was the demonstration of electron diffraction by
Davisson and Germer an important experiment?

If matter has a wave nature, why is this wave-like character-
istic not observable in our daily experiences?

12. An electron and a proton are accelerated from rest
through the same potential difference. Which particle has
the longer wavelength?

13. In describing the passage of electrons through a slit and ar-
riving at a screen, physicist Richard Feynman said that
“electrons arrive in lumps, like particles, but the probabil-
ity of arrival of these lumps is determined as the intensity
of the waves would be. It is in this sense that the electron
behaves sometimes like a particle and sometimes like a
wave.” Elaborate on this point in your own words. For a
further discussion of this point, see R. Feynman, The
Character of Physical Law (Cambridge, MA: MIT Press,
1980), Chapter 6.

14. Blacker than black, brighter than white. (a) Take a large,
closed, empty cardboard box. Cut a slot a few millimeters
wide in one side. Use black pens, markers, and black mate-
rial to make some stripes next to the slot as shown in
Figure Q28.14a. Inspect them with care and choose which
is blackest (the figure does not show enough contrast to

11.



reveal which it is). Explain why it is blackest. (b) Locate an
intricately shaped compact fluorescent light fixture. Look
at it through dark glasses and describe where it appears
brightest. Explain why it is brightest there. Figure Q28.14b
shows two such light fixtures held near each other. [Sugges-
tion: Gustav Kirchhoff, professor at Heidelberg and master
of the obvious, gave the same answer to part (a) as you
likely will. His answer to part (b) would begin as follows.
When electromagnetic radiation falls on its surface, an ob-
ject reflects some fraction r of the energy and absorbs the
rest. Whether the fraction reflected is 0.8 or 0.001, the
fraction absorbed is a � 1 � r. Suppose the object and its
surroundings are at the same temperature. The energy the
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object absorbs joins its fund of internal energy, but the sec-
ond law of thermodynamics implies that the absorbed en-
ergy cannot raise the object’s temperature. It does not pro-
duce a temperature increase because the object’s energy
budget has one more term: energy radiated. . . . You still
have to make the observations and answer parts (a) and
(b), but you can incorporate some of Kirchhoff’s ideas into
your answer if you wish.]

15. For a particle in a box, the probability density at certain
points is zero as seen in Active Figure 28.23b. Does that
imply that the particle cannot move across these points?
Explain.

(a) (b)

FIGURE Q28.14
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PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 28.1 � Blackbody Radiation and Planck’s 
Theory

1. With young children and the elderly, use of a tradi-
tional fever thermometer has risks of bacterial contamina-
tion and tissue perforation. The radiation thermometer
shown in Figure 28.5 works fast and avoids most risks. The
instrument measures the power of infrared radiation from
the ear canal. This cavity is accurately described as a black
body and is close to the hypothalamus, the body’s tempera-
ture control center. Take normal body temperature as
37.0°C. If the body temperature of a feverish patient is

38.3°C, what is the percentage increase in radiated power
from his ear canal?

2. The radius of our Sun is 6.96 � 108 m, and its total power
output is 3.85 � 1026 W. (a) Assuming that the Sun’s sur-
face emits as a black body, calculate its surface tempera-
ture. (b) Using the result of part (a), find �max for the Sun.

3. Figure P28.3 shows the spectrum of light emitted by a
firefly. Determine the temperature of a black body that
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would emit radiation peaked at the same wavelength.
Based on your result, would you say that firefly radiation is
blackbody radiation?

4. Calculate the energy, in electron volts, of a photon whose
frequency is (a) 620 THz, (b) 3.10 GHz, and (c) 46.0 MHz.
(d) Determine the corresponding wavelengths for these
photons and state the classification of each on the electro-
magnetic spectrum.

An FM radio transmitter has a power output of 150 kW
and operates at a frequency of 99.7 MHz. How many pho-
tons per second does the transmitter emit?

6. The average threshold of dark-adapted (scotopic)
vision is 4.00 � 10�11 W/m2 at a central wavelength of
500 nm. If light having this intensity and wavelength enters
the eye and the pupil is open to its maximum diameter of
8.50 mm, how many photons per second enter the eye?

7. A simple pendulum has a length of 1.00 m and a mass of
1.00 kg. The amplitude of oscillations of the pendulum is
3.00 cm. Estimate the quantum number for the pendulum.

8. Review problem. This problem is about how strongly mat-
ter is coupled to radiation, the subject with which quantum
mechanics began. For a very simple model, consider a solid
iron sphere 2.00 cm in radius. Assume that its temperature
is always uniform throughout its volume. (a) Find the mass of
the sphere. (b) Assume that it is at 20°C and has emissivity
0.860. Find the power with which it is radiating electromag-
netic waves. (c) If it were alone in the Universe, at what rate
would its temperature be changing? (d) Assume that
Wien’s law describes the sphere. Find the wavelength �max
of electromagnetic radiation it emits most strongly.
Although it emits a spectrum of waves having all different
wavelengths, model its whole power output as carried by
photons of wavelength �max. Find (e) the energy of one
photon and (f) the number of photons it emits each sec-
ond. The answer to part (f) gives an indication of how fast
the object is emitting and also absorbing photons when it is
in thermal equilibrium with its surroundings at 20°C.

Section 28.2 � The Photoelectric Effect
9. Molybdenum has a work function of 4.20 eV. (a) Find the

cutoff wavelength and cutoff frequency for the photoelec-
tric effect. (b) What is the stopping potential if the inci-
dent light has a wavelength of 180 nm?

10. Electrons are ejected from a metallic surface with speeds
ranging up to 4.60 � 105 m/s when light with a wavelength
of 625 nm is used. (a) What is the work function of the sur-
face? (b) What is the cutoff frequency for this surface?

Two light sources are used in a photoelectric experiment
to determine the work function for a particular metal
surface. When green light from a mercury lamp (� �
546.1 nm) is used, a stopping potential of 0.376 V reduces
the photocurrent to zero. (a) Based on this measurement,
what is the work function for this metal? (b) What stop-
ping potential would be observed when using the yellow
light from a helium discharge tube (� � 587.5 nm)?

12. From the scattering of sunlight, J. J. Thomson calculated the
classical radius of the electron as having a value of
2.82 � 10�15 m. Sunlight with an intensity of 500 W/m2 falls
on a disk with this radius. Calculate the time interval required
to accumulate 1.00 eV of energy. Assume that light is a classi-

11.

5.

cal wave and that the light striking the disk is completely ab-
sorbed. How does your result compare with the observation
that photoelectrons are emitted promptly (within 10�9 s)?

13. Review problem. An isolated copper sphere of radius
5.00 cm, initially uncharged, is illuminated by ultraviolet
light of wavelength 200 nm. What charge will the photo-
electric effect induce on the sphere? The work function
for copper is 4.70 eV.

Section 28.3 � The Compton Effect
14. Calculate the energy and momentum of a photon of wave-

length 700 nm.

15. X-rays having an energy of 300 keV undergo Compton
scattering from a target. The scattered rays are detected at
37.0° relative to the incident rays. Find (a) the Compton
shift at this angle, (b) the energy of the scattered x-ray, and
(c) the energy of the recoiling electron.

16. A 0.110-nm photon collides with a stationary electron.
After the collision, the electron moves forward and the
photon recoils backward. Find the momentum and the
kinetic energy of the electron.

A 0.001 60-nm photon scatters from a
free electron. For what (photon) scattering angle does the
recoiling electron have kinetic energy equal to the energy
of the scattered photon?

18. After a 0.800-nm x-ray photon scatters from a free
electron, the electron recoils at 1.40 � 106 m/s. (a) What
was the Compton shift in the photon’s wavelength?
(b) Through what angle was the photon scattered?

Section 28.4 � Photons and Electromagnetic Waves
19. An electromagnetic wave is called ionizing radiation if its

photon energy is larger than about 10.0 eV so that a single
photon has enough energy to break apart an atom. With
reference to Figure 24.12, identify what regions of the elec-
tromagnetic spectrum fit this definition of ionizing radia-
tion and what do not.

Section 28.5 � The Wave Properties of Particles
20. Calculate the de Broglie wavelength for a proton moving

with a speed of 1.00 � 106 m/s.

21. (a) An electron has kinetic energy 3.00 eV. Find its wave-
length. (b) A photon has energy 3.00 eV. Find its wavelength.

22. In the Davisson–Germer experiment, 54.0-eV electrons
were diffracted from a nickel lattice. If the first maximum
in the diffraction pattern was observed at � � 50.0° (Fig.
P28.22), what was the lattice spacing a between the vertical

17.
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a
Scattered
electrons
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rows of atoms in the figure? (It is not the same as the
spacing between the horizontal rows of atoms.)

The nucleus of an atom is on the order
of 10�14 m in diameter. For an electron to be confined to
a nucleus, its de Broglie wavelength would have to be on
this order of magnitude or smaller. (a) What would be the
kinetic energy of an electron confined to this region?
(b) Make also an order-of-magnitude estimate of the elec-
tric potential energy of a system of an electron inside an
atomic nucleus. Would you expect to find an electron in a
nucleus? Explain.

24. After learning about de Broglie’s hypothesis that particles
of momentum p have wave characteristics with wavelength
� � h/p, an 80.0-kg student has grown concerned about
being diffracted when passing through a 75.0-cm-wide
doorway. Assume that significant diffraction occurs when
the width of the diffraction aperture is less than 10.0 times
the wavelength of the wave being diffracted. (a) Determine
the maximum speed at which the student can pass through
the doorway so as to be significantly diffracted. (b) With
that speed, how long will it take the student to pass
through the doorway if it is in a wall 15.0 cm thick?
Compare your result to the currently accepted age of the
Universe, which is 4 � 1017 s. (c) Should this student
worry about being diffracted?

The resolving power of a microscope depends on the wave-
length used. If one wished to “see” an atom, a resolution of
approximately 1.00 � 10�11 m would be required. (a) If
electrons are used (in an electron microscope), what mini-
mum kinetic energy is required for the electrons? (b) If
photons are used, what minimum photon energy is
needed to obtain the required resolution?

Section 28.6 � The Quantum Particle
26. Consider a freely moving quantum particle with mass m and

speed u. Its energy is E � K � . Determine the phase
speed of the quantum wave representing the particle and
show that it is different from the speed at which the parti-
cle transports mass and energy.

27. For a free relativistic quantum particle moving with speed
v, the total energy is E � hf � � � and the
momentum is p � h/� � k � �mv. For the quantum wave
representing the particle, the group speed is vg � d�/dk.
Prove that the group speed of the wave is the same as the
speed of the particle.

Section 28.7 � The Double-Slit Experiment Revisited
28. A modified oscilloscope is used to perform an electron in-

terference experiment. Electrons are incident on a pair of
narrow slits 0.060 0 �m apart. The bright bands in the in-
terference pattern are separated by 0.400 mm on a screen
20.0 cm from the slits. Determine the potential difference
through which the electrons were accelerated to give this
pattern.

Neutrons traveling at 0.400 m/s are directed through a
pair of slits having a 1.00-mm separation. An array of de-
tectors is placed 10.0 m from the slits. (a) What is the de
Broglie wavelength of the neutrons? (b) How far off axis is
the first zero-intensity point on the detector array? (c) When

29.

�
√p2c2 	 m2c4�

1
2mu2

25.

23.

a neutron reaches a detector, can we say which slit the neu-
tron passed through? Explain.

30. In a certain vacuum tube, electrons evaporate from a hot
cathode at a slow, steady rate and accelerate from rest
through a potential difference of 45.0 V. Then they travel
28.0 cm as they pass through an array of slits and fall on a
screen to produce an interference pattern. If the beam
current is below a certain value, only one electron at a time
will be in flight in the tube. What is this value? In this situa-
tion, the interference pattern still appears, showing that
each individual electron can interfere with itself.

Section 28.8 � The Uncertainty Principle
An electron (me � 9.11 � 10�31 kg) and a bullet (m �
0.020 0 kg) each have a velocity with a magnitude of
500 m/s, accurate to within 0.010 0%. Within what limits
could we determine the position of the objects along the
direction of the velocity?

32. Suppose Fuzzy, a quantum-mechanical duck, lives in a
world in which h � 2� J � s. Fuzzy has a mass of 2.00 kg
and is initially known to be within a pond 1.00 m wide.
(a) What is the minimum uncertainty in the component of
the duck’s velocity parallel to the width of the pond?
(b) Assuming that this uncertainty in speed prevails for
5.00 s, determine the uncertainty in the duck’s position
after this time interval.

33. An air rifle is used to shoot 1.00-g particles at 100 m/s
through a hole of diameter 2.00 mm. How far from the ri-
fle must an observer be to see the beam spread by 1.00 cm
because of the uncertainty principle? Compare this answer
with the diameter of the visible Universe (2 � 1026 m).

34. A �0 meson is an unstable particle produced in high-en-
ergy particle collisions. Its rest energy is about 135 MeV,
and it exists for an average lifetime of only 8.70 � 10�17 s
before decaying into two gamma rays. Using the uncer-
tainty principle, estimate the fractional uncertainty 
m/m
in its mass determination.

35. A woman on a ladder drops small pellets toward a point
target on the floor. (a) Show that, according to the uncer-
tainty principle, the average miss distance must be at least

where H is the initial height of each pellet above the floor
and m is the mass of each pellet. Assume that the spread 
in impact points is given by 
xf � 
xi 	 (
vx)t. (b) If 
H � 2.00 m and m � 0.500 g, what is 
xf ?

Section 28.9 � An Interpretation of Quantum Mechanics
36. The wave function for a particle is

for a � 0 and � � � x � 	 �. Determine the probability
that the particle is located somewhere between x � � a
and x � 	 a.

A free electron has a wave function

�(x) � Aei(5.00�1010x)

37.

�(x) � √ a
�(x2 	 a2)


xf � � 2�

m �
1/2

� 2H
g �

1/4

31.
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where x is in meters. Find (a) its de Broglie wavelength,
(b) its momentum, and (c) its kinetic energy in electron
volts.

Section 28.10 � A Particle in a Box
38. An electron that has an energy of approximately 6 eV

moves between rigid walls 1.00 nm apart. Find (a) the
quantum number n for the energy state that the electron
occupies and (b) the precise energy of the electron.

An electron is contained in a one-
dimensional box of length 0.100 nm. (a) Draw an energy
level diagram for the electron for levels up to n � 4.
(b) Find the wavelengths of all photons that can be emitted
by the electron in making downward transitions that could
eventually carry it from the n � 4 state to the n � 1 state.

40. The nuclear potential energy that binds protons and neu-
trons in a nucleus is often approximated by a square well.
Imagine a proton confined in an infinitely high square
well of length 10.0 fm, a typical nuclear diameter. Calculate
the wavelength and energy associated with the photon
emitted when the proton moves from the n � 2 state to
the ground state. In what region of the electromagnetic
spectrum does this wavelength belong?

41. A photon with wavelength � is absorbed by an electron con-
fined to a box. As a result, the electron moves from state
n � 1 to n � 4. (a) Find the length of the box. (b) What is
the wavelength of the photon emitted in the transition of
that electron from the state n � 4 to the state n � 2?

Section 28.11 � The Quantum Particle Under Boundary
Conditions

Section 28.12 � The Schrödinger Equation
42. The wave function of a particle is given by

�(x) � A cos(kx) 	 B sin(kx)

where A, B, and k are constants. Show that � is a solution
of the Schrödinger equation (Eq. 28.31), assuming the
particle is free (U � 0), and find the corresponding energy
E of the particle.

Show that the wave function � � Ae i(kx ��t) is a solution to
the Schrödinger equation (Eq. 28.31) where k � 2�/� and
U � 0.

44. Prove that the first term in the Schrödinger equation, 
�( 2/2m)(d2�/dx2), reduces to the kinetic energy of the
particle multiplied by the wave function (a) for a freely
moving particle, with the wave function given by Equation
28.21, and (b) for a particle in a box, with the wave func-
tion given by Equation 28.36.

45. A particle in an infinitely deep square well has a wave func-
tion given by

for 0 � x � L and zero otherwise. (a) Determine the ex-
pectation value of x. (b) Determine the probability of find-
ing the particle near L/2 by calculating the probability that
the particle lies in the range 0.490L � x � 0.510L. (c) De-
termine the probability of finding the particle near L/4 by

�2(x) � √ 2
L

 sin � 2�x
L �

�

43.

39.

calculating the probability that the particle lies in the
range 0.240L � x � 0.260L. (d) Argue that the result
of part (a) does not contradict the results of parts (b)
and (c).

46. The wave function for a particle confined to moving in a
one-dimensional box is 

Use the normalization condition on � to show that

(Suggestion: Because the box length is L, the wave function
is zero for x � 0 and for x � L, so the normalization condi-
tion, Equation 28.23, reduces to .)

47. The wave function of an electron is

Calculate the probability of finding the electron between
x � 0 and x � L/4.

48. A particle of mass m moves in a potential well of length 2L.
The potential energy is infinite for x � � L and for 
x � 	L. Inside the region �L � x � L, the potential en-
ergy is given by

In addition, the particle is in a stationary state that is de-
scribed by the wave function �(x) � A(1 � x2/L2) for
�L � x � 	L and by �(x) � 0 elsewhere. (a) Determine
the energy of the particle in terms of , m, and L. (Suggestion:
Use the Schrödinger equation, Eq. 28.31.) (b) Show that
A � (15/16L)1/2. (c) Determine the probability that the
particle is located between x � � L/3 and x � 	 L/3.

Section 28.13 � Tunneling Through a Potential 
Energy Barrier

An electron with kinetic energy E � 5.00 eV is incident on a
barrier with thickness L � 0.200 nm and height U � 10.0 eV
(Fig. P28.49). What is the probability that the electron 
(a) will tunnel through the barrier and (b) will be
reflected?

49.

�

U(x) �
� �2x2

mL2(L2 � x2)

�(x) � √ 2
L

 sin � 2�x
L �

	L
0  � � �2 dx � 1

A � √ 2
L

�(x) � A sin � n�x
L �

Energy
L

U

x
0

E Electron

FIGURE P28.49 Problems 28.49 and 28.50.

50. An electron having total energy E � 4.50 eV approaches a
rectangular energy barrier with U � 5.00 eV and L � 950 pm
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as shown in Figure P28.49. Classically, the electron cannot
pass through the barrier because E � U. Quantum-
mechanically, however, the probability of tunneling is not
zero. Calculate this probability, which is the transmission
coefficient.

51. An electron has a kinetic energy of 12.0 eV. The electron is
incident upon a rectangular barrier of height 20.0 eV and
thickness 1.00 nm. By what factor would the electron’s
probability of tunneling through the barrier increase if the
electron absorbs all the energy of a photon of green light
(with wavelength 546 nm) just as it reaches the barrier ?

Section 28.14 � Context Connection — The Cosmic 
Temperature

Problems 24.14 and 24.59 in Chapter 24 can be assigned with
this section.

52. Review problem. A star moving away from the Earth at
0.280c emits radiation that we measure to be most intense
at the wavelength 500 nm. Determine the surface tempera-
ture of this star.

53. The cosmic background radiation is blackbody radiation
from a source at a temperature of 2.73 K. (a) Determine
the wavelength at which this radiation has its maximum in-
tensity. (b) In what part of the electromagnetic spectrum is
the peak of the distribution?

54. Find the intensity of the cosmic background radiation, emit-
ted by the fireball of the Big Bang at a temperature of 2.73 K.

Additional Problems
55. Review problem. Design an incandescent lamp filament.

Specify the length and radius a tungsten wire can have to
radiate electromagnetic waves with power 75.0 W when its
ends are connected across a 120-V power supply. Assume
that its constant operating temperature is 2 900 K and that
its emissivity is 0.450. Assume that it takes in energy only by
electrical transmission and loses energy only by electro-
magnetic radiation. From Table 21.1, you may take the re-
sistivity of tungsten at 2 900 K as 

.

56. Figure P28.56 shows the stopping potential versus the
incident photon frequency for the photoelectric effect
for sodium. Use the graph to find (a) the work function,
(b) the ratio h/e, and (c) the cutoff wavelength. The
data are taken from R. A. Millikan, Physical Review
7:362 (1916).

� 7.13 � 10�7 ��m[1 	 (4.5 �10�3/�C)(2 607 �C)]
5.6 � 10�8 ��m �

The following table shows data obtained
in a photoelectric experiment. (a) Using these data, make
a graph similar to Active Figure 28.9 that plots as a straight
line. From the graph, determine (b) an experimental
value for Planck’s constant (in joule-seconds) and (c) the
work function (in electron volts) for the surface. (Two
significant figures for each answer are sufficient.)

58. Review problem. Photons of wavelength � are incident on
a metal. The most energetic electrons ejected from the
metal are bent into a circular arc of radius R by a magnetic
field having a magnitude B. What is the work function of
the metal?

59. Johnny Jumper’s favorite trick is to step out of his 16th-
story window and fall 50.0 m into a pool. A news reporter
takes a picture of 75.0-kg Johnny just before he makes
a splash, using an exposure time of 5.00 ms. Find
(a) Johnny’s de Broglie wavelength at this moment,
(b) the uncertainty of his kinetic energy measurement dur-
ing such a period of time, and (c) the percent error caused
by such an uncertainty.

60. A particle of mass 2.00 � 10�28 kg is confined to a one-
dimensional box of length 1.00 � 10�10 m. For n � 1,
what are (a) the particle’s wavelength, (b) its momentum,
and (c) its ground-state energy?

An electron is represented by the time-
independent wave function

(a) Sketch the wave function as a function of x. (b) Sketch
the probability density representing the likelihood that the
electron is found between x and x 	 dx . (c) Only an infi-
nite value of potential energy could produce the disconti-
nuity in the derivative of the wave function at x � 0. Aside
from this feature, argue that can be a physically rea-
sonable wave function. (d) Normalize the wave function.
(e) Determine the probability of finding the electron
somewhere in the range

62. Particles incident from the left are confronted with a step in
potential energy shown in Figure P28.62. Located at x � 0,
the step has a height U. The particles have energy E � U.
Classically, we would expect all the particles to continue on,
although with reduced speed. According to quantum me-
chanics, a fraction of the particles are reflected at the bar-
rier. (a) Prove that the reflection coefficient R for this case is 

R �
(k1 � k2)2

(k1 	 k2)2

x1 � � 
1

2�
  to  x2 �

1
2�

�(x)

�(x) � Ae��x

Ae	�x  for x � 0
for x � 0

61.
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Maximum Kinetic Energy
Wavelength of Photoelectrons

(nm) (eV)

588 0.67
505 0.98
445 1.35
399 1.63
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where k1 � 2�/�1 and k2 � 2�/�2 are the wave numbers
for the incident and transmitted particles. Proceed as fol-
lows. Show that the wave function sat-
isfies the Schrödinger equation in region 1, for x � 0.
Here represents the incident beam and rep-
resents the reflected particles. Show that satis-
fies the Schrödinger equation in region 2, for x � 0.
Impose the boundary conditions �1 � �2 and d�1/dx �
d�2/dx at x � 0 to find the relationship between B and A.
Then evaluate R � B2/A2. (b) A particle that has kinetic
energy E � 7.00 eV is incident from a region where the
potential energy is zero onto one in which U � 5.00 eV.
Find its probability of being reflected and its probability of
being transmitted.

�2 � Ce ik2x
Be�ik1xAeik1x

�1 � Ae ik1x 	 Be�ik1x

the particle is defined by

For a particle in a one-dimensional box extending from
x � 0 to x � L, show that

64. A particle of mass m is placed in a one-dimensional box of
length L. Assume that the box is so small that the particle’s
motion is relativistic, so K � p2/2m is not valid. (a) Derive
an expression for the kinetic energy levels of the particle.
(b) Assume that the particle is an electron in a box of
length L � 1.00 � 10�12 m. Find its lowest possible kinetic
energy. By what percent is the nonrelativistic equation in
error? (Suggestion: See Eq. 9.18.)

65. Imagine that a particle has a wave function

(a) Find and sketch the probability density. (b) Find the
probability that the particle will be at any point where
x � 0. (c) Show that � is normalized, and then find
the probability that the particle will be found between
x � 0 and x � a.

�(x) � √ 2
a

 e�x/a  for x � 0

0                        for x � 0


x2 � �
L2

3
�

L2

2n2�2


 f(x)� � 	�

��
 �*f(x)� dx

Incoming particle

U

U = 0

E

FIGURE P28.62

63. For a particle described by a wave function �(x), the ex-
pectation value of a physical quantity f (x) associated with

ANSWERS TO QUICK QUIZZES

28.1 (b). A very hot star has a peak in the blackbody intensity
distribution curve at wavelengths shorter than the visible.
As a result, more blue light is emitted than red light.

28.2 AM radio, FM radio, microwaves, sodium light. The
order of photon energy is the same as the order of fre-
quency. See Figure 24.12 for a pictorial representation of
electromagnetic radiation in order of frequency.

28.3 (c). When the frequency is increased, the photons each
carry more energy, so a stopping potential larger in mag-
nitude is required for the current to fall to zero.

28.4 Classical physics predicts that light of sufficient intensity
causes emission of photoelectrons, independent of fre-
quency and without a cutoff frequency. Also, the greater
the intensity, the larger the maximum kinetic energy of
the electrons, with some time delay in emission at low

intensities. Therefore, the classical expectation (which
did not match experiment) yields a graph that looks like
the one at the bottom of the left column.

28.5 (c). According to Equation 28.10, two particles with the
same de Broglie wavelength have the same momentum
p � mv. If the electron and proton have the same mo-
mentum, they cannot have the same speed (a) because
of the difference in their masses. For the same reason,
remembering that K � p2/2m, they cannot have the
same kinetic energy (b). Because the particles have dif-
ferent kinetic energies, Equation 28.11 tells us that the
particles do not have the same frequency (d).

28.6 (b). The Compton wavelength (Eq. 28.9) is a combination
of constants and has no relation to the motion of the elec-
tron. The de Broglie wavelength (Eq. 28.10) is associated
with the motion of the electron through its momentum.

28.7 (b). The group speed is zero because the leading edge
of the packet remains fixed at the location of the accident.

28.8 Classically, we expect the particle to bounce back and
forth between the two walls at constant speed. Therefore,
we are as likely to find it on the left side of the box as in
the middle, on the right side, or anywhere else inside the
box. Our graph of probability density versus x would
therefore be a horizontal line, with a total area under the
line of unity, as shown on the next page.

High intensity

Low intensity (delayed)

K max

f
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28.9 (c). According to Equation 28.30, if the length L is
increased, all quantized energies become smaller.
Therefore, the energy levels move closer together. As L
becomes macroscopic, the energy levels are so 
close together that we do not observe the quantized
behavior.

28.10 (a), (c), (f). Decreasing the barrier height and increas-
ing the particle energy both reduce the value of C in
Equation 28.38, increasing the transmission coefficient
in Equation 28.37. Decreasing the width L of the
barrier increases the transmission coefficient in
Equation 28.37.

Probability
density

∞ ∞

0 L

x



In Chapter 28, we introduced some of the basic concepts and
techniques used in quantum physics along with their applica-
tions to various simple systems. This chapter describes the

application of quantum physics to more sophisticated structural
models of atoms than we have seen previously.

We studied the hydrogen atom in Chapter 11 using Bohr’s
semiclassical approach. In this chapter, we shall analyze the
hydrogen atom with a full quantum model. Although the hydro-
gen atom is the simplest atomic system, it is an especially impor-
tant system to understand, for several reasons:

• Much of what we learn about the hydrogen atom, with its
single electron, can be extended to such single-electron ions 
as He� and Li2�.

• The hydrogen atom is an ideal system for performing precise
tests of theory against experiment and for improving our
overall understanding of atomic structure.

Atomic Physics

This fireworks display shows several
different colors. The colors are 
determined by the types of atoms in
the material burning in the explosion.
Bright white light often comes from
oxidizing magnesium or aluminum.
Red light often comes from strontium
and yellow from sodium. Blue light is
more difficult to achieve, but can be
obtained by burning a mixture of 
copper powder, copper chloride, and
hexachloroethane. The emission of
light from atoms is an important clue
that allows us to learn about the
structure of the atom.

C H A P T E R  O U T L I N E
29.1 Early Structural Models of the Atom
29.2 The Hydrogen Atom Revisited
29.3 The Wave Functions for Hydrogen
29.4 Physical Interpretation of the Quantum

Numbers
29.5 The Exclusion Principle and 

the Periodic Table
29.6 More on Atomic Spectra: Visible and X-Ray
29.7 Context Connection — Atoms in Space
SUMMARY
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• The quantum numbers used to characterize the allowed states of hydrogen can
be used to qualitatively describe the allowed states of more complex atoms. This
characterization enables us to understand the periodic table of the elements,
which is one of the greatest triumphs of quantum physics.

• The basic ideas about atomic structure must be well understood before we
attempt to deal with the complexities of molecular structures and the 
electronic structures of solids.

EARLY  STRUCTURAL  MODELS  OF  THE  ATOM
The structural model of the atom in Newton’s day described the atom as a tiny,
hard, indestructible sphere, a particle model that ignored any internal structure of
the atom. Although this model was a good basis for the kinetic theory of gases
(Chapter 16), new structural models had to be devised when later experiments
revealed the electrical nature of atoms. J. J. Thomson suggested a structural model
that describes the atom as a continuous volume of positive charge with electrons
embedded throughout it (Fig. 29.1).

In 1911, Ernest Rutherford and his students Hans Geiger and Ernst Marsden
performed a critical experiment that showed that Thomson’s model could not be
correct. In this experiment, a beam of positively charged alpha particles was pro-
jected into a thin metal foil as in Figure 29.2a. Most of the particles passed through
the foil as if it were empty space, which is consistent with the Thomson model.
Some of the results of the experiment, however, were astounding. Many alpha parti-
cles were deflected from their original direction of travel through large angles.
Some particles were even deflected backward, reversing their direction of travel.
When Geiger informed Rutherford of these results, Rutherford wrote, “It was quite
the most incredible event that has ever happened to me in my life. It was almost as
incredible as if you fired a 15-inch [artillery] shell at a piece of tissue paper and it
came back and hit you.”

Such large deflections were not expected on the basis of Thomson’s model.
According to this model, a positively charged alpha particle would never come
close enough to a sufficiently large concentration of positive charge to cause any
large-angle deflections. Rutherford explained his astounding results with a new

29.1
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Electron

Positive charge
distributed
throughout
atom

Thomson’s model
of the atom: negatively charged elec-
trons in a volume of continuous posi-
tive charge.

FIGURE 29.1
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(a) Rutherford’s technique for observing the scattering of alpha particles from a thin
foil target. The source is a naturally occurring radioactive substance, such as radium.
(b) Rutherford’s planetary model of the atom.

FIGURE 29.2



structural model: he assumed that the positive charge was concentrated in a region
that was small relative to the size of the atom. He called this concentration of posi-
tive charge the nucleus of the atom. Any electrons belonging to the atom were
assumed to be outside the nucleus. To explain why these electrons were not pulled
into the nucleus by the attractive electric force, Rutherford imagined that the
electrons move in orbits about the nucleus in the same manner as the planets orbit
the Sun, as in Figure 29.2b.

There are two basic difficulties with Rutherford’s planetary structural model. As
we saw in Chapter 11, an atom emits discrete characteristic frequencies of electro-
magnetic radiation and no others; the Rutherford model is unable to explain this
phenomenon. A second difficulty is that Rutherford’s electrons experience a cen-
tripetal acceleration. According to Maxwell’s equations in electromagnetism,
charges orbiting with frequency f experience centripetal acceleration and therefore
should radiate electromagnetic waves of frequency f. Unfortunately, this classical
model leads to disaster when applied to the atom. As the electron radiates energy
from the electron–proton system, the radius of the orbit of the electron steadily
decreases and its frequency of revolution increases. Energy is continuously trans-
ferred out of the system by electromagnetic radiation. As a result, the energy of the
system decreases, resulting in the decay of the orbit of the electron. This decrease
in total energy leads to an increase in the kinetic energy of the electron,1 an ever-
increasing frequency of emitted radiation, and a rapid collapse of the atom as the
electron plunges into the nucleus (Fig. 29.3).

The stage was set for Bohr! To circumvent the erroneous predictions of the
Rutherford model—electrons falling into the nucleus and a continuous emission
spectrum from elements—Bohr postulated that classical radiation theory does not
hold for atomic-sized systems. He overcame the problem of an atom that continu-
ously loses energy by applying Planck’s ideas of quantized energy levels to orbiting
atomic electrons. Therefore, as described in Section 11.5, Bohr postulated that
electrons in atoms are generally confined to stable, nonradiating orbits called
stationary states. Furthermore, he applied Einstein’s concept of the photon to
arrive at an expression for the frequency of radiation emitted when the atom makes
a transition from one stationary state to another.

One of the first indications that the Bohr theory needed modification arose
when improved spectroscopic techniques were used to examine the spectral lines of
hydrogen. It was found that many of the lines in the Balmer and other series were
not single lines at all. Instead, each was a group of closely spaced lines. An addi-
tional difficulty arose when it was observed that, in some situations, some single
spectral lines were split into three closely spaced lines when the atoms were placed
in a strong magnetic field. The Bohr model cannot explain this phenomenon.

Efforts to explain these difficulties with the Bohr model led to improvements in
the structural model of the atom. One of the changes introduced was the concept
that the electron has an intrinsic angular momentum called spin, which we intro-
duced in Chapter 22 in terms of the contribution of spin to the magnetic proper-
ties of materials. We shall discuss spin in more detail in this chapter.

THE  HYDROGEN  ATOM  REVISITED
A quantum treatment of the hydrogen atom requires a solution to the Schrödinger
equation (Eq. 28.31), with U being the electric potential energy of the
electron–proton system. The full mathematical solution of the Schrödinger equa-
tion as applied to the hydrogen atom gives a complete and beautiful description of

29.2
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“plop”

–e
+ Ze

1As an orbital system that interacts via an inverse square force law loses energy, the kinetic energy of the
orbiting object increases but the potential energy of the system decreases by a larger amount; thus, the
change in the total energy of the system is negative.

The classical
model of the nuclear atom. Because
the accelerating electron radiates 
energy, the orbit decays until the 
electron falls into the nucleus.

FIGURE 29.3



the atom’s properties. The mathematical procedures that make up the solution are
beyond the scope of this text, however, and so the details shall be omitted. The
solutions for some states of hydrogen will be discussed, together with the quantum
numbers used to characterize allowed stationary states. We also discuss the physical
significance of the quantum numbers.

Let us outline the steps we take in developing a quantum structural model for
the hydrogen atom. We apply the quantum particle under boundary conditions
model by solving the Schrödinger equation and then applying boundary conditions
to the solution to determine the allowed wave functions and energies of the atom.
For the particle in a one-dimensional box in Section 28.10, we found that the
imposition of boundary conditions generated a single quantum number. For the
three-dimensional system of the hydrogen atom, the application of boundary
conditions in each dimension introduces a quantum number, so the model will gen-
erate three quantum numbers. We also find the need for a fourth quantum num-
ber, representing the spin, that cannot be extracted from the Schrödinger equation.

To set up the Schrödinger equation, we must first specify the potential energy
function for the system. For the hydrogen atom, this function is

[29.1]

where ke is the Coulomb constant and r is the radial distance between the proton
(situated at r � 0) and the electron.

The formal procedure for solving the problem of the hydrogen atom is to substi-
tute U(r) into the Schrödinger equation and find appropriate solutions to the
equation. We did that for the particle in a box in Section 28.12. The current prob-
lem is more complicated, however, because it is three dimensional and because U
is not constant. In addition, U depends on the radial coordinate r rather than a
Cartesian coordinate x, y, or z . As a result, we must use spherical coordinates. We
shall not attempt to carry out these solutions because they are quite complicated.
Rather, we shall simply describe their properties and some of their implications
with regard to atomic structure.

When the boundary conditions are applied to the solutions of the Schrödinger
equation, we find that the energies of the allowed states for the hydrogen atom are

[29.2]

where a0 is the Bohr radius. This result is in precise agreement with the Bohr
model and with observed spectral lines, which is a triumph for both the Bohr
approach and the quantum approach! Note that the allowed energies in our model
depend only on the quantum number n, called the principal quantum number.

The imposition of boundary conditions also leads to two new quantum numbers
that do not appear in the Bohr model. The quantum number � is called the orbital
quantum number, and m� is called the orbital magnetic quantum number. Although
n is related to the energy of the atom, the quantum numbers � and m� are related
to the angular momentum of the atom as described in Section 29.4. From the solu-
tion to the Schrödinger equation, we find the following allowed values for these
three quantum numbers:

• n is an integer that can range from 1 to �.

For a particular value of n,

• � is an integer that can range from 0 to n � 1.

For a particular value of �,

• m� is an integer that can range from � � to �.

En � � � ke e2

2a0
� 

1
n2 � � 

13.606 eV
n2   n � 1, 2, 3, . . .

U(r) � �ke 
e2

r
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■ Allowed energies for the 
hydrogen atom

ENERGY DEPENDS ON n ONLY FOR

HYDROGEN The statement after
Equation 29.2 that the energy 
depends only on the quantum
number n is a simplification model.
The energy levels for all atoms 
depend primarily on n, but also 
depend to a lesser degree on other
quantum numbers, especially for
heavier atoms.

� PITFALL PREVENTION 29.1



Table 29.1 summarizes the rules for determining the allowed values of � and m� for
a given value of n.

For historical reasons, all states with the same principal quantum number are
said to form a shell. Shells are identified by the letters K, L, M, . . . , which desig-
nate the states for which n � 1, 2, 3, . . . . Likewise, all states with given values of n
and � are said to form a subshell. Based on early practices in spectroscopy, the
letters2 s, p, d , f , g, h, . . . are used to designate the subshells for which � � 0, 1, 2,
3, 4, 5, . . . . For example, the subshell designated by 3p has the quantum numbers
n � 3 and � � 1; the 2s subshell has the quantum numbers n � 2 and � � 0. These
notations are summarized in Table 29.2.

States with quantum numbers that violate the rules given in Table 29.1 cannot
exist because they do not satisfy the boundary conditions on the wave function of
the system. For instance, a 2d state, which would have n � 2 and � � 2, cannot
exist; the highest allowed value of � is n � 1, or 1 in this case. Therefore, for n � 2, 2s
and 2p are allowed states but 2d, 2f , . . . are not. For n � 3, the allowed subshells
are 3s , 3p, and 3d.
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2These seemingly strange letter designations come from descriptions of spectral lines in the early
history of spectroscopy: s— sharp; p—principal; d—diffuse; f—fine. After s, p, d, and f , the 
subsequent letters follow alphabetically from f.

Three Quantum Numbers for the Hydrogen AtomTABLE 29.1

Quantum Number of
Number Name Allowed Values Allowed States

n Principal quantum number 1, 2, 3, . . . Any number
� Orbital quantum number 0, 1, 2, . . . , n � 1 n
m� Orbital magnetic quantum number � �, � � � 1, . . . , 2� � 1

0, . . . , � � 1, �

Atomic Shell and Subshell 
Notations

TABLE 29.2

Shell Subshell
n Symbol � Symbol

1 K 0 s
2 L 1 p
3 M 2 d
4 N 3 f
5 O 4 g
6 P 5 h
. .
. .
. .

How many possible subshells are there for the n � 4 level of 
hydrogen? (a) 5 (b) 4 (c) 3 (d) 2 (e) 1
QUICK QUIZ 29.1

When the principal quantum number is n � 5, how many different
values of (a) � and (b) m� are possible?
QUICK QUIZ 29.2

which the quantum numbers are n � 2, � � 1, 
m� � � 1; n � 2, � � 1, m� � 0; and n � 2, � � 1, 
m� � 1, for a total of four states.

Because all these states have the same principal quan-
tum number, they also have the same energy, which can
be calculated with Equation 29.2, with n � 2:

� 3.401 eVE2 � � 
13.606 eV

22 �

The n � 2 Level of HydrogenEXAMPLE 29.1
For a hydrogen atom, determine the number of allowed
states corresponding to the principal quantum number
n � 2 and calculate the energies of these states.

Solution When n � 2, � can be 0 or 1. For � � 0, m�

can only be 0; for � � 1, m� can be � 1, 0, or 1. Hence,
we have one allowed state designated as the 2s state
associated with the quantum numbers n � 2, � � 0,
and m� � 0, and three states designated as 2p states for

THE  WAVE  FUNCTIONS  FOR  HYDROGEN
The potential energy of the hydrogen atom depends only on the radial distance r
between nucleus and electron. We therefore expect that some of the allowed states
for this atom can be represented by wave functions that depend only on r, which

29.3



indeed is the case. (Other wave functions depend on r and on the angular coordi-
nates.) The simplest wave function for the hydrogen atom describes the 1s state and
is designated �1s(r):

[29.3]

where a 0 is the Bohr radius and the wave function as given is normalized. This wave
function satisfies the boundary conditions mentioned in Section 28.11; that is, �1s
approaches zero as r : � and remains finite as r : 0. Because �1s depends only on
r, it is spherically symmetric. In fact, all s states have spherical symmetry.

Recall that the probability of finding the electron in any region is equal to an
integral of the probability density over the region, if � is normalized. The
probability density for the 1s state is

[29.4]

The probability of finding the electron in a volume element dV is . It is con-
venient to define the radial probability density function P(r) as the probability per
unit radial distance of finding the electron in a spherical shell of radius r and thick-
ness dr. The volume of such a shell equals its surface area 4�r 2 multiplied by the
shell thickness dr (Fig. 29.4), so that

[29.5]

[29.6]

Substituting Equation 29.4 into Equation 29.6 gives the radial probability density
function for the hydrogen atom in its ground state:

[29.7]

A graphical representation of the function P1s(r) versus r is presented in Figure
29.5a. The peak of the curve corresponds to the most probable value of r for this
particular state. The spherical symmetry of the distribution function is shown in
Figure 29.5b.

In Example 29.2, we show that the most probable value of r for the ground state
of hydrogen equals the Bohr radius a0. It turns out that the average value of r for
the ground state of hydrogen is , which is 50% larger than the most probable
value of r. (See Problem 29.45.) The reason that the average value is larger than the
most probable value lies in the asymmetry in the radial distribution function shown
in Figure 29.5a. According to quantum mechanics, the atom has no sharply defined

3
2a0

P1s(r) � � 4r 2

a0 

3 � e� 2r/a0

P(r) � 4�r 2� � �2
P(r)dr � � � �2 dV � � � �24�r2 dr

� � �2 dV

� �1s �2 � � 1
�a0 

3 � e� 2r/a 0

� � �2

�1s(r) �
1

√�a0 

3  e�r/a0
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■ Wave function for hydrogen in
its ground state

dr

r

A spherical shell of
radius r and thickness dr has a volume
equal to 4�r 2 dr.

FIGURE 29.4

■ Radial probability density for the
1s state of hydrogen

P 1s(r)

a0 = 0.052 9 nm r

(a)

x

y

r = a0

(b)

(a) The probability
density of finding the electron as a
function of distance from the nucleus
for the hydrogen atom in the 1s
(ground) state. Note that the proba-
bility has its maximum value when r
equals the Bohr radius a0. (See 
Example 29.2.) (b) The cross-section
in the xy plane of the spherical elec-
tronic charge distribution for the
hydrogen atom in its 1s state.

FIGURE 29.5



boundary. The probability distribution in Figure 29.5a suggests that the charge of
the electron is extended throughout a diffuse region of space, commonly referred
to as an electron cloud. This electron cloud model is quite different from the
Bohr model, which places the electron at a fixed distance from the nucleus. Figure
29.5b shows the probability density of the electron in a hydrogen atom in the 1s
state as a function of position in the xy plane. The darkest portion of the distribu-
tion appears at r � a0, corresponding to the most probable value of r for the
electron.

For an atom in a quantum state that is a solution to the Schrödinger equation,
the electron cloud structure remains the same, on the average, over time. Therefore,
the atom does not radiate when it is in one particular quantum state. This fact removes the
problem that plagued the Rutherford model, in which the atom continuously
radiates until the electron spirals into the nucleus. Because no change occurs in the
charge structure in the electron cloud, the atom does not radiate. Radiation occurs
only when a transition is made, so the structure of the electron cloud changes
in time.

The next simplest wave function for the hydrogen atom is the one corresponding
to the 2s state (n � 2, � � 0). The normalized wave function for this state is

[29.8]

Like the � 1s function, � 2s depends only on r and is spherically symmetric. The
energy corresponding to this state is E 2 � � (13.6 eV/4) � � 3.4 eV. This energy
level represents the first excited state of hydrogen.

A plot of the radial probability density function for this state in comparison to
the 1s state is shown in Active Figure 29.6. The plot for the 2s state has two peaks.
In this case, the most probable value corresponds to that value of r that
corresponds to the highest value of P2s, which is at r � 5a0. An electron in the 2s
state would be much farther from the nucleus (on the average) than an electron in
the 1s state.

� 2s(r) �
1

4√2�
 � 1

a0
�

3/2

�2 �
r

a0
� e � r/2a0
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■ Wave function for hydrogen in
the 2s state
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(1)

This expression is satisfied if

To finalize the problem, notice that although the 
quantum model differs from the Bohr model in 
that the electron has a finite probability of being at 
any distance from the nucleus, the most probable 
distance is the same as the orbital radius in the 
Bohr model! Note also that (1) is satisfied at 
r � 0 and as r : �. These are points of minimum 
probability, which is equal to zero, as seen in 
Figure 29.5a.

a01 � � r
a0

� � 0 : r �

2r  �1 � � r
a0
�� e� 2r/a 0 � 0

2re� 2r/a 0 � r 2 �� 
2
a0

� e� 2r/a 0 � 0

e� 2r/a 0 
d
dr

(r 2) � r 2 
d
dr

 (e�2r/a 0) � 0

The Ground State of HydrogenEXAMPLE 29.2
Calculate the most probable value of r for a hydrogen
atom in its ground state.

Solution We conceptualize a hydrogen atom as having 
a single electron and proton. Because the statement of
the problem asks for the “most probable value of r,” we
categorize this problem as one in which we use the
quantum approach. (In the Bohr atom, the electron
moves in an orbit with an exact value of r.) Therefore,
our conceptualization should include the electron
cloud image of the electron rather than the well-defined
orbits of the Bohr model. To analyze the problem, we
note that the most probable value of r corresponds to
the peak of the plot of P1s(r) versus r. Because the slope
of the curve at this point is zero, we can evaluate the
most probable value of r by setting dP1s/dr � 0 and 
solving for r. Using Equation 29.7, we find that

Carrying out the derivative operation and simplifying
the expression, we have

dP1s(r)
dr

�
d
dr

 �� 4r2

a0 

3 � e�2r/a0� � 0

We can put the integral in dimensionless form by
changing variables from r to z � 2r/a0. Noting that 
z � 2 when r � a 0 and that dr � (a0/2) dz, we find 
that

67.7% P � 5e� 2 � 0.677  or  
 P � 1

2 ��

2
z2e�z dz � � 

1
2(z2 � 2z � 2)e�z ��2

Probabilities for the Electron in HydrogenEXAMPLE 29.3
Calculate the probability that the electron in the ground
state of hydrogen will be found outside the Bohr radius.

Solution The probability is found by integrating the 
radial probability density P1s (r) for this state from the
Bohr radius a0 to �. Using Equation 29.7, we have

P � ��

a 0

P1s(r) dr �
4

a0 

3  ��

a 0

r 2e�2r/a 0 dr 

constant GME MS plays the role of ke e 2. Therefore,
the solutions to the Schrödinger equation for the
Earth–Sun system will be the same as those of the hydro-
gen atom with the appropriate change in the 
constants.

If we make the substitution for the constants in
Equation 29.2, we find the allowed energies of the
quantized states of the Earth–Sun system:

From Equation 11.23, we can find the Bohr radius for
the Earth–Sun system:

En � �� GMEMS

2a0
� 

1
n2   n � 1, 2, 3, . . .

The Quantized Solar SystemEXAMPLE 29.4
Consider the Schrödinger equation for the Earth and
the Sun as a system of two particles interacting via the
gravitational force. What is the quantum number of the
system with the Earth in its present orbit?

Solution The potential energy function for the
system is

where ME is the mass of the Earth and MS is the mass
of the Sun. Comparing this expression with Equation
29.1 for the hydrogen atom, U(r) � � kee 2/r, we see
that it has the same mathematical form and that the

U(r) � � G 
MEMS

r



PHYSICAL  INTERPRETATION  OF  THE  
QUANTUM  NUMBERS

As discussed in Section 29.2, the energy of a particular state in our model depends on
the principal quantum number. Now let us see what the other three quantum num-
bers contribute to the physical nature of our quantum structural model of the atom.

The Orbital Quantum Number �
If a particle moves in a circle of radius r, the magnitude of its angular momentum rel-
ative to the center of the circle is L � mvr. The direction of is perpendicular to the
plane of the circle, and the sense of is given by a right-hand rule.3 According to
classical physics, L can have any value. The Bohr model of hydrogen, however, pos-
tulates that the angular momentum is restricted to integer multiples of ; that is,

. This model must be modified because it predicts (incorrectly) that the
ground state of hydrogen (n � 1) has one unit of angular momentum. Our quan-
tum model shows that the lowest value of the orbital quantum number, which is
related to the orbital momentum, is � � 0, which corresponds to zero angular
momentum.

According to the quantum model, an atom in a state whose principal quantum
number is n can take on the following discrete values for the magnitude of the
orbital angular momentum vector:4

mvr � n�
�

L
:

L
:

29.4
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Therefore, evaluating the allowed energies of the system, 
we have

We now evaluate the energy of the Earth–Sun system 
from Equation 11.10, assuming a circular orbit:

��  2.65 � 1033 J

� �  
(6.67 �10�  11 N	m2/kg2)(5.98 �1024 kg)(1.99 �1030 kg)

2(1.50 � 1011 m)

En � �  
GMEMS

2r

� �  
1.79 � 10148 J

n2   n � 1, 2, 3, . . .

�� 
(6.67 �10� 11 N	m2/kg2)(5.98 �1024 kg)(1.99 �1030 kg)

2(2.22 �10� 104 m)n2

En � �  �GMEMS

2a0
� 

1
n2

� 2.22 � 10�  104 m

�
(1.055 � 10� 34 J 	s)2

(6.67 � 10� 11 N	m2/kg2)(5.98 � 1024 kg)2(1.99 �1030 kg)

 a0 �
�2

ME(GMEMS)
�

�2

GME
2MS

Finally, we find the quantum number associated with
this state:

� 

This result is a tremendously large quantum number.
Therefore, according to the correspondence princi-
ple, classical mechanics describes the Earth’s motion
as well as quantum mechanics does. The energies 
of quantum states for adjacent values of n are so
close together that we do not see the quantized 
nature of the energy. For example, if the Earth 
were to move into the next higher quantum state,
calculations show that it would be farther from 
the Sun by a distance on the order of 10�80 m. 
Even on a nuclear scale of 10�15 m, that value is 
undetectable.

2.60 � 1057

 n � √ � 1.79 � 10148 J
En

� √ � 1.79 � 10148 J
� 2.65 � 1033 J

 En � � 
1.79 � 10148 J

n2  

3See Sections 10.8 and 10.9 for a review of this material on angular momentum.
4Equation 29.9 on the next page is a direct result of the mathematical solution of the Schrödinger
equation and the application of angular boundary conditions. This development, however, is beyond
the scope of this text and will not be presented.



[29.9]

That L can be zero in this model points out the difficulties inherent in any attempt
to describe results based on quantum mechanics in terms of a purely particle-like
model. We cannot think in terms of electrons traveling in well-defined orbits of
circular shape or any other shape, for that matter. It is more consistent with the
probability notions of quantum physics to imagine the electron smeared out in
space in an electron cloud, with the “density” of the cloud highest where the proba-
bility is highest. In the quantum mechanical interpretation, the electron cloud for
the L � 0 state is spherically symmetric and has no fundamental axis of rotation.

� L
:

� � L � √�(� � 1) �  � � 0, 1, 2, . . . , n � 1
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■ Allowed values of L

such as the Earth orbiting the Sun, which is about
2.7 � 1040 J 	 s. The quantum number that describes
L for macroscopic systems, such as the Earth and 
the Sun, is so large that the separation between adja-
cent states cannot be measured. We do not see 
quantized angular momentum for macroscopic 
systems. Once again, the correspondence principle
is upheld.

Calculating L for a p StateEXAMPLE 29.5
Calculate the magnitude of the orbital angular momen-
tum for a p state of hydrogen.

Solution Because we know that � 1.055 � 10�34 J 	 s,
we can use Equation 29.9 to calculate L. With � � 1 for
a p state, we have

This value is extremely small relative to that of the
orbital angular momentum of a macroscopic system,

1.49 � 10�34 J 	sL � √�(� � 1)� � √2� �

�

The Magnetic Orbital Quantum Number m�
We have seen in the preceding discussion that the magnitude of the orbital angular
momentum is quantized. Because angular momentum is a vector, its direction must
also be specified. An orbiting electron can be considered an effective current loop
with a corresponding magnetic moment. Such a moment placed in a magnetic field

will interact with the field.
Suppose a weak magnetic field is applied to an atom and we define the direc-

tion of the field as the z axis. According to quantum mechanics, we find a startling
result in that the direction of the angular momentum vector relative to the z axis is
quantized! Once a z axis is specified, the angular momentum vector can only point
in certain directions with respect to this axis. That the direction of is quantized is
often referred to as space quantization because we are quantizing a direction rather
than a magnitude.

The quantization of the direction of is described by giving the allowed z com-
ponents of the vector. The magnetic orbital quantum number m� specifies the
allowed values of Lz according to the expression

[29.10]

Let us look at the possible orientations of for a given value of �. Recall that m�

can have values ranging from � � to �. If � � 0, then L � 0 and there is no vector
for which to consider a direction. If � � 1, then the possible values of m� are � 1, 0,
and 1, so Lz may be , 0, or . If � � 2, m� can be � 2, � 1, 0, 1, or 2, correspond-
ing to Lz values of , , 0, , or , and so on.

A useful specialized pictorial representation for understanding space quantiza-
tion is commonly called a vector model. A vector model for � � 2 is shown in
Figure 29.7a. Note that can never be aligned parallel or antiparallel to the z axis
because Lz must be smaller than the magnitude of the angular momentum . The
vector can be perpendicular to the z axis, which is the case if m� � 0. From aL

:
L
:

L
:

2��� �� 2�
�� �

L
:

Lz � m��

L
:

L
:

B
:

■ Allowed values of L z



three-dimensional viewpoint, can lie on the surfaces of cones that make angles 

with the z axis as shown in Figure 29.7b. From the figure, we see that 
 is also quan-
tized and that its values are specified through a relation based on a geometric
model triangle with the vector as the hypotenuse and the z component as one leg
of the triangle:

[29.11]

Note that m� is never greater than �, so m� is always smaller than and
therefore 
 can never be zero, consistent with our restriction on not being paral-
lel to the z axis.

Because of the uncertainty principle, does not point in a specific direction but
rather lies somewhere on a cone as mentioned above. If had a definite direction,
all three components Lx , Ly , and Lz would be exactly specified. For the moment,
let us assume this case to be true and let us suppose the electron moves in the xy
plane, so the uncertainty �z � 0. Because the electron moves in the xy plane, pz �
0. Thus, pz is precisely known, so �pz � 0. The product of these two uncertainties is 
�z �pz � 0, but that is in violation of the uncertainty principle, which requires that
�z . In reality, only the magnitude of and one component (which is tra-
ditionally chosen as Lz) can have definite values at the same time. In other words,
quantum mechanics allows us to specify L and Lz but not Lx and Ly . Because the
direction of is constantly changing, the average values of Lx and Ly are zero and
Lz maintains a fixed value m� .�

L
:

L
:

�pz � �/2

L
:

L
:

L
:

√�(� � 1)

cos 
 �
Lz

� L
: �

�
m�

√�(� � 1)

L
:

L
:
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(b)

Lz = 0

Lz = –2h

Lz = –h

Lz = h

Lz = 2h

z

LθLz

B

� = 2

z

Lz = 0

Lz = –2h

Lz = –h

Lz = h

Lz = 2h
|L | =    6h√

(a)

B A vector model for
� � 2. (a) The allowed projections of
the orbital angular momentum 
relative to a magnetic field that de-
fines the z direction. (b) The orbital
angular momentum vector lies on
the surface of a cone.
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FIGURE 29.7

Sketch a vector model (shown in Fig. 29.7 for � � 2) for � � 1.QUICK QUIZ 29.3

Space Quantization for HydrogenEXAMPLE 29.6INTERACTIVE

Substitution of the allowed values of m� gives

Log into PhysicsNow at www.pop4e.com
and go to Interactive Example 29.6 to practice evaluating the
angular momentum for various quantum states of the
hydrogen atom.

30.0, 54.8, 73.2, 90.0, 107, 125, 150
 �

cos 
 � � 0.866, � 0.577, � 0.289, 0

cos 
 �
m�

2√3
For the hydrogen atom in the � � 3 state, calculate 
the magnitude of and the allowed values of Lz and 
.

Solution We use Equation 29.9 with � � 3:

The allowed values of Lz are Lz � m� with 
m� � � 3, � 2, � 1, 0, 1, 2, and 3:

Finally, we use Equation 29.11 to calculate the 
allowed values of 
. Because , we haveL � 2√3�

� 3�, � 2�, � �, 0, �, 2�, 3�Lz �

�

2√3 �L � � L
:

� � √�(� � 1) � � √3(3 � 1) � �

L
:
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The Spin Magnetic Quantum Number ms
The three quantum numbers n, �, and m� discussed so far are generated by apply-
ing boundary conditions to solutions of the Schrödinger equation, and we can as-
sign a physical interpretation to each of the quantum numbers. Let us now con-
sider electron spin, which does not come from the Schrödinger equation.

Example 29.1 was presented to give you practice in manipulating quantum num-
bers, but, as we shall see in this section, there are eight electron states for n � 2
rather than the four we found. These extra states can be explained by requiring a
fourth quantum number for each state, the spin magnetic quantum number ms .

Evidence of the need for this new quantum number came about because of an
unusual feature in the spectra of certain gases such as sodium vapor. Close exami-
nation of one of the prominent lines of sodium shows that it is, in fact, two very
closely spaced lines called a doublet. The wavelengths of these lines occur in the
yellow region at 589.0 nm and 589.6 nm. In 1925, when this doublet was first no-
ticed, atomic models could not explain it. To resolve this dilemma, Samuel
Goudsmit and George Uhlenbeck, following a suggestion by the Austrian physicist
Wolfgang Pauli, proposed a new quantum number, called the spin quantum num-
ber. The origin of this fourth quantum number was shown by Arnold Sommerfeld
and Paul Dirac to lie in the relativistic properties of the electron, which requires
four quantum numbers to describe it in four-dimensional space-time.

To describe the spin quantum number, it is convenient (but incorrect!) to think
of the electron as spinning on its axis as it orbits the nucleus in a planetary model,
just as the Earth spins on its axis as it orbits the Sun. The direction in which the
spin angular momentum vector can point is quantized; it can have only two direc-
tions as shown in Figure 29.8. If the direction of spin is as shown in Figure 29.8a,
the electron is said to have “spin up.” If the direction of spin is as shown in Figure
29.8b, the electron is said to have “spin down.” In the presence of a magnetic field,
the energy of the system (the electron and the magnetic field) is slightly different
for the two spin directions, and this energy difference accounts for the sodium dou-
blet. The quantum numbers associated with electron spin are for the spin-
up state and for the spin-down state. As we shall see in Example 29.7, this
added quantum number doubles the number of allowed states specified by the
quantum numbers n, �, and m�.

In 1921, Otto Stern and Walther Gerlach performed an experiment (Fig. 29.9)
that detected the effects of the force on a magnetic moment in a nonuniform mag-
netic field. The experiment demonstrated that the angular momentum of an atom
is quantized. In their experiment, a beam of neutral silver atoms was sent through a

ms � � 1
2

ms � 1
2
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THE ELECTRON IS NOT SPINNING

Keep in mind Pitfall Prevention
22.3: that the electron is not physi-
cally spinning. Although the anal-
ogy between the spin of the Earth
and the electron spin is conceptu-
ally useful, it should not be taken
literally. The spin of the Earth is a
physical rotation. Electron spin is a
purely quantum effect that gives the
electron an angular momentum as
if it were physically spinning.

� PITFALL PREVENTION 29.2

(b)(a)
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The spin of an
electron can be either (a) up or 
(b) down relative to a specified z axis.
The spin can never be aligned with
the axis.

FIGURE 29.8

Classical
pattern

Actual
pattern

Photographic
plate

Beam of
silver atoms

Nonuniform
magnetic field

Oven

The apparatus used by Stern and Gerlach to verify space quantization. A beam of
neutral silver atoms is split into two components by a nonuniform magnetic field as
shown by the actual pattern in the box.

FIGURE 29.9



nonuniform magnetic field. In such a situation, the atoms experience a force (in
the vertical direction in Fig. 29.9) due to their magnetic moments in this field. Clas-
sically, we would expect the beam to be spread out into a continuous distribution
on the photographic plate in Figure 29.9 because all possible directions of the
atomic magnetic moments are allowed. Stern and Gerlach found, however, that the
beam split into two discrete components. The experiment was repeated using other
atoms, and in each case the beam split into two or more discrete components.

These results are clearly inconsistent with the prediction of a classical model.
According to a quantum model, however, the direction of the total angular
momentum of the atom, and hence the direction of its magnetic moment, is quan-
tized. Therefore, the deflected beam has an integral number of discrete compo-
nents, and the number of components determines the number of possible values of
�z. Because the Stern–Gerlach experiment showed discrete beams, space quantiza-
tion was at least qualitatively verified.

For the moment, let us assume that the angular momentum of the atom is due
to the orbital angular momentum.5 Because �z is proportional to m�, the number
of possible values of �z is 2� � 1. Furthermore, because � is an integer, the number
of values of �z is always odd. This prediction was not consistent with the observa-
tions of Stern and Gerlach, who observed two components, an even number, in the
deflected beam of silver atoms. Therefore, although the Stern–Gerlach experi-
ment demonstrated space quantization, the number of components was not consis-
tent with the quantum model developed at that time.

In 1927, T. E. Phipps and J. B. Taylor repeated the Stern–Gerlach experiment
using a beam of hydrogen atoms. This experiment is important because it deals
with an atom with a single electron in its ground state, for which the quantum
model makes reliable predictions. At room temperature, almost all hydrogen atoms
are in the ground state. Recall that � � 0 for hydrogen in its ground state, and so
m� � 0. Hence, from the orbital angular momentum approach, one would not
expect the beam to be deflected by the field at all because �z would be zero. The
beam in the Phipps–Taylor experiment, however, was again split into two compo-
nents. On the basis of this result, one can conclude only one thing: that there is
some contribution to the angular momentum of the atom and its magnetic
moment other than the orbital angular momentum.

As we learned earlier, Goudsmit and Uhlenbeck had proposed that the electron
has an intrinsic angular momentum, spin, apart from its orbital angular momen-
tum. In other words, the total angular momentum of the electron in a particular
electronic state contains both an orbital contribution and a spin contribution .
A quantum number s exists for spin that is analogous to � for orbital angular mo-
mentum. The value of s for an electron, however, is always s � , unlike �, which
varies for different states of the atom.

Like , the spin angular momentum vector must obey the rules of the quan-
tum model. In analogy with Equation 29.9, the magnitude of the spin angular
momentum for the electron is

[29.12]

This result is the only allowed value for the magnitude of the spin angular momen-
tum vector for an electron, so we usually do not include s in a list of quantum num-
bers describing states of the atom. Like orbital angular momentum, spin angular
momentum is quantized in space as described in Figure 29.10. It can have two ori-
entations, specified by the spin magnetic quantum number ms, where ms has two
possible values, . In analogy with Equation 29.10, the z component of spin angular� 1

2
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Wolfgang Pauli and Niels Bohr watch
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5The Stern–Gerlach experiment was performed in 1921, before spin was hypothesized, so orbital 
angular momentum was the only type of angular momentum in the quantum model at the time.

■ Spin angular momentum of an
electron



momentum is

[29.13]

The two values for Sz correspond to the two possible orientations for 
shown in Figure 29.10. The quantum number ms is listed as the fourth quantum
number describing a particular state of the atom.

The spin magnetic moment of the electron is related to its spin angular
momentum by the expression

[29.14]

Because , the z component of the spin magnetic moment can have the
values

[29.15]

The quantity is called the Bohr magneton �B and has the numerical value
9.274 � 10�24 J/T.

Today physicists explain the outcome of the Stern–Gerlach experiment as fol-
lows. The observed moments for both silver and hydrogen are due to spin angular
momentum alone and not to orbital angular momentum. (The hydrogen atom in its
ground state has � � 0; for silver, used in the Stern–Gerlach experiment, the net
orbital angular momentum for all the electrons is .) A single-electron atom
such as hydrogen has its electron spin quantized in the magnetic field in such a way
that its z component of spin angular momentum is either or , corresponding
to . Electrons with spin are deflected in one direction by the nonuni-
form magnetic field, and those with spin are deflected in the opposite direction.

The Stern–Gerlach experiment provided two important results. First, it verified
the concept of space quantization. Second, it showed that spin angular momentum
exists even though this property was not recognized until long after the experiments
were performed.
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momentum exhibits space quantiza-
tion. This figure shows the two allowed
orientations of the spin angular
momentum vector and the spin
magnetic moment vector for a
spin- particle such as the electron.1
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■ Thinking Physics 29.1
Does the Stern–Gerlach experiment differentiate between orbital angular momen-
tum and spin angular momentum?

Reasoning A magnetic force on the magnetic moment arises from both orbital an-
gular momentum and spin angular momentum. In this sense, the experiment
does not differentiate between the two. The number of components on the screen
does tell us something, however, because orbital angular momenta are described
by an integral quantum number �, whereas spin angular momentum depends on a
half - integral quantum number s . If an odd number of components occur on the
screen, three possibilities arise: the atom has (1) orbital angular momentum only,
(2) an even number of electrons with spin angular momentum, or (3) a combina-
tion of orbital angular momentum and an even number of electrons with spin an-
gular momentum. If an even number of components occurs on the screen, at least
one unpaired spin angular momentum exists, possibly in combination with orbital
angular momentum. The only numbers of components for which we can specify
the type of angular momentum are one component (no orbital, no spin) and two
components (spin of one electron). Once we see more than two components mul-
tiple possibilities arise because of various combinations of and . ■S

:
L
:
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Number of States
n � m� ms Subshell Shell in Subshell

2s L 2

2p L 6

2 1 1 1
2

2 1 1 �1
2

2 1 0 1
2

2 1 0 �1
2

2 1 �1 1
2

2 1 �1 �1
2

2 0 0 1
2

2 0 0 �1
2
�

Putting a Spin on HydrogenEXAMPLE 29.7
For a hydrogen atom, determine the quantum num-
bers associated with the possible states that correspond
to the principal quantum number n � 2.

Solution With the results from Example 29.1 and the
addition of the spin quantum number, we have the pos-
sibilities given in the table to the right. Therefore, there
are eight possible states. �

THE  EXCLUSION  PRINCIPLE  
AND THE  PERIODIC  TABLE

The quantum model generated from the Schrödinger equation is based on the
hydrogen atom, which is a system consisting of one electron and one proton. As
soon as we consider the next atom, helium, we introduce complicating factors. The
two electrons in helium both interact with the nucleus, so we can define a potential
energy function for those interactions. They also interact with each other, however.
The line of action of the electron–nucleus interaction is along a line between the
electron and the nucleus. The line of action of the electron–electron interaction is
along the line between the two electrons, which is different from that of the elec-
tron–nucleus interaction. Thus, the Schrödinger equation is extremely difficult to
solve. As we consider atoms with more and more electrons, the possibility of an
algebraic solution of the Schrödinger equation becomes hopeless.

We find, however, that despite our inability to solve the Schrödinger equation,
we can use the same four quantum numbers developed for hydrogen for the elec-
trons in heavier atoms. We are not able to calculate the quantized energy levels
easily, but we can gain information about the levels from theoretical models and
experimental measurements.

29.5

QUANTUM NUMBERS DESCRIBE A

SYSTEM The common usage is to 
assign the quantum numbers to an
electron. Remember, however, that
these quantum numbers arise from
the Schrödinger equation, which
involves a potential energy function
for the system consisting of the 
electron and the nucleus. There-
fore, it is more proper to assign the
quantum numbers to the atom, but
it is more popular to assign them to
an electron. We will follow this lat-
ter usage because it is so common,
but keep the notion of the system
in the back of your mind.

� PITFALL PREVENTION 29.3



Because a quantum state in any atom is specified by four quantum numbers, n,
�, m�, and ms, an obvious and important question is, “How many electrons in an
atom can have a particular set of quantum numbers?” Pauli provided an answer in
1925 in a powerful statement known as the exclusion principle:

No two electrons in an atom can ever be in the same quantum state; that is,
no two electrons in the same atom can have the same set of quantum 
numbers.

It is interesting that if this principle were not valid, every atom would radiate energy
by means of photons and end up with all electrons in the lowest energy state. The
chemical behavior of the elements would be grossly modified because this behavior
depends on the electronic structure of atoms. Nature as we know it would not exist!
In reality, we can view the electronic structure of complex atoms as a succession of
filled levels increasing in energy, where the outermost electrons are primarily re-
sponsible for the chemical properties of the element.

Imagine building an atom by forming the nucleus and then filling in the avail-
able quantum states with electrons until the atom is neutral. We shall use the com-
mon language here that “electrons go into available states.” Keep in mind, however,
that the states are those of the system of the atom. As a general rule, the order of fill-
ing of an atom’s subshells with electrons is as follows. Once one subshell is filled,
the next electron goes into the vacant subshell that is lowest in energy.

Before we discuss the electronic configurations of some elements, it is conve-
nient to define an orbital as the state of an electron characterized by the quantum
numbers n, �, and m�. From the exclusion principle, we see that at most two elec-
trons can be in any orbital. One of these electrons has and the other has

. Because each orbital is limited to two electrons, the numbers of electrons
that can occupy the shells are also limited.

Table 29.3 shows the allowed quantum states for an atom up to n � 3. Each
square in the bottom row of the table represents one orbital, with theqarrows rep-
resenting and theparrows representing . The n � 1 shell can
accommodate only two electrons because only one orbital is allowed with 
m� � 0. The n � 2 shell has two subshells, with � � 0 and � � 1. The � � 0 sub-
shell is limited to only two electrons because m� � 0. The � � 1 subshell has three
allowed orbitals, corresponding to m� � 1, 0, and � 1. Because each orbital can ac-
commodate two electrons, the � � 1 subshell can hold six electrons (and the n � 2
shell can hold eight). The n � 3 shell has three subshells and nine orbitals and can
accommodate up to 18 electrons. In general, each shell can accommodate up to
2n2 electrons.

The results of the exclusion principle can be illustrated by an examination of the
electronic arrangement in a few of the lighter atoms. For example, hydrogen has
only one electron, which, in its ground state, can be described by either of two sets of
quantum numbers: 1, 0, 0, or 1, 0, 0, . The electronic configuration of this
atom is often designated as 1s1. The notation 1s refers to a state for which n � 1 and
� � 0, and the superscript indicates that one electron is present in the s subshell.

Neutral helium has two electrons. In the ground state, the quantum numbers
for these two electrons are 1, 0, 0, and 1, 0, 0, . No other combinations of�1

2� 1
2

� 1
2� 

1
2

ms � � 1
2ms � �  

1
2

ms � �1
2

ms � �1
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Wolfgang Pauli (1900 – 1958)
An extremely talented Austrian 
theoretical physicist, Pauli made 
important contributions in many 
areas of modern physics. Pauli
gained public recognition at the age
of 21 with a masterful review article
on relativity, which is still considered
one of the finest and most compre-
hensive introductions to the sub-
ject. Other major contributions were
the discovery of the exclusion princi-
ple, the explanation of the connec-
tion between particle spin and sta-
tistics, and theories of relativistic
quantum electrodynamics, the neu-
trino hypothesis, and the hypothesis
of nuclear spin.

Allowed Quantum States for an Atom Up to n � 3TABLE 29.3

n 1 2 3

� 0 0 1 0 1 2
m� 0 0 1 0 �1 0 1 0 �1 2 1 0 �1 �2
ms qp qp qp qp qp qp qp qp qp qp qp qp qp qp

THE EXCLUSION PRINCIPLE IS MORE

GENERAL The exclusion principle
stated here is a limited form of the
more general exclusion principle,
which states that no two fermions,
which are all particles with 
half-integral spin , , , . . . can be
in the same quantum state. The
present form is satisfactory for our
discussions of atomic physics, and
we will discuss the general form fur-
ther in Chapter 31.

5
2

3
2

1
2

� PITFALL PREVENTION 29.4
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Atom

Li

Be

B

C

N

O

F

Ne

1s 2s 2p
Electronic

configuration

1s22s1

1s22s2

1s22s22p1

1s22s22p2

1s22s22p3

1s22s22p4

1s22s22p5

1s22s22p6

The filling of elec-
tronic states must obey both the 
exclusion principle and Hund’s 
rules.

FIGURE 29.11

quantum numbers are possible for this level, and we say that the K shell is filled.
The electronic configuration of helium is designated as 1s 2.

The electronic configurations of some successive elements are given in
Figure 29.11. Neutral lithium has three electrons. In the ground state, two of them
are in the 1s subshell and the third is in the 2s subshell because this subshell is
lower in energy than the 2p subshell. (In addition to the simple dependence of E
on n in Eq. 29.2, there is an additional dependence on �, which will be addressed in
Section 29.6.) Hence, the electronic configuration for lithium is 1s 22s1.

Note that the electronic configuration of beryllium, with its four electrons, is
1s22s2, and boron has a configuration of 1s22s22p1. The 2p electron in boron may
be described by one of six sets of quantum numbers, corresponding to six states of
equal energy.

Carbon has six electrons, and a question arises concerning how to assign the two
2p electrons. Do they go into the same orbital with paired spins (CD), or do they oc-
cupy different orbitals with unpaired spins (CCorDD)? Experimental data show that
the lowest energy configuration is the latter, where the spins are unpaired. Hence,
the two 2p electrons in carbon and the three 2p electrons in nitrogen have un-
paired spins in the ground state (see Fig. 29.11). The general rules that govern
such situations throughout the periodic table are called Hund’s rules. The rule ap-
propriate for elements like carbon is that when an atom has orbitals of equal en-
ergy, the order in which they are filled by electrons is such that a maximum number
of electrons will have unpaired spins. Some exceptions to this rule occur in ele-
ments having subshells close to being filled or half-filled.

A complete list of electronic configurations is provided in the tabular represen-
tation in Table 29.4. An early attempt to find some order among the elements was
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Electronic Configuration of the ElementsTABLE 29.4

Atomic Ground-State Ionization
Number Z Symbol Configuration Energy (eV)

1 H 1s1 13.595
2 He 1s 2 24.581
3 Li [He] 2s1 5.39
4 Be 2s 2 9.320
5 B 2s 22p1 8.296
6 C 2s 22p2 11.256
7 N 2s 22p3 14.545
8 O 2s 22p4 13.614
9 F 2s 22p5 17.418

10 Ne 2s 22p6 21.559
11 Na [Ne] 3s1 5.138
12 Mg 3s 2 7.644
13 Al 3s 23p1 5.984
14 Si 3s 23p2 8.149
15 P 3s 23p3 10.484
16 S 3s 23p4 10.357
17 Cl 3s 23p5 13.01
18 Ar 3s 23p6 15.755
19 K [Ar] 4s1 4.339
20 Ca 4s 2 6.111
21 Sc 3d14s2 6.54
22 Ti 3d 24s2 6.83
23 V 3d 34s2 6.74
24 Cr 3d 54s1 6.76
25 Mn 3d 54s2 7.432
26 Fe 3d 64s2 7.87
27 Co 3d74s2 7.86
28 Ni 3d 84s2 7.633
29 Cu 3d104s1 7.724
30 Zn 3d 104s2 9.391
31 Ga 3d104s24p1 6.00
32 Ge 3d104s24p2 7.88
33 As 3d104s24p3 9.81
34 Se 3d104s24p4 9.75
35 Br 3d104s24p5 11.84
36 Kr 3d104s24p6 13.996
37 Rb [Kr] 5s1 4.176
38 Sr 5s 2 5.692
39 Y 4d15s 2 6.377
40 Zr 4d 25s2

41 Nb 4d 45s1 6.881
42 Mo 4d 55s1 7.10
43 Tc 4d 65s1 7.228
44 Ru 4d75s1 7.365
45 Rh 4d 85s1 7.461
46 Pd 4d10 8.33
47 Ag 4d105s1 7.574
48 Cd 4d105s2 8.991
49 In 4d105s25p1

50 Sn 4d105s25p2 7.342
51 Sb 4d105s25p3 8.639
52 Te 4d105s25p4 9.01
53 I 4d105s25p 5 10.454
54 Xe 4d105s25p6 12.127
55 Cs [Xe] 6s1 3.893
56 Ba 6s 2 5.210
57 La 5d16s2 5.61
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Electronic Configuration of the Elements (Continued)TABLE 29.4

Atomic Ground-State Ionization
Number Z Symbol Configuration Energy (eV)

58 Ce 4f 15d16s2 6.54
59 Pr 4f 36s2 5.48
60 Nd 4f 46s2 5.51
61 Pm 4f 56s2

62 Fm 4f 66s2 5.6
63 Eu 4f 76s2 5.67
64 Gd 4f 75d16s2 6.16
65 Tb 4f 96s2 6.74
66 Dy 4f 106s2

67 Ho 4f 116s2

68 Er 4f 126s2

69 Tm 4f 136s2

70 Yb 4f 146s2 6.22
71 Lu 4f 145d16s2 6.15
72 Hf 4f 145d26s2 7.0
73 Ta 4f 145d36s2 7.88
74 W 4f 145d 46s2 7.98
75 Re 4f 145d 56s2 7.87
76 Os 4f 145d 66s 2 8.7
77 Ir 4f 145d76s2 9.2
78 Pt 4f 145d 96s1 8.88
79 Au [Xe, 4f 145d10] 6s1 9.22
80 Hg 6s2 10.434
81 Tl 6s26p1 6.106
82 Pb 6s26p2 7.415
83 Bi 6s26p3 7.287
84 Po 6s26p4 8.43
85 At 6s26p5

86 Rn 6s 26p6 10.745
87 Fr [Rn] 7s1

88 Ra 7s 2 5.277
89 Ac 6d17s2 6.9
90 Th 6d27s2

91 Pa 5f 26d17s2

92 U 5f 36d17s2 4.0
93 Np 5f 46d17s2

94 Pu 5f 67s2

95 Am 5f 77s2

96 Cm 5f 76d17s2

97 Bk 5f 97s2

98 Cf 5f 107s2

99 Es 5f 117s 2

100 Fm 5f 127s2

101 Md 5f 137s2

102 No 5f 147s2

103 Lr 5f 147s27p1

104 Rf 5f 146d27s2

105 Db 5f 146d37s2

106 Sg 5f 146d 47s2

107 Bh 5f 146d 57s2

108 Hs 5f 146d 67s2

109 Mt 5f 146d77s2

110 Ds 5f 146d 97s1

Note: The bracket notation is used as a shorthand method to avoid repetition in indicating inner-shell
electrons. Therefore, [He] represents 1s 2, [Ne] represents 1s22s22p6, [Ar] represents 1s22s22p63s23p6,
and so on. Configurations for elements above Z � 102 are tentative.



made by a Russian chemist, Dmitri Mendeleev, in 1871. He developed a tabular rep-
resentation of the elements, which has become one of the most important, as well
as well-recognized, tools of science. He arranged the atoms in a table (similar to
that in Appendix C) according to their atomic masses and chemical similarities.
Thus was born the first periodic table of the elements. The first table Mendeleev
proposed contained many blank spaces, and he boldly stated that the gaps were
there only because the elements had not yet been discovered. By noting the
columns in which these missing elements should be located, he was able to make
rough predictions about their chemical properties. Within 20 years of Mendeleev’s
announcement, the missing elements were indeed discovered. The predictions
made possible by this table represent an excellent example of the power of present-
ing information in an alternative representation.

The elements in the periodic table are arranged so that all those in a vertical
column have similar chemical properties. For example, consider the elements in
the last column: He (helium), Ne (neon), Ar (argon), Kr (krypton), Xe (xenon),
and Rn (radon). The outstanding characteristic of all these elements is that they do
not normally take part in chemical reactions; that is, they do not readily join with
other atoms to form molecules. They are therefore called inert gases.

We can partially understand this behavior by looking at the electronic configura-
tions in Table 29.4. The element helium is one in which the electronic configura-
tion is 1s 2; in other words, one shell is filled. Additionally, it is found that the
energy associated with this filled shell is considerably lower than the energy of the
next available level, the 2s level. Next, look at the electronic configuration for
neon, 1s 22s 22p6. Again, the outermost shell is filled, and a gap in energy occurs
between the 2p level and the 3s level. Argon has the configuration
1s 22s 22p63s 23p6. Here, the 3p subshell is filled, and a gap in energy arises between
the 3p subshell and the 3d subshell. We could continue this procedure through all
the inert gases; the pattern remains the same. An inert gas is formed when either a
shell or a subshell is filled and a gap in energy occurs before the next possible level
is encountered.

If we consider the column to the left of the inert gases in the periodic table, we
find a group of elements called the halogens: fluorine, chlorine, bromine, iodine,
and astatine. At room temperature, fluorine and chlorine are gases, bromine is a
liquid, and iodine and astatine are solids. In each of these atoms, the outer subshell
is one electron short of being filled. As a result, the halogens are chemically very ac-
tive, readily accepting an electron from another atom to form a closed shell. The
halogens tend to from strong ionic bonds with atoms at the other side of the peri-
odic table. In a halogen lightbulb, bromine or iodine atoms combine with tungsten
atoms evaporated from the filament and return them to the filament, resulting in a
longer-lasting bulb. In addition, the filament can be operated at a higher tempera-
ture than in ordinary lightbulbs, giving a brighter and whiter light.

At the left side of the periodic table, the Group I elements consist of hydrogen
and the alkali metals, lithium, sodium, potassium, rubidium, cesium, and francium.
Each of these atoms contains one electron in a subshell outside of a closed subshell.
Therefore, these elements easily form positive ions because the lone electron is
bound with a relatively low energy and is easily removed. Thus, the alkali metal
atoms are chemically active and form very strong bonds with halogen atoms. For ex-
ample, table salt, NaCl, is a combination of an alkali metal and a halogen. Because
the outer electron is weakly bound, pure alkali metals tend to be good electrical
conductors, although, because of their high chemical activity, pure alkali metals are
not generally found in nature.

Table 29.4 also lists the ionization energies for certain elements. It is interesting
to plot ionization energy versus the atomic number Z as in Figure 29.12. Note the
pattern of differences in atomic numbers between the peaks in the graph: 8, 8, 18,
18, 32. This pattern follows from the Pauli exclusion principle and helps explain
why the elements repeat their chemical properties in groups. For example, the
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peaks at Z � 2, 10, 18, and 36 correspond to the elements He, Ne, Ar, and Kr,
which have filled shells. These elements have similar chemical behavior.
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Rank the energy necessary to remove the outermost electron from
the following three elements, smallest to largest: lithium, potassium, cesium.
QUICK QUIZ 29.4

MORE  ON  ATOMIC  SPECTRA: VISIBLE  AND  X-RAY
In Chapter 11, we briefly discussed the origin of the spectral lines for hydrogen and
hydrogen-like ions. Recall that an atom in an excited state will emit electromag-
netic radiation if it makes a transition to a lower energy state.

The energy level diagram for hydrogen is shown in Figure 29.13. This semi-
graphical representation is different from Figure 11.20 in that the individual states
corresponding to different values of � within a given value of n are spread out hori-
zontally. Figure 29.13 shows only those states up to � � 2; the shells from n � 4
upward would have more sets of states to the right, which are not shown.

The diagonal lines in Figure 29.13 represent allowed transitions between sta-
tionary states. Whenever an atom makes a transition from a higher energy state to a
lower one, a photon of light is emitted. The frequency of this photon is f � �E/h,

29.6
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Some allowed electronic
transitions for hydrogen, represented by
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where �E is the energy difference between the two states and h is Planck’s constant.
The selection rules for the allowed transitions are

�� � � 1 and �m� � 0 or � 1 [29.16]

Transitions that do not obey the above selection rules are said to be forbidden.
(Such transitions can occur, but their probability is negligible relative to the proba-
bility of the allowed transitions.) For example, any transition represented by a verti-
cal line in Figure 29.13 is forbidden because the quantum number � does not
change.

Because the orbital angular momentum of an atom changes when a photon is
emitted or absorbed (i.e., as a result of a transition) and because angular momen-
tum of the isolated system of the atom and the photon must be conserved, we con-
clude that the photon involved in the process must carry angular momentum. In
fact, the photon has an intrinsic angular momentum equivalent to that of a particle
with a spin of s � 1, compared with the electron with . Hence, a photon pos-
sesses energy, linear momentum, and angular momentum. This example is the first
one we have seen of a single particle with integral spin.

Equation 29.2 gives the energies of the allowed quantum states for hydrogen.
We can also apply the Schrödinger equation to other one-electron systems, such as
the He� and Li�� ions. The primary difference between these ions and the hydro-
gen atom is the different number of protons Z in the nucleus. The result is a gener-
alization of Equation 29.2 for these other one-electron systems:

[29.17]

For outer electrons in multielectron atoms, the nuclear charge Ze is largely can-
celed or shielded by the negative charge of the inner-core electrons. Hence, the
outer electrons interact with a net charge that is reduced below the actual charge of
the nucleus. (According to Gauss’s law, the electric field at the position of an outer
electron depends on the net charge of the nucleus and the electrons closer to the
nucleus.) The expression for the allowed energies for multielectron atoms has the
same form as Equation 29.17, with Z replaced by an effective atomic number Z eff .
That is,

[29.18]

where Z eff depends on n and �.

■ Thinking Physics 29.2
A physics student is watching a meteor shower in the early morning hours. She no-
tices that the streaks of light from the meteoroids entering the very high regions of
the atmosphere last for up to 2 or 3 s before fading.

She also notices a lightning storm off in the distance. The streaks of light from
the lightning fade away almost immediately after the flash, certainly in much less
than 1 s. Both lightning and meteors cause the air to turn into a plasma because
of the very high temperatures generated. The light is emitted from both sources
when the stripped electrons in the plasma recombine with the ionized molecules.
Why would this light last longer for meteors than for lightning?

Reasoning The answer lies in the subtle phrase in the description of the mete-
oroids “entering the very high regions of the atmosphere.” In the very high regions
of the atmosphere, the pressure of the air is very low. The density of the air is there-
fore very low, so molecules of the air are relatively far apart. Therefore, after the air
is ionized by the passing meteoroid, the probability per unit time interval of freed
electrons encountering an ionized molecule with which to recombine is relatively

En � �
(13.6 eV)Z2

 eff

n2

En � �
(13.606 eV)Z2

n2

s � 1
2
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low. As a result, the recombination process for all freed electrons occurs over a
relatively long time interval, measured in seconds.

On the other hand, lightning occurs in the lower regions of the atmosphere
(the troposphere) where the pressure and density are relatively high. After the ion-
ization by the lightning flash, the freed electrons and ionized molecules are much
closer together than in the upper atmosphere. The probability per unit time inter-
val of a recombination is much higher, and the time interval for the recombination
of all the electrons and ions to occur is much shorter. ■

X-Ray Spectra
X-rays are emitted from a metal target that is being bombarded by high-energy
electrons. If we consider the target as the system, the continuity equation for energy
(see Eq. 6.20) for this process can be written as

The matter-transfer term on the right-hand side represents the process by which
energy enters the target; it travels with the electron. The second term on the right
has a negative value and represents the transfer of energy out of the system by x-rays.
On the left, there is an increase in internal energy of the target, which recognizes
that only a fraction of the incoming energy leaves as x-rays. A large fraction of the
incoming energy results in an increase in temperature of the target.

The x-ray spectrum typically consists of a broad continuous band and a series of
sharp lines that depend on the type of material used for the target as shown in
Figure 29.14. In Chapter 24, we mentioned that an accelerated electric charge
emits electromagnetic radiation. The x-rays we see in Figure 29.14 are the result of
the slowing down of high-energy electrons as they strike the target. It may take sev-
eral interactions with the atoms of the target before the electron loses all its kinetic
energy. The amount of kinetic energy lost in any given interaction can vary from
zero up to the entire kinetic energy of the electron. Therefore, the wavelength of
radiation from these interactions lies in a continuous range from some minimum
value up to infinity. It is this general slowing down of the electrons that provides the
continuous curve in Figure 29.14, which shows the cutoff of x-rays below a mini-
mum wavelength value that depends on the kinetic energy of the incoming elec-
trons. X-radiation with its origin in the slowing down of electrons is called
bremsstrahlung, German for “braking radiation.”

The discrete lines in Figure 29.14, called characteristic x-rays and discovered in
1908, have a different origin. Their origin remained unexplained until the details of
atomic structure were understood. The first step in the production of characteristic
x-rays occurs when a bombarding electron collides with a target atom. The incoming
electron must have sufficient energy to remove an inner-shell electron from the
atom. The vacancy created in the shell is filled when an electron in a higher shell
drops down into the shell containing the vacancy. The time interval required for this
to happen is very short, less than 10�9 s. As usual, this transition is accompanied by
the emission of a photon whose energy equals the difference in energy between the
two shells. Typically, the energy of such transitions is greater than 1 000 eV, and the
emitted x-ray photons have wavelengths in the range of 0.01 to 1 nm.

Let us assume that the incoming electron has dislodged an atomic electron
from the innermost shell, the K shell. If the vacancy is filled by an electron drop-
ping from the next higher shell, the L shell, the photon emitted in the process has
an energy corresponding to the K� line on the curve of Figure 29.14. If the vacancy
is filled by an electron dropping from the M shell, the line produced is called
the K� line. In this notation, the letter K represents the final shell into which the
electron drops and the subscript provides a Greek letter corresponding to the
number of the shell above the final shell in which the electron originates.
Therefore, K� indicates that the final shell is the K shell, whereas the initial shell is

�E system � 	T : �E int � TMT � TER
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The x-ray spectrum
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target.

FIGURE 29.14



1006 ❚ CHAPTER 29 ATOMIC PHYSICS

y g p pp

the first shell above K (because � is the first letter in the Greek alphabet), which is
the L shell.

Other characteristic x-ray lines are formed when electrons drop from upper
shells to vacancies in shells other than the K shell. For example, L lines are pro-
duced when vacancies in the L shell are filled by electrons dropping from higher
shells. An L� line is produced as an electron drops from the M shell to the L shell,
and an L� line is produced by a transition from the N shell to the L shell.

Although multielectron atoms cannot be analyzed exactly using either the Bohr
model or the Schrödinger equation, we can apply our knowledge of Gauss’s law
from Chapter 19 to make some surprisingly accurate estimates of expected x-ray
energies and wavelengths. Consider an atom of atomic number Z in which one of
the two electrons in the K shell has been ejected. Imagine that we draw a gaussian
sphere just inside the most probable radius of the L electrons. The electric field at
the position of the L electrons is a combination of that due to the nucleus, the sin-
gle K electron, the other L electrons, and the outer electrons. The wave functions
of the outer electrons are such that they have a very high probability of being far-
ther from the nucleus than the L electrons are. Therefore, they are much more
likely to be outside the gaussian surface than inside and, on the average, do not
contribute significantly to the electric field at the position of the L electrons. The
effective charge inside the gaussian surface is the positive nuclear charge and one
negative charge due to the single K electron. If we ignore the interactions between
L electrons, a single L electron behaves as if it experiences an electric field due to a
charge enclosed by the gaussian surface of (Z � 1)e . The nuclear charge is in effect
shielded by the electron in the K shell such that Zeff in Equation 29.18 is Z � 1. For
higher-level shells, the nuclear charge is shielded by electrons in all the inner shells.

We can now use Equation 29.18 to estimate the energy associated with an
electron in the L shell:

The final state of the atom after it makes the transition is such that there are two
electrons in the K shell. We can use a similar argument by drawing a gaussian sur-
face just inside the most probable radius for one K electron. The energy associated
with one of these electrons is approximately that of a one-electron atom with the
nuclear charge reduced by the negative charge of the other electron. Therefore,

E K � �(Z � 1)2(13.6 eV) [29.19]

As we show in Example 29.8, the energy of the atom with an electron in an M shell can
be estimated in a similar fashion. Taking the energy difference between the initial and
final levels, the energy and wavelength of the emitted photon can then be calculated.

In 1914, Henry G. J. Moseley plotted versus the Z values for a number of ele-
ments, where � is the wavelength of the K� line of each element. He found that the
curve is a straight line as in Figure 29.15. This finding is consistent with rough cal-
culations of the energy levels given by Equation 29.19. From this plot, Moseley was
able to determine the Z values of some missing elements, which provided a periodic
chart in excellent agreement with the known chemical properties of the elements.

√1/�

EL � �(Z � 1)2 
13.6 eV

22

A Moseley plot of
versus Z, where � is the wave-

length of the K� x-ray line of the 
element with atomic number Z .

√1/�

FIGURE 29.15
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What are the initial and final shells for an M� line in an x-ray 
spectrum?
QUICK QUIZ 29.5

In an x-ray tube, as you increase the energy of the electrons striking
the metal target, (i) the wavelengths of the characteristic x-rays (a) increase, (b) decrease,
or (c) do not change and (ii), the minimum wavelength of the bremsstrahlung 
(a) increases, (b) decreases, or (c) does not change.

QUICK QUIZ 29.6
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ATOMS  IN  SPACE
We have spent quite a bit of time on the hydrogen atom in this chapter. Let us now
consider hydrogen atoms located in space. Because hydrogen is the most abundant
element in the Universe, its role in astronomy and cosmology is very important.

Let us begin by considering pictures of some nebulae you might have seen in an
astronomy text, such as Figure 29.16. Time-exposure photographs of these objects
show a variety of colors. What causes the colors in these clouds of gas and grains of
dust? Let us imagine a cloud of hydrogen atoms in space near a very hot star. The
high-energy photons from the star can interact with the hydrogen atoms, either
raising them to a high-energy state or ionizing them. As the atoms fall back to the
lower states, many atoms emit the Balmer series of wavelengths. Therefore, these
atoms provide red, green, blue, and violet colors to the nebula, corresponding to
the colors seen in the hydrogen spectrum in Chapter 11.

In practice, nebulae are classified into three groups depending on the transi-
tions occurring in the hydrogen atoms. Emission nebulae (Fig. 29.16a) are near a
hot star, so hydrogen atoms are excited by light from the star as described above.

29.7

shield the nucleus, and so Zeff � Z � 9. Hence, the 
energy of the M shell, following Equation 29.18, is 
approximately

The emitted x-ray therefore has an energy equal to 
EM � EK � � 6.4 � 103 eV � (�7.2 � 104 eV) �
6.6 � 104 eV � Consultation of x-ray tables
shows that the M–K transition energies in tungsten vary
from 66.9 to 67.7 keV, where the range of energies is
due to slightly different energy values for states of differ-
ent �. Therefore, our estimate differs from the midpoint
of this experimentally measured range by about 2%.

66 keV.

E M � �
(13.6 eV)(74 � 9)2

(3)2 � �6.4 � 103 eV

Estimating the Energy of an X-RayEXAMPLE 29.8
Estimate the energy of the characteristic x-ray emitted
from a tungsten target when an electron drops from an
M shell (n � 3 state) to a vacancy in the K shell (n � 1
state).

Solution The atomic number for tungsten is Z � 74.
Using Equation 29.19, we see that the energy associated
with the electron in the K shell is approximately

EK � �(74 � 1)2(13.6 eV) � � 7.2 � 104 eV

An electron in the M shell is subject to an effective
nuclear charge that depends on the number of elec-
trons in the n � 1 and n � 2 states, which shield the
nucleus. Because eight electrons are in the n � 2 state
and one electron is in the n � 1 state, nine electrons

(b)(a) (c)

Types of astronomical nebulae. (a) The central part of the Orion Nebula represents
an emission nebula, from which colored light is emitted from atoms. (b) The
Pleiades. The clouds of light surrounding the stars represent a reflection nebula,
from which starlight is reflected by dust particles. (c) The Lagoon Nebula shows the
effects of a dark nebula, in which clouds of dust block starlight and appear as a dark
silhouette against the light from stars farther away.

FIGURE 29.16
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Therefore, the light from an emission nebula is dominated by discrete emission
spectral lines and contains colors. Reflection nebulae (Fig. 29.16b) are near a cool
star. In these cases, most of the light from the nebula is the starlight reflected from
larger grains of material in the nebula rather than emitted by excited atoms. There-
fore, the spectrum of the light from the nebula is the same as that from the star: an
absorption spectrum with dark lines corresponding to atoms and ions in the outer
regions of the star. The light from these nebulae tends to appear white. Finally,
dark nebulae (Fig. 29.16c) are not close to a star. Therefore, little radiation is avail-
able to excite atoms or reflect from grains of dust. As a result, the material in these
nebulae screens out light from stars beyond them, and they appear as black patches
against the brightness of the more distant stars.

In addition to hydrogen, some other atoms and ions in space are raised to higher
energy states by radiation from stars and proceed to emit various colors. Some of the
more prominent colors are violet (373 nm) from the O� ion and green (496 nm
and 501 nm) from the O�� ion. Helium and nitrogen also provide strong colors.

In our discussion of the quantum numbers for the hydrogen atom, we claimed
that two states are possible in the 1s shell, corresponding to up or down spin, and
that these two states are equivalent in energy. If we modify our structural model to
include the spin of the proton, however, we find that the two atomic states corre-
sponding to the electron spin are not the same in energy. The state in which the
electron and proton spins are parallel is slightly higher in energy than the state in
which they are antiparallel. The energy difference is only 5.9 � 10�6 eV. Because
these two states differ in energy, it is possible for the atom to make a transition be-
tween the states. If the transition is from the parallel state to the antiparallel state, a
photon is emitted, with energy equal to the difference in energy between the states.
The wavelength of this photon is

This radiation is called, for obvious reasons, 21-cm radiation. It is radiation with
a wavelength that is identifiable with the hydrogen atom. Therefore, by looking for
this radiation in space, we can detect hydrogen atoms. Furthermore, if the wave-
length of the observed radiation is not equal to 21 cm, we can infer that it has been
Doppler shifted due to relative motion between the Earth and the source. This
Doppler shift can then be used to measure the relative speed of the source toward
or away from the Earth. This technique has been extensively used to study the
hydrogen distribution in the Milky Way galaxy and to detect the presence of spiral
arms in our galaxy, similar to the spiral arms in other galaxies.

Our study of atomic physics allows us to understand an important connection
between the microscopic world of quantum physics and the macroscopic Universe.
Atoms throughout the Universe act as transmitters of information to us about the
local conditions. In Chapter 30, which deals with nuclear physics, we shall see how
our understanding of microscopic processes helps us understand the local condi-
tions at the center of a star.

 � 0.21 m � 21 cm

 � �
c
f

�
hc
hf

�
hc
E

�
1 240 eV 	nm
5.9 � 10�6 eV

 � 10�9 m
1 nm �

Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

The methods of quantum mechanics can be applied to the hy-
drogen atom using the appropriate potential energy function

U(r) � � kee2/r in the Schrödinger equation. The solution to
this equation yields the wave functions for the allowed states
and the allowed energies, given by

[29.2]En � � �ke e2

2a0
� 

1
n2 � �

13.606 eV
n2    n � 1, 2, 3, . . .

SUMMARY

www.pop4e.com
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which is precisely the result obtained in the Bohr theory.
The allowed energy depends only on the principal quantum
number n. The allowed wave functions depend on three
quantum numbers, n, �, and m�, where � is the orbital
quantum number and m� is the orbital magnetic quantum
number. The restrictions on the quantum numbers are as
follows:

All states with the same principal quantum number n form a
shell, identified by the letters K, L, M, . . . (corresponding to
n � 1, 2, 3, . . .). All states with the same values of both n and �
form a subshell, designated by the letters s, p, d, f , . . . (corre-
sponding to � � 0, 1, 2, 3, . . .).

An atom in a state characterized by a specific n can have the
following values of orbital angular momentum L :

[29.9]

The allowed values of the projection of the angular momen-
tum vector along the z axis are given by

[29.10]

where m� is restricted to integer values lying between � � and �.
Only discrete values of Lz are allowed, and they are determined
by the restrictions on m�. This quantization of Lz is referred to
as space quantization.

To describe a quantum state of the hydrogen atom com-
pletely, it is necessary to include a fourth quantum number ms,
called the spin magnetic quantum number. This quantum num-
ber can have only two values, . In effect, this additional
quantum number doubles the number of allowed states speci-
fied by the quantum numbers n, �, and m�.

The electron has an intrinsic angular momentum called
spin angular momentum. That is, the total angular momentum
of an atom can have two contributions: one arising from the

� 
1
2

Lz � m��

L
:

� L
:

� � L � √�(� � 1)�  � � 0, 1, 2, . . . , n � 1

 m� � � �, � � � 1, . . . , � � 1, �

 � � 0, 1, 2, . . . , (n � 1)

 n � 1, 2, 3, . . .

spin of the electron ( ) and one arising from the orbital
motion of the electron ( ).

Electronic spin can be described by a quantum number
. The magnitude of the spin angular momentum is

[29.12]

and the z component of is

[29.13]

The magnetic moment associated with the spin angular
momentum of an electron is

[29.14]

The z component of can have the values

[29.15]

The quantity is called the Bohr magneton �B and has
the numerical value 9.274 � 10�24 J/T.

The exclusion principle states that no two electrons in an
atom can have the same set of quantum numbers n, �, m�, and
ms. Using this principle, one can determine the electronic con-
figuration of the elements. This procedure serves as a basis for
understanding atomic structure and the chemical properties of
the elements.

The allowed electronic transitions between any two states in
an atom are governed by the selection rules

�� � � 1 and �m� � 0 or � 1 [29.16]

The x-ray spectrum of a metal target consists of a set of
sharp characteristic lines superimposed on a broad, continuous
spectrum. Bremsstrahlung is x-radiation with its origin in the
slowing down of high-energy electrons as they encounter the
target. Characteristic x-rays are emitted by atoms when an elec-
tron undergoes a transition from an outer shell into an
electron vacancy in one of the inner shells.
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QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. According to Bohr’s model of the hydrogen atom, what is
the uncertainty in the radial coordinate of the electron?
What is the uncertainty in the radial component of the
velocity of the electron? In what way does the model violate
the uncertainty principle?

2. Why are three quantum numbers needed to describe the
state of a one-electron atom (ignoring spin)?

3. Compare the Bohr theory and the Schrödinger treatment
of the hydrogen atom. Comment on the total energy and
orbital angular momentum.

4. Discuss why the term electron cloud is used to describe the
electronic arrangement in the quantum mechanical model
of an atom.

5. Why is the direction of the orbital angular momentum of
an electron opposite to that of its magnetic moment?

6. Why is a nonuniform magnetic field used in the Stern–
Gerlach experiment?

Could the Stern–Gerlach experiment be performed with
ions rather than neutral atoms? Explain.

8. Describe some experiments that support the conclusion
that the spin magnetic quantum number for electrons can
only have the values .

Discuss some of the consequences of the exclusion
principle.

10. How is it possible that electrons, whose positions are
described by a probability distribution around a nucleus,
can exist in atoms with states of definite energy (e.g., 1s, 2p,
3d , . . .)?

9.

� 1
2

7.
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Why do lithium, potassium, and sodium exhibit similar
chemical properties?

12. An energy of about 21 eV is required to excite an electron
in a helium atom from the 1s state to the 2s state. The
same transition for the He� ion requires approximately
twice as much energy. Explain.

13. The absorption or emission spectrum of a gas consists of
lines that broaden as the density of gas molecules in-
creases. Why do you suppose that occurs?

14. It is easy to understand how two electrons (one spin up,
one spin down) can fill the 1s shell for a helium atom.
How is it possible that eight more electrons can fit into the
2s, 2p level to complete the 1s22s22p6 shell for a neon
atom?

15. In 1914, Henry G. J. Moseley was able to define the atomic
number of an element from its characteristic x-ray

11. spectrum. How was that possible? (Suggestion: See Figs.
29.14 and 29.15.)

16. (a) “As soon as I define a particular direction as the z axis,
precisely one half of the electrons in this part of the Universe
have their magnetic moment vectors oriented at 54.735 61°
to that axis, and all the rest have their magnetic moments at
125.264 39°.” Argue for or against this statement. (b) “The
Universe is not simply stranger than we suppose; it is stranger
than we can suppose.” Argue for or against this statement.

17. A message reads, “All your base are belong to us!” Argue for
or against the view that a scientific discovery is like a com-
munication from an utterly alien source, needing inter-
pretation and susceptible to misunderstanding. Argue for
or against the view that the human mind is not necessar-
ily well adapted to understand the Universe. Argue for or
against the view that education in science is the best
preparation for life in a rapidly changing world.

PROBLEMS

and 2.36 � 106 s as the period of the Moon in its orbit.
(b) Assume that the Moon’s angular momentum is
described by Bohr’s assumption . Determine the
corresponding quantum number. (c) By what fraction
would the Earth–Moon distance have to be increased to
raise the quantum number by 1?

4. (a) An isolated atom of a certain element emits light of
wavelength 520 nm when the atom falls from its fifth
excited state into its second excited state. The atom emits a
photon of wavelength 410 nm when it drops from its sixth
excited state into its second excited state. Find the wave-
length of the light radiated when the atom makes a transi-
tion from its sixth to its fifth excited state. (b) Solve the
same problem again in symbolic terms. Letting �BA repre-
sent the wavelength emitted in the transition B to A and
�CA the shorter wavelength emitted in the transition C to
A, find �CB. This problem exemplifies the Ritz combination
principle, an empirical rule formulated in 1908.

Section 29.2 ■ The Hydrogen Atom Revisited
5. The Balmer series for the hydrogen atom corresponds to

electronic transitions that terminate in the state with quan-
tum number n � 2 as shown in Figure P29.5. (a) Consider
the photon of longest wavelength; determine its energy
and wavelength. (b) Consider the spectral line of shortest
wavelength; find its photon energy and wavelength.

mvr � n�

1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 29.1 ■ Early Structural Models of the Atom
According to classical physics, a charge

e moving with an acceleration a radiates at a rate

(a) Show that an electron in a classical hydrogen atom (see
Fig. 29.3) spirals into the nucleus at a rate

(b) Find the time interval over which the electron will
reach r � 0, starting from r0 � 2.00 � 10�10 m.

2. Review problem. In the Rutherford scattering experiment,
4.00-MeV alpha particles (4He nuclei containing 2 protons
and 2 neutrons) scatter off gold nuclei (containing 79 pro-
tons and 118 neutrons). Assume that a particular alpha
particle makes a direct head-on collision with the gold nu-
cleus and scatters backward at 180°. Determine (a) the dis-
tance of closest approach of the alpha particle to the gold
nucleus and (b) the maximum force exerted on the alpha
particle. Assume that the gold nucleus remains fixed
throughout the entire process.

3. (a) Calculate the angular momentum of the Moon due
to its orbital motion about the Earth. In your calculation,
use 3.84 � 108 m as the average Earth–Moon distance

dr
dt

� � 
e 4
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FIGURE P29.5 An energy level diagram for hydrogen
showing the Balmer series (not drawn to scale).
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6. A photon with energy 2.28 eV is barely capable of causing
a photoelectric effect when it strikes a sodium plate.
Suppose the photon is instead absorbed by hydrogen. Find
(a) the minimum n for a hydrogen atom that can be
ionized by such a photon and (b) the speed of the released
electron far from the nucleus.

A general expression for the energy levels of one-electron
atoms and ions is

where ke is the Coulomb constant, q1 and q2 are the
charges of the electron and the nucleus, and � is the
reduced mass of the atom, given by � � m1m2/(m1 � m2)
where m1 is the mass of the electron and m2 is the mass of
the nucleus. In Problem 29.5 we found that the wavelength
for the n � 3 to n � 2 transition of the hydrogen atom is
656.3 nm (visible red light). What are the wavelengths for
this same transition in (a) positronium, which consists of
an electron and a positron, and (b) singly ionized helium?
(Note: A positron is a positively charged electron.)

8. Ordinary hydrogen gas is a mixture of two kinds of atoms
(isotopes) containing either one- or two-particle nuclei.
These isotopes are hydrogen-1 with a proton nucleus and
hydrogen-2, called deuterium, with a deuteron nucleus. A
deuteron is one proton and one neutron bound together.
Hydrogen-1 and deuterium have identical chemical prop-
erties, but can be separated via an ultracentrifuge or by
other methods. Their emission spectra show lines of the
same colors at very slightly different wavelengths. (a) Use
the equation given in Problem 29.7 to show that the differ-
ence in wavelength, between the hydrogen-1 and deu-
terium spectral lines associated with a particular electron
transition, is given by

(b) Evaluate the wavelength difference for the Balmer
alpha line of hydrogen, with wavelength 656.3 nm, emitted
by an atom making a transition from an n � 3 state to an
n � 2 state. Harold Urey observed this wavelength differ-
ence in 1931, confirming his discovery of deuterium.

9. An electron of momentum p is at a distance r from a
stationary proton. The electron has kinetic energy
K � p 2/2me . The atom has potential energy U � � ke e 2/r
and total energy E � K � U . If the electron is bound to
the proton to form a hydrogen atom, its average position is
at the proton, but the uncertainty in its position is approxi-
mately equal to the radius r of its orbit. The electron’s
average vector momentum is zero, but its average squared
momentum is approximately equal to the squared
uncertainty in its momentum, as given by the uncertainty
principle. Treating the atom as a one-dimensional system,
(a) estimate the uncertainty in the electron’s momentum
in terms of r. (b) Estimate the electron’s kinetic, potential,
and total energies in terms of r. (c) The actual value of r is
the one that minimizes the total energy, resulting in a stable
atom. Find that value of r and the resulting total energy.
Compare your answer with the predictions of the Bohr
theory.

�H � �D � �1 �
�H

�D
� �H

En � �
�k 2

e q 2
1 q 2

2

2�2n2

7.

Section 29.3 ■ The Wave Functions for Hydrogen
10. Plot the wave function �1s(r) (see Eq. 29.3) and the radial

probability density function P1s(r) (see Eq. 29.7) for hydro-
gen. Let r range from 0 to 1.5a 0, where a0 is the Bohr
radius.

11. The ground-state wave function for a hydrogen atom is

where r is the radial coordinate of the electron and a0 is
the Bohr radius. (a) Show that the wave function as given
is normalized. (b) Find the probability of locating the elec-
tron between r1 � a0/2 and r2 � 3a0/2.

12. The wave function for the 2p state of hydrogen is

What is the most likely distance from the nucleus to find
an electron in the 2p state? 

For a spherically symmetric state of a
hydrogen atom, the Schrödinger equation in spherical
coordinates is

Show that the 1s wave function for hydrogen,

satisfies the Schrödinger equation.

14. In an experiment, electrons are fired at a sample of neu-
tral hydrogen atoms and observations are made of how the
incident particles scatter. A large set of trials can be
thought of as containing 1 000 observations of the electron
in the ground state of a hydrogen atom being momentarily
at a distance a0/2 from the nucleus. How many times is
the atomic electron observed at a distance 2a0 from the
nucleus in this set of trials?

Section 29.4 ■ Physical Interpretation of the 
Quantum Numbers

15. List the possible sets of quantum numbers for the hydro-
gen atom associated with (a) the 3d subshell and (b) the
3p subshell.

16. Calculate the orbital angular momentum for a hydrogen
atom in (a) the 4d state and (b) the 6f state.

17. If a hydrogen atom has orbital angular momentum
4.714 � 10�34 J 	 s, what is the orbital quantum number for
the state of the atom?

18. A hydrogen atom is in its fifth excited state, with principal
quantum number 6. The atom emits a photon with a wave-
length of 1 090 nm. Determine the maximum possible
orbital angular momentum of the atom after emission.

How many sets of quantum numbers
are possible for a hydrogen atom for which (a) n � 1,
(b) n � 2, (c) n � 3, (d) n � 4, and (e) n � 5? Check
your results to show that they agree with the general rule

19.

� 1s(r) �
1

√�a 3
0

 e�r/a 0

� 
�2

2m
 � d2�

dr2 �
2
r

 
d �

dr � �
kee2

r
 � � E  �

13.
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1
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that the number of sets of quantum numbers for a shell is
equal to 2n2.

20. Find all possible values of L, Lz , and 
 for a hydrogen atom
in a 3d state.

21. (a) Find the mass density of a proton, modeling it as a
solid sphere of radius 1.00 � 10�15 m. (b) Consider a clas-
sical model of an electron as a solid sphere with the same
density as the proton. Find its radius. (c) Imagine that this
electron possesses spin angular momentum 
because of classical rotation about the z axis. Determine
the speed of a point on the equator of the electron and
(d) compare this speed to the speed of light.

22. An electron is in the N shell. Determine the maximum value
the z component of its angular momentum could have.

The �� meson has a charge of �e, a spin quantum number
of 1, and a mass 1 507 times that of the electron. The possi-
ble values for its spin magnetic quantum number are �1,
0, and 1. Imagine that the electrons in atoms were
replaced by �� mesons. List the possible sets of quantum
numbers for �� mesons in the 3d subshell.

Section 29.5 ■ The Exclusion Principle 
and the Periodic Table

24. (a) Write out the electronic configuration for the ground
state of oxygen (Z � 8). (b) Write out a set of possible
values for the quantum numbers n, �, m�, and ms for each
electron in oxygen.

25. As we go down the periodic table, which subshell is filled
first, the 3d or the 4s subshell? Which electronic configura-
tion has a lower energy: [Ar]3d 44s2 or [Ar]3d54s1? Which
has the greater number of unpaired spins? Identify this ele-
ment and discuss Hund’s rule in this case. (Note: The nota-
tion [Ar] represents the filled configuration for argon.)

26. Devise a table similar to that shown in Figure 29.11 for
atoms containing 11 through 19 electrons. Use Hund’s
rule and educated guesswork.

27. A certain element has its outermost electron in a 3p sub-
shell. It has valence � 3 because it has 3 more electrons
than a certain inert gas. What element is it?

28. Two electrons in the same atom both have n � 3 and � � 1.
(a) List the quantum numbers for the possible states of the
atom. (b) How many states would be possible if the exclu-
sion principle were inoperative?

(a) Scanning through Table 29.4 in or-
der of increasing atomic number, note that the electrons
usually fill the subshells in such a way that those subshells
with the lowest values of n � � are filled first. If two sub-
shells have the same value of n � �, the one with the lower
value of n is generally filled first. Using these two rules,
write the order in which the subshells are filled through
n � � � 7. (b) Predict the chemical valence for the ele-
ments that have atomic numbers 15, 47, and 86 and com-
pare your predictions with the actual valences (which may
be found in a chemistry text).

30. For a neutral atom of element 110, what would be the
probable ground-state electronic configuration?

31. Review problem. For an electron with magnetic moment
in a magnetic field , the result of Problem 22.20 inB

:
�:s

29.

23.

I� � �/2

Chapter 22 shows the following. The electron-field system
can be in a higher energy state with the z component of
the magnetic moment of the electron opposite to the field
or in a lower energy state with the z component of the
magnetic moment in the direction of the field. The differ-
ence in energy between the two states is 2�BB.

Under high resolution, many spectral lines are ob-
served to be doublets. The most famous of these are the
two yellow lines in the spectrum of sodium (the D lines),
with wavelengths of 588.995 nm and 589.592 nm. Their ex-
istence was explained in 1925 by Goudsmit and Uhlen-
beck, who postulated that an electron has intrinsic spin an-
gular momentum. When the sodium atom is excited with
its outermost electron in a 3p subshell, the orbital motion
of the outermost electron creates a magnetic field. The
atom’s energy is somewhat different depending on
whether the electron is itself spin-up or spin-down in this
field. Then the photon energy the atom radiates as it falls
back into its ground state depends on the energy of the ex-
cited state. Calculate the magnitude of the internal mag-
netic field mediating this so-called spin-orbit coupling.

Section 29.6 ■ More on Atomic Spectra:
Visible and X-ray

32. (a) Determine the possible values of the quantum num-
bers � and m� for the He� ion in the state corresponding
to n � 3. (b) What is the energy of this state?

33. If you wish to produce 10.0-nm x-rays in the laboratory,
what is the minimum voltage you must use in accelerating
the electrons?

34. In x-ray production, electrons are accelerated through a
high voltage �V and then decelerated by striking a target.
Show that the shortest wavelength of an x-ray that can be
produced is

Use the method illustrated in Example 29.8 to calculate
the wavelength of the x-ray emitted from a molybdenum
target (Z � 42) when an electron moves from the L shell
(n � 2) to the K shell (n � 1).

36. The K series of the discrete x-ray spectrum of tungsten
contains wavelengths of 0.018 5 nm, 0.020 9 nm, and 
0.021 5 nm. The K-shell ionization energy is 69.5 keV.
Determine the ionization energies of the L, M, and N
shells. Draw a diagram of the transitions.

37. The wavelength of characteristic x-rays in the K� line from
a particular source is 0.152 nm. Determine the material in
the target.

Section 29.7 ■ Context Connection — Atoms in Space
38. In interstellar space, atomic hydrogen produces the sharp

spectral line called the 21-cm radiation, which astronomers
find most helpful in detecting clouds of hydrogen between
stars. This radiation is useful because it is the only signal
cold hydrogen emits and because interstellar dust that
obscures visible light is transparent to these radio waves.
The radiation is not generated by an electron transition
between energy states characterized by different values of n.

35.

�min �
1 240 nm 	V

�V
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Instead, in the ground state (n � 1), the electron and
proton spins may be parallel or antiparallel, with a
resultant slight difference in these energy states. (a) Which
condition has the higher energy? (b) More precisely,
the line has wavelength 21.11 cm. What is the energy
difference between the states? (c) The average lifetime
in the excited state is about 107 yr. Calculate the
associated uncertainty in energy of the excited energy
level.

39. Review problem. Refer to Section 24.3. Prove that the
Doppler shift in wavelength of electromagnetic waves is
described by

where �� is the wavelength measured by an observer mov-
ing at speed v away from a source radiating waves of
wavelength �.

40. Astronomers observe a series of spectral lines in the
light from a distant galaxy. On the hypothesis that the
lines form the Lyman series for a (new?!) one-electron
atom, they start to construct the energy level diagram
shown in Figure P29.40, which gives the wavelengths of
the first four lines and the short-wavelength limit of this
series. Based on this information, calculate (a) the ener-
gies of the ground state and first four excited states 
for this one-electron atom and (b) the wavelengths of
the first three lines and the short-wavelength limit in
the Balmer series for this atom. (c) Show that the wave-
lengths of the first four lines and the short wavelength
limit of the Lyman series for the hydrogen atom are all
60.0% of the wavelengths for the Lyman series in
the one-electron atom described in part (b). (d) Based
on this observation, explain why this atom could be
hydrogen.

�� � � √ 1 � v/c
1 � v/c

A distant quasar is moving away from the
Earth at such high speed that the blue 434-nm H� line of
hydrogen is observed at 510 nm, in the green portion of
the spectrum (Fig. P29.41). (a) How fast is the quasar
receding? You may use the result of Problem 29.39. (b) Edwin
Hubble discovered that all objects outside the local group
of galaxies are moving away from us, with speeds propor-
tional to their distances. Hubble’s law is expressed as
v � HR , where Hubble’s constant has the approximate
value H � 17 � 10�3 m/s 	 ly. Determine the distance from
the Earth to this quasar.

41.
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FIGURE P29.41 (a) Image of the quasar 3C273. (b) Spectrum of the
quasar above a comparison spectrum emitted by stationary hydrogen
and helium atoms. Both parts of the figure are printed as black-and-
white photographic negatives to reveal detail.
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Additional Problems
42. (a) If a hydrogen atom makes a transition from the n � 4

state to the n � 2 state, determine the wavelength of the
photon created in the process. (b) Assuming that the atom
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was initially at rest, determine the recoil speed of the
hydrogen atom when it emits this photon.

43. LENINGRAD, 1930—Four years after the publication of the
Schrödinger equation, Lev Davidovich Landau, age 23,
solved the equation for a charged particle moving in a uni-
form magnetic field. A single electron moving perpendicu-
lar to a field can be considered as a model atom without
a nucleus, or as the irreducible quantum limit of the
cyclotron. Landau proved that its energy is quantized in
uniform steps of .
CAMBRIDGE, MA, 1999—Gerald Gabrielse trapped a single
electron in an evacuated centimeter-size metal can cooled
to a temperature of 80 mK. In a magnetic field of magni-
tude 5.26 T, the electron circulated for hours in its lowest
energy level, generating a measurable signal as it moved.
(a) Evaluate the size of a quantum jump in the electron’s
energy. (b) For comparison, evaluate kBT as a measure of
the energy available to the electron in blackbody radiation
from the walls of its container. (c) Microwave radiation was
introduced to excite the electron. Calculate the frequency
and wavelength of the photon that the electron absorbs as
it jumps to its second energy level. Measurement of the res-
onant absorption frequency verified the theory and per-
mitted precise determination of properties of the electron.

44. Review problem. (a) How much energy is required to
cause a hydrogen atom to move from the n � 1 state to the
n � 2 state? (b) Suppose the atom gains this energy
through collisions with other hydrogen atoms at a high
temperature. At what temperature would the average
atomic kinetic energy 3kBT/2 be great enough to excite
the electron? Here k B is the Boltzmann constant.

Show that the average value of r for the 1s state of hydro-
gen has the value 3a 0/2. (Suggestion: Use Eq. 29.7.)

46. An elementary theorem in statistics states that the root-mean-
square uncertainty in a quantity r is given by

. Evaluate the uncertainty in the radial
position of the electron in the ground state of the hydro-
gen atom. Use the average value of r found in the previous
problem: . The average value of the squared
distance between the electron and the proton is given by

47. An example of the correspondence principle . Use Bohr’s model
of the hydrogen atom to show that when the electron
moves from the state n to the state n � 1, the frequency of
the emitted light is

Show that as n : �, this expression varies as 1/n3 and re-
duces to the classical frequency one expects the atom to
emit. (Suggestion: To calculate the classical frequency, note
that the frequency of revolution is v/2�r, where r is given
by Eq. 11.22.)

48. Example 29.2 calculates the most probable value for
the radial coordinate r of the electron in the ground state
of a hydrogen atom. Problem 29.45 shows that the average
value is . For comparison with these modal and
r � � 3a0/2

f � � 2�2mek 2
e e 4

h3n2 � 
2n � 1

(n � 1)2


r 2� � �
all space

� � � 2r 2 dV � ��

0
P(r)r 2dr


r � � 3a 0/2

�r � √
r 2� � 
r�2

45.

e �B/me

B
:

mean values, find the median value of r. Proceed as
follows. (a) Derive an expression for the probability, as a
function of r, that the electron in the ground state of
hydrogen will be found outside a sphere of radius r cen-
tered on the nucleus. (b) Make a graph of the probability
as a function of r/a0. Choose values of r/a0 ranging from 0
to 4.00 in steps of 0.250. (c) Find the value of r for which
the probability of finding the electron outside a sphere of
radius r is equal to the probability of finding the electron
inside this sphere. You must solve a transcendental equa-
tion numerically, and your graph is a good starting point.

Suppose a hydrogen atom is in the 2s state, with its wave
function given by Equation 29.8. Taking r � a0, calculate
values for (a) �2s(a 0), (b) ��2s(a 0)�2, and (c) P2s(a 0).

50. The states of matter are solid, liquid, gas, and plasma.
Plasma can be described as a gas of charged particles or a
gas of ionized atoms. Most of the matter in the Solar
System is plasma (throughout the interior of the Sun). In
fact, most of the matter in the Universe is plasma; so is a
candle flame. Use the information in Figure 29.12 to make
an order-of-magnitude estimate for the temperature to
which a typical chemical element must be raised to turn
into plasma by ionizing most of the atoms in a sample.
Explain your reasoning.

51. Assume that three identical uncharged particles of mass
m and spin are contained in a one-dimensional
box of length L. What is the ground-state energy of this
system?

52. The force on a magnetic moment �z in a nonuniform
magnetic field Bz is given by Fz � �z(dBz /dz). If a beam of
silver atoms travels a horizontal distance of 1.00 m through
such a field and each atom has a speed of 100 m/s, how
strong must be the field gradient dBz/dz to deflect the
beam 1.00 mm?

(a) Show that the most probable radial position for
an electron in the 2s state of hydrogen is r � 5.236a0.
(b) Show that the wave function given by Equation 29.8 is
normalized.

54. Review problem. (a) Is the mass of a hydrogen atom in its
ground state larger or smaller than the sum of the masses
of a proton and an electron? (b) What is the mass differ-
ence? (c) How large is the difference as a percentage of
the total mass? (d) Is it large enough to affect the value of
the atomic mass listed to six decimal places in Table A.3 in
Appendix A?

An electron in chromium moves from the n � 2 state to
the n � 1 state without emitting a photon. Instead, the
excess energy is transferred to an outer electron (one in
the n � 4 state), which is then ejected by the atom. This
phenomenon is called an Auger (pronounced “ohjay”)
process, and the ejected electron is referred to as an Auger
electron. Use the Bohr theory to find the kinetic energy of
the Auger electron.

56. Suppose the ionization energy of an atom is 4.10 eV. In the
spectrum of this same atom, we observe emission lines with
wavelengths 310 nm, 400 nm, and 1 377.8 nm. Use this
information to construct the energy level diagram with the
fewest levels. Assume that the higher levels are closer
together.

55.

53.

1
2

49.
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57. For hydrogen in the 1s state, what is the probability of
finding the electron farther than 2.50a0 from the nucleus?

58. All atoms have the same size, to an order of magnitude.
(a) To show that, estimate the diameters for aluminum
(with molar mass 27.0 g/mol and density 2.70 g/cm3)
and uranium (molar mass 238 g/mol and density
18.9 g/cm3). (b) What do the results imply about
the wave functions for inner-shell electrons as we
progress to higher and higher atomic mass atoms?
(Suggestion: The molar volume is approximately D3NA,
where D is the atomic diameter and NA is Avogadro’s
number.)

59. In the technique known as electron spin resonance
(ESR), a sample containing unpaired electrons is placed
in a magnetic field. Consider the simplest situation, in
which only one electron is present and therefore only two
energy states are possible, corresponding to . In
ESR, the absorption of a photon causes the electron’s
spin magnetic moment to flip from the lower energy state
to the higher energy state. According to the result of
Problem 22.20 in Chapter 22, the change in energy is
2�BB. (The lower energy state corresponds to the case
where the z component of the magnetic moment is
aligned with the magnetic field, and the higher energy
state is the case where the z component of is aligned
opposite to the field.) What is the photon frequency
required to excite an ESR transition in a 0.350-T mag-
netic field?

60. Show that the wave function for a hydrogen atom in the
2s state

�:spin

�:spin

ms � � 12

satisfies the spherically symmetric Schrödinger equation
given in Problem 29.13.

61. Review problem. Steven Chu, Claude Cohen-Tannoudji, and
William Phillips received the 1997 Nobel Prize in Physics for
“the development of methods to cool and trap atoms with
laser light.” One part of their work was with a beam of atoms
(mass �10�25 kg) that move at a speed on the order of 
1 km/s, similar to the speed of molecules in air at room tem-
perature. An intense laser light beam tuned to a visible
atomic transition (assume 500 nm) is directed straight into
the atomic beam. That is, the atomic beam and the light
beam are traveling in opposite directions. An atom in the
ground state immediately absorbs a photon. Total system
momentum is conserved in the absorption process. After a
lifetime on the order of 10�8 s, the excited atom radiates by
spontaneous emission. It has an equal probability of emitting
a photon in any direction. Therefore, the average “recoil” of
the atom is zero over many absorption and emission cycles.
(a) Estimate the average deceleration of the atomic beam.
(b) What is the order of magnitude of the distance over
which the atoms in the beam will be brought to a halt?

62. Find the average (expectation) value of 1/r in the 1s state
of hydrogen. Note that the general expression is given by

Is the result equal to the inverse of the average value of r ?


1/r � � �
all space

� � �2(1/r) dV � ��

0
P(r)(1/r) dr

� 2s(r) �
1

4√2�
 � 1

a0
�

3/2

�2 �
r

a0
� e�r/2a 0

29.1 (b). The number of subshells is the same as the num-
ber of allowed values of �. The allowed values of � for
n � 4 are � � 0, 1, 2, and 3, so there are four
subshells.

29.2 (a) Five values (0, 1, 2, 3, 4) of � and (b) nine different
values (�4, �3, �2, �1, 0, 1, 2, 3, 4) of m� as follows:

� m�

0 0
1 �1, 0, 1
2 �2, �1, 0, 1, 2
3 �3, �2, �1, 0, 1, 2, 3
4 �4, �3, �2, �1, 0, 1, 2, 3, 4

29.3 The vector model for � � 1 is shown at the top of the
right column.

29.4 Cesium, potassium, lithium. The higher the value of Z,
the closer to zero is the energy associated with the out-
ermost electron and the smaller is the ionization
energy.

29.5 Final: M. Initial: O (because the subscript � indicates
that the initial shell is the second shell higher than M).

29.6 (i), (c). The wavelengths of the characteristic x-rays are
determined by the separation between energy levels in the
atoms of the target, which is unrelated to the energy with
which electrons are fired at the target. The only depen-
dence is that the incoming electrons must have enough
energy to eject an atomic electron from an inner shell.
(ii), (b). The minimum wavelength of the bremsstrahlung
is associated with the highest-energy photon. This photon
comes from an electron striking the target and giving up
all its energy to electromagnetic radiation in one collision.
Therefore, higher-energy incoming electrons will result in
higher-energy photons with shorter wavelengths.
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In 1896, the year that marked the birth of nuclear physics,
Antoine-Henri Becquerel (1852–1908) introduced the world
of science to radioactivity in uranium compounds by acciden-

tally discovering that uranyl potassium sulfate crystals emit an
invisible radiation that can darken a photographic plate when
the plate is covered to exclude light. After a series of experi-
ments, he concluded that the radiation emitted by the crystals
was of a new type, one that requires no external stimulation and
is so penetrating that it can darken protected photographic
plates and ionize gases.

A great deal of research followed as scientists attempted to
understand the radiation emitted by radioactive nuclei. Pioneering
work by Rutherford showed that the radiation was of three types,
which he called alpha, beta, and gamma rays. Later experiments
showed that alpha rays are helium nuclei, beta rays are electrons
or related particles called positrons, and gamma rays are high-
energy photons.

As we saw in Section 29.1, the 1911 experiments of Rutherford
established that the nucleus of an atom has a very small volume
and that most of the atomic mass is contained in the nucleus.

Nuclear Physics
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The Ice Man, discovered in 1991 when an
Italian glacier melted enough to expose his
remains. His possessions, particularly his tools,
have shed light on the way people lived in the
Bronze Age. A dating technique using radioac-
tive carbon-14 was used to determine how
long ago this person lived.
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Furthermore, such studies demonstrated a new type of force, the nuclear force, first
introduced in Section 5.5, that is predominant at distances on the order of 10�15 m
and essentially zero at distances larger than that.

In this chapter, we discuss the structure of the atomic nucleus. We shall describe
the basic properties of nuclei, nuclear forces, nuclear binding energy, the phenom-
enon of radioactivity, and nuclear reactions.

SOME  PROPERTIES  OF  NUCLEI
In the commonly accepted structural model of the nucleus, all nuclei are com-
posed of two types of particles: protons and neutrons. The only exception is the
ordinary hydrogen nucleus, which is a single proton with no neutrons. In describ-
ing the atomic nucleus, we identify the following integer quantities:

• The atomic number Z (introduced in Chapter 29) equals the number of protons
in the nucleus (the atomic number is sometimes called the charge number).

• The neutron number N equals the number of neutrons in the nucleus.
• The mass number A equals the number of nucleons (neutrons plus protons) in

the nucleus. That is, A � N � Z.

In representing nuclei, it is convenient to have a symbolic representation that
shows how many protons and neutrons are present. The symbol used is , where
X represents the chemical symbol for the element. For example, Fe (iron) has a
mass number of 56 and an atomic number of 26; therefore, it contains 26 protons
and 30 neutrons. When no confusion is likely to arise, we omit the subscript Z
because the chemical symbol can always be used to determine Z . Therefore, is
the same as 56Fe and can also be expressed as “iron-56.”

The nuclei of all atoms of a particular element contain the same number of pro-
tons but often contain different numbers of neutrons. Nuclei that are related in
this way are called isotopes. The isotopes of an element have the same Z value but
different N and A values. The natural abundances of isotopes can differ substan-
tially. For example, and are four isotopes of carbon. The natural
abundance of the isotope is about 98.9%, whereas that of the isotope is
only about 1.1%. ( and exist in trace amounts.) Even the simplest element,
hydrogen, has isotopes: the ordinary hydrogen nucleus; deuterium; and

tritium. Some isotopes do not occur naturally but can be produced in the labo-
ratory through nuclear reactions.

3
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2
1H,1

1H,
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 6C11
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(i) Consider the following three nuclei: 12C, 13N, 14O. What is the
same for these three nuclei? (a) number of protons (b) number of neutrons
(c) number of nucleons. (ii) Consider the following three nuclei: 12N, 13N, 14N. From
the same list of choices, what is the same for these three nuclei? (iii) Consider the
following three nuclei: 14C, 14N, 14O. From the same list of choices, what is the same for
these three nuclei?

QUICK QUIZ 30.1

Charge and Mass
The proton carries a single positive charge �e and the electron carries a single neg-
ative charge �e, where e � 1.60 � 10�19 C. The neutron is electrically neutral, as
its name implies. Because the neutron has no charge, it was difficult to detect with
early experimental apparatus and techniques. Today we can detect neutrons rela-
tively easily with modern detection devices.

A convenient unit for measuring mass on a nuclear scale is the atomic mass unit
u. This unit is defined in such a way that the atomic mass of the isotope is
exactly 12 u, where 1 u � 1.660 539 � 10�27 kg. The proton and neutron each

12
 6C



have a mass of approximately 1 u, and the electron has a mass that is only a small
fraction of an atomic mass unit:

Because the rest energy of a particle is given by ER � mc 2 (Section 9.7), it is
often convenient to express the atomic mass unit in terms of its rest energy equiva-
lent. For one atomic mass unit, we have

where we have used the conversion 1 eV � 1.602 176 � 10�19 J. Using this equiva-
lence, nuclear physicists often express mass in terms of the unit MeV/c2. The
masses of several simple particles are given in Table 30.1. The masses and some
other properties of selected isotopes are provided in Table A.3 in Appendix A.

The Size of Nuclei
The size and structure of nuclei were first investigated in the scattering experi-
ments of Rutherford, discussed in Section 29.1. Using the principle of conservation
of energy, Rutherford found an expression for how close an alpha particle moving
directly toward the nucleus can approach the nucleus before being turned around
by Coulomb repulsion.

Let us consider the system of the incoming alpha particle (Z � 2) and the
nucleus (arbitrary Z ), and apply the energy version of the isolated system model.
Because the nucleus is assumed to be much more massive than the alpha particle,
we identify the kinetic energy of the system as the kinetic energy of the alpha parti-
cle alone. When the alpha particle and the nucleus are far apart, we can approxi-
mate the potential energy of the system as zero. If the collision is head-on, the
alpha particle stops momentarily at some point (Active Fig. 30.1) and the energy of
the system is entirely potential. Therefore, the initial kinetic energy of the incom-
ing alpha particle is converted completely to electric potential energy of the system
when the particle stops:

where d is the distance of closest approach, Z is the atomic number of the target
nucleus, and we have used the nonrelativistic expression for kinetic energy because
speeds of alpha particles from radioactive decay are small relative to c. Solving for d,
we find that

d �
4keZe2

mv2

1
2 mv2 � ke

q1q2

r
� ke

(2e)(Ze)
d

ER � mc2 � (1.660 539 � 10�27 kg)(2.997 92 � 108 m/s)2 � 931.494 MeV/c2

Mass of electron � 0.000 548 6 u
Mass of neutron � 1.008 665 u
Mass of proton � 1.007 276 u
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Masses of Selected Particles in Various UnitsTABLE 30.1

Mass

Particle kg u MeV/c2

Proton 1.672 62 � 10�27 1.007 276 938.28
Neutron 1.674 93 � 10�27 1.008 665 939.57
Electron 9.109 39 � 10�31 5.48 579 � 10�4 0.510 999

atom 1.673 53 � 10�27 1.007 825 938.783
atom 6.646 48 � 10�27 4.002 603 3 728.40
atom 1.992 65 � 10�27 12.000 000 11 177.912

6C

4
2He

1
1H

d

Ze
2e v = 0 + +

+
++

+
+

+
++ +

An alpha particle on a head-on colli-
sion course with a nucleus of charge
Ze. Because of the Coulomb repulsion
between charges of the same sign, the
alpha particle approaches to a dis-
tance d from the target nucleus, called
the distance of closest approach.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 30.1, you can
adjust the atomic number of the tar-
get nucleus and the kinetic energy of
the alpha particle. Then observe the
approach of the alpha particle toward
the nucleus.

ACTIVE FIGURE 30.1

www.pop4e.com


From this expression, Rutherford found that alpha particles approached to within
3.2 � 10�14 m of a nucleus when the foil was made of gold. Based on this calcula-
tion and his analysis of results for collisions that were not head-on, Rutherford
argued that the radius of the gold nucleus must be less than this value. For silver
atoms, the distance of closest approach was found to be 2 � 10�14 m. From these
results, Rutherford reached his conclusion that the positive charge in an atom is
concentrated in a small sphere called the nucleus, whose radius is no greater than
about 10�14 m. Note that this radius is on the order of 10�4 of the Bohr radius,
corresponding to a nuclear volume which is on the order of 10�12 of the volume of
a hydrogen atom. The nucleus is an incredibly small part of the atom! Because such
small lengths are common in nuclear physics, a convenient unit of length is the
femtometer (fm), sometimes called the fermi, defined as

Since the time of Rutherford’s scattering experiments, a multitude of other
experiments have shown that most nuclei can be geometrically modeled as being
approximately spherical with an average radius of

[30.1]

where A is the mass number and r0 is a constant equal to 1.2 � 10�15 m. Because
the volume of a sphere is proportional to the cube of the radius, it follows from
Equation 30.1 that the volume of a nucleus (assumed to be spherical) is directly
proportional to A, the total number of nucleons, which suggests that all nuclei have
nearly the same density. Nucleons combine to form a nucleus as though they were
tightly packed spheres (Fig. 30.2).

r � r0A1/3

1 fm  �  10�15 m
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■ Radius of a nucleus

A nucleus can be
modeled as a cluster of tightly packed
spheres, each of which is a nucleon.

FIGURE 30.2

Find a numerical value for the density of this 
nucleus.

Solution The nuclear density is

Recalling that the density of water is 103 kg/m3, note
that the nuclear density is about 2.3 � 1014 times
greater than that of water!

2.3 � 1017 kg/m3�
3(1.67 � 10�27 kg)
4�(1.2 � 10�15 m)3 �

�n �
mnucleus

V
�

Am
4
3 � r0 

3 A
�

3m
4�r0 

3

C

Nuclear Volume and DensityEXAMPLE 30.1

Find an approximate expression for the mass of a 
nucleus of mass number A.

Solution The mass of the proton is approximately
equal to that of the neutron. Therefore, if the mass of
one of these particles is m, the mass of the nucleus is 
approximately 

Find an expression for the volume of this nucleus
in terms of the mass number.

Solution Assuming that the nucleus is spherical and 
using Equation 30.1, we find that the volume is

4
3 �r0 

3AV � 4
3 �r 3 �

B

Am.

A

Nuclear Stability
Because the nucleus consists of a closely packed collection of protons and neu-
trons, you might be surprised that it can exist at all. The very large repulsive electro-
static forces between protons in close proximity should cause the nucleus to fly
apart. Nuclei are stable, however, because of the presence of another force, the
nuclear force (see Section 5.5). This short-range force (it is nonzero only for parti-
cle separations less than about 2 fm) is an attractive force that acts between all
nuclear particles. The nuclear force also acts between pairs of neutrons and
between neutrons and protons.



The nuclear force dominates the Coulomb repulsive force within the nucleus
(at short ranges). If that were not the case, stable nuclei would not exist. Moreover,
the nuclear force is independent of charge. In other words, the forces associated
with the proton–proton, proton–neutron, and neutron–neutron interactions are
the same, apart from the additional repulsive Coulomb force for the proton–proton
interaction.

Evidence for the limited range of nuclear forces comes from scattering experi-
ments and from studies of nuclear binding energies, which we shall discuss shortly.
The short range of the nuclear force is shown in the neutron–proton (n–p) poten-
tial energy plot of Figure 30.3a obtained by scattering neutrons from a target
containing hydrogen. The depth of the n–p potential energy well is 40 to 50 MeV,
and a strong repulsive component prevents the nucleons from approaching much
closer than 0.4 fm.

The nuclear force does not affect electrons, enabling energetic electrons to
serve as point-like probes of the charge density of nuclei. The charge indepen-
dence of the nuclear force also means that the main difference between the n–p
and p–p interactions is that the p–p potential energy consists of a superposition of
nuclear and Coulomb interactions as shown in Figure 30.3b. At distances less than
2 fm, the p–p and n–p potential energies are nearly identical, but for distances
greater than this, the p–p potential has a positive energy barrier with a maximum
at 4 fm.

About 260 stable nuclei exist; hundreds of other nuclei have been observed but
are unstable. A useful graphical representation in nuclear physics is a plot of N ver-
sus Z for stable nuclei as shown in Figure 30.4. Note that light nuclei are stable if
they contain equal numbers of protons and neutrons— that is, if N � Z—but heavy
nuclei are stable if N � Z . This behavior can be partially understood by recognizing
that as the number of protons increases, the strength of the Coulomb force
increases, which tends to break the nucleus apart. As a result, more neutrons are
needed to keep the nucleus stable because neutrons experience only the attractive
nuclear force. Eventually, when Z � 83, the repulsive forces between protons
cannot be compensated by the addition of more neutrons. Elements that contain
more than 83 protons do not have stable nuclei.

Interestingly, most stable nuclei have even values of A. In fact, certain values of
Z and N correspond to nuclei with unusually high stability. These values of Z and N,
called magic numbers, are

Z or N � 2, 8, 20, 28, 50, 82, 126 [30.2]

For example, the helium nucleus (two protons and two neutrons), which has Z � 2
and N � 2, is very stable. This stability is reminiscent of the chemical stability of
inert gases and suggests quantized nuclear energy levels, which we indeed find to
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the proton–proton interaction. To
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this scale, the height of the peak for
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exaggerated by a factor of 10.
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be the case. Some structural models of the nucleus predict a shell structure similar
to that for the atom.

Nuclear Spin and Magnetic Moment
In Chapter 29, we discussed that an electron has an intrinsic angular momentum
called spin. Protons and neutrons, like electrons, also have an intrinsic angular
momentum. Furthermore, a nucleus has a net intrinsic angular momentum
that arises from the individual spins of the protons and neutrons. This angular
momentum must obey the same quantum rules as orbital angular momentum
and spin (Section 29.4). Therefore, the magnitude of the nuclear angular momentum
is due to the combination of all nucleons and is equal to , where I is
called the nuclear spin quantum number and may be an integer or a half-integer.
The maximum component of the nuclear angular momentum projected along any
direction is . Figure 30.5 illustrates the possible orientations of the nuclear spin
and its projections along the z axis for the case where .

The nuclear angular momentum has a nuclear magnetic moment associated
with it. The magnetic moment of a nucleus is measured in terms of the nuclear
magneton 	n , a unit of magnetic moment defined as

[30.3]

This definition is analogous to Equation 29.15 for the z component of the spin
magnetic moment for an electron, which is the Bohr magneton 	B. Note that 	n is
smaller than 	B by a factor of about 2 000 because of the large difference in masses
of the proton and electron.

	n   �   
e 


2mp
� 5.05 � 10�27 J/T

I � 3
2

I


√I(I � 1) 
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The magnetic moment of a free proton is 2.792 8	n. Unfortunately, no general
theory of nuclear magnetism explains this value. Another surprising point is that a
neutron, despite having no electric charge, also has a magnetic moment, which has
a value of � 1.913 5	n. The negative sign indicates that the neutron’s magnetic
moment is opposite its spin angular momentum. Such a magnetic moment for a
neutral particle suggests that we need to design a structural model for the neutron
that explains such an observation. This structural model, the quark model, will be
discussed in Chapter 31.
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Which do you expect to show very little variation among different iso-
topes of an element? (a) atomic mass (b) nuclear spin magnetic moment (c) chemical
behavior

QUICK QUIZ 30.2

Nuclear Magnetic Resonance and Magnetic 
Resonance Imaging
The potential energy of a system consisting of a magnetic dipole moment in a
magnetic field is . When the direction of is along the field, the potential
energy of the system has its minimum value � 	B. When the direction of is
opposite the field, the potential energy has its maximum value 	B . Because the
direction of the magnetic moment for a particle is quantized, the energies of the
system are also quantized. In addition, because the spin vector cannot align exactly
with the direction of the magnetic field, the extreme values of the energy are
� 	zB, where 	z is the z component of the magnetic moment. The two energy
states for a nucleus with a spin of are shown in Figure 30.6. These states are often
called spin states because they differ in energy as a result of the direction of the spin.

It is possible to observe transitions between these two spin states in a sample
using a technique known as nuclear magnetic resonance (NMR). A constant
magnetic field changes the energy associated with the spin states, splitting them
apart in energy (Fig. 30.6). In addition, the sample is irradiated with electromag-
netic waves in the radio range of the electromagnetic spectrum. When the fre-
quency of the radio waves is adjusted such that the photon energy matches the sep-
aration energy between spin states, the photon is absorbed by a nucleus in the
ground state, raising the nucleus–magnetic field system to the higher-energy spin
state. The result is a net absorption of energy by the system, which is detected by
the experimental control and measurement system. A diagram of the apparatus
used to detect an NMR signal is illustrated in Figure 30.7. The absorbed energy is
supplied by the oscillator producing the radio waves. Nuclear magnetic resonance
and a related technique called electron spin resonance are extremely important
methods for studying nuclear and atomic systems and how these systems interact
with their surroundings.

1
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A nucleus with spin can 
occupy one of two energy states when placed in
an external magnetic field. The lower energy
state Emin corresponds to the case where the spin
is aligned with the field as much as possible 
according to quantum mechanics, and the higher
energy state Emax corresponds to the case where
the spin is opposite the field as much as possible.
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2FIGURE 30.6



A widely used medical diagnostic technique called MRI, for magnetic resonance
imaging, is based on nuclear magnetic resonance. In MRI, the patient is placed
inside a large solenoid that supplies a spatially varying magnetic field. Because of
the variation in the magnetic field across the patient’s body, protons in hydrogen
atoms in water molecules in different parts of the body have different splittings in
energy between spin states, and the resonance signal can be used to provide infor-
mation on the positions of the protons. A computer is used to analyze the position
information to provide data for constructing a final image. An MRI scan showing
incredible detail in internal body structure is shown in Figure 30.8. The main
advantage of MRI over other imaging techniques in medical diagnostics is that it
does not cause damage to cellular structures as x-rays do. Photons associated with
the radio-frequency signals used in MRI have energies of only about 10�7 eV.
Because molecular bond strengths are much larger (on the order of 1 eV), the
radio-frequency radiation cannot cause cellular damage. In comparison, x-rays
or � -rays have energies ranging from 104 to 106 eV and can cause considerable
cellular damage. Therefore, despite some individuals’ fears of the word nuclear
associated with magnetic resonance imaging, the radio-frequency radiation
involved is overwhelmingly safer than x-rays!

BINDING  ENERGY
It is found that the mass of a nucleus is always less than the sum of the masses of its
nucleons. Because mass is a manifestation of energy, the total rest energy of the
bound system (the nucleus) is less than the combined rest energy of the separated
nucleons. This difference in energy is called the binding energy Eb of the nucleus
and represents the energy that must be added to a nucleus to break it apart into its
components:

[30.4]

where M(H) is the atomic mass of the neutral hydrogen atom, represents
the atomic mass of an atom of the isotope mn is the mass of the neutron, and
the masses are all in atomic mass units. Note that the mass of the Z electrons
included in M(H) cancels with the mass of the Z electrons included in the term

A
Z X,

M(A
Z X)

Eb(MeV) � [ZM(H) � Nmn � M(A
ZX)] � 931.494 MeV/u
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Experimental arrangement for nuclear magnetic resonance. The radio-frequency
magnetic field created by the coil surrounding the sample and provided by the
variable-frequency oscillator is perpendicular to the constant magnetic field created by
the electromagnet. When the nuclei in the sample meet the resonance condition, the
nuclei absorb energy from the radio-frequency field of the coil, and this absorption
changes the characteristics of the circuit in which the coil is included. Most modern
NMR spectrometers use superconducting magnets at fixed field strengths and
operate at frequencies of approximately 200 MHz.

FIGURE 30.7

Magnetic resonance imaging

A color-enhanced
MRI scan of a human brain.

FIGURE 30.8
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� Binding energy of a nucleus

BINDING ENERGY When separate
nucleons are combined to form a
nucleus, the rest energy of the system
is reduced. Therefore, the change in
energy is negative. The absolute
value of this change is called the
binding energy. This difference in
sign may be a source of confusion.
For example, an increase in binding
energy corresponds to a decrease in
the rest energy of the system.

� PITFALL PREVENTION 30.1



within a small difference associated with the atomic binding energy of the
electrons. Because atomic binding energies are typically several electron volts and
nuclear binding energies are several million electron volts, this difference is negligi-
ble, and we adopt a simplification model in which we ignore this difference.

M(A
Z X)
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This result tells us that separating a deuteron into its
constituent proton and neutron requires adding 
2.224 MeV of energy to the deuteron. One way of 
supplying the deuteron with this energy is by bombard-
ing it with energetic particles.

� 2.224 MeV

 � 2.014  102 u] � 931.494 MeV/u

 Eb(MeV) � [(1)(1.007  825 u)� (1)(1.008  665 u)

The Binding Energy of the DeuteronEXAMPLE 30.2
Calculate the binding energy of the deuteron (the 
nucleus of a deuterium atom), which consists of a
proton and a neutron, given that the atomic mass of
deuterium is 2.014 102 u.

Solution From Table 30.1, we see that the mass 
of the hydrogen atom, representing the proton, is
M(H) � 1.007 825 u and that the neutron mass 
mn � 1.008 665 u. Therefore,

A plot of binding energy per nucleon Eb/A as a function of mass number for var-
ious stable nuclei is shown in Figure 30.9. Note that the curve has a maximum in
the vicinity of A � 60, corresponding to isotopes of iron, cobalt, and nickel. That is,
nuclei having mass numbers either greater or less than 60 are not as strongly bound
as those near the middle of the periodic table. The higher values of binding energy
per nucleon near A � 60 imply that energy is released when a heavy nucleus splits,
or fissions, into two lighter nuclei. Energy is released in fission because the nucleons
in each product nucleus are more tightly bound to one another than are the nucle-
ons in the original nucleus. The important process of fission and a second impor-
tant process of fusion, in which energy is released as light nuclei combine, are
considered in detail in Section 30.6.

The binding energy per nucleon in Figure 30.9 is approximately constant at
8 MeV for A � 20. In this case, the nuclear forces between a particular nucleon and
all the other nucleons in the nucleus are said to be saturated; that is, a particular
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nucleon interacts with only a limited number of other nucleons because of the
short-range character of the nuclear force. These other nucleons can be viewed as
being the nearest neighbors in the closely packed structure shown in Figure 30.2.

Figure 30.9 provides insight into fundamental questions about the origin of the
chemical elements. In the early life of the Universe, there were only hydrogen and
helium. Clouds of cosmic gas coalesced under gravitational forces to form stars. As
a star ages, it produces heavier elements from the lighter elements contained
within it, beginning by fusing hydrogen atoms to form helium. This process
continues as the star becomes older, generating atoms having larger and larger
atomic numbers. The nuclide has the largest binding energy per nucleon of
8.794 5 MeV/nucleon. It takes additional energy to create elements in a star with
mass numbers larger than 62 because of their lower binding energies per nucleon.
This energy comes from the supernova explosion that occurs at the end of some
large stars’ lives. Therefore, all the heavy atoms in your body were produced from
the explosions of ancient stars. You are literally made of stardust!

� Thinking Physics 30.1
Figure 30.9 shows a graph of the average amount of energy necessary to remove a
nucleon from the nucleus. Figure 29.12 shows the energy necessary to remove an
electron from an atom. Why does Figure 30.9 show an approximately constant amount
of energy necessary to remove a nucleon (above about A � 20), but Figure 29.12
shows widely varying amounts of energy necessary to remove an electron from the
atom?

Reasoning In the case of Figure 30.9, the approximately constant value of the
nuclear binding energy is a result of the short-range nature of the nuclear force. A
given nucleon interacts only with its few nearest neighbors, rather than with all the
nucleons in the nucleus. Therefore, no matter how many nucleons are present in
the nucleus, removing one nucleon involves separating it only from its nearest
neighbors. The energy to do so is therefore approximately independent of how
many nucleons are present.

On the other hand, the electric force holding the electrons to the nucleus in an
atom is a long-range force. An electron in the atom interacts with all the protons in
the nucleus. When the nuclear charge increases, a stronger attraction occurs
between the nucleus and the electrons. As a result, as the nuclear charge increases,
more energy is necessary to remove an electron, as demonstrated by the upward
tendency of the ionization energy in Figure 29.12 for each period. �

RADIOACTIVITY
At the beginning of this chapter, we discussed the discovery of radioactivity by
Becquerel, which indicated that nuclei emit particles and radiation. This sponta-
neous emission was soon to be called radioactivity.

The most significant investigations of this phenomenon were conducted by
Marie Curie and Pierre Curie (1859–1906). After several years of careful and labo-
rious chemical separation processes on tons of pitchblende, a radioactive ore, the
Curies reported the discovery of two previously unknown elements, both of which
were radioactive, named polonium and radium. Subsequent experiments, includ-
ing Rutherford’s famous work on alpha particle scattering, suggested that radioac-
tivity was the result of the decay, or disintegration, of unstable nuclei.

Three types of radiation can be emitted by a radioactive substance: alpha ()
rays, where the emitted particles are 4He nuclei; beta (�) rays, in which the emitted
particles are either electrons or positrons; and gamma (�) rays, in which the emitted
rays are high-energy photons. A positron is a particle similar to the electron in all
respects except that it has a charge of � e (the positron is said to be the antiparticle

30.3
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Marie Curie (1867 – 1934)
A Polish scientist, Marie Curie
shared the Nobel Prize in Physics in
1903 with her husband, Pierre, and
with Henri Becquerel for their work
on spontaneous radioactivity and
the radiation emitted by radioactive
substances. She wrote “I persist in
believing that the ideas that then
guided us are the only ones which
can lead to the true social progress.
We cannot hope to build a better
world without improving the indi-
vidual. Toward this end, each of us
must work toward his own highest
development, accepting at the same
time his share of responsibility in
the general life of humanity.”
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of the electron; we shall discuss antiparticles further in Chapter 31). The symbol e� is
used to designate an electron and e� designates a positron.

It is possible to distinguish these three forms of radiation using the scheme illus-
trated in Figure 30.10. The radiation from a variety of radioactive samples is
directed into a region with a magnetic field. The radiation is separated into three
components by the magnetic field, two bending in opposite directions and the
third experiencing no change in direction. From this simple observation, one can
conclude that the radiation of the undeflected beam carries no charge (the gamma
ray), the component deflected upward corresponds to positively charged particles
(alpha particles), and the component deflected downward corresponds to nega-
tively charged particles (e�). If the beam includes positrons (e�), these particles
are deflected upward with a different radius of curvature from that of the alpha
particles.

The three types of radiation have quite different penetrating powers. Alpha par-
ticles barely penetrate a sheet of paper, beta particles can penetrate a few millime-
ters of aluminum, and gamma rays can penetrate several centimeters of lead.

The rate at which a decay process occurs in a radioactive sample is proportional
to the number of radioactive nuclei present in the sample (i.e., those nuclei that
have not yet decayed). This dependence is similar to the behavior of population
growth in that the rate at which babies are born is proportional to the number of
people currently alive. If N is the number of radioactive nuclei present at some
instant, the rate of change of N is

[30.5]

where � is called either the decay constant or the disintegration constant and has a
different value for different nuclei. The negative sign indicates that dN/dt is a nega-
tive number; that is, N decreases in time.

If we write Equation 30.5 in the form

we can integrate from an arbitrary initial instant t � 0 to a later time t :

[30.6]

The constant N0 represents the number of undecayed radioactive nuclei at t � 0.
We have seen exponential behaviors before, for example, with the discharging
of a capacitor in Section 21.9. Based on these experiences, we can identify the
inverse of the decay constant 1/� as the time interval required for the number
of undecayed nuclei to fall to 1/e of its original value. Therefore, 1/� is the time
constant for this decay, similar to the time constants we investigated for the
decay of the current in an RC circuit in Section 21.9 and an RL circuit in
Section 23.6.

The decay rate is obtained by differentiating Equation 30.6 with respect
to time:

[30.7]

where R � N� and R 0 � N0� is the decay rate at t � 0. The decay rate of a sample
is often referred to as its activity. Note that both N and R decrease exponentially

R � � dN
dt � � N0�e��t � R0e��t

R

N � N0e��t

 ln � N
N0

� � ��t

 �N

N 0

dN
N

 � �� �t

0
dt 

dN
N

� �� dt

dN
dt

� ��N
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The radiation from
radioactive sources can be separated
into three components by using a mag-
netic field to deflect the charged parti-
cles. The detector array at the right
records the events. The gamma ray is
not deflected by the magnetic field.

FIGURE 30.10

RAYS OR PARTICLES? Early in the
history of nuclear physics, the term 
radiation was used to describe the
emanations from radioactive nuclei.
We now know that two out of the
three types, namely alpha radiation
and beta radiation, involve the
emission of particles. Even though
these particles are not examples of
electromagnetic radiation, the use
of the term radiation for all three
types is deeply entrenched in our
language. We will use this term 
because of its wide usage in the
physics community.

� PITFALL PREVENTION 30.2

NOTATION WARNING In Section 30.1,
we introduced the symbol N as an
integer representing the number of
neutrons in a nucleus. In this dis-
cussion, the symbol N represents
the number of undecayed nuclei in
a radioactive sample remaining after
some time interval. As you read
further, be sure to consider the
context to determine the appropri-
ate meaning for the symbol N .

� PITFALL PREVENTION 30.3

� Number of undecayed nuclei 
as a function of time



with time. The plot of N versus t in Active Figure 30.11 illustrates the exponential
decay law.

A common unit of activity for a radioactive sample is the curie (Ci), defined as

This unit was selected as the original unit of activity because it is the approximate
activity of 1 g of radium. The SI unit of activity is called the becquerel (Bq):

Therefore, 1 Ci � 3.7 � 1010 Bq. The most commonly used units of activity are
millicuries (mCi) and microcuries (	Ci).

A useful parameter for characterizing radioactive decay is the half-life T1/2. The
half-life of a radioactive substance is the time interval required for half of a given
number of radioactive nuclei to decay. Setting N � N0/2 and t � T1/2 in Equation
30.6 gives

Writing this equation in the form and taking the natural logarithm of
both sides, we have

[30.8]

which is a convenient expression relating the half-life to the decay constant. Note
that after a time interval of one half-life, N0/2 radioactive nuclei remain (by defini-
tion); after two half-lives, half of these have decayed and N0/4 radioactive nuclei
remain; after three half-lives, N0/8 remain; and so on. In general, after n half-lives,
the number of radioactive nuclei remaining is N0/2n.

T1/2 �
ln 2

�
�

0.693
�

e�T1/2 � 2

N0

2
� N0e��T1/2

1 Bq � 1 decay/s

1 Ci � 3.7 � 1010 decays/s
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Plot of the exponential decay law for
radioactive nuclei. The vertical axis
represents the number of undecayed
radioactive nuclei present at any time
t, and the horizontal axis is time. The
time T1/2 is the half-life of the sample.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 30.11, you can
observe the decay curves for nuclei
with varying half-lives.

ACTIVE FIGURE 30.11

N(t)

N0

N0

N0

1
2

1
4

t

N =N0e –  t

T1/2 2T1/2

�

On your birthday, you measure the activity of a sample of 210Bi, which
has a half-life of 5.01 days. The activity you measure is 1.000 	Ci. What is the activity of this
sample on your next birthday? (a) 1.000 	Ci (b) 0 (c) �0.2 	Ci (d) �0.01 	Ci
(e) �10�22 	Ci

QUICK QUIZ 30.3

Suppose you have a pure radioactive material with a half-life of T1/2.
You begin with N0 undecayed nuclei of the material at t � 0. At , how many of
the nuclei have decayed ? (a) (b) (c) (d) 0.707N0 (e) 0.293N0

3
4 N0

1
2 N0

1
4 N0

t �  
1
2T1/2

QUICK QUIZ 30.4

� Thinking Physics 30.2
The isotope is radioactive and has a half-life of 5 730 years. If you start with a sam-
ple of 1 000 carbon-14 nuclei, how many remain (have not decayed) after 17 190 yr?

Reasoning In 5 730 yr, half the sample will have decayed, leaving 500 radioactive
nuclei. In another 5 730 yr (for a total elapsed time of 11 460 yr), the number

remaining is 250 nuclei. After another 5 730 yr (total of 17 190 yr), 125 remain.
These numbers represent ideal circumstances. Radioactive decay is an averaging

process over a very large number of atoms, and the actual outcome depends on
statistics. Our original sample in this example contained only 1 000 nuclei, certainly
not a very large number when we are dealing with atoms, for which we measure the
numbers in macroscopic samples in terms of Avogadro’s number. Therefore, if we
were actually to count the number remaining after one half-life for this small sam-
ple, it probably would not be exactly 500. �

14
 6C

14
 6C

HALF-LIFE It is not true that all the
original nuclei have decayed after
two half-lives! In one half-life, half
of those nuclei that are left will decay.

� PITFALL PREVENTION 30.4

� The curie

� The becquerel

� Relationship between half-life
and decay constant

www.pop4e.com
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The Activity of RadiumEXAMPLE 30.3INTERACTIVE

present at t � 0. With N0 � 3.0 � 1016, we have

� 

What is the activity after the sample is 2.0 � 103 yr
old?

Solution We use Equation 30.7 and that 2.0 � 103 yr �
6.3 � 1010 s:

�

By logging into PhysicsNow at
www.pop4e.com and going to Interactive Example 30.3, you
can practice evaluating the parameters for radioactive decay
of various isotopes of radium.

4.7	Ci

 � (11 	Ci)e�(1.4�10�11 s�1)(6.3�1010 s)

R � R 0e��t

C

11	Ci

 �  (4.2 � 105 Bq)� 1 Ci
3.7 � 1010 Bq �

 R0 � �N0 �  (1.4 � 10�11 s�1)(3.0 � 1016)

The half-life of the radioactive nucleus radium-226,
, is 1.6 � 103 yr.

What is the decay constant � of this nucleus?

Solution We can calculate � using Equation 30.8 and
that

Therefore,

� 

Note that this result is also the probability that any single
nucleus will decay in a time interval of 1 second.

If a sample contains 3.0 � 1016 nuclei at t � 0,
determine its activity in curies at this time.

Solution By definition (Eq. 30.7), R0, the activity at t � 0,
is �N0, where N0 is the number of radioactive nuclei

226
88RaB

226
88Ra

1.4 � 10�11 s�1� �
0.693
T1/2

�
0.693

5.0 � 1010 s

 � 5.0 � 1010 s

T1/2 � 1.6 � 103 yr  � 3.16 � 107 s
1 yr �

A

226
88Ra

To find �, we use Equation 30.8:

(2)

Substituting (2) into (1) gives

To finalize this problem, note that this value is
indeed less than the half-life, as we expected. This
problem demonstrates the difficulty in shipping
radioactive samples with short half-lives. If the ship-
ment were to be delayed by several days, only a small
fraction of the sample would remain upon receipt.
This difficulty can be addressed by shipping a combi-
nation of isotopes in which the desired isotope is the
product of a decay occurring within the sample. It is
possible for the desired isotope to be in equilibrium,
in which case it is created at the same rate as it
decays. Therefore, the amount of the desired isotope
remains constant during the shipping process. Upon
receipt, the desired isotope can be separated from
the rest of the sample, and its decay from the initial
activity begins upon receipt rather than upon
shipment.

2.0  dt � �� 1
8.62 � 10�2 d�1 � ln  �4.2 mCi

5.0 mCi � �

� �
0.693
T1/2

�
0.693
8.04 d

 �  8.62 �  10�2 d�1

A Radioactive Isotope of IodineEXAMPLE 30.4
A sample of the isotope 131I, which has a half-life of
8.04 days, has an activity of 5.0 mCi at the time of ship-
ment. Upon receipt in a medical laboratory, the activity
is 4.2 mCi. How much time has elapsed between the
two measurements?

Solution To conceptualize this problem, consider that
the sample is continuously decaying as it is in transit. The
decrease in the activity is 16% during the time interval 
between shipment and receipt, so we expect the elapsed
time to be less than the half-life of 8.04 d. The stated 
activity corresponds to many decays per second, so N is
large and we can categorize this problem as one in which
we can use our statistical analysis of radioactivity. To ana-
lyze the problem, we use Equation 30.7 in the form

where the sample is shipped at t � 0, at which time the
activity is R 0. Taking the natural logarithm of each side,
we have

(1) t � �
1
�

 ln � R
R0

�
ln � R

R 0
� � ��t 

R
R 0

� e��t
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THE  RADIOACTIVE  DECAY  PROCESSES
When one nucleus changes into another without external influence, the process is
called spontaneous decay. As we stated in Section 30.3, a radioactive nucleus spon-
taneously decays by one of three processes: alpha decay, beta decay, or gamma
decay. Active Figure 30.12 shows a close-up view of a portion of Figure 30.4 from
Z � 65 to Z � 80. The blue circles are the stable nuclei seen in Figure 30.4. In
addition, unstable nuclei above and below the line of stability for each value of Z
are shown. Above the line of stability, the red circles show unstable nuclei that are
neutron-rich and undergo a beta decay process in which an electron is emitted.
Below the blue circles are green circles corresponding to proton-rich unstable
nuclei that primarily undergo a beta decay process in which a positron is emitted or
a competing process called electron capture. Beta decay and electron capture are
described in more detail below. Further below the line of stability (with a few excep-
tions) are yellow circles that represent very proton-rich nuclei for which the
primary decay mechanism is alpha decay, which we will discuss first.

Alpha Decay
If a nucleus emits an alpha particle in a spontaneous decay, it loses two
protons and two neutrons. Therefore, N decreases by 2, Z decreases by 2, and A
decreases by 4. The alpha decay can be written with a symbolic representation as

[30.9]

where X is called the parent nucleus and Y the daughter nucleus. As general rules,
(1) the sum of the mass numbers must be the same on both sides of the symbolic
representation and (2) the sum of the atomic numbers must be the same on both
sides. As examples, 238U and 226Ra are both alpha emitters and decay according to
the schemes

[30.10]

[30.11]

The half-life for 238U decay is 4.47 � 109 years, and the half-life for 226Ra decay is
1.60 � 103 years. In both cases, note that the mass number A of the daughter
nucleus is 4 less than that of the parent nucleus. Likewise, the atomic number Z is
reduced by 2.

The decay of 226Ra is shown in Active Figure 30.13. In addition to the rules for
the mass number and the atomic number, the total energy of the system must be
conserved in the decay. If we call MX the mass of the parent nucleus, MY the mass
of the daughter nucleus, and M the mass of the alpha particle, we can define the
disintegration energy Q :

[30.12]

Note that the value of Q will be in joules if the masses are in kilograms and c �
3.00 � 108 m/s. When the nuclear masses are expressed in the more convenient
atomic mass unit u, however, the value of Q can be calculated in MeV units using
the expression

Q � (MX � MY � M) � 931.494 MeV/u [30.13]

The disintegration energy Q represents the decrease in binding energy of the
system and appears in the form of kinetic energy of the daughter nucleus and the
alpha particle. In this nuclear example of the energy version of the isolated system
model, no energy is entering or leaving the system. The energy in the system simply
transforms from rest energy to kinetic energy, and Equation 30.13 gives the amount
of energy transformed in the process. This quantity is sometimes referred to as the
Q value of the nuclear reaction.

Q � (MX � MY � M)c2

226
 88Ra :  222

 86Rn � 4
2He

238
92 U :  234

 90Th � 4
2He

A
Z X   :     A�4

Z�2 Y � 4
2He

(4
2He)

30.4
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A close-up view of the line of stability
in Figure 30.4 from Z � 65 to Z � 80.
The blue dots represent stable nuclei
as in Figure 30.4. The other colored
dots represent unstable isotopes
above and below the line of stability,
with the color of the dot indicating
the primary means of decay.

Study the decay
modes and decay energies by logging
into PhysicsNow at www.pop4e.com
and going to Active Figure 30.12.
Click on any of the colored dots to
view information about the decay.

ACTIVE FIGURE 30.12
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In addition to energy conservation, we can also apply the momentum version of
the isolated system model to the decay. Because momentum of the isolated system
must be conserved, the lighter alpha particle moves with a much higher speed than
the daughter nucleus after the decay occurs. As a result, most of the available
kinetic energy is associated with the alpha particle. Generally, light particles carry
off most of the energy in nuclear decays.

Equation 30.13 suggests that the alpha particles are emitted with a discrete
energy. Such an energy is calculated in Example 30.5. In practice, we find that
alpha particles are emitted with a set of discrete energies (Active Fig. 30.14), with
the maximum value calculated as in Example 30.5. This set of energies occurs
because the energy of the nucleus is quantized, similar to the quantized energies in
an atom. In Equation 30.13, we assume that the daughter nucleus is left in the
ground state. If the daughter nucleus is left in an excited state, however, less energy
is available for the decay and the alpha particle is emitted with less than the maxi-
mum kinetic energy. That the alpha particles have a discrete set of energies is direct
evidence for the quantization of energy in the nucleus. This quantization is consis-
tent with the model of a quantum particle under boundary conditions because the
nucleons are quantum particles and they are subject to the constraints imposed by
their mutual forces.

Finally, it is interesting to note that if one assumes that 238U (or other
alpha emitters) decays by emitting protons and neutrons, the mass of the decay
products exceeds that of the parent nucleus, corresponding to negative Q values.
Because that cannot occur for an isolated system, such spontaneous decays do
not occur.
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ANOTHER Q We have seen the sym-
bol Q before, but in this section we
introduced a brand new meaning
for this symbol: the disintegration
energy. It is neither heat nor
charge, for which we have used Q
before.

� PITFALL PREVENTION 30.5

The alpha decay of radium-226. The
radium nucleus is initially at rest. Af-
ter the decay, the radon nucleus has
kinetic energy KRn and momentum

, and the alpha particle has ki-
netic energy K and momentum .

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 30.13, you can
observe the decay of radium-226. For
a large number of decays, observe the
development of the graph in Active
Figure 30.14.

p:

p:Rn

ACTIVE FIGURE 30.13

222
Rn 

86

After decay

KRn

α
Rn

Before decay

226
Ra 

88

KRa = 0

pRa = 0

Kα

αpp

Which of the following is the correct daughter nucleus associated
with the alpha decay of ? (a) (b) (c) 157

70 Yb153
70Yb153

72Hf157
72Hf

QUICK QUIZ 30.5

It is left to Problem 30.49 to show that the kinetic
energy of the alpha particle is about 4.8 MeV, whereas
that of the recoiling daughter nucleus is only about
0.1 MeV.

The Energy Liberated When Radium DecaysEXAMPLE 30.5
The 226Ra nucleus undergoes alpha decay according to
Equation 30.11. Calculate the Q value for this process.

Solution Using Equation 30.13 and the mass values in
Table A.3 in Appendix A, we see that

4.87 MeV� (0.005 230 u) � (931.494 MeV/u) �

 �  931.494 MeV/u
 � (226.025 403 u � 222.017 570 u � 4.002 603 u)

 Q � [M(226Ra)�M(222Rn)�M(4He)] � 931.494 MeV/u

We now turn to a structural model for the mechanism of alpha decay that
allows some understanding of the decay process. Imagine that the alpha particle
forms within the parent nucleus so that the parent nucleus is modeled as a system
consisting of the alpha particle and the remaining daughter nucleus. Figure 30.15
is a graphical representation of the potential energy of this system as a function of
the separation distance r between the alpha particle and the daughter nucleus.
The distance R is the range of the nuclear force. The curve represents the
combined effects of (1) the repulsive Coulomb force, which describes the curve
for r � R, and (2) the attractive nuclear force, which causes the energy curve to
be negative for r � R. As we saw in Example 30.5, a typical disintegration energy is
a few MeV, which is the approximate kinetic energy of the emitted alpha particle,
represented by the lower dotted line in Figure 30.15. According to classical
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physics, the alpha particle is trapped in the potential well. How, then, does it ever
escape from the nucleus?

The answer to this question was provided by Gamow and, independently,
Ronald Gurney and Edward Condon in 1928, using quantum mechanics. The view
of quantum mechanics is that there is always some probability that the particle can
tunnel through the barrier as we discussed in Section 28.13. Our model of the
potential energy curve, combined with the possibility of tunneling, predicts that the
probability of tunneling should increase as the particle energy increases because of
the narrowing of the barrier for higher energies. This increased probability should
be reflected as an increased activity and consequently a shorter half-life. Experi-
mental data show just this relationship: nuclei with higher alpha particle energies
have shorter half-lives. If the potential energy curve in Figure 30.15 is modeled as a
series of square barriers whose heights vary with particle separation according to
the curve, we can generate a theoretical relationship between particle energy and
half-life that is in excellent agreement with the experimental results. This particular
application of modeling and quantum physics is a very effective demonstration of
the power of these approaches.

Beta Decay
When a radioactive nucleus undergoes beta decay, the daughter nucleus has the
same number of nucleons as the parent nucleus, but the atomic number is changed
by 1:

(incomplete expression) [30.14]

(incomplete expression) [30.15]

Again, note that nucleon number and total charge are both conserved in these
decays. As we shall see later, however, these processes are not described completely
by these expressions. We shall explain this incomplete description shortly.

The electron or positron involved in these decays is created within the nucleus
as an initial step in the decay process. For example, during beta-minus decay, a
neutron in the nucleus is transformed into a proton and an electron:

n : p � e� (incomplete expression)

For beta-plus decay, we have a proton transformed into a neutron and a positron:

p : n � e� (incomplete expression)

Outside the nucleus, this latter process will not occur because the neutron and elec-
tron have more total mass than the proton. This process can occur within the nu-
cleus, however, because we consider the rest energy changes of the entire nuclear
system, not just the individual particles. In beta-plus decay, the process p : n � e�

does indeed result in a decrease in the mass of the nucleus, so the process does
occur spontaneously.

As with alpha decay, the energy of the isolated system of the nucleus and
the emitted particle must be conserved in beta decay. Experimentally, one
finds that the beta particles are emitted over a continuous range of energies
(Active Fig. 30.16), unlike alpha particles, which are emitted with discrete energies
(Active Fig. 30.14). The kinetic energy increase of the system must be balanced by
the decrease in rest energy of the system; either of these changes is the Q value.
Because all decaying nuclei have the same initial mass, however, the Q value must
be the same for each decay. Then why do the emitted electrons have a range of
kinetic energies? The energy version of the isolated system model seems to make an
incorrect prediction! Further experimentation shows that, according to the decay
processes given by Equations 30.14 and 30.15, the angular momentum (spin) and
linear momentum versions of the isolated system model fail, too, and neither
angular momentum nor linear momentum of the system is conserved!

A
ZX :   A

Z�1Y � e�

A
Z X  :    A

Z�1Y � e�
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Distribution of alpha particle energies
in a typical alpha decay. The energies
of the alpha particles are discrete.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 30.14, you can
observe the development of this
graph for the decay in Active 
Figure 30.13.

ACTIVE FIGURE 30.14
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Potential energy
versus separation distance for a system
consisting of an alpha particle and 
a daughter nucleus. Classically, the 
energy associated with the alpha 
particle is not sufficiently large to
overcome the energy barrier and so
the particle should not be able to 
escape the nucleus. In reality, the 
alpha particle does escape by tunnel-
ing through the barrier.

FIGURE 30.15
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Clearly, the structural model for beta decay must differ from that for alpha
decay. After a great deal of experimental and theoretical study, Pauli proposed in
1930 that a third particle must be involved in the decay to account for the “missing”
energy and momentum. Enrico Fermi later named this particle the neutrino (little
neutral one) because it has to be electrically neutral and have little or no rest
energy. Although it eluded detection for many years, the neutrino (symbolized by �)
was finally detected experimentally in 1956 by Frederick Reines and Clyde Cowan.
It has the following properties:

• It has zero electric charge.
• Its mass is much smaller than that of the electron. Recent experiments show that

the mass of the neutrino is not 0 but is less than 2.8 eV/c2.
• It has a spin of , which allows the law of conservation of angular momentum to

be satisfied in beta decay.
• It interacts very weakly with matter and is therefore very difficult to detect.

We can now write the beta decay processes (Eqs. 30.14 and 30.15) in their
correct form:

(complete expression) [30.16]

(complete expression) [30.17]

where represents the antineutrino, the antiparticle to the neutrino. We shall
discuss antiparticles further in Chapter 31. For now, it suffices to say that a neutrino
is emitted in positron decay, and an antineutrino is emitted in electron decay. The
spin of the neutrino allows angular momentum to be conserved in the decay
processes. Despite its small mass, the neutrino does carry momentum, which allows
linear momentum to be conserved.

The decays of the neutron and proton within the nucleus are more properly
written as

(complete expression)

(complete expression)

As examples of beta decay, we can write the decay schemes for carbon-14 and
nitrogen-12:

(complete expression) [30.18]

(complete expression) [30.19]

Active Figure 30.17 shows a pictorial representation of the decays described by
Equations 30.18 and 30.19.
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Distribution of beta particle energies
in a typical beta decay. All energies
are observed up to a maximum value.
Compare this continuous distribution
of energies to the discrete distribution
of alpha particle energies in Active
Figure 30.14.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 30.16, you can
observe the development of this graph
for the decay in Active Figure 30.17a.

ACTIVE FIGURE 30.16
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(a) The beta decay of carbon-14. The final
products of the decay are the nitrogen-14
nucleus, an electron and an antineutrino.
(b) The beta decay of nitrogen-12. The 
final products of the decay are the carbon-
12 nucleus, a positron and a neutrino.

By logging into
PhysicsNow at www.pop4e.com and
going to Active Figure 30.17, you can
observe the decay of carbon-14. For a
large number of decays, observe the
development of the graph in Active
Figure 30.16.

ACTIVE FIGURE 30.17

MASS NUMBER OF THE ELECTRON An
alternative notation for an electron
is the symbol . This notation
does not imply that the electron has
zero rest energy. The mass of the
electron is so much smaller than
that of the lightest nucleon, how-
ever, that we approximate it as zero
in the context of nuclear decays
and reactions.

0
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� PITFALL PREVENTION 30.6
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In beta-plus decay, the final system consists of the daughter nucleus, the ejected
positron and neutrino, and an electron shed from the atom to neutralize the
daughter atom. In some cases, this process represents an overall increase in rest
energy, so it does not occur. There is an alternative process that allows some
proton-rich nuclei to decay and become more stable. This process, called electron
capture, occurs when a parent nucleus captures one of its own orbital electrons and
emits a neutrino. The final product after decay is a nucleus whose charge is Z � 1:

[30.20]

In most cases, an inner K-shell electron is captured, a process referred to as K capture.
In this process, the only outgoing particles are the neutrino and x-ray photons, origi-
nating in higher-shell electrons falling into the vacancy left by the captured K electron.

A
Z X �  e�  :    A

Z�1Y � �

THE RADIOACTIVE DECAY PROCESSES ❚ 1033

y g p pp

Enrico Fermi (1901 – 1954)
An Italian physicist who immigrated
to the United States to escape the
Fascists, Fermi was awarded the
Nobel Prize in Physics in 1938 for
producing the transuranic elements
by neutron irradiation and for his
discovery of nuclear reactions
brought about by slow neutrons. He
made many other outstanding con-
tributions to physics including his
theory of beta decay, the free elec-
tron theory of metals, and the devel-
opment of the world’s first fission
reactor in 1942. Fermi was truly a
gifted theoretical and experimental
physicist. He was also well known
for his ability to present physics in a
clear and exciting manner. He wrote,
“Whatever Nature has in store for
mankind, unpleasant as it may be,
men must accept, for ignorance is
never better than knowledge.”
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Which of the following is the correct daughter nucleus associated
with the beta decay of ? (a) (b) (c) 184

73Ta183
73Ta183

72Hf184
72Hf

QUICK QUIZ 30.6

Carbon Dating
The beta decay of 14C given by Equation 30.18 is commonly used to date organic
samples. Cosmic rays (high-energy particles from outer space) in the upper atmos-
phere cause nuclear reactions that create 14C. The ratio of 14C to 12C in the carbon
dioxide molecules of our atmosphere has a constant value of about 1.3 � 10�12. All
living organisms have the same ratio of 14C to 12C because they continuously
exchange carbon dioxide with their surroundings. When an organism dies, however,
it no longer absorbs 14C from the atmosphere, and so the ratio of 14C to 12C
decreases as the result of the beta decay of 14C, which has a half-life of 5 730 yr. It is
therefore possible to determine the age of a biological sample by measuring its
activity per unit mass due to the decay of 14C. Using carbon dating, samples of wood,
charcoal, bone, and shell have been identified as having lived 1 000 to 25 000 yr ago.

A particularly interesting example is the dating of the Dead Sea Scrolls, a group
of manuscripts discovered by a shepherd in 1947 (Fig. 30.18). Translation showed
them to be religious documents, including most of the books of the Old Testament.
Because of their historical and religious significance, scholars wanted to know their
age. Carbon dating applied to the material in which they were wrapped established
their age at approximately 1 950 yr.

� Electron capture process

Carbon dating

(a) (b)

(a) A fragment of the Dead Sea Scrolls, which were discovered in the caves in the
photograph (b). The packing material of the scrolls was analyzed by carbon dating 
to determine their age.

FIGURE 30.18
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� Thinking Physics 30.3
In 1991, a German tourist discovered the well-preserved remains of the Ice Man
trapped in a glacier in the Italian Alps, shown in the opening photograph for this
chapter. Radioactive dating of a sample of the Ice Man revealed an age of 5 300 yr.
Why did scientists date the sample using the isotope 14C rather than 11C, a beta
emitter with a half-life of 20.4 min?

Reasoning 14C has a long half-life of 5 730 yr, so the fraction of 14C nuclei remaining
after one half-life is high enough to measure accurate changes in the sample’s activ-
ity. The 11C isotope, which has a very short half-life, is not useful because its activity
decreases to a vanishingly small value over 5 300 yr, making it impossible to detect.

An isotope used to date a sample must be present in a known amount in the
sample when it is formed. As a general rule, the isotope chosen to date a sample
should also have a half-life with the same order of magnitude as the age of the sample.
If the half-life is much less than the age of the sample, there won’t be enough activ-
ity left to measure because almost all the original radioactive nuclei will have
decayed. If the half-life is much greater than the age of the sample, the reduction
in activity that has taken place since the sample died will be too small to measure. �

1034 ❚ CHAPTER 30 NUCLEAR PHYSICS

y g p pp

Radioactive DatingEXAMPLE 30.6INTERACTIVE

Hence, the initial activity of the sample is

We can now calculate the age of the charcoal using
Equation 30.7, which relates the activity R at any time t
to the initial activity R 0:

Because it is given that R � 250 decays/min and
because we found that R0 � 368 decays/min, we can
calculate t by taking the natural logarithm of both sides
of the last equation:

Practice using carbon dating on samples
by logging into PhysicsNow at www.pop4e.com and going to
Interactive Example 30.6.

3.2 � 103 yr� 1.0 � 1011 s �

 t �
0.39

�
�

0.39
3.83 � 10�12 s�1

� �t � ln � R
R 0

� � ln �250
368� �  � 0.39

R � R 0e��t  or    e��t �
R

R 0

 � 6.13 decays/s � 368 decays/min

 R 0 � �N0 � (3.83 � 10�12 s�1)(1.6 � 1012
 nuclei)

A piece of charcoal of mass 25.0 g is found in the ruins
of an ancient city. The sample shows a 14C activity of
250 decays/min. How long has the tree from which this
charcoal came been dead?

Solution We begin by calculating the decay constant
for 14C, which has a half-life of 5 730 yr:

The number of 14C nuclei can be calculated in two
steps. First, the number of 12C nuclei in 25 g of carbon
is

Assuming that the initial ratio of 14C to 12C was 
1.3 � 10�12, we see that the number of 14C nuclei in
25.0 g before decay is

 � 1.6 � 1012 nuclei

 N0(14C) � (1.3 � 10�12)(1.25 � 1024)

 � 1.25 � 1024 nuclei

 N(12C) �
6.02 � 1023 nuclei/mol

12.0 g/mol
 (25.0 g)

 � 3.83 � 10�12 s�1

 � �
0.693
T1/2

�
0.693

(5 730 yr)(3.16 � 107 s/yr)

Gamma Decay
Very often, a nucleus that undergoes radioactive decay is left in an excited quantum
state. The nucleus can then undergo a second decay, a gamma decay, to a lower
state, perhaps to the ground state, by emitting a photon:

[30.21]A
ZX*  :   AZ X � �� Gamma decay
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where X* indicates a nucleus in an excited state. The typical half-life of an excited
nuclear state is 10�10 s. Photons emitted in such a de-excitation process are
called gamma rays. Such photons have very high energy (on the order of 1 MeV or
higher) relative to the energy of visible light (on the order of a few electron volts).
Recall from Chapter 29 that the energy of photons emitted (or absorbed) by an
atom equals the difference in energy between the two atomic quantum states in-
volved in the transition. Similarly, a gamma ray photon has an energy hf that equals
the energy difference �E between two nuclear quantum states. When a nucleus de-
cays by emitting a gamma ray, it ends up in a lower state, but its atomic mass A and
atomic number Z do not change.

A nucleus may reach an excited state as the result of a violent collision with an-
other particle. It is more common, however, for a nucleus to be in an excited state
after it has undergone an alpha or beta decay. The following sequence of events
represents a typical situation in which gamma decay occurs:

[30.22]

[30.23]

Figure 30.19 shows the decay scheme for 12B, which undergoes beta decay with a
half-life of 20.4 ms to either of two levels of 12C. It can either (1) decay directly to
the ground state of 12C by emitting a 13.4-MeV electron or (2) undergo beta-minus
decay to an excited state of 12C*, followed by gamma decay to the ground state. The
latter process results in the emission of a 9.0-MeV electron and a 4.4-MeV photon.
Table 30.2 summarizes the pathways by which radioactive nuclei undergo decay.

NUCLEAR  REACTIONS
In Section 30.4, we discussed the processes by which nuclei can spontaneously
change to another nucleus by undergoing a radioactive decay process. It is also pos-
sible to change the structures and properties of nuclei by bombarding them with
energetic particles. Such changes are called nuclear reactions. In 1919, Rutherford
was the first to observe nuclear reactions, using naturally occurring radioactive
sources for the bombarding particles. Since then, thousands of nuclear reactions
have been observed following the development of charged-particle accelerators in
the 1930s. With today’s advanced technology in particle accelerators and particle
detectors, it is possible to achieve particle energies of more than 1 000 GeV � 1
TeV. These high-energy particles are used to create new particles whose properties
are helping solve the mysteries of the nucleus.

Consider a reaction (Fig. 30.20) in which a target nucleus X is bombarded by an
incoming particle a, resulting in a different nucleus Y and an outgoing particle b:

a � X : Y � b [30.24]

Sometimes this reaction is written in the equivalent symbolic representation

X(a, b)Y

In the preceding section, the Q value, or disintegration energy, associated with
radioactive decay was defined as the change in the rest energy, which is the amount

30.5
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An energy level
diagram showing the initial nuclear
state of a 12B nucleus and two possible
lower-energy states of the 12C nucleus.
The beta decay of the 12B nucleus can
result in either of two situations, with
the 12C nucleus in the ground state or
in the excited state, in which case the
nucleus is denoted as 12C*. In the
latter case, the beta decay to 12C* is
followed by a gamma decay to 12C as
the excited nucleus makes a transition
to the ground state.

FIGURE 30.19

Before reaction
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a X

After reaction

bY bY
pp

A nuclear reaction.
Before the reaction, an incoming
particle a moves toward a target 
nucleus X. After the reaction, the 
target nucleus has changed to nucleus
Y and an outgoing particle b moves
away from the reaction site.

FIGURE 30.20

Various Decay PathwaysTABLE 30.2

Alpha decay A
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4
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2He
Beta decay (e�) A
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A
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Beta decay (e�) A
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A
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Electron capture A
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Gamma decay A
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of the rest energy transformed to kinetic energy during the decay process. In a
similar way, we define the reaction energy Q associated with a nuclear reaction as
the total change in rest energy that results from the reaction:

Q � (Ma � MX � MY � Mb)c2 [30.25]

A reaction for which Q is positive is called exothermic. After the reaction, the
transformed rest energy appears as an increase in kinetic energy of Y and b over
that of a and X.

A reaction for which Q is negative is called endothermic and represents an
increase in rest energy. An endothermic reaction will not occur unless the bom-
barding particle has a kinetic energy greater than . The minimum kinetic energy
of the incoming particle necessary for such a reaction to occur is called the thresh-
old energy. The threshold energy is larger than because we must also conserve
linear momentum in the isolated system of the initial and final particles. If an in-
coming particle has just energy , enough energy is present to increase the rest
energy of the system, but none is left over for kinetic energy of the final particles,
that is, nothing is moving after the reaction. Therefore, the incoming particle has
momentum before the reaction but there is no momentum of the system afterward,
which is a violation of the law of conservation of momentum.

If particles a and b in a nuclear reaction are identical so that X and Y are also
necessarily identical, the reaction is called a scattering event. If the kinetic energy
of the system (a and X) before the event is the same as that of the system (b and Y)
after the event, it is classified as elastic scattering. If the kinetic energies of the system
before and after the event are not the same, the reaction is described as inelastic
scattering. In this case, the difference in energy is accounted for by the target
nucleus being raised to an excited state by the event. The final system now consists
of b and an excited nucleus Y*, and eventually it will become b, Y, and �, where � is
the gamma-ray photon that is emitted when the system returns to the ground state.
This elastic and inelastic terminology is identical to that used in describing
collisions between macroscopic objects (Section 8.3).

In addition to energy and momentum, the total charge and total number of
nucleons must be conserved in the system of particles for a nuclear reaction. For
example, consider the reaction 19F(p, )16O, which has a Q value of 8.124 MeV. We
can show this reaction more completely as

We see that the total number of nucleons before the reaction (1 � 19 � 20) is
equal to the total number after the reaction (16 � 4 � 20). Furthermore, the total
charge (Z � 10) is the same before and after the reaction.

THE  ENGINE  OF  THE  STARS
One of the important features of nuclear reactions is that much more energy is
released (i.e., converted from rest energy) than in normal chemical reactions such
as in the burning of fossil fuels. Let us look back at our binding energy curve (see
Fig. 30.9) and consider two important nuclear reactions that relate to that curve. If
a heavy nucleus at the right of the graph splits into two lighter nuclei, the total
binding energy within the system increases, representing energy released from the
nuclei. This type of reaction was observed and reported in 1939 by Otto Hahn and
Fritz Strassman. This reaction, known as fission, was of great scientific and political
interest at the time of World War II because of the development of the first nuclear
weapon.

In the fission reaction, a fissionable nucleus (the target nucleus X), which is
often 235U, absorbs a slowly moving neutron (the incoming particle a) and the
nucleus splits into two smaller nuclei (two nuclei Y1 and Y2), releasing energy and

30.6
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more neutrons (several particles b). These neutrons can then go on to be absorbed
within other nuclei, causing other fissions. With no means of control, the result is a
chain reaction explosion as suggested by Active Figure 30.21. With proper control,
the fission process is used in nuclear power generating stations.

Examining the other end of the binding energy curve, we see that we could also
increase the binding energy of the system and release energy by combining two
light nuclei. This process of fusion is made difficult because the nuclei must over-
come a very strong Coulomb repulsion before they become close enough together
to fuse. One way to assist the nuclei in overcoming this repulsion is to cause them
to move with very high kinetic energy by raising the system of nuclei to a very high
temperature. If the density of nuclei is high also, the probability of nuclei colliding
is high and fusion can occur. The technological problem of creating very high
temperatures and densities is a major challenge in the area of Earth-based
controlled fusion research.

At some natural locations (e.g., the cores of stars), the necessary high tempera-
tures and densities exist. Consider a collection of gas and dust somewhere in the
Universe to be an isolated system. What happens as this system collapses under its
own gravitational attraction? Energy of the system is conserved, and the gravita-
tional potential energy associated with the separated particles decreases while the
kinetic energy of the particles increases, just like a falling ball with cosmic particles
“falling” into a gravitational center. As the falling particles collide with the
particles that have already fallen into the central region of collapse, their kinetic
energy is distributed to the other particles by collisions and randomized; it
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A nuclear chain reaction initiated by the capture of a neutron by a 235U
nucleus.

By logging into PhysicsNow at www.pop4e.com and going to Active Figure 30.21,
you can observe the chain reaction.

ACTIVE FIGURE 30.21
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becomes internal energy, which is related to the temperature of the collection of
particles.

If the temperature and density of the system’s core rise to the point where
fusion can occur, the system becomes a star. The primary constituent of the
Universe is hydrogen, so the fusion reaction at the center of a star combines hydro-
gen nuclei—protons— into helium nuclei. A common reaction process for stars
with relatively cool cores (T � 15 � 106 K) is the proton–proton cycle. In the first
step of the process, two protons combine to form deuterium:

Notice the implicit 22H nucleus that is formed but that does not appear in the reac-
tion equation. This nucleus is highly unstable and decays very rapidly by beta-plus
decay to the deuterium nucleus, a positron and a neutrino.

In the next step, the deuterium nucleus undergoes fusion with another proton
to form a helium-3 nucleus:

Finally, two helium-3 nuclei formed in such reactions can fuse to form helium-4
and two protons:

The net result of this cycle has been the joining of four protons to form a helium-4
nucleus, with the release of energy that eventually leaves the star as electromagnetic
radiation from its surface. In addition, notice that the reaction releases neutrinos,
which serve as a signal for beta decay occurring within the star. The observation of in-
creased neutrino flow from a supernova is an important tool in analyzing the event.

For stars with hotter cores (T � 15 � 106 K), another process, called the carbon
cycle, dominates. At such high temperatures, hydrogen nuclei can fuse into nuclei
heavier than helium such as carbon. In the first of six steps in the cycle, a carbon
nucleus fuses with a proton to form nitrogen:

The nitrogen nucleus is proton-rich and undergoes beta-plus decay:

The resulting carbon-13 nucleus fuses with another proton, with the emission of a
gamma ray:

The nitrogen-14 fuses with another proton, with more gamma emission:

The oxygen nucleus undergoes beta-plus decay:

Finally, the nitrogen-15 fuses with another proton:

Notice that the net effect of this process is to combine four protons into a helium
nucleus, just like the proton–proton cycle. The carbon-12 with which we began the
process is returned at the end, so it acts only as a catalyst to the process and is not
consumed.

Depending on its mass, a star transforms energy in its core at a rate between
1023 and 1033 W. The energy transformed from the rest energy of the nuclei in the
core is transferred outward through the surrounding layers by matter transfer in
two forms. First, neutrinos carry energy directly through these layers to space
because these particles interact only weakly with matter. Second, energy carried by
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Take a practice test by logging into Physics-
Now at www.pop4e.com and clicking on the
Pre-Test link for this chapter.

A nuclear species can be represented by , where A is the
mass number, the total number of nucleons, and Z is the
atomic number, the total number of protons. The total number
of neutrons in a nucleus is the neutron number N, where
A � N � Z. Elements with the same Z but different A and N
values are called isotopes.

Assuming that a nucleus is spherical, its radius is

[30.1]

where r0 � 1.2 fm.
Nuclei are stable because of the nuclear force between

nucleons. This short-range force dominates the Coulomb
repulsive force at distances of less than about 2 fm and is inde-
pendent of charge.

Light nuclei are most stable when the number of protons
equals the number of neutrons. Heavy nuclei are most stable
when the number of neutrons exceeds the number of protons.
In addition, many stable nuclei have Z and N values that are
both even. Nuclei with unusually high stability have Z or N
values of 2, 8, 20, 28, 50, 82, and 126, called magic numbers.

Nuclei have an intrinsic angular momentum (spin) of mag-
nitude , where I is the nuclear spin quantum num-
ber. The magnetic moment of a nucleus is measured in terms
of the nuclear magneton 	n, where

[30.3]

The difference in mass between the separate nucleons and
the nucleus containing these nucleons, when multiplied by c2,
gives the binding energy Eb of the nucleus. We can calculate the
binding energy of any nucleus using the expression

[30.4]

Radioactive processes include alpha decay, beta decay, and
gamma decay. An alpha particle is a 4He nucleus, a beta parti-
cle is either an electron (e�) or a positron (e�), and a gamma
particle is a high-energy photon.

Eb(MeV) � [ZM(H) � Nmn � M(A
Z X )] � 931.494 MeV/u

A
Z X

	n � 
e


2mp
� 5.05 � 10�27 J/T

√I(I � 1) 


r � r0A1/3

A
Z X

If a radioactive material contains N0 radioactive nuclei at
t � 0, the number N of nuclei remaining at time t is

[30.6]

where � is the decay constant, or disintegration constant.
The decay rate, or activity, of a radioactive substance is given
by

[30.7]

where R0 � N0� is the activity at t � 0. The half-life T1/2 is
defined as the time interval required for half of a given num-
ber of radioactive nuclei to decay, where

[30.8]

Alpha decay can occur because according to quantum
mechanics some nuclei have barriers that can be penetrated by
the alpha particles (the tunneling process). This process is en-
ergetically more favorable for those nuclei having large
excesses of neutrons. A nucleus can undergo beta decay in two
ways. It can emit either an electron (e�) and an antineutrino

or a positron (e�) and a neutrino (�). In the electron
capture process, the nucleus of an atom absorbs one of its own
electrons (usually from the K shell) and emits a neutrino. In
gamma decay, a nucleus in an excited state decays to its ground
state and emits a gamma ray.

Nuclear reactions can occur when a target nucleus X is
bombarded by a particle a, resulting in a nucleus Y and an
outgoing particle b:

a � X : Y � b or X(a, b)Y [30.24]

The rest energy transformed to kinetic energy in such a reac-
tion, called the reaction energy Q , is

Q � (Ma � MX � MY � Mb)c2 [30.25]

A reaction for which Q is positive is called exothermic. A reac-
tion for which Q is negative is called endothermic. The mini-
mum kinetic energy of the incoming particle necessary for
such a reaction to occur is called the threshold energy.

(�)

T1/2 �
ln 2

�
�

0.693
�

R � � dN
dt � � N0�e��t � R0e��t

N � N0e��t
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photons from the core is absorbed by the gases in layers outside the core and slowly
works its way to the surface by convection. This energy is eventually radiated from
the surface of the star by electromagnetic radiation, mostly in the infrared, visible,
and ultraviolet regions of the electromagnetic spectrum. The weight of the layers
outside the core keeps the core from exploding. The whole system of a star is stable
as long as the supply of hydrogen in the core lasts.

In the previous chapters, we presented examples of the applications of quantum
physics and atomic physics to processes in space. In this chapter, we have seen that
nuclear processes also have an important role in the cosmos. The formation of stars
is a critical process in the development of the Universe. The energy provided by
stars is crucial to life on planets such as the Earth. In our next, and final, chapter,
we shall discuss the processes that occur on an even smaller scale, the scale of
elementary particles. We shall find again that looking at a smaller scale allows us to
advance our understanding of the largest scale system, the Universe.
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1, 2, 3 � straightforward, intermediate, challenging

� full solution available in the Student Solutions 
Manual and Study Guide

� coached problem with hints available at
www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Note: Atomic masses are listed in Table A.3 in Appendix A.

Section 30.1 � Some Properties of Nuclei
1. What is the order of magnitude of the number of protons

in your body? Of the number of neutrons? Of the number
of electrons?

2. Review problem. Singly ionized carbon is accelerated
through 1 000 V and passed into a mass spectrometer to
determine the isotopes present (see Chapter 22). The
magnitude of the magnetic field in the spectrometer is
0.200 T. (a) Determine the orbit radii for the 12C and the
13C isotopes as they pass through the field. (b) Show that
the ratio of radii may be written in the form

and verify that your radii in part (a) agree with this equation.

3. In a Rutherford scattering experiment, alpha particles
having kinetic energy of 7.70 MeV are fired toward a gold
nucleus. (a) Use energy conservation to determine the
distance of closest approach between the alpha particle
and gold nucleus. Assume that the nucleus remains at rest.

r1

r2
� √ m1

m2
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� answer available in the Student Solutions Manual and
Study Guide

1. In Rutherford’s experiment, assume that an alpha particle is
headed directly toward the nucleus of an atom. Why doesn’t
the alpha particle make physical contact with the nucleus?

2. Why are very heavy nuclei unstable?

Why do nearly all the naturally occurring isotopes lie above
the N � Z line in Figure 30.4?

4. Explain why nuclei that are well off the line of stability in
Figure 30.4 tend to be unstable.

5. From Table A.3 in Appendix A, identify the four stable
nuclei that have magic numbers in both Z and N.

6. If a nucleus has a half-life of 1 year, does that mean that its
whole life is 2 years? Will it be completely decayed after 2
years? Explain.

Two samples of the same radioactive nuclide are prepared.
Sample A has twice the initial activity of sample B. How
does the half-life of A compare with the half-life of B? After
each has passed through five half-lives, what is the ratio of
their activities?

8. “If no more people were to be born, the law of population
growth would strongly resemble the radioactive decay law.”
Discuss this statement.

If a nucleus such as 226Ra initially at rest undergoes alpha
decay, which has more kinetic energy after the decay, the
alpha particle or the daughter nucleus?

10. Can a nucleus emit alpha particles that have different
energies? Explain.

Suppose it could be shown that the cosmic ray intensity at
the Earth’s surface was much greater 10 000 years ago.
How would this difference affect what we accept as valid
carbon-dated values of the age of ancient samples of once-
living matter?

11.

9.

7.

3.

12. Explain why many heavy nuclei undergo alpha decay but
do not spontaneously emit neutrons or protons.

13. Do all natural events have causes? Is the Universe intelligi-
ble? Give reasons for your answers. (Note: You may wish to
consider again Question 5.17 in Chapter 5 on whether the
future is determinate.)

14. Discuss the similarities and differences between fusion and
fission.

15. And swift, and swift past comprehension
Turn round Earth’s beauty and her might.
The heavens blaze in alternation
With deep and chill and rainy night.
In mighty currents foams the ocean
Up from the rocks’ abyssal base,
With rock and sea torn into motion
In ever-swift celestial race.
Corrosive, choking smoke is spraying.
Above infernos, lava flies.
A perilous bridge, the land is swaying
Between them and the gaping skies.
And tempests bluster in a contest
From sea to land, from land to sea.
In rage they forge a chain around us
Of primal meaning, energy.
There flames a lightning disaster
Before the thunder, in its way.
But all Your servants honor, Master,
The gentle order of Your day.

Johann Wolfgang von Goethe wrote the song of
the archangels in Faust half a century before the law 
of conservation of energy was recognized. Students
often find it useful to think of a list of several “forms of
energy,” from kinetic to nuclear. Argue for or against
the view that these lines of poetry make an obvious or
oblique reference to every form of energy and energy
transfer.

QUESTIONS

PROBLEMS
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(b) Calculate the de Broglie wavelength for the 7.70-MeV
alpha particle and compare it with the distance obtained
in part (a). (c) Based on this comparison, why is it proper
to treat the alpha particle as a particle and not as a wave in
the Rutherford scattering experiment?

4. Find the radius of (a) a nucleus of and (b) a nucleus
of .

A star ending its life with a mass of two times the mass of the
Sun is expected to collapse, combining its protons and elec-
trons to form a neutron star. Such a star could be thought
of as a gigantic atomic nucleus. If a star of mass 2 � 1.99 �
1030 kg collapsed into neutrons (mn � 1.67 � 10�27 kg),
what would its radius be? (Assume that r � r0A1/3.)

6. Review problem. What would be the gravitational force
exerted by each of two golf balls on the other, if they were
made of nuclear matter? Assume that each has a 4.30-cm
diameter and that the balls are 1.00 m apart. 

7. The radio frequency at which a nucleus displays resonance
absorption between spin states is called the Larmor preces-
sional frequency and is given by

Calculate the Larmor frequency for (a) free neutrons in a
magnetic field of 1.00 T, (b) free protons in a magnetic
field of 1.00 T, and (c) free protons in the Earth’s
magnetic field at a location where the magnitude of the
field is 50.0 	T.

Section 30.2 � Binding Energy
8. Calculate the binding energy per nucleon for (a) 2H,

(b) 4He, (c) 56Fe, and (d) 238U.

A pair of nuclei for which Z1 � N2 and
Z2 � N1 are called mirror isobars (the atomic and neutron
numbers are interchanged). Binding energy measure-
ments on these nuclei can be used to obtain evidence of
the charge independence of nuclear forces (i.e.,
proton–proton, proton–neutron, and neutron–neutron
nuclear forces are equal). Calculate the difference in bind-
ing energy for the two mirror isobars and . The
electric repulsion among eight protons rather than seven
accounts for the difference.

10. Nuclei having the same mass numbers are called isobars.
The isotope is stable. The radioactive isobar is
located below the line of stable nuclei in Figure 30.4 and
decays by e� emission. Another radioactive isobar of ,

, decays by e� emission and is located above the line
of stable nuclei in Figure 30.4. (a) Which of these three
isobars has the highest neutron-to-proton ratio? (b) Which
has the greatest binding energy per nucleon? (c) Which
do you expect to be heavier, or ?

Using the graph in Figure 30.9, estimate how much energy
is released when a nucleus of mass number 200 fissions
into two nuclei each of mass number 100.

Section 30.3 � Radioactivity
12. The half-life of 131I is 8.04 days. On a certain day, the activ-

ity of an iodine-131 sample is 6.40 mCi. What is its activity
40.2 days later?

11.

139
55Cs139

59Pr

139
55Cs

139
57La

139
59Pr139

57La

15
7N15

8O

9.
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h

5.

238
92U

4
2He

A freshly prepared sample of a certain
radioactive isotope has an activity of 10.0 mCi. After 4.00 h,
its activity is 8.00 mCi. (a) Find the decay constant and half-
life. (b) How many atoms of the isotope were contained in
the freshly prepared sample? (c) What is the sample’s ac-
tivity 30.0 h after it is prepared?

14. A sample of radioactive material contains 1.00 � 1015

atoms and has an activity of 6.00 � 1011 Bq. What is its
half-life?

15. What time interval elapses while 90.0% of the radioactivity of
a sample of disappears as measured by its activity? The
half-life of is 26 h.

16. A radioactive nucleus has half-life T1/2. A sample contain-
ing these nuclei has initial activity R 0. Calculate the num-
ber of nuclei that decay during the interval between the
times t1 and t2.

17. In an experiment on the transport of nutrients in the
root structure of a plant, two radioactive nuclides X and Y
are used. Initially 2.50 times more nuclei of type X are
present than of type Y. Just three days later there are 4.20
times more nuclei of type X than of type Y. Isotope Y has a
half-life of 1.60 d. What is the half-life of isotope X?

18. (a) The daughter nucleus formed in radioactive decay is
often radioactive. Let N10 represent the number of parent
nuclei at time t � 0, N1(t ) the number of parent nuclei at
time t, and �1 the decay constant of the parent. Suppose
the number of daughter nuclei at time t � 0 is zero, let
N2(t) be the number of daughter nuclei at time t, and let
�2 be the decay constant of the daughter. Show that N2(t)
satisfies the differential equation

(b) Verify by substitution that this differential equation has
the solution

This equation is the law of successive radioactive decays.
(c) 218Po decays into 214Pb with a half-life of 3.10 min, and
214Pb decays into 214Bi with a half-life of 26.8 min. On the
same axes, plot graphs of N1(t) for 218Po and N2(t) for
214Pb. Let N10 � 1 000 nuclei, and choose values of t from
0 to 36 min in 2-min intervals. The curve for 214Pb at first
rises to a maximum and then starts to decay. At what instant
tm is the number of 214Pb nuclei a maximum? (d) By
applying the condition for a maximum dN2/dt � 0, derive
a symbolic equation for tm in terms of �1 and �2. Does the
value obtained in part (c) agree with this equation?

Section 30.4 � The Radioactive Decay Processes
Find the energy released in the alpha decay 

You will find Table A.3 useful.

20. Identify the missing nuclide or particle (X):

(a) 
(b) 215

84 Po  :   X � 
X :    65

28 Ni � �

238
92U  :  234

90Th � 42He

19.

N2(t) �
N10�1

�1 � �2
(e��2t

 � e��1t)

dN2

dt
� �1N1 � �2N2

72
33As

72
33As

13.



(c) 
(d) 
(e) 

21. A living specimen in equilibrium with the atmosphere
contains one atom of 14C (half-life � 5 730 yr) for every
7.7 � 1011 stable carbon atoms. An archeological sample
of wood (cellulose, C12H22O11) contains 21.0 mg of
carbon. When the sample is placed inside a shielded beta
counter with 88.0% counting efficiency, 837 counts are
accumulated in one week. Assuming that the cosmic-ray
flux and the Earth’s atmosphere have not changed appre-
ciably since the sample was formed, find the age of the
sample.

22. A 3H nucleus beta decays into 3He by creating an electron
and an antineutrino according to the reaction

The symbols in this reaction refer to nuclei. Write the reac-
tion referring to neutral atoms by adding one electron to
both sides. Then use Table A.3 to determine the total
energy released in this reaction.

The nucleus decays by electron capture. The nuclear
reaction is written

(a) Write the process going on for a single particle within
the nucleus. (b) Write the decay process referring to neu-
tral atoms. (c) Determine the energy of the neutrino.
Disregard the daughter’s recoil.

24. Enter the correct isotope symbol in each open square in
Figure P30.24, which shows the sequences of decays in the
natural radioactive series starting with the long-lived
isotope uranium-235 and ending with the stable nucleus
lead-207.

15
8O � e� :   15

7N � �

15
8O23.

3
1H  :  32He � e� � �

14
7N � 4

2He  :  X � 17
8O

109
48Cd � X   :   109

47Ag � �
X   :   55

26Fe � e� � � taking action to reduce it, such as by reducing infiltration
of air from the ground. (a) Convert the activity 4 pCi/L to
units of becquerel per cubic meter. (b) How many 222Rn
atoms are in one cubic meter of air displaying this activity?
(c) What fraction of the mass of the air does the radon
constitute?

Section 30.5 � Nuclear Reactions

Note: Problem 20.61 in Chapter 20 can be assigned with this
section.

26. Identify the unknown nuclei and particles X and X� in the
following nuclear reactions:

(a) 

(b) 

(c) 

Natural gold has only one isotope, .
If natural gold is irradiated by a flux of slow neutrons,
electrons are emitted. (a) Write the reaction equation.
(b) Calculate the maximum energy of the emitted electrons.

28. A beam of 6.61 MeV protons is incident on a target of .
Those protons that collide with a target nucleus produce
the reaction

( has mass 26.986 705 u.) Ignoring any recoil of the
product nucleus, determine the kinetic energy of the
emerging neutrons.

Review problem. Suppose enriched uranium containing
3.40% of the fissionable isotope is used as fuel for a
ship. The water exerts an average friction force of magni-
tude 1.00 � 105 N on the ship. How far can the ship travel
per kilogram of fuel? Assume that the energy released per
fission event is 208 MeV and that the ship’s engine has an
efficiency of 20.0%.

30. (a) The following fission reaction is typical of those occur-
ring in a nuclear electric generating station:

Find the energy released. The required masses are

(b) What fraction of the initial mass of the system is trans-
formed?

It has been estimated that on the order
of 109 tons of natural uranium is available at concentra-
tions exceeding 100 parts per million, of which 0.7% is the
fissionable isotope 235U. Assume that all the world’s energy
use (7 � 1012 J/s) were supplied by 235U fission in conven-
tional nuclear reactors, releasing 208 MeV for each
reaction. How long would the supply last? The estimate of
uranium supply is taken from K. S. Deffeyes and I. D.
MacGregor, “World Uranium Resources,” Scientific American
242(1):66, 1980.

31.

 M(92
36Kr) � 91.926  2 u

 M(141
56Ba) � 140.914 4 u

 M(235
92U) � 235.043 923 u

 M(1
0n) � 1.008 665 u

1
0n � 235

92 U  :  141
56Ba �  92

36Kr � 3(1
0n)

235
92U

29.

27
14Si

p � 27
13Al  :   27

14Si � n

27
13Al

197
79 Au27.

21
1H   :    21H � X � X�

235
92U �  10n   :   90

38Sr � X � 21
0n

X � 42He   :    24
12Mg � 10n
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FIGURE P30.24

25. Indoor air pollution. Uranium is naturally present in
rock and soil. At one step in its series of radioactive decays,
238U produces the chemically inert gas radon-222, with a
half-life of 3.82 days. The radon seeps out of the ground to
mix into the atmosphere, typically making open air
radioactive with activity 0.3 pCi/L. In homes, 222Rn can be
a serious pollutant, accumulating to reach much higher
activities in enclosed spaces. If the radon activity exceeds
4 pCi/L, the Environmental Protection Agency suggests



32. Of all the hydrogen in the oceans, 0.030 0% of the mass is
deuterium. The oceans have a volume of 317 million mi3.
(a) If nuclear fusion were controlled and all the deuterium
in the oceans were fused to , how many joules of en-
ergy would be released? (b) World power consumption is
about 7.00 � 1012 W. If consumption were 100 times
greater, how many years would the energy calculated in
part (a) last?

Section 30.6 � Context Connection — The Engine 
of the Stars

33. The Sun radiates energy at the rate of 3.85 � 1026 W.
Suppose the net reaction

accounts for all the energy released. Calculate the number
of protons fused per second.

34. In addition to the proton–proton cycle, the carbon
cycle, first proposed by Hans Bethe in 1939, is another
cycle by which energy is released in stars as hydrogen is
converted to helium. The carbon cycle requires higher
temperatures than the proton–proton cycle. The series of
reactions is

12C � 1H : 13N � �
13N : 13C � e� � �

e� � e� : 2�
13C � 1H : 14N � �
14N � 1H : 15O � �

15O : 15N � e� � �

e� � e� : 2�
15N � 1H : 12C � 4He

(a) Assuming that the proton–proton cycle requires a tem-
perature of 1.5 � 107 K, estimate by proportion the tem-
perature required for the carbon cycle. (b) Calculate the Q
value for each step in the carbon cycle and the overall
energy released. (c) Do you think that the energy carried
off by the neutrinos is deposited in the star? Explain.

Consider the two nuclear reactions

A � B : C � E (I)

C � D : F � G (II)

(a) Show that the net disintegration energy for these two
reactions (Q net � Q I � Q II) is identical to the disintegra-
tion energy for the net reaction

A � B � D : E � F � G

(b) One chain of reactions in the proton–proton cycle in
the Sun’s core is

1
1H � 1

1H : 2
1H � 0

1e � �
0
1e � �

0
1e : 2�

1
1H � 2

1H : 3
2He � �

1
1H � 3

2He : 4
2He � 0

1e � �
0
1e � �

0
1e : 2�

Based on part (a), what is Q net for this sequence?

35.

4(1
1H) � 2( 0

�1e) :  42He �  2� � �

4
2He

36. After determining that the Sun has existed for hundreds of
millions of years but before the discovery of nuclear
physics, scientists could not explain why the Sun has con-
tinued to burn for such a long time. For example, if it were
a coal fire, it would have burned up in about 3 000 yr.
Assume that the Sun, whose mass is 1.99 � 1030 kg, origi-
nally consisted entirely of hydrogen and that its total
power output is 3.85 � 1026 W. (a) Assuming the energy-
generating mechanism of the Sun is the fusion of hydro-
gen into helium via the net reaction

calculate the energy (in joules) given off by this reaction.
(b) Determine how many hydrogen atoms constitute 
the Sun. Take the mass of one hydrogen atom to be 
1.67 � 10�27 kg. (c) If the total power output remains con-
stant, after what time interval will all the hydrogen be 
converted into helium, making the Sun die? The actual
projected lifetime of the Sun is about 10 billion years, 
because only the hydrogen in a relatively small core is 
available as a fuel. Only in the core are temperatures and
densities high enough for the fusion reaction to be 
self-sustaining.

37. Carbon detonations are powerful nuclear reactions that
temporarily tear apart the cores inside massive stars late in
their lives. These blasts are produced by carbon fusion,
which requires a temperature of about 6 � 108 K to over-
come the strong Coulomb repulsion between carbon
nuclei. (a) Estimate the repulsive energy barrier to fusion,
using the temperature required for carbon fusion. (In
other words, what is the average kinetic energy of a carbon
nucleus at 6 � 108 K?) (b) Calculate the energy (in MeV)
released in each of these “carbon-burning” reactions:

(c) Calculate the energy (in kWh) given off when 2.00 kg
of carbon completely fuses according to the first reaction.

38. A theory of nuclear astrophysics proposes that all the ele-
ments heavier than iron are formed in supernova explo-
sions ending the lives of massive stars. Assume that at the
time of the explosion the amounts of 235U and 238U were
equal. How long ago did the star(s) explode that released
the elements that formed our Earth? The present
235U/238U ratio is 0.007 25. The half-lives of 235U and 238U
are 0.704 � 109 yr and 4.47 � 109 yr.

Additional Problems
39. (a) One method of producing neutrons for experimental

use is bombardment of light nuclei with alpha particles. In
the method used by James Chadwick in 1932, alpha parti-
cles emitted by polonium are incident on beryllium nuclei:

4
2He � 9

4Be : 12
6C � 1

0n

What is the Q value? (b) Neutrons are also often produced
by small particle accelerators. In one design, deuterons
accelerated in a Van de Graaff generator bombard other
deuterium nuclei:

2
1H � 2

1H : 3
2He � 1

0n

 12C � 12C  : 24Mg � �

 12C � 12C  : 20Ne � 4He

4(1
1H)� 2(e�) :   42He � 2� � �

PROBLEMS ❚ 1043

y g p pp



Is this reaction exothermic or endothermic? Calculate its
Q value.

40. As part of his discovery of the neutron in 1932, Chadwick
determined the mass of the newly identified particle by fir-
ing a beam of fast neutrons, all having the same speed, at
two different targets and measuring the maximum recoil
speeds of the target nuclei. The maximum speeds arise
when an elastic head-on collision occurs between a neu-
tron and a stationary target nucleus. (a) Represent the
masses and final speeds of the two target nuclei as m1, v1,
m2, and v2 and assume that Newtonian mechanics applies.
Show that the neutron mass can be calculated from the
equation

(b) Chadwick directed a beam of neutrons (produced
from a nuclear reaction) on paraffin, which contains
hydrogen. The maximum speed of the protons ejected was
found to be 3.3 � 107 m/s. Because the velocity of the
neutrons could not be determined directly, a second
experiment was performed using neutrons from the same
source and nitrogen nuclei as the target. The maximum
recoil speed of the nitrogen nuclei was found to be 
4.7 � 106 m/s. The masses of a proton and a nitrogen nu-
cleus were taken as 1 u and 14 u, respectively. What was
Chadwick’s value for the neutron mass?

41. When the nuclear reaction represented by Equation 30.24
is endothermic, the reaction energy Q is negative. For the
reaction to proceed, the incoming particle must have a
minimum energy called the threshold energy, E th. Some
fraction of the energy of the incident particle is transferred
to the compound nucleus to conserve momentum. There-
fore, E th must be greater than Q. (a) Show that

(b) Calculate the threshold energy of the incident alpha
particle in the reaction

42. (a) Find the radius of the nucleus. (b) Find the force
of repulsion between a proton at the surface of a 
nucleus and the remaining five protons. (c) How much
work (in MeV) has to be done to overcome this electric
repulsion to put the last proton into the nucleus? (d) Repeat
parts (a), (b), and (c) for .

43. (a) Why is the beta decay p : n � e� � � forbidden for a
free proton? (b) Why is the same reaction possible if the
proton is bound in a nucleus? For example, the following
reaction occurs:

13
7N : 13

6C � e� � �

(c) How much energy is released in the reaction given in
part (b)? [Suggestion: Add seven electrons to both sides of
the reaction to write it for neutral atoms. You may use the
masses m(e�) � 0.000 549 u, M(13C) � 13.003 355 u, and
M(13N) � 13.005 739 u.]

44. The activity of a radioactive sample was measured over
12 h, with the net count rates shown in the table.

238
92U

12
6 C

12
6C

4
2He � 14

7N  :  17
8O � 1

1H

Eth � � Q �1 �
Ma

MX
�

mn �
m1v1 � m2v2

v2 � v1

Counting Rate
Time (h) (counts/min)

1.00 3 100
2.00 2 450
4.00 1 480
6.00 910
8.00 545

10.0 330
12.0 200

(a) Plot the logarithm of counting rate as a function of
time. (b) Determine the decay constant and half-life of the
radioactive nuclei in the sample. (c) What counting rate
would you expect for the sample at t � 0? (d) Assuming
the efficiency of the counting instrument to be 10.0%,
calculate the number of radioactive atoms in the sample at
t � 0.

45. When, after a reaction or disturbance of any kind, a
nucleus is left in an excited state, it can return to its nor-
mal (ground) state by emission of a gamma-ray photon (or
several photons). This process is illustrated by Equation
30.21. The emitting nucleus must recoil to conserve both
energy and momentum. (a) Show that the recoil energy of
the nucleus is 

where �E is the difference in energy between the excited
and ground states of a nucleus of mass M. (b) Calculate
the recoil energy of the 57Fe nucleus when it decays by
gamma emission from the 14.4-keV excited state. For this
calculation, take the mass to be 57 u. [Suggestions: When
writing the equation for conservation of energy, use
(Mv)2/2M for the kinetic energy of the recoiling nucleus.
Also, assume that hf �� Mc 2 and use the binomial
expansion.]

46. After the sudden release of radioactivity from the
Chernobyl nuclear reactor accident in 1986, the
radioactivity of milk in Poland rose to 2 000 Bq/L due
to iodine-131 present in the grass eaten by dairy cattle.
Radioactive iodine, with half-life 8.04 days, is particu-
larly hazardous because the thyroid gland concentrates
iodine. The Chernobyl accident caused a measurable
increase in thyroid cancers among children in Belarus.
(a) For comparison, find the activity of milk due to
potassium. Assume that one liter of milk contains 2.00 g
of potassium, of which 0.011 7% is the isotope 40K with
half-life 1.28 � 109 yr. (b) After what time interval
would the activity due to iodine fall below that due to
potassium?

47. Europeans named a certain direction in the sky as between
the horns of Taurus the Bull. On the day they named
as A.D. July 4, 1054, a brilliant light appeared there.
Europeans left no surviving record of the supernova,
which could be seen in daylight for some days. As it faded
it remained visible for years, dimming for a time with the
77.1-day half-life of the radioactive cobalt-56 that had
been created in the explosion. (a) The remains of the star
now form the Crab Nebula. (See Fig. 10.23 and the

Er �
(�E )2

2Mc2
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opening photographs of Chapter 24.) In it, the cobalt-56
has now decreased to what fraction of its original activity?
(b) Suppose an American, of the people called the
Anasazi, made a charcoal drawing of the supernova. The
carbon-14 in the charcoal has now decayed to what
fraction of its original activity?

48. In a piece of rock from the Moon, the 87Rb content is as-
sayed to be 1.82 � 1010 atoms per gram of material and
the 87Sr content is found to be 1.07 � 109 atoms per gram.
(a) Calculate the age of the rock. (b) Could the material in
the rock actually be much older? What assumption is
implicit in using the radioactive dating method? (The rel-
evant decay is . The half-life of the
decay is 4.75 � 1010 yr.)

The decay of an unstable nucleus by
alpha emission is represented by Equation 30.9. The
disintegration energy Q given by Equation 30.12 must
be shared by the alpha particle and the daughter
nucleus to conserve both energy and momentum in
the decay process. (a) Show that Q and K, the kinetic
energy of the alpha particle, are related by the
expression

where M is the mass of the daughter nucleus. (b) Use the
result of part (a) to find the energy of the alpha particle
emitted in the decay of 226Ra. (See Example 30.5 for the
calculation of Q.)

50. Student determination of the half-life of 137Ba. The radioactive
barium isotope 137Ba has a relatively short half-life and can
be easily extracted from a solution containing its parent ce-
sium (137Cs). This barium isotope is commonly used in an
undergraduate laboratory exercise for demonstrating the
radioactive decay law. Undergraduate students using mod-
est experimental equipment took the data presented in
Figure P30.50. Determine the half-life for the decay of
137Ba using their data.

Q � K �1 �
M

M �

49.

87Rb : 87Sr � e� � �

A small building has become accidentally contaminated
with radioactivity. The longest-lived material in the build-
ing is strontium-90. ( has an atomic mass 89.907 7 u,
and its half-life is 29.1 yr. It is particularly dangerous
because it substitutes for calcium in bones.) Assume that
the building initially contained 5.00 kg of this substance
uniformly distributed throughout the building and that
the safe level is defined as less than 10.0 decays/min (to be
small in comparison to background radiation). How long
will the building be unsafe?

52. Lead shielding. When gamma rays are incident on matter,
the intensity of the gamma rays passing through the mater-
ial varies with depth x as I(x) � I0e�	x, where 	 is the
absorption coefficient and I0 is the intensity of the
radiation at the surface of the material. For 0.400-MeV
gamma rays in lead, the absorption coefficient is
1.59 cm�1. (a) Determine the “half-thickness” for lead,
that is, the thickness of lead that would absorb half the in-
cident gamma rays. (b) What thickness will reduce the ra-
diation by a factor of 104?

53. A thickness gauge. When gamma rays are incident on matter,
the intensity of the gamma rays passing through the mater-
ial varies with depth x as I(x) � I0e�	x, where 	 is the
absorption coefficient and I0 is the intensity of the radia-
tion at the surface of the material. For low-energy
gamma rays in steel, take the absorption coefficient to be
0.720 mm�1. (a) Determine the “half-thickness” for steel,
that is, the thickness of steel that would absorb half the
incident gamma rays. (b) In a steel mill, the thickness of
sheet steel passing into a roller is measured by monitoring
the intensity of gamma radiation reaching a detector
below the rapidly moving metal from a small source just
above the metal. If the thickness of the sheet changes from
0.800 mm to 0.700 mm, by what percentage will the
gamma-ray intensity change?

54. During the manufacture of a steel engine component,
radioactive iron (59Fe) is included in the total mass of
0.200 kg. The component is placed in a test engine when
the activity due to this isotope is 20.0 	Ci. After a 1 000-h
test period, some of the lubricating oil is removed from the
engine and found to contain enough 59Fe to produce 800
disintegrations/min/L of oil. The total volume of oil in
the engine is 6.50 L. Calculate the total mass worn from
the engine component per hour of operation. (The half-
life of 59Fe is 45.1 days.)

55. Neutron activation analysis is a method for chemical analy-
sis at the level of isotopes. When a sample is irradiated by
neutrons, radioactive atoms are produced continuously
and then decay according to their characteristic half-
lives. (a) Assume that one species of radioactive nuclei is
produced at a constant rate R and that its decay is
described by the conventional radioactive decay law.
Defining t � 0 as the time irradiation begins, show
that the number of radioactive atoms accumulated at
time t is

(b) What is the maximum number of radioactive atoms
that can be produced?

N �
R
�

(1 � e��t)

90
38Sr

51.
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56. On August 6, 1945, the United States dropped on
Hiroshima a nuclear bomb that released 5 � 1013 J of
energy, equivalent to that from 12 000 tons of TNT. The
fission of one nucleus releases an average of 208 MeV.
Estimate (a) the number of nuclei fissioned and (b) the
mass of this .

57. Review problem. A nuclear power plant operates by using
the energy released in nuclear fission to convert 20°C
water into 400°C steam. How much water could theoreti-
cally be converted to steam by the complete fissioning of
1.00 gram of 235U at 200 MeV/fission?

58. Review problem. The first nuclear bomb was a fissioning
mass of plutonium-239, exploded in the Trinity test, before
dawn on July 16, 1945, at Alamogordo, New Mexico.
Enrico Fermi was 14 km away, lying on the ground facing
away from the bomb. After the whole sky had flashed with
unbelievable brightness, Fermi stood up and began drop-
ping bits of paper to the ground. They first fell at his feet
in the calm and silent air. As the shock wave passed, about
40 s after the explosion, the paper then in flight jumped
about 5 cm away from ground zero. (a) Assume that the
shock wave in air propagated equally in all directions with-
out absorption. Find the change in volume of a sphere of
radius 14 km as it expands by 5 cm. (b) Find the work P �V
done by the air in this sphere on the next layer of air farther
from the center. (c) Assume that the shock wave carried on
the order of one tenth of the energy of the explosion.
Make an order-of-magnitude estimate of the bomb yield.
(d) One ton of exploding trinitrotoluene (TNT) releases
energy 4.2 GJ. What was the order of magnitude of 
the energy of the Trinity test in equivalent tons of TNT?
The dawn revealed the mushroom cloud. Fermi’s immedi-
ate knowledge of the bomb yield agreed with that deter-
mined days later by analysis of elaborate measurements.

59. About 1 of every 3 300 water molecules contains one deu-
terium atom. (a) If all the deuterium nuclei in 1 L of water
are fused in pairs according to the D–D reaction 
2H � 2H : 3He � n � 3.27 MeV, how much energy in
joules is liberated? (b) Burning gasoline produces about
3.40 � 107 J/L. Compare the energy obtainable from the
fusion of the deuterium in 1 L of water with the energy lib-
erated from the burning of 1 L of gasoline.

60. The alpha-emitter polonium-210 is used in a
nuclear energy source on a spacecraft (Fig. P30.60). Deter-
mine the initial power output of the source. Assume that it
contains 0.155 kg of 210Po and that the efficiency for con-
version of radioactive decay energy to energy transferred
by electrical transmission is 1.00%.

61. Natural uranium must be processed to produce ura-
nium enriched in 235U for bombs and power plants. The
processing yields a large quantity of nearly pure 238U as a
by-product, called “depleted uranium.” Because of its high
mass density, it is used in armor-piercing artillery shells.
(a) Find the edge dimension of a 70.0-kg cube of 238U.
The density of uranium is 18.7 � 103 kg/m3. (b) The
isotope 238U has a long half-life of 4.47 � 109 yr. As soon
as one nucleus decays, it begins a relatively rapid series of
14 steps that together constitute the net reaction

238
92U :  8(4

2He) � 6( 0
�1e) � 206

82Pb � 6 � � Q net

(210
84Po)

235
92U

235
92U

Find the net decay energy. (Refer to Table A.3.) (c) Argue
that a radioactive sample with decay rate R and decay
energy Q has power output � � QR . (d) Consider an
artillery shell with a jacket of 70.0 kg of 238U. Find its
power output due to the radioactivity of the uranium
and its daughters. Assume that the shell is old enough
that the daughters have reached steady-state amounts.
Express the power in joules per year. (e) A 17-year-old
soldier of mass 70.0 kg works in an arsenal where
many such artillery shells are stored. Assume that his
radiation exposure is limited to absorbing 45.5 mJ per
year per kilogram of body mass. Find the net rate at
which he can absorb energy of radiation, in joules per
year.

62. A sealed capsule containing the radiopharmaceutical
phosphorus-32 , an e� emitter, is implanted into a
patient’s tumor. The average kinetic energy of the beta
particles is 700 keV. The initial activity is 5.22 MBq. Deter-
mine the energy absorbed during a 10.0-day period.
Assume that the beta particles are completely absorbed
within the tumor. (Suggestion: Find the number of beta
particles emitted.)

63. To destroy a cancerous tumor, a dose of gamma radi-
ation totaling an energy of 2.12 J is to be delivered in
30.0 days from implanted sealed capsules containing
palladium-103. Assume that this isotope has half-life
17.0 d and emits gamma rays of energy 21.0 keV, which
are entirely absorbed within the tumor. (a) Find the
initial activity of the set of capsules. (b) Find the total
mass of radioactive palladium that these “seeds” should
contain.

64. (a) Calculate the energy (in kilowatt-hours) released if 
1.00 kg of 239Pu undergoes complete fission and the energy
released per fission event is 200 MeV. (b) Calculate the
energy (in electron volts) released in the deuterium– tritium

(32
15P)
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FIGURE P30.60 The Pioneer 10 spacecraft leaves the Solar
System. It carries radioactive power supplies at the ends of two
booms. Solar panels would not work far from the Sun.
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30.1 (i),(b). The value of N � A � Z is the same for all
three nuclei. (ii), (a). The value of Z is the same for all
three nuclei because they are all nuclei of nitrogen.
(iii), (c). The value of A is the same for all three
nuclei, as seen by the unchanging preceding super-
script.

30.2 (c). Isotopes of a given element correspond to
nuclei with different numbers of neutrons. The result is
different masses of the atom, and different mag-
netic moments because the neutron, despite being
uncharged, has a magnetic moment. The chemical
behavior, however, is governed by the electrons. All
isotopes of a given element have the same number
of electrons and therefore the same chemical behavior.

30.3 (e). A year of 365 days is equivalent to 365 d/5.01 d �
73 half-lives. Therefore, the activity will be reduced 
after one year to approximately (1/2)73(1.000 	Ci)
� 10�22 	Ci.

30.4 (e). The time we are interested in is half of a half-life.
Therefore, the number of remaining nuclei is

. The number of nuclei
that have decayed is N0 � 0.707N0 � 0.293N0.

30.5 (b). In alpha decay, the atomic number decreases by two
and the atomic mass number decreases by four.

30.6 (c). In e� decay, the atomic number increases by one
and the atomic mass number stays fixed. None of
the choices is consistent with e� decay, so we assume that
the decay must be by e�.

(1
2)1/2N0 � (1/√2)N0 � 0.707N0
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fusion reaction

(c) Calculate the energy (in kilowatt-hours) released if
1.00 kg of deuterium undergoes fusion according to this

2
1H � 3

1H :  42He � 1
0n

reaction. (d) Calculate the energy (in kilowatt-hours)
released by the combustion of 1.00 kg of coal if each
C � O2 : CO2 reaction yields 4.20 eV. (e) List advantages
and disadvantages of each of these methods of energy
generation.



In the early chapters of this book, we discussed the particle
model, which treats an object as a particle of zero size with no
structure. Some behaviors of objects, such as thermal expan-

sion, can be understood by modeling the object as a collection of
particles: atoms. In these models, any internal structure of the
atom is ignored. We could not ignore the internal structure of
the atom to understand such phenomena as atomic spectra,
however. Modeling the hydrogen atom as a system of an electron
in orbit about a particle-like nucleus helped in this regard
(Section 11.5). In Chapter 30, however, we could not model the
nucleus as a particle and ignore its structure to understand
behavior such as nuclear stability and radioactive decay. We had
to model the nucleus as a collection of smaller particles, nucle-
ons. What about these nuclear constituents, the protons and neu-
trons? Can we apply the particle model to these entities? As we
shall see, even protons and neutrons have structure, which leads
to a puzzling question. As we continue to investigate the structure

Particle Physics

C H A P T E R 31

In this image from the NA49 experiment at
CERN, hundreds of subatomic particles are
created in the collision of high-energy nuclei
with a lead target. The aim of the experiment
is to create a quark-gluon plasma, in which
the force that normally locks quarks within
protons and neutrons is broken.
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of smaller and smaller “particles,” will we ever reach a level at which the building
blocks are truly and completely described by the particle model?

In this concluding chapter, we explore this question by examining the proper-
ties and classifications of the various known subatomic particles and the fundamen-
tal interactions that govern their behavior. We also discuss the current model of
elementary particles, in which all matter is believed to be constructed from only two
families of particles: quarks and leptons.

The word atom is from the Greek atomos, which means “indivisible.” At one time,
atoms were thought to be the indivisible constituents of matter; that is, they were
regarded as elementary particles. After 1932, physicists viewed all matter as consist-
ing of only three constituent particles: electrons, protons, and neutrons. (The
neutron was observed and identified in 1932.) With the exception of the free
neutron (as opposed to a neutron within a nucleus), these particles are very stable.
Beginning in 1945, many new particles were discovered in experiments involving
high-energy collisions between known particles. These new particles are characteris-
tically very unstable and have very short half-lives, ranging between 10�6 s and
10�23 s. So far, more than 300 of these unstable, temporary particles have been
catalogued.

Since the 1930s, many powerful particle accelerators have been constructed
throughout the world, making it possible to observe collisions of highly energetic
particles under controlled laboratory conditions so as to reveal the subatomic world
in finer detail. Until the 1960s, physicists were bewildered by the large number and
variety of subatomic particles being discovered. They wondered if the particles were
like animals in a zoo, having no systematic relationship connecting them, or
whether a pattern was emerging that would provide a better understanding of the
elaborate structure in the subnuclear world. Since that time, physicists have
advanced our knowledge of the structure of matter tremendously by developing a
structural model in which most of the particles in the ever-growing particle zoo are
made of smaller particles called quarks. Therefore, protons and neutrons, for
example, are not truly elementary but are systems of tightly bound quarks.

THE  FUNDAMENTAL  FORCES  IN  NATURE
As we learned in Chapter 5, all natural phenomena can be described by four funda-
mental forces between particles. In order of decreasing strength, they are the
strong force, the electromagnetic force, the weak force, and the gravitational force.
In current models, the electromagnetic and weak forces are considered to be
two manifestations of a single interaction, the electroweak force, as discussed in
Section 31.11.

The nuclear force, as we mentioned in Chapter 30, holds nucleons together. It
is very short range and is negligible for separations greater than about 2 fm (about
the size of the nucleus). The electromagnetic force, which binds atoms and mole-
cules together to form ordinary matter, has about 10�2 times the strength of the
nuclear force. It is a long-range force that decreases in strength as the inverse
square of the separation between interacting particles. The weak force is a short-
range force that accounts for radioactive decay processes such as beta decay, and its
strength is only about 10�5 times that of the nuclear force. Finally, the gravitational
force is a long-range force that has a strength of only about 10�41 times that of the
nuclear force. Although this familiar interaction is the force that holds the planets,
stars, and galaxies together, its effect on elementary particles is negligible.

In modern physics, interactions between particles are often described in terms
of a structural model that involves the exchange of field particles, or quanta. In the
case of the familiar electromagnetic interaction, for instance, the field particles are
photons. In the language of modern physics, we say that the electromagnetic force
is mediated by photons and that photons are the quanta of the electromagnetic field.
Likewise, the nuclear force is mediated by field particles called gluons, the weak

31.1
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force is mediated by particles called the W and Z bosons (in general, all particles
with integral spin are called bosons), and the gravitational force is mediated by
quanta of the gravitational field called gravitons. These forces, their ranges, and
their relative strengths are summarized in Table 31.1.

POSITRONS  AND  OTHER  ANTIPARTICLES
In the 1920s, English theoretical physicist Paul Adrien Maurice Dirac developed a
version of quantum mechanics that incorporated special relativity. Dirac’s theory
explained the origin of electron spin and its magnetic moment. It also presented a
major difficulty, however. Dirac’s relativistic wave equation required solutions corre-
sponding to negative energy states even for free electrons. If negative energy states
existed, however, one would expect an electron in a state of positive energy to make
a rapid transition to one of these states, emitting a photon in the process. Dirac
avoided this difficulty by postulating a structural model in which all negative energy
states are filled. The electrons occupying these negative energy states are collec-
tively called the Dirac sea. Electrons in the Dirac sea are not directly observable
because the Pauli exclusion principle does not allow them to react to external
forces; there are no states available to which an electron can make a transition in
response to an external force. Therefore, an electron in such a state acts as an iso-
lated system unless an interaction with the environment is strong enough to excite
the electron to a positive energy state. Such an excitation causes one of the negative
energy states to be vacant, as in Figure 31.1, leaving a hole in the sea of filled states.
(Notice that positive energy states exist only for E � mec2, representing the rest
energy of the electron. Similarly, negative energy states exist only for E � � mec2.)
The hole can react to external forces and is observable. The hole reacts in a way similar to
that of the electron, except that it has a positive charge. It is the antiparticle to the
electron.

The profound implication of this model is that every particle has a corresponding
antiparticle. The antiparticle has the same mass as the particle, but the opposite
charge. For example, the electron’s antiparticle, called a positron, has a mass of
0.511 MeV/c2 and a positive charge of 1.60 � 10�19 C.

Carl Anderson (1905–1991) observed and identified the positron in 1932, and
in 1936 he was awarded the Nobel Prize in Physics for that achievement. Anderson
discovered the positron while examining tracks in a cloud chamber created by elec-
tron-like particles of positive charge. (A cloud chamber contains a gas that has been
supercooled to just below its usual condensation point. An energetic radioactive par-
ticle passing through ionizes the gas and leaves a visible track. These early experi-
ments used cosmic rays—mostly energetic protons passing through interstellar
space—to initiate high-energy reactions in the upper atmosphere, which resulted in
the production of positrons at ground level.) To discriminate between positive and
negative charges, Anderson placed the cloud chamber in a magnetic field, causing
moving charged particles to follow curved paths as discussed in Section 22.3. He

31.2
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Fundamental ForcesTABLE 31.1

Mass of Field  
Relative Range Mediating Particle

Force Strength of Force Field Particle (GeV/c2)

Nuclear 1 Short (�1 fm) Gluon 0
Electromagnetic 10�2 � Photon 0
Weak 10�5 Short (�10�3 fm) W� , Z0 bosons 80.4, 80.4, 91.2
Gravitational 10�41 � Graviton 0

Dirac’s model for
the existence of antielectrons
(positrons). The states lower in
energy than �mec2 are filled with
electrons (the Dirac sea). One of
these electrons can make a transition
out of its state only if it is provided
with energy equal to or larger than
2me c 2. That leaves a vacancy in the
Dirac sea, which can behave as a 
particle identical to the electron 
except for its positive charge.

FIGURE 31.1
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ANTIPARTICLES An antiparticle is
not identified solely on the basis of
opposite charge; even neutral parti-
cles have antiparticles, which are
defined in terms of other proper-
ties, such as spin magnetic moment.
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noted that some of the electron-like tracks deflected in a direction corresponding to
a positively charged particle.

Since Anderson’s discovery, the positron has been observed in a number of
experiments. A common process for producing positrons is pair production. In this
process, a gamma-ray photon with sufficiently high energy interacts with a nucleus
and an electron–positron pair is created. In the Dirac sea model, an electron in a
negative energy state is excited to a positive energy state, resulting in a new observ-
able electron and a hole, which is the positron. Because the total rest energy of the
electron–positron pair is 2me c2 � 1.022 MeV, the photon must have at least this
much energy to create an electron–positron pair. Therefore, energy in the form of
a gamma-ray photon is converted to rest energy in accordance with Einstein’s
relationship ER � mc2. We can use the isolated system model to describe this
process. The energy of the system of the photon and the nucleus is conserved and
transformed to rest energy of the electron and positron, kinetic energy of these
particles, and some small amount of kinetic energy associated with the nucleus.
Figure 31.2a shows tracks of electron–positron pairs created by 300-MeV gamma
rays striking a lead plate.
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Paul Adrien Maurice Dirac
(1902 – 1984)

British physicist Dirac was instru-
mental in the understanding of
antimatter and the unification of
quantum mechanics and relativity.
He made many contributions to the
development of quantum physics
and cosmology. In 1933, he won the
Nobel Prize in Physics.

(a)

Lead plate

Gamma rays

e+

e–

(b)

(a) Bubble-
chamber tracks of electron–positron
pairs produced by 300-MeV gamma
rays striking a lead plate. (b) Sketch
of the pertinent pair-production
events. Note that the positrons deflect
upward and the electrons deflect
downward in an applied magnetic
field.

FIGURE 31.2
(C

ou
rte

sy
 L

aw
re

nc
e 

Be
rk

el
ey

 L
ab

or
at

or
y, 

Un
iv

er
si

ty
 o

f C
al

ifo
rn

ia
)

Given the identification of the particles in Figure 31.2b, what is the
direction of the external magnetic field in Figure 31.2a? (a) into the page (b) out 
of the page (c) impossible to determine

QUICK QUIZ 31.1

The reverse process can also occur. Under the proper conditions, an
electron and positron can annihilate each other to produce two gamma-ray
photons (see Thinking Physics 31.1) that have a combined energy of at least
1.022 MeV:

Electron–positron annihilation is used in the medical diagnostic technique
called positron-emission tomography (PET). The patient is injected with a glucose solu-
tion containing a radioactive substance that decays by positron emission, and the
material is carried by the blood throughout the body. A positron emitted during a
decay event in one of the radioactive nuclei in the glucose solution annihilates with
an electron in the immediately surrounding tissue, resulting in two gamma-ray pho-
tons emitted in opposite directions. A gamma detector surrounding the patient
pinpoints the source of the photons and, with the assistance of a computer, displays
an image of the sites at which the glucose accumulates. (Glucose is metabolized
rapidly in cancerous tumors and accumulates in these sites, providing a strong
signal for a PET detector system.) The images from a PET scan can indicate a wide

e� � e� : 2	

Positron-emission tomography
(PET)
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variety of disorders in the brain, including Alzheimer’s disease (Fig. 31.3). In
addition, because glucose metabolizes more rapidly in active areas of the brain, a
PET scan can indicate which areas of the brain are involved when the patient is
engaging in such activities as language use, music, or vision.

Prior to 1955, on the basis of the Dirac theory, it was expected that every particle
has a corresponding antiparticle, but antiparticles such as the antiproton and
antineutron had not been detected experimentally. Because the relativistic Dirac
theory had some failures (it predicted the wrong-size magnetic moment for the
photon) as well as many successes, it was important to determine whether the
antiproton really existed. In 1955, a team led by Emilio Segrè (1905–1989) and Owen
Chamberlain (b. 1920) used the Bevatron particle accelerator at the University of
California–Berkeley to produce antiprotons and antineutrons. They therefore es-
tablished with certainty the existence of antiparticles. For this work, Segrè and
Chamberlain received the Nobel Prize in Physics in 1959. It is now established that
every particle has a corresponding antiparticle with equal mass and spin, and with
charge, magnetic moment, and strangeness of equal magnitude but opposite sign.
(The property of strangeness is explained in Section 31.6.) The only exception to
these rules for particles and antiparticles are the neutral photon, pion, and eta,
each of which is its own antiparticle.

An intriguing aspect of the existence of antiparticles is that if we replace every
proton, neutron, and electron in an atom with its antiparticle, we can create a
stable antiatom; combinations of antiatoms should form antimolecules and eventu-
ally antiworlds. As far as we know, everything would behave in the same way in an
antiworld as in our world. In principle, it is possible that some distant antimatter
galaxies exist, separated from normal-matter galaxies by millions of lightyears.
Unfortunately, because the photon is its own antiparticle, the light emitted from an
antimatter galaxy is no different from that from a normal-matter galaxy, so
astronomical observations cannot determine if the galaxy is composed of matter or
antimatter. Although no evidence of antimatter galaxies exists at present, it is awe-
inspiring to imagine the cosmic spectacle that would result if matter and antimatter
galaxies were to collide: a gigantic eruption of jets of annihilation radiation, trans-
forming the entire galactic mass into energetic particles fleeing the collision point.

■ Thinking Physics 31.1
When an electron and a positron meet at low speed in free space, why are two
0.511-MeV gamma rays produced rather than one gamma ray with an energy of
1.022 MeV?
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PET scans of the
brain of a healthy older person (left)
and that of a patient suffering from
Alzheimer’s disease (right). Lighter
regions contain higher concentra-
tions of radioactive glucose, indicat-
ing higher metabolism rates and
therefore increased brain activity.
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Reasoning Gamma rays are photons, and photons carry momentum. We apply the
momentum version of the isolated system model to the system, which consists ini-
tially of the electron and positron. If the system, assumed to be at rest, transformed
to only one photon, momentum would not be conserved because the initial
momentum of the electron–positron system is zero, whereas the final system
consists of a single photon of energy 1.022 MeV and nonzero momentum. On the
other hand, the two gamma-ray photons travel in opposite directions, so the total
momentum of the final system—two photons—is zero, and momentum is
conserved. ■

MESONS  AND  THE  BEGINNING  
OF  PARTICLE  PHYSICS

In the mid-1930s, physicists had a fairly simple view of the structure of matter. The
building blocks were the proton, the electron, and the neutron. Three other parti-
cles were known or had been postulated at the time: the photon, the neutrino, and
the positron. These six particles were considered the fundamental constituents of
matter. With this marvelously simple picture of the world, however, no one was able
to answer an important question. Because many protons in proximity in any
nucleus should strongly repel one another due to their positive charges, what is the
nature of the force that holds the nucleus together? Scientists recognized that this
mysterious force, which we now call the nuclear force, must be much stronger than
anything encountered in nature up to that time.

In 1935, Japanese physicist Hideki Yukawa proposed the first theory to
successfully explain the nature of the nuclear force, an effort that later earned
him the Nobel Prize in Physics. To understand Yukawa’s theory, it is useful to
first recall that in the modern structural model of electromagnetic interactions,
charged particles interact by exchanging photons. Yukawa used this idea to
explain the nuclear force by proposing a new particle whose exchange between
nucleons in the nucleus produces the nuclear force. Furthermore, he estab-
lished that the range of the force is inversely proportional to the mass of this
particle and predicted that the mass would be about 200 times the mass of the
electron. Because the new particle would have a mass between that of the
electron and that of the proton, it was called a meson (from the Greek meso,
meaning “middle”).

In an effort to substantiate Yukawa’s predictions, physicists began an experimen-
tal search for the meson by studying cosmic rays entering the Earth’s atmosphere.
In 1937, Anderson and his collaborators discovered a particle of mass 106 MeV/c2,
about 207 times the mass of the electron. Subsequent experiments showed that the
particle interacted very weakly with matter, however, and hence could not be the
carrier of the nuclear force. The puzzling situation inspired several theoreticians to
propose that two mesons existed with slightly different masses. This idea was con-
firmed by the discovery in 1947 of the pi (
) meson, or simply pion, by Cecil Frank
Powell (1903–1969) and Giuseppe P. S. Occhialini (1907–1993). The particle
discovered by Anderson in 1937, the one thought to be Yukawa’s meson, is not
really a meson. (We shall discuss the requirements for a particle to be a meson in
Section 31.4). Instead, it takes part in the weak and electromagnetic interactions
only and is now called the muon (�). We first discussed the muon in Section 9.4,
with regard to time dilation.

The pion, Yukawa’s carrier of the nuclear force, comes in three varieties corre-
sponding to three charge states: 
�, 
�, and 
 0. The 
� and 
� particles have
masses of 139.6 MeV/c2, and the 
0 particle has a mass of 135.0 MeV/c2. Pions
and muons are very unstable particles. For example, the 
�, which has a mean
lifetime of 2.6 � 10�8 s, first decays to a muon and an antineutrino. The muon,
which has a mean lifetime of 2.2 �s, then decays into an electron, a neutrino, and

31.3

MESONS AND THE BEGINNING OF PARTICLE PHYSICS ❚ 1053

y g p pp

THE NUCLEAR FORCE AND THE

STRONG FORCE The nuclear force
that we discussed in Chapter 30 and
continue to discuss here was origi-
nally called the strong force. Once
the quark theory (Section 31.9) was
established, however, the phrase
strong force was identified as the
force between quarks. Currently,
the strong force is associated both
with the force between quarks and
the force between particles made
up of quarks. If those particles hap-
pen to be neutrons and protons,
the strong force is often called the
nuclear force because these parti-
cles make up the nucleus.

� PITFALL PREVENTION 31.2

Hideki Yukawa (1907 – 1981)
Japanese physicist Yukawa was
awarded the Nobel Prize in Physics
in 1949 for predicting the existence
of mesons. This photograph of him
at work was taken in 1950 in his of-
fice at Columbia University. Yukawa
came to Columbia in 1949 after
spending the early part of his career
in Japan.
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an antineutrino:

[31.1]

Note that for chargeless particles (as well as some charged particles such as the
proton), a bar over the symbol indicates an antiparticle.

The interaction between two particles can be represented in a simple qualitative
graphical representation called a Feynman diagram, developed by American physi-
cist Richard P. Feynman. Figure 31.4 is such a diagram for the electromagnetic
interaction between two electrons approaching each other. A Feynman diagram is a
qualitative graph of time in the vertical direction versus space in the horizontal
direction. It is qualitative in the sense that the actual values of time and space are
not important, but the overall appearance of the graph provides a representation
of the process. The time evolution of the process can be approximated by starting
at the bottom of the diagram and moving your eyes upward.

In the simple case of the electron–electron interaction in Figure 31.4, a photon
is the field particle that mediates the electromagnetic force between the electrons.
Notice that the entire interaction is represented in such a diagram as if it occurs at
a single point in time. Therefore, the paths of the electrons appear to undergo a
discontinuous change in direction at the moment of interaction. This representa-
tion is correct on a microscopic level over a time interval that includes the
exchange of one photon. It is different from the paths produced over the much
longer interval during which we watch the interaction from a macroscopic point of
view. In this case, the paths would be curved (as in Fig. 31.2) due to the continuous
exchange of large numbers of field particles, illustrating another aspect of the qual-
itative nature of Feynman diagrams.

In the electron–electron interaction, the photon, which transfers energy and
momentum from one electron to the other, is called a virtual photon because it
vanishes during the interaction without having been detected. In Chapter 28, we
discussed that a photon has energy E � hf, where f is its frequency. Consequently,
for a system of two electrons initially at rest, the system has energy 2mec2 before a
virtual photon is released and energy 2mec2 � hf after the virtual photon is released
(plus any kinetic energy of the electron resulting from the emission of the photon).
Is that a violation of the law of conservation of energy for an isolated system? No;
this process does not violate the law of conservation of energy because the virtual
photon has a very short lifetime �t that makes the uncertainty in the energy

of the system consisting of two electrons and the photon greater than
the photon energy. Therefore, within the constraints of the uncertainty principle,
the energy of the system is conserved.

Now consider a pion exchange between a proton and a neutron according to
Yukawa’s model (Fig. 31.5a). The energy �ER needed to create a pion of mass m
 is
given by Einstein’s equation �ER � m
c2. As with the photon in Figure 31.4, the
very existence of the pion would appear to violate the law of conservation of energy

�E � /2 �t

�� :  e� � � � �

 
� :  �� � �
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Virtual
photon

e–

e–

e–

e–

Feynman diagram
representing a photon mediating the
electromagnetic force between two
electrons.

FIGURE 31.4

Richard Feynman (1918 – 1988)
Inspired by Dirac, Feynman devel-
oped quantum electrodynamics, the
theory of the interaction of light
and matter on a relativistic and
quantum basis. Feynman won the
Nobel Prize in Physics in 1965. The
prize was shared by Feynman, Julian
Schwinger, and Sin Itiro Tomonaga.
Early in his career, Feynman was a
leading member of the team devel-
oping the first nuclear weapon in
the Manhattan Project. Toward the
end of his career, he worked on the
commission investigating the 1986
Challenger tragedy and demon-
strated the effects of cold tempera-
tures on the rubber O-rings used in
the space shuttle.
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Pion (    )π 0

(a) Feynman
diagram representing a proton and 
a neutron interacting via the nuclear
force with a neutral pion mediating
the force. (This model is not the most
fundamental model for nucleon inter-
action.) (b) Feynman diagram for an
electron and a neutrino interacting
via the weak force with a Z0 boson 
mediating the force.

FIGURE 31.5



if the particle existed for a time greater than (from the uncertainty
principle), where �t is the time interval required for the pion to transfer from one
nucleon to the other. Therefore,

[31.2]

Because the pion cannot travel faster than the speed of light, the maximum dis-
tance d it can travel in a time interval �t is c �t. Therefore, using Equation 31.2 and
d � c �t , we find this maximum distance to be

[31.3]

From Chapter 30, we know that the range of the nuclear force is on the order of
10�15 fm. Using this value for d in Equation 31.3, we estimate the rest energy of the
pion to be

which corresponds to a mass of 100 MeV/c2 (approximately 250 times the mass of
the electron). This value is in reasonable agreement with the observed pion mass.

The concept we have just described is quite revolutionary. In effect, it says that a
system of two nucleons can change into two nucleons plus a pion as long as it
returns to its original state in a very short time interval. (Remember that this model
is the older, historical one, which assumes that the pion is the field particle for the
nuclear force.) Physicists often say that a nucleon undergoes fluctuations as it emits
and absorbs pions. As we have seen, these fluctuations are a consequence of a
combination of quantum mechanics (through the uncertainty principle) and
special relativity (through Einstein’s mass–energy relationship ER � mc2).

This section has dealt with the particles that mediate the nuclear force, pions,
and the mediators of the electromagnetic force, photons. Current ideas indicate
that the nuclear force is more fundamentally described as an average or residual ef-
fect of the force between quarks, as will be explained in Section 31.10. The gravi-
ton, which is the mediator of the gravitational force, has yet to be observed. The

and Z0 particles that mediate the weak force were discovered in 1983 by Italian
physicist Carlo Rubbia (b. 1934) and his associates using a proton–antiproton col-
lider. Rubbia and Simon van der Meer (b. 1925), both at CERN (European Organi-
zation for Nuclear Research), shared the 1984 Nobel Prize in Physics for the detec-
tion and identification of the and Z0 particles and the development of the
proton–antiproton collider. In this accelerator, protons and antiprotons undergo
head-on collisions with each other. In some of the collisions, and Z0 particles
are produced, which in turn are identified by their decay products. Figure 31.5b
shows a Feynman diagram for a weak interaction mediated by a Z0 boson.

CLASSIFICATION  OF  PARTICLES
All particles other than field particles can be classified into two broad categories,
hadrons and leptons. The criterion for separating these particles into categories is
whether or not they interact via a force called the strong force. This force
(discussed in Section 31.10) increases with separation distance, similar to the force
exerted by a stretched spring. The nuclear force between nucleons in a nucleus is a
particular manifestation of the strong force, but, as mentioned in Pitfall Prevention
31.2, we will use the term strong force in general to refer to any interaction between
particles made up of more elementary units called quarks. (Today it is believed that
hadrons are not elementary particles, but rather are composed of more elementary
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c
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units called quarks. We shall discuss quarks in Section 31.9.) Table 31.2 provides a
summary of the properties of some of these particles.

Hadrons
Particles that interact through the strong force are called hadrons. The two classes
of hadrons—mesons and baryons—are distinguished by their masses and spins.

Mesons all have zero or integer spin (0 or 1).1 As indicated in Section 31.3, the
origin of the name comes from the expectation that Yukawa’s proposed meson
mass would lie between the mass of the electron and the mass of the proton.
Several meson masses do lie in this range, although there are heavier mesons that
have masses larger than that of the proton.

All mesons are known to decay into final products including electrons,
positrons, neutrinos, and photons. The pions are the lightest of the known mesons;
they have masses of about 140 MeV/c2 and a spin of 0. Another is the K meson, with
a mass of approximately 500 MeV/c2 and a spin of 0.
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Some Particles and Their PropertiesTABLE 31.2

Particle Anti- Mass Principal Decay
Category Name Symbol particle (MeV/c2) B Le L� L� S Lifetime(s) Modesa

Leptons Electron e� e� 0.511 0 �1 0 0 0 Stable
Electron– �e � 7 eV/c2 0 �1 0 0 0 Stable
neutrino

Muon �� �� 105.7 0 0 �1 0 0 2.20 � 10�6

Muon– �� � 0.3 0 0 �1 0 0 Stable
neutrino

Tau �� �� 1 784 0 0 0 �1 0 � 4 � 10�13 , 
Tau– �� � 30 0 0 0 �1 0 Stable
neutrino

Hadrons
Mesons Pion 
� 
� 139.6 0 0 0 0 0 2.60 � 10�8 ����


0 Self 135.0 0 0 0 0 0 0.83 � 10�16 2	

Kaon K� K� 493.7 0 0 0 0 �1 1.24 � 10�8 ����, 
�
0

Ks
0 497.7 0 0 0 0 �1 0.89 � 10�10 
�
�, 2
0

KL
0 497.7 0 0 0 0 �1 5.2 � 10�8 , 3
0

Eta � Self 548.8 0 0 0 0 0 �10�18 2	, 3
0

�� Self 958 0 0 0 0 0 2.2 � 10�21 �
� 
�

Baryons Proton p 938.3 �1 0 0 0 0 Stable
Neutron n 939.6 �1 0 0 0 0 614
Lambda �0 1 115.6 �1 0 0 0 �1 2.6 � 10�10 p
�, n
 0

Sigma �� 1 189.4 �1 0 0 0 �1 0.80 � 10�10 p
 0, n
�

�0 1 192.5 �1 0 0 0 �1 6 � 10�20 �0	

�� 1 197.3 �1 0 0 0 �1 1.5 � 10�10 n
�

Delta ��� 1 230 �1 0 0 0 0 6 � 10�24 p
�

�� 1 231 �1 0 0 0 0 6 � 10�24 p
 0, n
�

�0 1 232 �1 0 0 0 0 6 � 10�24 n
 0, p
�

�� 1 234 �1 0 0 0 0 6 � 10�24 n
�

Xi �0 1 315 �1 0 0 0 �2 2.9 � 10�10 �0
0

�� 1 321 �1 0 0 0 �2 1.64 � 10�10 �0
�

Omega �� �� 1 672 �1 0 0 0 �3 0.82 � 10�10 ��
0, �0
�, �0K�

aNotations in this column such as p
�, n
0 mean two possible decay modes. In this case, the two possible decays are and .�0 : n � 
0�0 : p � 
�

� �

�0
��

�0
��

�� �
��

�0
��

�0
pe� �en

p


 �����


 �e��eK 0
L

K 0
s

��

e��e��������

��

e� �e��

�e

1Thus, the particle discovered by Anderson in 1937, the muon, is not a meson; the muon has spin . It
belongs in the lepton classification described shortly.
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Baryons, the second class of hadrons, have masses equal to or greater than the
proton mass (baryon means “heavy” in Greek), and their spins are always an odd
half-integer value ( or ). Protons and neutrons are baryons, as are many other
particles. With the exception of the proton, all baryons decay in such a way that the
end products include a proton. For example, the baryon called the � hyperon
decays to the �0 baryon in about 10�10 s. The �0 baryon then decays to a proton
and a 
� in approximately 3 � 10�10 s.

Today it is believed that hadrons are not elementary particles, but rather are
composed of more elementary units called quarks. We shall discuss quarks in
Section 31.9.

Leptons
Leptons (from the Greek leptos, meaning “small” or “light”) are a group of particles
that participate in the electromagnetic (if charged) and weak interactions. All
leptons have spins of . Unlike hadrons, which have size and structure, leptons
appear to be truly elementary particles with no structure.

Quite unlike hadrons, the number of known leptons is small. Currently, scien-
tists believe that only six leptons exist: the electron, the muon, and the tau, e�, ��,
��, and a neutrino associated with each, �e , ��, �� . The tau lepton, discovered in
1975, has a mass equal to about twice that of the proton. Direct experimental
evidence for the neutrino associated with the tau was announced by the Fermi
National Accelerator Laboratory (Fermilab) in July 2000. Each of these six leptons
has an antiparticle.

Current studies indicate that neutrinos may have a small but nonzero mass. If
they do have mass, they cannot travel at the speed of light. Also, so many neutrinos
exist that their combined mass may be sufficient to cause all the matter in the
Universe to eventually collapse to infinite density and then explode and create
a completely new Universe! We shall discuss this concept in more detail in
Section 31.12.

CONSERVATION  LAWS
We have seen the importance of conservation laws for isolated systems many times
in earlier chapters and have solved problems using conservation of energy, linear
momentum, angular momentum, and electric charge. Conservation laws are
important in understanding why certain decays and reactions occur but others do
not. In general, our familiar conservation laws provide us with a set of rules that all
processes must follow.

Certain new conservation laws have been identified through experimentation
and are important in the study of elementary particles. The members of the
isolated system change identity during a decay or reaction. The initial particles
before the decay or reaction are different from the final particles afterward. 

Baryon Number
Experimental results tell us that whenever a baryon is created in a nuclear reaction
or decay, an antibaryon is also created. This scheme can be quantified by assigning
a baryon number B � � 1 for all baryons, B � � 1 for all antibaryons, and B � 0
for all other particles. Therefore, the law of conservation of baryon number states
that whenever a reaction or decay occurs, the sum of the baryon numbers of the
system before the process must equal the sum of the baryon numbers after the
process. An equivalent statement is that the net number of baryons remains con-
stant in any process.

If baryon number is absolutely conserved, the proton must be absolutely stable.
For example, a decay of the proton to a positron and a neutral pion would satisfy
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conservation of energy, momentum, and electric charge. Such a decay has never
been observed, however. At present, we can say only that the proton has a half-life
of at least 1033 years (the estimated age of the Universe is only 1010 years). There-
fore, it is extremely unlikely that one would see a given proton undergo a decay
process. If we collect a huge number of protons, however, perhaps we might see
some proton in the collection undergo a decay, as addressed in Interactive
Example 31.2.
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Consider the following decay: n : 
� � 
� � �� � ��. What
conservation laws are violated by this decay? (a) energy (b) electric charge
(c) baryon number (d) angular momentum (e) no conservation laws

QUICK QUIZ 31.2

Consider the following decay: n : p � 
�. What conservation laws
are violated by this decay? (a) energy (b) electric charge (c) baryon number
(d) angular momentum (e) no conservation laws

QUICK QUIZ 31.3

Use the law of conservation of baryon numbers to
determine whether the reaction 
can occur. 

Solution The left side of the equation gives a 
total baryon number of 1 � 1 � 2; the right side, 
however, gives 1 � 1 � (�1) � 1. Because baryon
number is not conserved, the reaction cannot 
occur.

p � n : p � p � p
B

Checking Baryon NumbersEXAMPLE 31.1

Use the law of conservation of baryon number to
determine whether the reaction
can occur.

Solution The left side of the equation gives a total
baryon number of 1 � 1 � 2. The right side gives a total
baryon number of 1 � 1 � 1 � (�1) � 2. Therefore,
baryon number is conserved and the reaction can occur
(provided the incoming proton has sufficient kinetic
energy so that energy conservation is satisfied).

p � n : p � p � n � p
A

Detecting Proton DecayEXAMPLE 31.2INTERACTIVE

Each water molecule contains one proton in each of its
two hydrogen atoms plus eight protons in its oxygen
atom, for a total of ten. Therefore, 8.4 � 1025 protons
are in the glass of water. The decay constant is given by
Equation 30.8:

This result is the probability that any one proton will
decay in a year. The probability that any proton in our
glass of water will decay in the one-year interval is 
(Eqs. 30.5 and 30.7)

To finalize this part of the problem, note that we have
to watch our glass of water for 1/R �
This answer is indeed a long time, as we suspected.

The Super Kamiokande neutrino facility con-
tains 50 000 metric tons of water. Estimate the
average time interval between detected proton

B

17 million years!

R � (8.4 � 1025)(6.9 � 10�34 yr�1) � 5.8 � 10�8 yr�1

� �
0.693
T1/2

�
0.693

1033 yr
� 6.9 � 10�34 yr�1

Measurements taken at the Super Kamiokande
neutrino detection facility in Japan (Fig. 31.6) indicate
that the half-life of protons is at least 1033 years.

Estimate how long we would have to watch, on
average, to see a proton in a glass of water decay.

Solution To conceptualize the problem, imagine the
number of protons in a glass of water. Although this
number is huge, we know that the probability of a single
proton undergoing decay is small, so we would expect
to wait a long time before observing a decay. Because a
half-life is provided in the problem, we categorize this
problem as one in which we can apply our statistical
analysis techniques from Section 30.3. To analyze the
problem, let us estimate that a glass contains about 
250 g of water. The number of molecules of water is

� 8.4 � 1024 molecules

(250 g)(6.02 � 1023 molecules/mol)
18 g/mol

A



Lepton Number
From observations of commonly occurring decays of the electron, muon, and tau,
we arrive at three conservation laws involving lepton numbers, one for each variety
of lepton. The law of conservation of electron-lepton number states that the sum of
the electron-lepton numbers of the system before a reaction or decay must equal
the sum of the electron-lepton numbers after the reaction or decay.

The electron and the electron neutrino are assigned a positive electron-lepton
number Le � �1, the antileptons e� and are assigned a negative electron-lepton
number Le � � 1; all others have Le � 0. For example, consider the decay of the
neutron

Before the decay, the electron-lepton number is Le � 0; after the decay, it is 
0 � 1 � (�1) � 0. Therefore, the electron-lepton number is conserved. It is 
important to recognize that the baryon number must also be conserved; which
can easily be checked by noting that before the decay B � �1 and after the decay
B is �1 � 0 � 0 � �1.

n :  p � e� � �e

�e
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decays in this much water if the half-life of a proton is
1033 yr.

Solution We find the ratio of the number of 
molecules in 50 000 metric tons of water to that in 
the glass of water in part A, which will be same as 
the ratio of masses:

Each of these molecules contains ten protons. The 
probability that one of these protons will decay in one
year is

To finalize this part of the problem, note that the aver-
age time interval between decays is about one twelfth
of a year, or approximately This result is
much shorter than the time interval in part A due 
to the tremendous amount of water in the detector 
facility.

Practice the statistics of proton decay by 
logging into PhysicsNow at www.pop4e.com and going to 
Interactive Example 31.2.

one month.

R � (10)(1.7 � 1033)(6.9 � 10�34 yr�1)� 12 yr�1

 � 1.7 � 1033 molecules

 � (2.0 � 108)(8.4 � 1024 molecules)

 NKamiokande � (2.0 � 108)Nglass

 � 2.0 � 108

�
50 000 metric ton

250 g � 1 000 kg
1 metric ton ��

1 000 g
1 kg �

NKamiokande

Nglass
�

mKamiokande

mglass

(Interactive Example 31.2) This detector at the 
Super Kamiokande neutrino facility in Japan is
used to study photons and neutrinos. It holds
50 000 metric tons of highly purified water and
13 000 photomultipliers. The photograph was
taken while the detector was being filled. Techni-
cians use a raft to clean the photodetectors before
they are submerged.

FIGURE 31.6
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Similarly, when a decay involves muons, the muon-lepton number L� is con-
served. The �� and the �� are assigned positive numbers, L� � �1, the antimuons
�� and are assigned negative numbers, L� � � 1; all others have L� � 0. Finally,
the tau-lepton number L� is conserved, and similar assignments can be made for
the tau lepton and its neutrino.

��
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Consider the following decay: 
0 : �� � e� � �� . What conserva-
tion laws are violated by this decay? (a) energy (b) angular momentum (c) electric
charge (d) baryon number (e) electron-lepton number (f) muon-lepton number
(g) tau-lepton number (h) no conservation laws

QUICK QUIZ 31.4

Suppose a claim is made that the decay of the neutron is given by
. What conservation laws are violated by this decay? (a) energy (b) angular

momentum (c) electric charge (d) baryon number (e) electron-lepton number
(f) muon-lepton number (g) tau-lepton number (h) no conservation laws

n : p � e�

QUICK QUIZ 31.5

Use the law of conservation of electron-lepton
number to determine if the decay scheme

can occur.

Solution Before the decay, L� � 0 and Le � 0. After the
decay, L� � � 1 � 1 � 0 � 0, but Le � 0 � 0 � 1 � 1.
Therefore, the decay is not possible because electron-
lepton number is not conserved.


� : �� � �� � �e

B

Checking Lepton NumbersEXAMPLE 31.3

Use the law of conservation of electron-lepton
number to determine if the decay scheme

can occur.

Solution Because this decay involves a muon and an
electron, L� and Le must both be conserved. Before the
decay, L� � �1 and Le � 0. After the decay, L� �
0 � 0 � 1 � �1 and Le � �1 � (�1) � 0 � 0.
Therefore, both numbers are conserved, and on this
basis the decay is possible.

�� : e� � �e � ��

A

STRANGE  PARTICLES  AND  STRANGENESS
Many particles discovered in the 1950s were produced by the nuclear interaction of
pions with protons and neutrons in the atmosphere. A group of these particles—
the kaon (K), lambda (�), and sigma (�) particles—exhibited unusual properties
in production and decay and hence were called strange particles.

One unusual property is that these particles are always produced in pairs. For
example, when a pion collides with a proton, two neutral strange particles are pro-
duced with high probability:

On the other hand, the reaction 
� � p : n0 � K0 in which only one of the final
particles is strange never occurs, even though no conservation laws known in the
1950s are violated and the energy of the pion is sufficient to initiate the reaction.

The second peculiar feature of strange particles is that, although they are
produced by the strong force at a high rate, they do not decay at a very high rate
into particles that interact via the strong force. Instead, they decay very slowly,
which is characteristic of the weak interaction as shown in Table 31.1. Their half-
lives are in the range 10�10 s to 10�8 s; most other particles that interact via the
strong force have very short lifetimes, on the order of 10�20 s or less.

Such observations indicate the necessity to make modifications in our model. To
explain these unusual properties of strange particles, a new quantum number S,


� � p :  �0 � K0

31.6



called strangeness, was introduced into our model of elementary particles, together
with a new conservation law. The strangeness numbers for some particles are given
in Table 31.2. The production of strange particles in pairs is handled by assigning
S � �1 to one of the particles and S � � 1 to the other. All nonstrange particles
are assigned strangeness S � 0. The law of conservation of strangeness states that
whenever a reaction or decay occurs via the strong force, the sum of the strange-
ness numbers of the system before the process must equal the sum of the strange-
ness numbers after the process.

The low decay rate of strange particles can be explained by assuming that the
nuclear and electromagnetic interactions obey the law of conservation of strange-
ness, but the weak interaction does not. Because the decay reaction involves the loss
of one strange particle, it violates strangeness conservation and hence proceeds
slowly via the weak interaction.
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■ Conservation of strangeness

Show that the following reaction does not conserve
strangeness.

Solution The initial system has strangeness 
S � 0 � 0 � 0, and the final system has strangeness 
S � 0 � (�1) � � 1. Therefore, strangeness is not 
conserved.

�� � p : �� � ��

B

Is Strangeness Conserved?EXAMPLE 31.4

Determine whether the following reaction occurs
on the basis of conservation of strangeness.

Solution From Table 31.2, we see that the initial system
has strangeness S � 0 � 0 � 0. Because the strangeness of
the K� is S � �1 and the strangeness of the �� is S �
� 1, the strangeness of the final sysstem is �1 � 1 � 0.
Therefore, strangeness is conserved and the reaction is
allowed.

� 0 � n : K� � ��

A

MEASURING  PARTICLE  LIFETIMES
The bewildering array of entries in Table 31.2 leaves one yearning for firm ground.
In fact, it is natural to wonder about an entry, for example, that shows a particle
(�0) that exists for 10�20 s and has a mass of 1192.5 MeV/c2. How is it possible to
detect a particle that exists for only 10�20 s? 

Most particles are unstable and are created in nature only rarely, in cosmic ray
showers. In the laboratory, however, large numbers of these particles are created in
controlled collisions between high-energy particles and a suitable target. The inci-
dent particles must have very high energy, and it takes a considerable time interval
for electromagnetic fields to accelerate particles to high energies. Therefore, stable
charged particles such as electrons or protons generally make up the incident
beam. Similarly, targets must be simple and stable, and the simplest target, hydro-
gen, serves nicely as both target (the proton) and detector.

Figure 31.7 shows a typical event in which hydrogen in a bubble chamber served
as both target source and detector. (A bubble chamber is a device in which the
tracks of charged particles are made visible in liquid hydrogen that is maintained
near its boiling point.) Many parallel tracks of negative pions are visible entering
the photograph from the bottom. As the labels in the inset drawing show, one of
the pions has hit a stationary proton in the hydrogen, producing two strange
particles, �0 and K0, according to the reaction

Neither neutral strange particle leaves a track, but their subsequent decays into
charged particles can be clearly seen as indicated in Figure 31.7. A magnetic field
directed into the plane of the photograph causes the track of each charged particle
to curve, and from the measured curvature one can determine the particle’s charge

�� � p : �0 � K0

31.7



and linear momentum. If the mass and momentum of the incident particle are
known, we can then usually calculate the product particle mass, kinetic energy, and
speed from conservation of momentum and energy. Finally, by combining a product
particle’s speed with a measurable decay track length, we can calculate the product
particle’s lifetime. Figure 31.7 shows that sometimes one can use this lifetime tech-
nique even for a neutral particle, which leaves no track. As long as the beginning
and end points of the missing track are known as well as the particle speed, one can
infer the missing track length and find the lifetime of the neutral particle.

Resonance Particles
With clever experimental technique and much effort, decay track lengths as short
as 10�6 m can be measured. Thus, lifetimes as short as 10�16 s can be measured for
high-energy particles traveling at about the speed of light. We arrive at this result by
assuming that a decaying particle travels 1 �m at a speed of 0.99c in the reference
frame of the laboratory, yielding a lifetime of �t lab � 1 � 10�6 m/0.99c �
3.4 � 10�15 s. This result is not our final one, however, because we must account
for the relativistic effects of time dilation. Because the proper lifetime �tp as mea-
sured in the decaying particle’s reference frame is shorter than the laboratory
frame value �t lab by a factor of (see Eq. 9.6), we can calculate the
proper lifetime:

Unfortunately, even with Einstein’s help, the best answer we can obtain with the
track length method is several orders of magnitude away from lifetimes of 10�20 s.
How then can we detect the presence of particles that exist for time intervals like
10�20 s? For such short-lived particles, known as resonance particles, all we can do

�tp � �t lab √1 �
v2

c2 � (3.4 � 10�15 s) √1 �
(0.99c)2

c2 � 4.8 � 10�16 s

√1 � (v2/c2)
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This bubble-
chamber photograph shows many
events, and the inset is a drawing of
identified tracks. The strange particles
�0 and K0 are formed at the bottom
as the 
� interacts with a proton 
according to 
�� p : �0 � K0.
(Note that the neutral particles leave
no tracks, as indicated by the dashed
lines.) The �0 and K0 then decay 
according to �0 : 
� � p and

.K0 : 
 0 � �� � ��

FIGURE 31.7
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is infer their masses, their lifetimes, and, indeed, their very existence from data on
their decay products.

FINDING  PATTERNS  IN  THE  PARTICLES
A tool scientists use to help understand nature is the detection of patterns in data.
One of the best examples of the use of this tool is the development of the periodic
table, which provides fundamental understanding of the chemical behavior of the
elements. The periodic table explains how more than a hundred elements can be
formed from three particles: the electron, proton, and neutron. The number of
observed particles and resonances observed by particle physicists is even larger than
the number of elements. Is it possible that a small number of entities could exist
from which all these particles could be built? Motivated by the success of the
periodic table, let us explore the historical search for patterns among the particles.

Many classification schemes have been proposed for grouping particles into
families. Consider, for instance, the baryons listed in Table 31.2 that have spins of :
p, n, �0, ��, �0, ��, �0, and ��. If we plot strangeness versus charge for these
baryons using a sloping coordinate system, as in Figure 31.8a, we observe a fascinat-
ing pattern. Six of the baryons form a hexagon, and the remaining two are at the
hexagon’s center.2

As a second example, consider the following nine spin-zero mesons listed in
Table 31.2: 
�, 
0, 
�, K�, K0, K�, �, ��, and the antiparticle . Figure 31.8b is a
plot of strangeness versus charge for this family. Again, a hexagonal pattern
emerges. In this case, each particle on the perimeter of the hexagon lies opposite
its antiparticle, and the remaining three (which form their own antiparticles)
are at its center. These and related symmetric patterns were developed indepen-
dently in 1961 by Murray Gell-Mann and Yuval Ne’eman (b. 1925). Gell-Mann
called the patterns the eightfold way, after the eightfold path to nirvana in
Buddhism.

K0

1
2

31.8
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2The reason for the sloping coordinate system is so that a regular hexagon is formed, one with equal
sides. If a normal orthogonal coordinate system is used, the pattern still appears, but the hexagonal
shape does not have equal sides. Try it!

n p

Σ
_

Σ0 Σ+

Ξ
_

Ξ0

Λ0

S = 0

S = _1

S = _2

Q = +1

Q = _1 Q = 0

K0 K+

K
_

K0

S = +1

S = 0

S = _1

Q = +1

Q = _1 Q = 0

(a) (b)

π
_

π+η π0

η'

(a) The hexagonal eightfold-way pattern for the eight spin- baryons. This 
strangeness-versus-charge plot uses a sloping axis for charge number Q and a horizon-
tal axis for strangeness S. (b) The eightfold-way pattern for the nine spin-zero mesons.

1
2FIGURE 31.8

Murray Gell-Mann (b. 1929)
American physicist Gell-Mann was
awarded the Nobel Prize in Physics
in 1969 for his theoretical studies
dealing with subatomic particles.
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Groups of baryons and mesons can be displayed in many other symmetric pat-
terns within the framework of the eightfold way. For example, the family of spin-
baryons known in 1961 contains nine particles arranged in a pattern like that of the
pins in a bowling alley as in Figure 31.9. [The particles �*�, �*0, �*�, �*0, and �*�

are excited states of the particles ��, �0, ��, �0, and ��. In these higher-energy
states, the spins of the three quarks (see Section 31.9) making up the particle are
aligned so that the total spin of the particle is .] When this pattern was proposed,
an empty spot occurred in it (at the bottom position), corresponding to a particle
that had never been observed. Gell-Mann predicted that the missing particle,
which he called the omega minus (��), should have spin , charge �1, strangeness
�3, and rest energy of approximately 1 680 MeV. Shortly thereafter, in 1964, scien-
tists at the Brookhaven National Laboratory found the missing particle through
careful analyses of bubble-chamber photographs (Fig. 31.10) and confirmed all its
predicted properties.

The prediction of the missing particle from the eightfold way has much in com-
mon with the prediction of missing elements in the periodic table. Whenever a
vacancy occurs in an organized pattern of information, experimentalists have a
guide for their investigations.

3
2

3
2

3
2
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∆– ∆0 ∆+ ∆++

Σ*– Σ*0 Σ*+

Ξ*– Ξ*0

Q = +1

Q = _1 Q = 0

?

Q = +2

S = 0

S = –1

S = –2

S = –3

The pattern for 
the higher-mass, spin- baryons
known at the time the pattern was
proposed. The three �* and two �*
particles are excited states of the cor-
responding spin- particles in Figure
31.8. These excited states have higher
mass and spin . The absence of a
particle in the bottom position was
evidence of a new particle yet to be
discovered, the ��.

3
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1
2
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FIGURE 31.9
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K0

Λ0

Ω–

K–

�0

1γ

2γ

π –

Discovery of the
�� particle. The photograph on the
left shows the original bubble-
chamber tracks. The drawing on the
right isolates the tracks of the impor-
tant events. The K� particle at the
bottom collides with a proton to pro-
duce the first detected �� particle
plus a K0 and a K�.

FIGURE 31.10
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QUARKS
As we have noted, leptons appear to be truly elementary particles because they
occur in a small number of types, have no measurable size or internal structure,
and do not seem to break down to smaller units. Hadrons, on the other hand, are
complex particles having size and structure. The existence of the eightfold-way pat-
terns suggests that hadrons have a more elemental substructure. Furthermore, we
know that hundreds of types of hadrons exist and that many of them decay into
other hadrons. These facts strongly suggest that hadrons cannot be truly elemen-
tary. In this section, we show that the complexity of hadrons can be explained by a
simple substructure.

The Original Quark Model: A Structural Model for Hadrons
In 1963, Gell-Mann and George Zweig (b. 1937) independently proposed that
hadrons have a more elemental substructure. According to their structural model,
all hadrons are composite systems of two or three fundamental constituents called
quarks (pronounced to rhyme with forks). (Gell-Mann borrowed the word quark
from the passage “Three quarks for Muster Mark” in James Joyce’s Finnegan’s Wake.)
The model proposes that three types of quarks exist, designated by the symbols u,
d, and s. They are given the arbitrary names up, down, and strange. The various
types of quarks are called flavors. Baryons consist of three quarks, and mesons con-
sist of a quark and an antiquark. Active Figure 31.11 is a pictorial representation of
the quark composition of several hadrons.

An unusual property of quarks is that they carry a fractional electronic charge.
The u, d, and s quarks have charges of , , and , respectively, where e is
the elementary charge 1.6 � 10�19 C. These and other properties of quarks and
antiquarks are given in Table 31.3. Notice that quarks have spin , which means
that all quarks are fermions, defined as any particle having half-integral spin. As
Table 31.3 shows, associated with each quark is an antiquark of opposite charge,
baryon number, and strangeness.

The composition of all hadrons known when Gell-Mann and Zweig presented
their models can be completely specified by three simple rules:

• A meson consists of one quark and one antiquark, giving it a baryon number of
0, as required.

• A baryon consists of three quarks.
• An antibaryon consists of three antiquarks.

1
2

� 1
3 e� 1

3 e�2
3 e
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Baryons

p

u u

d

n

u d

d

Mesons

π

u d

K
_

u s

+ Quark compositions of two mesons and two
baryons.

By logging into Physics-
Now at www.pop4e.com and going to Active
Figure 31.11, you can observe the quark com-
position for the mesons and baryons in Tables
31.4 and 31.5.

ACTIVE FIGURE 31.11

www.pop4e.com


The theory put forth by Gell-Mann and Zweig is referred to as the original quark
model.
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Properties of Quarks and AntiquarksTABLE 31.3

Quarks

Baryon
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Up u 0 0 0 0

Down d 0 0 0 0

Strange s �1 0 0 0

Charmed c 0 �1 0 0

Bottom b 0 0 �1 0

Top t 0 0 0 �1

Antiquarks

Baryon 
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Anti-up 0 0 0 0

Anti-down 0 0 0 0

Anti-strange �1 0 0 0

Anti-charmed 0 �1 0 0

Anti-bottom 0 0 �1 0

Anti-top 0 0 0 �1� 1
3� 2

3 e1
2t

� 1
3� 1

3e1
2b

� 1
3� 2

3 e1
2c

� 1
3� 1

3e1
2s

� 1
3� 1

3e1
2d

� 1
3� 2

3 e1
2u

1
3� 2

3e1
2

1
3� 1

3 e1
2

1
3� 2

3e1
2

1
3� 1

3 e1
2

1
3� 1

3 e1
2

1
3� 2

3 e1
2

Using a coordinate system like that in Figure 31.8, draw an eightfold-
way diagram for the three quarks in the original quark model.
QUICK QUIZ 31.6

Charm and Other Developments
Although the original quark model was highly successful in classifying particles into
families, some discrepancies were evident between predictions of the model and
certain experimental decay rates. It became clear that the structural model needed
to be modified to remove these discrepancies. Consequently, several physicists
proposed a fourth quark in 1967. They argued that if four leptons exist (as was
thought at the time: the electron, the muon, and a neutrino associated with each),
four quarks should also exist because of an underlying symmetry in nature. The
fourth quark, designated by c, was given a property called charm. A charmed quark
has charge , but its charm distinguishes it from the other three quarks. This ad-
dition introduces a new quantum number C, representing charm. The new quark
has charm C � �1, its antiquark has charm C � � 1, and all other quarks have 
C � 0 as indicated in Table 31.3. Charm, like strangeness, is conserved in strong
and electromagnetic interactions, but not in weak interactions.

Evidence that the charmed quark exists began to accumulate in 1974 when a
new heavy particle called the J/� particle (or simply �) was discovered indepen-
dently by two groups, one led by Burton Richter (b. 1931) at the Stanford Linear
Accelerator (SLAC), and the other led by Samuel Ting (b. 1936) at the Brookhaven
National Laboratory. Richter and Ting were awarded the Nobel Prize in Physics in
1976 for this work. The J/� particle does not fit into the three-quark structural
model; instead, it has properties of a combination of the proposed charmed quark
and its antiquark It is much more massive than the other known mesons 
(� 3 100 MeV/c2), and its lifetime is much longer than the lifetimes of particles
that decay via the strong force. Soon, related mesons were discovered, correspond-
ing to such quark combinations as and which all have large masses and longcd,cd 

(cc).

�2
3e



lifetimes. The existence of these new mesons provided firm evidence for the fourth
quark flavor.

In 1975, researchers at Stanford University reported strong evidence for the tau
(�) lepton with a mass of 1 784 MeV/c2. It is the fifth type of lepton to be discov-
ered, which led physicists to propose that more flavors of quarks may exist, based
on symmetry arguments similar to those leading to the proposal of the charmed
quark. These proposals led to more elaborate quark models and the prediction of
two new quarks: top (t) and bottom (b). To distinguish these quarks from the origi-
nal four, quantum numbers called topness and bottomness (with allowed values �1, 0,
�1) are assigned to all quarks and antiquarks (Table 31.3). In 1977, researchers at
the Fermi National Laboratory, under the direction of Leon Lederman (b. 1922),
reported the discovery of a very massive new meson � whose composition is consid-
ered to be , providing evidence for the bottom quark. In March 1995, re-
searchers at Fermilab announced the discovery of the top quark (supposedly the
last of the quarks to be found), with a mass of 173 GeV/c2.

Table 31.4 lists the quark compositions of mesons formed from the up, down,
strange, charmed, and bottom quarks. Table 31.5 shows the quark combinations
for the baryons listed in Table 31.2. Note that only two flavors of quarks, u and d, are
contained in all hadrons encountered in ordinary matter (protons and neutrons).

You are probably wondering if such discoveries will ever end. How many “building
blocks” of matter really exist? At present, physicists believe that the fundamental
particles in nature are six quarks and six leptons (together with their antiparticles)

bb
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Quark Composition of MesonsTABLE 31.4

Antiquarks

b � ( ) Bc
� ( ) ( ) ( ) B� ( )

c Bc
� ( ) J/� ( ) Ds

� ( ) D� ( ) D0 ( )
Quarks s Bs

0 ( ) Ds
� ( ) �, �� ( ) ( ) K� ( )

d B0 ( ) D� ( ) K0 ( ) 
0, �, �� ( ) 
� ( )
u B� ( ) ( ) K� ( ) 
� ( ) 
0, �, �� ( )

Note: The top quark does not form mesons because it decays too quickly.

uudusucuD 0bu
udddsdcdbd
usdsK 0sscsbs
ucdcscccbc
ubdbB 0sbBs

0cbbb

udscb 

Quark Composition 
of Several Baryons

TABLE 31.5

Particle Quark Composition

p uud
n udd
�0 uds
�� uus
�0 uds
�� dds
��� uuu
�� uud
�0 udd
�� ddd
�0 uss
�� dss
�� sss

Note: Some baryons have the same quark
composition, such as the p and the �� and
the n and the �0. In these cases, the � parti-
cles are considered to be excited states of
the proton and neutron.



listed in Table 31.6 and the field particles listed in Table 31.1. Table 31.6 lists the
rest energies and charges of the quarks and leptons.

Despite extensive experimental effort, no isolated quark has ever been
observed. Physicists now believe that quarks are permanently confined inside
hadrons because of the strong force, which prevents them from escaping. Current
efforts are under way to form a quark-gluon plasma, a state of matter in which the
quarks are freed from neutrons and protons. In 2000, scientists at CERN
announced evidence for a quark-gluon plasma formed by colliding lead nuclei.
Experiments continue at CERN as well as at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven to verify the production of a quark-gluon plasma.

■ Thinking Physics 31.2
We have seen a law of conservation of lepton number and a law of conservation of
baryon number. Why isn’t there a law of conservation of meson number?

Reasoning We can argue from the point of view of creating particle–antiparticle
pairs from available energy. (Review pair production in Section 31.2.) If energy is
converted to rest energy of a lepton–antilepton pair, no net change occurs in lep-
ton number because the lepton has a lepton number of � 1 and the antilepton �1.
Energy can also be transformed into rest energy of a baryon–antibaryon pair. The
baryon has baryon number � 1, the antibaryon �1, and no net change in baryon
number occurs.

Now, however, suppose energy is transformed into rest energy of a quark–
antiquark pair. By definition in quark theory, a quark–antiquark pair is a meson. There-
fore, we have created a meson from energy because no meson existed before, now one
does. Therefore, meson number is not conserved. With more energy, we can create
more mesons, with no restriction from a conservation law other than that of energy. ■

COLORED  QUARKS
Shortly after the concept of quarks was proposed, scientists recognized that certain
particles had quark compositions that violated the Pauli exclusion principle. As
noted in Pitfall Prevention 29.4 in Chapter 29, all fermions obey the exclusion

31.10
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The Elementary Particles 
and Their Rest Energies 
and Charges

TABLE 31.6

Particle Rest Energy Charge

Quarks

u 360 MeV

d 360 MeV

s 540 MeV

c 1 500 MeV

b 5 GeV

t 173 GeV

Leptons

e� 511 keV �e
�� 105.7 MeV �e
�� 1 784 MeV �e
�e � 7 eV 0
�� � 0.3 MeV 0
�� � 30 MeV 0

� 2
3e 

� 1
3 e 

� 2
3e 

� 1
3 e 

� 1
3 e 

� 2
3e 



principle. Because all quarks are fermions with spin , they are expected to follow
the exclusion principle. One example of a particle that appears to violate the exclu-
sion principle is the �� (sss) baryon that contains three s quarks having parallel
spins, giving it a total spin of . Other examples of baryons that have identical
quarks with parallel spins are the ��� (uuu) and the �� (ddd). To resolve this
problem, in 1965 Moo-Young Han (b. 1934) and Yoichiro Nambu (b. 1921) sug-
gested a modification of the structural model of quarks in which quarks possess a
new property called color or color charge. This property is similar in many respects
to electric charge except that it occurs in three varieties called red, green, and blue.
The antiquarks have the colors antired, antigreen, and antiblue. To satisfy the exclu-
sion principle, all three quarks in a baryon must have different colors. Just as a com-
bination of actual colors of light can produce the neutral color white, a combina-
tion of three quarks with different colors is also described as white, or colorless. A
meson consists of a quark of one color and an antiquark of the corresponding anti-
color. The result is that baryons and mesons are always colorless (or white).

Although the concept of color in the quark model was originally conceived to
satisfy the exclusion principle, it also provided a better theory for explaining cer-
tain experimental results. For example, the modified theory correctly predicts the
lifetime of the 
0 meson. The theory of how quarks interact with one another is
called quantum chromodynamics, or QCD, to parallel quantum electrodynamics
(the theory of interaction between electric charges). In QCD, the quark is said to
carry a color charge, in analogy to electric charge. The strong force between quarks
is often called the color force.

The color force between quarks is analogous to the electric force between
charges; like colors repel and opposite colors attract. Therefore, two green quarks
repel each other, but a green quark is attracted to an antigreen quark. The attrac-
tion between quarks of opposite color to form a meson is indicated in Figure
31.12a. Differently colored quarks also attract one another, but with less strength
than opposite colors of quark and antiquark. For example, a cluster of red, blue,
and green quarks all attract one another to form a baryon as indicated in Figure
31.12b. Therefore, every baryon contains three quarks of three different colors.

As stated earlier, the strong force between quarks is carried by massless particles
that travel at the speed of light called gluons. According to QCD, there are eight
gluons, all carrying two color charges, a color and an anticolor such as a “blue–
antired” gluon. When a quark emits or absorbs a gluon, its color changes. For 
example, a blue quark that emits a blue–antired gluon becomes a red quark, and 
a red quark that absorbs this gluon becomes a blue quark.

Figure 31.13a shows the interaction between a neutron and a proton by means
of Yukawa’s pion, in this case a 
�. In Figure 31.13a, the charged pion carries
charge from one nucleon to the other, so the nucleons change identities and the

(qq)

3
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COLOR IS NOT REALLY COLOR The
description of color for a quark has
nothing to do with visual sensation
from light. It is simply a convenient
name for a property analogous to
electric charge, except that we need
to combine three types of this prop-
erty to achieve neutrality.

� PITFALL PREVENTION 31.3

Baryon

(b)

Meson

(a)

q q

(a) A green quark
is attracted to an antigreen quark,
forming a meson whose quark 
structure is (b) Three quarks 
of different colors attract one another
to form a baryon.

(qq).

FIGURE 31.12
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(a) A nuclear inter-
action between a proton and a neu-
tron explained in terms of Yukawa’s
pion-exchange model. Because the
pion carries charge, the proton and
neutron switch identities. (b) The
same interaction, explained in terms
of quarks and gluons. Note that the
exchanged quark pair makes up a

� meson.

ud
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proton becomes a neutron and the neutron becomes a proton. (This process 
differs from Fig. 31.5, in which the field particle is a 
 0, resulting in no transfer 
of charge from one nucleon to the other.)

Let us look at the same interaction from the viewpoint of the quark model
shown in Figure 31.13b. In this Feynman diagram, the proton and neutron are rep-
resented by their quark constituents. Each quark in the neutron and proton is con-
tinuously emitting and absorbing gluons. The energy of a gluon can result in the
creation of quark–antiquark pairs. This is similar to the creation of
electron–positron pairs in pair production, which we investigated in Section 31.2.
When the neutron and proton approach to within 1 to 2 fm of each other, these
gluons and quarks can be exchanged between the two nucleons, and such ex-
changes produce the strong force. Figure 31.13b depicts one possibility for the
process shown in Figure 31.13a. A down quark in the neutron on the right emits a
gluon. The energy of the gluon is then transformed to create a pair. The u
quark stays within the nucleon (which has now changed to a proton), and the
recoiling d quark and the antiquark are transmitted to the proton on the left side
of the diagram. Here the annihilates a u quark within the proton and the d is
captured. Therefore, the net effect is to change a u quark to a d quark, and the
proton has changed to a neutron.

As the d quark and antiquark in Figure 31.13 transfer between the nucleons,
the d and exchange gluons with each other and can be considered to be bound
to each other by means of the strong force. If we look back at Table 31.4, we see
that this combination is a 
�, which is Yukawa’s field particle! Therefore, the quark
model of interactions between nucleons is consistent with the pion-exchange
model.

THE  STANDARD  MODEL
Scientists now believe that there are three classifications of truly elementary parti-
cles: leptons, quarks, and field particles. These three particles are further classified
as either fermions or bosons. Quarks and leptons have spin and hence are fermi-
ons, whereas the field particles have integral spin of 1 or higher and are bosons.

Recall from Section 31.1 that the weak force is believed to be mediated by the
W�, W�, and Z0 bosons. These particles are said to have weak charge just as quarks
have color charge. Therefore, each elementary particle can have mass, electric
charge, color charge, and weak charge. Of course, one or more of these could be
zero.

In 1979, Sheldon Glashow (b. 1932), Abdus Salam (1926–1996), and Steven
Weinberg (b. 1933) won the Nobel Prize in Physics for developing a theory that
unified the electromagnetic and weak interactions. This electroweak theory postu-
lates that the weak and electromagnetic interactions have the same strength at very
high particle energies. The two interactions are viewed as two different manifesta-
tions of a single unifying electroweak interaction. The photon and the three mas-
sive bosons ( and Z0) play a key role in the electroweak theory. The theory
makes many concrete predictions, but perhaps the most spectacular is the predic-
tion of the masses of the W and Z particles at about 82 GeV/c2 and 93 GeV/c2, re-
spectively. The 1984 Nobel Prize in Physics was awarded to Carlo Rubbia and Simon
van der Meer for their work leading to the discovery of these particles at these ener-
gies at the CERN Laboratory in Geneva, Switzerland.

The combination of the electroweak theory and QCD for the strong interaction
form what is referred to in high-energy physics as the Standard Model. Although
the details of the Standard Model are complex, its essential ingredients can be sum-
marized with the help of Figure 31.14. (The Standard Model does not include the
gravitational force at present; we include gravity in Fig. 31.14, however, because
physicists hope to eventually incorporate this force into a unified theory.) This
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diagram shows that quarks participate in all the fundamental forces and that
leptons participate in all except the strong force.

The Standard Model does not answer all questions. A major question that is still
unanswered is why, of the two mediators of the electroweak interaction, the photon
has no mass but the W and Z bosons do. Because of this mass difference, the elec-
tromagnetic and weak forces are quite distinct at low energies but become similar
at very high energies, when the rest energy is negligible relative to the total energy.
The behavior as one goes from high to low energies is called symmetry breaking
because the forces are similar, or symmetric, at high energies but are very different
at low energies. The nonzero rest energies of the W and Z bosons raise the question
of the origin of particle masses. To resolve this problem, a hypothetical particle
called the Higgs boson, which provides a mechanism for breaking the electroweak
symmetry, has been proposed. The Standard Model, modified to include the Higgs
mechanism, provides a logically consistent explanation of the massive nature of the
W and Z bosons. Unfortunately, the Higgs boson has not yet been found, but physi-
cists know that its rest energy should be less than 1 TeV. To determine whether the
Higgs boson exists, two quarks of at least 1 TeV of energy must collide. Calculations
show, however, that this process requires injecting 40 TeV of energy within the
volume of a proton.

Scientists are convinced that because the energy available in conventional
accelerators using fixed targets is too limited, it is necessary to build colliding-
beam accelerators called colliders. The concept of colliders is straightforward.
Particles with equal masses and kinetic energies, traveling in opposite directions
in an accelerator ring, collide head-on to produce the required reaction and
the formation of new particles. Because the total momentum of the isolated sys-
tem of interacting particles is zero, all their kinetic energy is available for the
reaction. The Large Electron – Positron (LEP) Collider at CERN (Fig. 31.15),
near Geneva, Switzerland, and the Stanford Linear Collider in California col-
lide both electrons and positrons. The Super Proton Synchrotron at CERN
accelerates protons and antiprotons to energies of 270 GeV. The world’s highest
energy proton accelerator, the Tevatron located at Fermilab in Illinois, pro-
duces protons at almost 1 000 GeV (1 TeV). CERN expects a 2007 completion
date for the Large Hadron Collider (LHC), a proton – proton collider that will
provide a center of mass energy of 14 TeV and allow an exploration of Higgs
boson physics. The accelerator will be constructed in the same 27-km circum-
ference tunnel now housing the LEP collider, and many countries will partici-
pate in the project.
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A view from inside
the Large Electron–Positron (LEP)
Collider tunnel, which is 27 km in
circumference.
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In addition to increasing energies in modern accelerators, detection techniques
have become increasingly sophisticated. Figure 31.16 shows the computer-generated
pictorial representation of the tracks of particles after a collision from a modern
particle detector.

■ Thinking Physics 31.3
Consider a car making a head-on collision with an identical car moving in the
opposite direction at the same speed. Compare that collision with one of the cars
making a collision with the second car at rest. In which collision is the transforma-
tion of kinetic energy to other forms larger? How does this example relate to parti-
cle accelerators?

Reasoning In the head-on collision with both cars moving, conservation of
momentum for the system of two cars requires that the cars come to rest during the
collision. Therefore, all the original kinetic energy is transformed to other forms.
In the collision between a moving car and a stationary car, the cars are still moving
with reduced speed after the collision, in the direction of the initially moving car.
Therefore, only part of the kinetic energy is transformed to other forms.

This example suggests the importance of colliding beams in a particle accelera-
tor as opposed to firing a beam into a stationary target. When particles moving in
opposite directions collide, all the kinetic energy is available for transformation
into other forms, which in this case is the creation of new particles. When a beam is
fired into a stationary target, only part of the energy is available for transformation,
so higher mass particles cannot be created. ■

INVESTIGATING  THE  SMALLEST  SYSTEM  
TO  UNDERSTAND  THE  LARGEST

In this section, we shall describe further one of the most fascinating theories in all
science—the Big Bang theory of the creation of the Universe, introduced in the
Context Connection of Chapter 28—and the experimental evidence that supports
it. This theory of cosmology states that the Universe had a beginning and, further,
that the beginning was so cataclysmic that it is impossible to look back beyond it.
According to this theory, the Universe erupted from a singularity with infinite den-
sity about 15 to 20 billion years ago. The first few fractions of a second after the Big
Bang saw such extremes of energy that all four fundamental forces of physics were
believed to be unified and all matter was contained in a quark-gluon plasma.

31.12
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Computers at
Fermilab create a pictorial representa-
tion such as this one of the paths of
particles after a collision.

FIGURE 31.16
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The evolution of the four fundamental forces from the Big Bang to the present
is shown in Figure 31.17. During the first 10�43 s (the ultrahot epoch, T � 1032 K),
it is presumed that the strong, electroweak, and gravitational forces were joined to
form a completely unified force. In the first 10�35 s following the Big Bang (the hot
epoch, T � 1029 K), gravity broke free of this unification while the strong and elec-
troweak forces remained unified. During this period, particle energies were so
great (� 1016 GeV) that very massive particles as well as quarks, leptons, and their
antiparticles existed. Then, after 10�35 s, the Universe rapidly expanded and
cooled (the warm epoch, T � 1029 � 1015 K), and the strong and electroweak
forces parted company. As the Universe continued to cool, the electroweak force
split into the weak force and the electromagnetic force about 10�10 s after the Big
Bang.

After a few minutes, protons condensed out of the plasma. For half an hour the
Universe underwent thermonuclear detonation, exploding like a hydrogen bomb
and producing most of the helium nuclei that now exist. The Universe continued
to expand and its temperature dropped. Until about 700 000 years after the Big
Bang, the Universe was dominated by radiation. Energetic radiation prevented
matter from forming single hydrogen atoms because collisions would instantly
ionize any atoms that happened to form. Photons experienced continuous Compton
scattering from the vast numbers of free electrons, resulting in a Universe that was
opaque to radiation. By the time the Universe was about 700 000 years old, it had
expanded and cooled to about 3 000 K, and protons could bind to electrons to
form neutral hydrogen atoms. Because of the quantized energies of the atoms, far
more wavelengths of radiation were not absorbed by atoms than were, and the
Universe suddenly became transparent to photons. Radiation no longer dominated
the Universe, and clumps of neutral matter steadily grew, first atoms, followed by
molecules, gas clouds, stars, and finally galaxies.

Evidence for the Expanding Universe
In Chapter 28, we discussed the observation of blackbody radiation by Penzias and
Wilson that represents the leftover glow from the Big Bang. We discuss here addi-
tional relevant astronomical observations. Vesto Melvin Slipher (1875–1969), an
American astronomer, reported that most nebulae are receding from the Earth at
speeds up to several million miles per hour. Slipher was one of the first to use the
methods of Doppler shifts in spectral lines to measure galactic speeds.
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In the late 1920s, Edwin P. Hubble (1889–1953) made the bold assertion that
the whole Universe is expanding. From 1928 to 1936, he and Milton Humason
(1891–1972) toiled at the Mount Wilson Observatory in California to prove this
assertion until they reached the limits of that 100-in. telescope. The results of this
work and its continuation on a 200-in. telescope in the 1940s showed that
the speeds of galaxies increase in direct proportion to their distance R from us
(Fig. 31.18). This linear relationship, known as Hubble’s law, may be written as

v � HR [31.7]

where H, called the Hubble parameter, has the approximate value

H � 17 � 10�3 m/(s � ly)
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Suppose we assume that the quasar has moved at
this speed ever since the Big Bang. With this assump-
tion, estimate the age of the Universe.

Solution We approximate the distance from the Earth
to the quasar as the distance that the quasar has moved
from the singularity since the Big Bang. We can then
find the time interval from a calculation as performed
in Chapter 2: �t � �x/v � R/v � 1/H � 18 billion
years, which is in approximate agreement with other
calculations.

B

Recession of a QuasarEXAMPLE 31.5
A quasar is an object that appears similar to a star and
that is very distant from the Earth. Its speed can be
measured from Doppler shift measurements in the
light it emits.

A certain quasar recedes from the Earth at a speed
of 0.55c. How far away is it?

Solution We can find the distance from Hubble’s law:

9.7 � 109 lyR �
v
H

�
(0.55)(3.00 � 108 m/s)

17 � 10�3 m/(s� ly)
�

A

Will the Universe Expand Forever?
In the 1950s and 1960s, Allan R. Sandage (b. 1926) used the 200-in. telescope at
the Mount Palomar Observatory in California to measure the speeds of galaxies at
distances of up to 6 billion lightyears from the Earth. These measurements showed

■ Hubble’s law



that these very distant galaxies were moving about 10 000 km/s faster than
Hubble’s law predicted. According to this result, the Universe must have been
expanding more rapidly 1 billion years ago, and consequently the expansion is
slowing (Fig. 31.19). Today, astronomers and physicists are trying to determine the
rate of slowing.

If the average mass density of atoms in the Universe is less than some critical
density (about 3 atoms/m3), the galaxies will slow in their outward rush but still
escape to infinity. If the average density exceeds the critical value, the expansion
will eventually stop and contraction will begin, possibly leading to a new superdense
state and another expansion. In this scenario, we have an oscillating Universe.

INVESTIGATING THE SMALLEST SYSTEM TO UNDERSTAND THE LARGEST ❚ 1075

y g p pp

L
og

ar
it

h
m

 o
f r

ed
 s

h
if

t

Magnitude

5

4.6

4.2

3.8

3.4

3

8 10 12 14 16 18 20

A

B

C

Red shift, or speed
of recession, versus magnitude (which
is related to brightness) of 18 faint
galaxy clusters. Significant scatter of
the data occurs, so the extrapolation
of the curve to the upper right is 
uncertain. Curve A is the trend 
suggested by the six faintest clusters.
Curve C corresponds to a Universe
having a constant rate of expansion. If
more data are taken and the com-
plete set of data indicates a curve that
falls between B and C, the expansion
will slow but never stop. If the data fall
to the left of B, expansion will eventu-
ally stop and the Universe will begin
to contract.
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The Critical Density of the UniverseEXAMPLE 31.6
Estimate the critical mass density �c of the Universe,
using energy considerations.

Solution Figure 31.20 shows a large section of the
Universe with radius R , containing galaxies with a
total mass M. Let us apply the isolated system model
to an escaping galaxy and the section of the Universe;
a galaxy of mass m and speed v at R will just escape to
infinity with zero speed if the sum of its kinetic
energy and the gravitational potential energy of the
system is zero. The Universe may be infinite in extent,
but a theorem such as the gravitational form of
Gauss’s law implies that only the mass inside the
sphere contributes to the gravitational potential
energy of the system of the sphere and the galaxy.
Therefore,

(1) v2 �
8
G

3
 R2�c

1
2 mv2 �

Gm 4
3 
R3�c

R

E total � 0 � K � U � 1
2mv2 �

GmM
R

R

m

v

(Example 31.6) The galaxy labeled with mass m is
escaping from a large cluster of galaxies contained
within a spherical volume of radius R . Only the
mass within the sphere slows the escaping galaxy.

FIGURE 31.20



Missing Mass in the Universe?
The luminous matter in galaxies averages out to a Universe density of about
5 � 10�33 g/cm3. The radiation in the Universe has a mass equivalent of approxi-
mately 2% of the visible matter. The total mass of all nonluminous matter (such as
interstellar gas and black holes) may be estimated from the speeds of galaxies orbit-
ing one another in a cluster. The higher the galaxy speeds, the more mass in the
cluster. Measurements on the Coma cluster of galaxies indicate that the amount of
nonluminous matter is 20 to 30 times the amount of luminous matter present in
stars and luminous gas clouds. Yet even this large invisible component of dark mat-
ter, if extrapolated to the Universe as a whole, leaves the observed mass density a
factor of 10 less than �c . The deficit, called missing mass, has been the subject of
intense theoretical and experimental work. Exotic particles such as axions, photi-
nos, and superstring particles have been suggested as candidates for the missing
mass. More mundane proposals argue that the missing mass is present in certain
galaxies as neutrinos. In fact, neutrinos are so abundant that a tiny neutrino rest
energy on the order of only 20 eV would furnish the missing mass and “close” the
Universe. Therefore, current experiments designed to measure the rest energy of
the neutrino will affect predictions for the future of the Universe, showing a clear
connection between one of the smallest pieces of the Universe and the Universe as
a whole!

Mysterious Energy in the Universe?
A surprising twist in the story of the Universe arose in 1998 with the observation
of a class of supernovae that have a fixed absolute brightness. By combining the
apparent brightness and the redshift of light from these explosions, their dis-
tance and speed of recession of the Earth can be determined. These observa-
tions led to the conclusion that the expansion of the Universe is not slowing
down but rather is accelerating! Observations by other groups also led to the
same interpretation.

To explain this acceleration, physicists have proposed dark energy, which is
energy possessed by the vacuum of space. In the early life of the Universe,
gravity dominated over the dark energy. As the Universe expanded and the
gravitational force between galaxies became smaller because of the great
distances between them, the dark energy became more important. The dark
energy results in an effective repulsive force that causes the expansion rate to
increase.3
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Because the galaxy of mass m obeys the Hubble law, 
v � HR, (1) becomes

(2) �c �
3H 2

8
G

 H 2 �
8
G

3
 �c

Using H � 17 � 10�3 m/(s � ly), where 1 ly �
9.46 � 1012 km, and G � 6.67 � 10�11 N � m2/kg2

yields the critical density �c � . Be- 
cause the mass of a hydrogen atom is 1.67 � 10�24 g,
the value calculated for �c corresponds to 3 � 10�6

hydrogen atoms per cubic centimeter or 3 atoms per
cubic meter.

6 � 10�30 g/cm3

3For a discussion of dark energy, see S. Perlmutter, “Supernovae, Dark Energy, and the Accelerating
Universe,” Physics Today, 56(4): 53–60, April 2003.
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SUMMARY

Take a practice test by logging into
Physics-Now at www.pop4e.com and
clicking on the Pre-Test link for this
chapter.

There are four fundamental forces in nature: strong,
electromagnetic, weak, and gravitational. The strong
force is the force between quarks. A residual effect of the
strong force is the nuclear force between nucleons that
keeps the nucleus together. The weak force is responsible
for beta decay. The electromagnetic and weak forces are
now considered to be manifestations of a single force
called the electroweak force. Every fundamental interac-
tion is mediated by the exchange of field particles. The
electromagnetic interaction is mediated by the photon;
the weak interaction is mediated by the and Z 0

bosons; the gravitational interaction is mediated by gravi-
tons; the strong interaction is mediated by gluons.

An antiparticle and a particle have the same mass, but
opposite charge, and other properties may have opposite
values such as lepton number and baryon number. It is pos-
sible to produce particle–antiparticle pairs in nuclear reac-
tions if the available energy is greater than 2mc2, where m is
the mass of the particle (or antiparticle).

Particles other than field particles are classified as
hadrons or leptons. Hadrons interact through the strong

W�

force. They have size and structure and are not elementary
particles. Hadrons are of two types, baryons and mesons.
Mesons have baryon number zero and have either zero or
integral spin. Baryons, which generally are the most massive
particles, have nonzero baryon number and a spin of or .
The neutron and proton are examples of baryons.

Leptons have no structure or size and are considered
truly elementary. They interact through the weak and elec-
tromagnetic forces. The six leptons are the electron e �, the
muon ��, the tau ��; and their neutrinos �e , �� , and �� .

In all reactions and decays, quantities such as energy, lin-
ear momentum, angular momentum, electric charge,
baryon number, and lepton number are strictly conserved.
Certain particles have properties called strangeness and
charm. These unusual properties are conserved only in
those reactions and decays that occur via the strong force.

Theories in elementary particle physics have postulated
that all hadrons are composed of smaller units known as
quarks. Quarks have fractional electric charge and come in
six “flavors”: up (u), down (d), strange (s), charmed (c), top
(t), and bottom (b). Each baryon contains three quarks,
and each meson contains one quark and one antiquark.

According to the theory of quantum chromodynamics,
quarks have a property called color charge, and the strong
force between quarks is referred to as the color force.

3
2

1
2

QUESTIONS

� answer available in the Student Solutions Manual and
Study Guide

1. Name the four fundamental forces and the field parti-
cle that mediates each.

2. Describe the quark model of hadrons, including the
properties of quarks.

3. What are the differences between hadrons and leptons?

Describe the properties of baryons and mesons and the
important differences between them.

4.

5. Particles known as resonances have very short lifetimes,
on the order of 10�23 s. From this information, would
you guess that they are hadrons or leptons? Explain.

6. Kaons all decay into final states that contain no protons
or neutrons. What is the baryon number of kaons?

7. Two protons in a nucleus interact via the nuclear inter-
action. Are they also subject to the weak interaction?

The �0 particle decays by the weak interaction accord-
ing to the decay mode �0 : �0 	 
 0. Would you ex-
pect this decay to be fast or slow? Explain.

8.

Although we have some degree of certainty about the beginning of the
Universe, we are uncertain about how the story will end. Will the Universe keep on
expanding forever, or will it someday collapse and then expand again, perhaps
in an endless series of oscillations? Results and answers to these questions remain
inconclusive, and the exciting controversy continues.

www.pop4e.com
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PROBLEMS

1, 2, 3 � straightforward, intermediate, challenging
� full solution available in the Student Solutions 

Manual and Study Guide

� coached problem with hints available 
at www.pop4e.com

� computer useful in solving problem

� paired numerical and symbolic problems

� biomedical application

Section 31.1 ■ The Fundamental Forces in Nature

Section 31.2 ■ Positrons and Other Antiparticles

1. A photon produces a proton–antiproton pair accord-
ing to the reaction . What is the minimum
possible frequency of the photon? What is its wave-
length?

� : p 	 p

2. At some time in your past or future, you may find
yourself in a hospital to have a PET scan. The
acronym stands for positron-emission tomography. In the
procedure, a radioactive element that undergoes e	

decay is introduced into your body. The equipment
detects the gamma rays that result from pair annihila-
tion when the emitted positron encounters an elec-
tron in your body’s tissue. Suppose you receive an in-
jection of glucose containing on the order of 1010

atoms of 14O. Assume that the oxygen is uniformly
distributed through 2 L of blood after 5 min. What
will be the order of magnitude of the activity of the
oxygen atoms in 1 cm3 of the blood?

3. Model a penny as 3.10 g of copper. Consider an anti-
penny minted from 3.10 g of copper anti-atoms, each
with 29 positrons in orbit around a nucleus compris-
ing 29 antiprotons and 34 or 36 antineutrons. 
(a) Find the energy released if the two coins collide.
(b) Find the value of this energy at the unit price of

9. Identify the particle decays in Table 31.2 that occur by
the weak interaction. Justify your answers.

Identify the particle decays in Table 31.2 that occur by
the electromagnetic interaction. Justify your answers.

11. Discuss the following conservation laws: energy, linear
momentum, angular momentum, electric charge,
baryon number, lepton number, and strangeness. Are
all these laws based on fundamental properties of na-
ture? Explain.

12. An antibaryon interacts with a meson. Can a baryon be
produced in such an interaction? Explain.

13. Describe the essential features of the Standard Model of
particle physics.

How many quarks are in each of the following: (a) a
baryon, (b) an antibaryon, (c) a meson, (d) an antime-
son? How do you explain that baryons have half-
integral spins, whereas mesons have spins of 0 or 1?
(Note: Quarks have spin .)

15. In the theory of quantum chromodynamics, quarks
come in three colors. How would you justify the state-
ment that “all baryons and mesons are colorless”?

16. Which baryon did Murray Gell-Mann predict in 1961?
What is the quark composition of this particle?

1
2

14.

10.

17. What is the quark composition of the �� particle? (See
Table 31.5.)

18. The W and Z bosons were first produced at CERN in
1983 by causing a beam of protons and a beam of
antiprotons to meet at high energy. Why was this dis-
covery important?

19. How did Edwin Hubble determine in 1928 that the Uni-
verse is expanding?

20. Neutral atoms did not exist until hundreds of thou-
sands of years after the Big Bang. Why?

21. What does the infinite range of the electromagnetic
and gravitational interactions tell you about the masses
of the photon and the graviton?

22. If high-energy electrons, with deBroglie wavelengths
smaller than the size of the nucleus, are scattered from
nuclei, the behavior of the electrons is consistent with
scattering from very dense structures much smaller in
size than the nucleus—quarks. Is this experiment simi-
lar to another classic experiment that detected small
structures in atoms? Explain.

23. Observations of galaxies outside our Local Group
show that they are all moving away from us. Is it
therefore correct to propose that we are at the center
of the Universe?

www.pop4e.com


$0.14/kWh, a representative retail rate for energy
from the electric company.

4. Two photons are produced when a proton and antipro-
ton annihilate each other. In the reference frame in
which the center of mass of the proton–antiproton sys-
tem is stationary, what are the minimum frequency and
corresponding wavelength of each photon?

A photon with an energy E� � 2.09 GeV creates a 
proton–antiproton pair in which the proton has a ki-
netic energy of 95.0 MeV. What is the kinetic energy of
the antiproton? (mpc 2 � 938.3 MeV.)

Section 31.3 ■ Mesons and the Beginning 
of Particle Physics

6. Occasionally, high-energy muons collide with electrons
and produce two neutrinos according to the reaction
�	 	 e� : 2�. What kind of neutrinos are they?

One of the mediators of the weak in-
teraction is the Z0 boson, with mass 91.2 GeV/c 2. Use
this information to find the order of magnitude of the
range of the weak interaction.

8. Calculate the range of the force that might be pro-
duced by the virtual exchange of a proton.

A neutral pion at rest decays into two
photons according to


0 : � 	 �

Find the energy, momentum, and frequency of each
photon.

10. When a high-energy proton or pion traveling near
the speed of light collides with a nucleus, it travels an 
average distance of 3 � 10�15 m before interacting.
From this information, find the order of magnitude
of the time interval required for the strong interac-
tion to occur.

11. A free neutron beta decays by creating a proton, an
electron, and an antineutrino according to the reac-
tion . Imagine that a free neutron were
to decay by creating a proton and electron according
to the reaction

n : p 	 e�

and assume that the neutron is initially at rest in the
laboratory. (a) Determine the energy released in this re-
action. (b) Determine the speeds of the proton and
electron after the reaction. (Energy and momentum
are conserved in the reaction.) (c) Is either of these
particles moving at a relativistic speed? Explain.

n : p 	 e� 	 �

9.

7.

5.

Section 31.4 ■ Classification of Particles

12. Identify the unknown particle on the left side of the re-
action

? 	 p : n 	 �	

Name one possible decay mode (see Table 31.2) for
	, , , and .

Section 31.5 ■ Conservation Laws

14. Each of the following reactions is forbidden. Determine
a conservation law that is violated for each reaction.
(a) (b) 
� 	 p : p 	 
	

(c) p 	 p : p 	 
	 (d) p 	 p : p 	 p 	 n
(e) � 	 p : n 	 
0

15. (a) Show that baryon number and charge are con-
served in the following reactions of a pion with a pro-
ton.

(1) 
	 	 p : K	 	 �	

(2) 
	 	 p : 
	 	 �	

(b) The first reaction is observed, but the second never
occurs. Explain.

16. The first of the following two reactions can occur, but
the second cannot. Explain.

KS
0 : 
	 	 
� (can occur)

�0 : 
	 	 
� (cannot occur)

The following reactions or decays
involve one or more neutrinos. In each case, supply the
missing neutrino (�e , ��, or ��) or antineutrino.
(a) (b) 
(c) ? 	 p : n 	 e	 (d) ? 	 n : p 	 e�

(e) ? 	 n : p 	 �� (f) 

18. A K S
0 particle at rest decays into a 
	 and a 
�. What

will be the speed of each of the pions? The mass of 
the KS

0 is 497.7 MeV/c 2, and the mass of each 
 is 
139.6 MeV/c 2.

Determine which of the following re-
actions can occur. For those that cannot occur, deter-
mine the conservation law (or laws) violated.
(a) p : 
	 	 
0 (b) p 	 p : p 	 p 	 
0

(c) p 	 p : p 	 
	 (d) 
	 : �	 	 ��

(e) (f) 
	 : �	 	 n

20. (a) Show that the proton-decay reaction

p : e	 	 �

cannot occur because it violates conservation of baryon
number. (b) Imagine that this reaction does occur and
that the proton is initially at rest. Determine the energy

n : p 	 e� 	 �e

19.

�� : e� 	 ? 	 ?

K	 : �	 	 ?
� : �� 	 ?

17.

p 	 p : �	 	 e�

n�0KS
0

13.
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and momentum of the positron and photon after the
reaction. (Suggestion: Recall that energy and momen-
tum must be conserved in the reaction.) (c) Determine
the speed of the positron after the reaction.

21. Determine the type of neutrino or antineutrino in-
volved in each of the following processes.
(a) 
	 : 
 0 	 e	 	 ? (b) ? 	 p : �� 	 p 	 
	

(c) �0 : p 	 �� 	 ? (d) �	 : �	 	 ? 	 ?

Section 31.6 ■ Strange Particles and Strangeness

22. The neutral meson �0 decays by the strong interaction
into two pions: , half-life 10�23 s. The
neutral kaon also decays into two pions: K S

0 :


	 	 
�, half-life 10�10 s. How do you explain the dif-
ference in half-lives?

Determine whether or not strangeness is conserved in
the following decays and reactions.
(a) �0 : p 	 
� (b) 
� 	 p : �0 	 K0

(c) (d) 
� 	 p : 
� 	 �	

(e) �� : �0 	 
� (f) �0 : p 	 
�

24. For each of the following forbidden decays, determine
which conservation law is violated.
(a) �� : e� 	 � (b) n : p 	 e� 	 �e
(c) �0 : p 	 
0 (d) p : e	 	 
0

(e) �0 : n 	 
0

25. Which of the following processes are allowed by the
strong interaction, the electromagnetic interaction, the
weak interaction, or no interaction at all?
(a) 
� 	 p : 2� (b) K� 	 n : �0 	 
�

(c) K� : 
� 	 
 0 (d) � : �� 	 
0

(e) � : 2�

26. Identify the conserved quantities in the following
processes.
(a) �� : �0 	 �� 	 �� (b) KS

0 : 2
0

(c) K� 	 p : �0 	 n (d) �0 : �0 	 �
(e) e	 	 e� : �	 	 �� (f) 

27. Fill in the missing particle. Assume that (a) occurs via
the strong interaction and that (b) and (c) involve the
weak interaction.
(a) K	 	 p : ? 	 p (b) � : ? 	 
�

(c) K	 : ? 	 �	 	 ��

Section 31.7 ■ Measuring Particle Lifetimes

28. The particle decay �	 : 
	 	 n is observed in a bub-
ble chamber. Figure P31.28 represents the curved
tracks of the particles �	 and 
	, and the invisible
track of the neutron, in the presence of a uniform

p 	 n : �0 	 ��

p 	 p : �0 	 �0

23.

�0 : 
 	 	 
�

magnetic field of 1.15 T directed out of the page. The
measured radii of curvature are 1.99 m for the �	 par-
ticle and 0.580 m for the 
	 particle. (a) Find the mo-
menta of the �	 and the 
	 particles in units of
MeV/c . (b) The angle between the momenta of the
�	 and the 
	 particles at the moment of decay is
64.5°. Find the momentum of the neutron. (c) Calcu-
late the total energy of the 
	 particle, and of the
neutron, from their known masses (m
 � 139.6
MeV/c 2, mn � 939.6 MeV/c 2) and the relativistic en-
ergy-momentum relation. What is the total energy of
the �	 particle? (d) Calculate the mass and speed of
the �	 particle.
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n
64.5°

Σ+

π+

FIGURE P31.28

If a KS
0 meson at rest decays in 0.900 � 10�10 s, how far

will a KS
0 meson travel if it is moving at 0.960c?

30. A particle of mass m1 is fired at a stationary particle of
mass m2 , and a reaction takes place in which new parti-
cles are created out of the incident kinetic energy.
Taken together, the product particles have total mass
m3. The minimum kinetic energy that the bombarding
particle must have to induce the reaction is called the
threshold energy. At this energy, the kinetic energy of
the products is a minimum, so the fraction of the inci-
dent kinetic energy that is available to create new par-
ticles is a maximum. This situation occurs when all the
product particles have the same velocity; then the par-
ticles have no kinetic energy of motion relative to one
another. (a) By using conservation of relativistic en-
ergy and momentum, and the relativistic energy-
momentum relation, show that the threshold energy is
given by

Kmin �
[m3

2 � (m1 	 m2)2]c2

2m2

29.



Calculate the threshold energy for each of the following
reactions:
(b) 

(One of the initial protons is at rest. Antiprotons are
produced.)

(c) 
(The proton is at rest. Strange particles are pro-
duced.)

(d) 
(One of the initial protons is at rest. Pions are pro-
duced.)

(e) 
(One of the initial particles is at rest. Z0 particles
(mass 91.2 GeV/c 2) are produced.)

Section 31.8 ■ Finding Patterns in the Particles

Section 31.9 ■ Quarks

Section 31.10 ■ Colored Quarks

Section 31.11 ■ The Standard Model

Note: Problem 9.59 in Chapter 9 can be assigned with 
Section 31.11.

31. (a) Find the number of electrons and the number of
each species of quark in 1 L of water. (b) Make an 
order-of-magnitude estimate of the number of each
kind of fundamental matter particle in your body.
State your assumptions and the quantities you take as
data. Note that the t and b quarks were sometimes
called “truth” and “beauty.”

32. The quark composition of the proton is uud and that of
the neutron is udd. Show that in each case the charge,
baryon number, and strangeness of the particle equal,
respectively, the sums of these numbers for the quark
constituents.

33. Imagine that binding energies could be ignored. Find
the masses of the u and d quarks from the masses of the
proton and neutron.

34. The quark compositions of the K0 and �0 particles
are and uds, respectively. Show that the charge,
baryon number, and strangeness of these particles
equal, respectively, the sums of these numbers for the
quark constituents.

Analyze each reaction in terms of constituent quarks.
(a) 
� 	 p : K0 	 �0

(b) 
	 	 p : K	 	 �	

35.

sd

p 	 p : Z0

p 	 p : p 	 p 	 
0


� 	 p : K0 	 �0

p 	 p : p 	 p 	 p 	 p

(c) K� 	 p : K	 	 K0 	 �

(d) p 	 p : K0 	 p 	 
	 	 ?
In the last reaction, identify the mystery particle.

36. The text states that the reaction 
� 	 p : K0 	 �0 oc-
curs with high probability, whereas the reaction 
� 	 p
: K0 	 n never occurs. Analyze these reactions at the
quark level. Show that the first reaction conserves the
total number of each type of quark and that the second
reaction does not.

37. A �0 particle traveling through matter strikes a proton;
then a �	 and a gamma ray emerge, as well as a third
particle. Use the quark model of each to determine the
identity of the third particle.

38. Identify the particles corresponding to the quark com-
binations (a) suu, (b) , (c) , and (d) ssd.

39. What is the electrical charge of the baryons with the
quark compositions (a) and (b) ? What are
these baryons called?

Section 31.12 ■ Context Connection — Investigating 
the Smallest System to Understand 
the Largest

Note: Problem 24.14 in Chapter 24, Problems 29.39
and 29.41 in Chapter 29, and Problems 28.53 and
28.54 in Chapter 28 can be assigned with this section.

40. Imagine that all distances expand at a rate described by
the Hubble constant of 17.0 � 10�3 m/s � ly. (a) At what
rate would the 1.85-m height of a basketball player be
increasing? (b) At what rate would the distance between
the Earth and the Moon be increasing? In fact, gravita-
tion and other forces prevent the Hubble’s-law expan-
sion from taking place except in systems larger than
clusters of galaxies.

41. Using Hubble’s law, find the wavelength of the 590-nm
sodium line emitted from galaxies (a) 2.00 � 106 ly
away from the Earth, (b) 2.00 � 108 ly away, and 
(c) 2.00 � 109 ly away. You may use the result of Prob-
lem 29.39 in Chapter 29.

42. The various spectral lines observed in the light from a
distant quasar have longer wavelengths �n� than the
wavelengths �n measured in light from a stationary
source. Here n is an index taking different values for
different spectral lines. The fractional change in wave-
length toward the red is the same for all spectral lines.
That is, the redshift parameter Z defined by

Z �
�n� � �n

�n

u  d  du  u  d

sdud
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is common to all spectral lines for one object. In terms
of Z , determine (a) the speed of recession of the
quasar and (b) the distance from the Earth to this
quasar. Use the result of Problem 29.39 in Chapter 29
and Hubble’s law.

43. Assume that dark matter exists throughout space with a
uniform density of 6.00 � 10�28 kg/m3. (a) Find the
amount of such dark matter inside a sphere centered
on the Sun, having the Earth’s orbit as its equator. 
(b) Would the gravitational field of this dark matter
have a measurable effect on the Earth’s revolution?

44. It is mostly your roommate’s fault. Nosy astronomers
have discovered enough junk and clutter in your dorm
room to constitute the missing mass required to close
the Universe. After observing your floor, closet, bed,
and computer files, they extrapolate to slobs in other
galaxies and calculate the average density of the ob-
servable Universe as 1.20�c . How many times larger
will the Universe become before it begins to collapse?
That is, by what factor will the distance between re-
mote galaxies increase in the future?

45. The early Universe was dense with gamma-ray pho-
tons of energy � kBT and at such a high temperature
that protons and antiprotons were created by the
process as rapidly as they annihilated each
other. As the Universe cooled in adiabatic expansion,
its temperature fell below a certain value and proton
pair production became rare. At that time slightly
more protons than antiprotons existed, and essen-
tially all the protons in the Universe today date from
that time. (a) Estimate the order of magnitude of the
temperature of the Universe when protons condensed
out. (b) Estimate the order of magnitude of the tem-
perature of the Universe when electrons condensed
out.

46. If the average density of the Universe is small com-
pared with the critical density, the expansion of the
Universe described by Hubble’s law proceeds with
speeds that are nearly constant over time. (a) Prove
that in this case the age of the Universe is given by the
inverse of Hubble’s constant. (b) Calculate 1/H and
express it in years.

47. Assume that the average density of the Universe is
equal to the critical density. (a) Prove that the age of
the Universe is given by 2/3H. (b) Calculate 2/3H and
express it in years.

48. Hubble’s law can be stated in vector form as .
Outside the local group of galaxies, all objects are mov-
ing away from us with velocities proportional to their
displacements from us. In this form, it sounds as if our
location in the Universe is specially privileged. Prove
that Hubble’s law would be equally true for an observer

v: � H R
:

� : p 	 p

elsewhere in the Universe. Proceed as follows. Assume
that we are at the origin of coordinates, that one galaxy
cluster is at location and has velocity rela-
tive to us, and that another galaxy cluster has position
vector and velocity . Suppose the speeds
are nonrelativistic. Consider the frame of reference of
an observer in the first of these galaxy clusters. Show
that our velocity relative to her, together with the posi-
tion vector of our galaxy cluster relative to hers, satisfies
Hubble’s law. Show that the position and velocity of
cluster 2 relative to cluster 1 satisfy Hubble’s law.

Additional Problems

49. Review problem. Supernova Shelton 1987A, located
about 170 000 ly from the Earth, is estimated to have
emitted a burst of neutrinos carrying energy � 1046 J

v:2 � H R
:

2R
:

2

v:1 � H R
:

1R
:

1
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FIGURE P31.49 (Problems 31.49 and 31.50) The giant star catalogued
as Sanduleak �69° 202 in the “before” picture (top) became Supernova
Shelton 1987A in the “after” picture (bottom).
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(Fig. P31.49). Suppose the average neutrino energy
was 6 MeV and your mother’s body presented cross-
sectional area 5 000 cm2. To an order of magnitude,
how many of these neutrinos passed through your
mother?

50. The most recent naked-eye supernova was Supernova
Shelton 1987A (Fig. P31.49). It was 170 000 ly away in
the next galaxy to ours, the Large Magellanic Cloud.
About 3 h before its optical brightening was noticed,
two continuously running neutrino detection experi-
ments simultaneously registered the first neutrinos
from an identified source other than the Sun. The
Irvine-Michigan-Brookhaven experiment in a salt
mine in Ohio registered eight neutrinos over a 6 - s pe-
riod, and the Kamiokande II experiment in a zinc
mine in Japan counted eleven neutrinos in 13 s. (Be-
cause the supernova is far south in the sky, these neu-
trinos entered the detectors from below. They passed
through the Earth before they were by chance ab-
sorbed by nuclei in the detectors.) The neutrino ener-
gies were between about 8 MeV and 40 MeV. If neutri-
nos have no mass, neutrinos of all energies should
travel together at the speed of light, and the data are
consistent with this possibility. The arrival times could
show scatter simply because neutrinos were created at
different moments as the core of the star collapsed
into a neutron star. If neutrinos have nonzero mass,
lower-energy neutrinos should move comparatively
slowly. The data are consistent with a 10 MeV neutrino
requiring at most about 10 s more than a photon
would require to travel from the supernova to us. Find
the upper limit that this observation sets on the mass
of a neutrino. (Other evidence sets an even tighter
limit.)

The energy flux carried by neutrinos
from the Sun is estimated to be on the order of 
0.4 W/m2 at the Earth’s surface. Estimate the fractional
mass loss of the Sun over 109 yr due to the emission of
neutrinos. (The mass of the Sun is 2 � 1030 kg. The
Earth–Sun distance is 1.5 � 1011 m.)

52. Name at least one conservation law that prevents each
of the following reactions: (a) 
� 	 p : �	 	 
 0, 
(b) �� : 
� 	 �e , (c) p : 
	 	 
	 	 
�.

Assume that the half-life of free neutrons is 614 s. What
fraction of a group of free thermal neutrons with ki-
netic energy 0.040 0 eV will decay before traveling a dis-
tance of 10.0 km?

54. Two protons approach each other head-on, each with
70.4 MeV of kinetic energy, and engage in a reaction in
which a proton and positive pion emerge at rest. What
third particle, obviously uncharged and therefore diffi-
cult to detect, must have been created?

53.

51.

Determine the kinetic energies of the proton and pion
resulting from the decay of a �0 at rest:

�0 : p 	 
�

56. A rocket engine for space travel using photon drive
and matter–antimatter annihilation has been sug-
gested. Suppose the fuel for a short-duration burn
consists of N protons and N antiprotons, each with
mass m . (a) Assume that all the fuel is annihilated to
produce photons. When the photons are ejected from
the rocket, what momentum can be imparted to it ?
(b) If half of the protons and antiprotons annihilate
each other and the energy released is used to eject
the remaining particles, what momentum could be
given to the rocket? Which scheme results in the
greatest change in speed for the rocket?

57. An unstable particle, initially at rest, decays into a
proton (rest energy 938.3 MeV) and a negative pion
(rest energy 139.6 MeV). A uniform magnetic field of
0.250 T exists perpendicular to the velocities of the
created particles. The radius of curvature of each
track is found to be 1.33 m. What is the mass of the
original unstable particle?

58. A gamma-ray photon strikes a stationary electron. Deter-
mine the minimum gamma-ray energy to make this re-
action occur:

59. Two protons approach each other with velocities of
equal magnitude in opposite directions. What is the
minimum kinetic energy of each of the protons if they
are to produce a 
	 meson at rest in the following reac-
tion?

p 	 p : p 	 n 	 
	

60. A �0 particle at rest decays according to

Find the gamma-ray energy.

61. Review problem. Use the Boltzmann distribution func-
tion to calculate the temperature at which
1.00% of a population of photons will have energy
greater than 1.00 eV. The energy required to excite an
atom is on the order of 1 eV. Therefore, as the tempera-
ture of the Universe fell below the value you calculate,
neutral atoms could form from plasma and the Uni-
verse became transparent. The cosmic background ra-
diation represents our vastly red-shifted view of the
opaque fireball of the Big Bang as it was at this time and
temperature. The fireball surrounds us; we are embers.

62. A 
-meson at rest decays according to .
What is the energy carried off by the neutrino? (Assume


� : �� 	 ��

e�E/kBT

�0 :  �0 	 �

� 	 e� :  e� 	 e� 	 e	

55.
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ANSWERS TO QUICK QUIZZES

31.1 (a). The right-hand rule for the positive particle tells you
that this direction is the one that leads to a force
directed toward the center of curvature of the path.

31.2 (c), (d). There is a baryon, the neutron, on the left of
the reaction, but no baryon on the right. Therefore,
baryon number is not conserved. The neutron has spin .
On the right side of the reaction, the pions each have
integral spin, and the combination of two muons must
also have integral spin. Therefore, the total spin of the

1
2

particles on the right-hand side is integral and angular
momentum is not conserved.

31.3 (a). The sum of the proton and pion masses is larger
than the mass of the neutron, so energy conservation is
violated.

31.4 (b), (e), (f). The pion on the left has integral spin,
whereas the three spin- leptons on the right must result
in a total spin that is half-integral. Therefore, angular
momentum (b) is not conserved. There is an electron on

1
2

that the neutrino has no mass and moves off with the
speed of light. Take m
c2 � 139.6 MeV and m�c 2 �

105.7 MeV.)

63. Identify the mediators for the two interactions de-
scribed in the Feynman diagrams shown in Figure
P31.63.

65. The cosmic rays of highest energy are mostly protons,
accelerated by unknown sources. Their spectrum shows
a cutoff at an energy on the order of 1020 eV. Above
that energy, a proton will interact with a photon of cos-
mic microwave background radiation to produce
mesons, for example, according to 

p � 	 : p � 
 0

Demonstrate this fact by taking the following steps.
(a) Find the minimum photon energy required to pro-
duce this reaction in the reference frame where the to-
tal momentum of the photon–proton system is zero.
The reaction was observed experimentally in the 1950s
with photons of a few hundred MeV. (b) Use Wien’s
displacement law to find the wavelength of a photon at
the peak of the blackbody spectrum of the primordial
microwave background radiation, with a temperature
of 2.73 K. (c) Find the energy of this photon. (d) Con-
sider the reaction in part (a) in a moving reference
frame so that the photon is the same as that in part (c).
Calculate the energy of the proton in this frame, which
represents the Earth reference frame.

e–e+

(a)

γ γ

(b)

d

dd

u

u

u

νµ

µ
_

FIGURE P31.64

–
d d

s–s

(b)

ν

ν e–

e–

(a)

FIGURE P31.63

64. What processes are described by the Feynman diagrams
in Figure P31.64? What is the exchanged particle in
each process?
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S = 0

S = –1

Q = _ 1
3

d u

s

the right but no lepton on the left, so electron lepton
number (e) is not conserved. There are no muons on
the left, but a muon and its neutrino on the right (both
with L� � �1). Therefore, muon lepton number (f) is
not conserved.

31.5 (b), (e). There is one spin- particle on the left and
two on the right, so angular momentum is not con-
served. There are no leptons on the left and an elec-
tron on the right, so electron lepton number is not
conserved.

1
2

31.6 The diagram would look like this one:
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C O N T E X T CONCLUSION9

Problems and Perspectives
We have now investigated the principles of quantum physics and have seen many
connections to our central question for the Cosmic Connection Context:

How can we connect the physics of microscopic particles to the physics of the Universe?

While particle physicists have been exploring the realm of the very small, cosmolo-
gists have been exploring cosmic history back to the first second of the Big Bang.
Observation of events that occur when two particles collide in an accelerator is
essential in reconstructing the early moments in cosmic history. The key to under-
standing the early Universe is first to understand the world of elementary particles.
Cosmologists and physicists now find that they have many common goals and are
joining hands to attempt to understand the physical world at its most fundamental
level.

Problems
We have made great progress in understanding the Universe and its underlying
structure, but a multitude of questions remain unanswered. Why does so little anti-
matter exist in the Universe? Do neutrinos have a small rest energy, and if so, how
do they contribute to the “dark matter” of the Universe? Is there “dark energy” in
the Universe? Is it possible to unify the strong and electroweak forces in a logical
and consistent manner? Can gravity be unified with the other forces? Why do
quarks and leptons form three similar but distinct families? Are muons the same as
electrons (apart from their difference in mass), or do they have other subtle differ-
ences that have not been detected? Why are some particles charged and others neu-
tral? Why do quarks carry a fractional charge? What determines the masses of the
fundamental constituents? Can isolated quarks exist? Do leptons and quarks have a
substructure?

String Theory: A New Perspective
Let us briefly discuss one current effort at answering some of these questions by
proposing a new perspective on particles. As you read this book, you may recall
starting off with the particle model and doing quite a bit of physics with it. In the
Earthquakes Context, we introduced the wave model, and more physics was used to
investigate the properties of waves. We used a wave model for light in the Lasers
Context. Early in this Context, however, we saw the need to return to the particle
model for light. Furthermore, we found that material particles had wave-like char-
acteristics. The quantum particle model of Chapter 28 allowed us to build particles
out of waves, suggesting that a wave is the fundamental entity. In Chapter 31, how-
ever, we discussed the elementary particles as the fundamental entities. It seems as if
we cannot make up our mind! In some sense, that is true because the wave–particle
duality is still an area of active research. In this final Context Conclusion, we shall
discuss a current research effort to build particles out of waves and vibrations.

String theory is an effort to unify the four fundamental forces by modeling all
particles as various quantized vibrational modes of a single entity, an incredibly
small string. The typical length of such a string is on the order of 10�35 m, called
the Planck length. We have seen quantized modes before with the frequencies of
vibrating guitar strings in Chapter 14 and the quantized energy levels of atoms in
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Chapter 29. In string theory, each quantized mode of vibration of the string corre-
sponds to a different elementary particle in the Standard Model.

One complicating factor in string theory is that it requires space–time to have
ten dimensions. Despite the theoretical and conceptual difficulties in dealing with
ten dimensions, string theory holds promise in incorporating gravity with the other
forces. Four of the ten dimensions are visible to us—three space dimensions and
one time dimension—and the other six are compactified. In other words, the six
dimensions are curled up so tightly that they are not visible in the macroscopic
world.

As an analogy, consider a soda straw. We can build a soda straw by cutting a rectan-
gular piece of paper (Fig. 1a), which clearly has two dimensions, and rolling it up into
a small tube (Fig. 1b). From far away, the soda straw looks like a one-dimensional
straight line. The second dimension has been curled up and is not visible. String
theory claims that six space–time dimensions are curled up in an analogous way,
with the curling on the size of the Planck length and impossible to see from our
viewpoint.

Another complicating factor with string theory is that it is difficult for string the-
orists to guide experimentalists in how and what to look for in an experiment. The
Planck length is so incredibly small that direct experimentation on strings is impos-
sible. Until the theory has been further developed, string theorists are restricted to
applying the theory to known results and testing for consistency.

One of the predictions of string theory is called supersymmetry (SUSY), which
suggests that every elementary particle has a superpartner that has not yet been
observed. It is believed that supersymmetry is a broken symmetry (like the broken
electroweak symmetry at low energies) and that the masses of the superpartners are
above our current capabilities of detection by accelerators. Some theorists claim
that the mass of superpartners is the missing mass discussed in the Context Conclu-
sion of Chapter 31. Keeping with the whimsical trend in naming particles and their
properties that we saw in Chapter 31, superpartners are given names such as the
squark (the superpartner to a quark), the selectron (electron), and the gluinos
(gluon).

Other theorists are working on M-theory, which is an 11-dimensional theory
based on membranes rather than strings. In a way reminiscent of the correspon-
dence principle, M-theory is claimed to reduce to string theory if one compactifies
from 11 dimensions to 10.

The questions that we listed at the beginning of this Context Conclusion go on
and on. Because of the rapid advances and new discoveries in the field of particle
physics, by the time you read this book some of these questions may be resolved
and other new questions may emerge.

Question
1. Review question. A girl and her grandmother grind corn while the woman tells

the girl stories about what is most important. A boy keeps crows away from
ripening corn while his grandfather sits in the shade and explains to him the
Universe and his place in it. What the children do not understand this year they

y

x
x

(a) (b)

(a) A piece of paper is cut into a rectangular shape. As a rectangle, the shape has two
dimensions. (b) The paper is rolled up into a soda straw. From far away, it appears to be
one-dimensional. The curled-up second dimension is not visible when viewed from a
distance that is large compared with the diameter of the straw.

FIGURE 1
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will better understand next year. Now you must take the part of the adults. State
the most general, most fundamental, most universal truths that you know. If you
need to repeat someone else’s ideas, get the best version of those ideas you can
and state your source. If there is something you do not understand, make a plan
to understand it better within the next year.

Problem
1. Classical general relativity views the structure of space–time as deterministic and

well defined down to arbitrarily small distances. On the other hand, quantum
general relativity forbids distances smaller than the Planck length given by

. (a) Calculate the value of the Planck length. The quantum limi-
tation suggests that after the Big Bang, when all the presently observable section
of the Universe was contained within a point-like singularity, nothing could be
observed until that singularity grew larger than the Planck length. Because the
size of the singularity grew at the speed of light, we can infer that no observa-
tions were possible during the time interval required for light to travel the
Planck length. (b) Calculate this time interval, known as the Planck time T, and
compare it with the ultrahot epoch mentioned in the text. (c) Does this answer
suggest that we may never know what happened between the time t � 0 and the
time t � T ?

The Meaning of Success
To earn the respect of intelligent people and to win the affection of children;
To appreciate the beauty in nature and all that surrounds us;
To seek out and nurture the best in others;
To give the gift of yourself to others without the slightest thought of return, for it is 

in giving that we receive;
To have accomplished a task, whether it be saving a lost soul, healing a sick child, 

writing a book, or risking your life for a friend;
To have celebrated and laughed with great joy and enthusiasm and sung with 

exultation;
To have hope even in times of despair, for as long as you have hope, you have life;
To love and be loved;
To be understood and to understand;
To know that even one life has breathed easier because you have lived;
This is the meaning of success.

Ralph Waldo Emerson and modified by Ray Serway

L � (�G/c 3)1/2
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Tables

A P P E N D I X  A

Conversion FactorsTABLE A.1

Length

m cm km in. ft mi

1 meter 1 102 10�3 39.37 3.281 6.214 � 10�4

1 centimeter 10�2 1 10�5 0.393 7 3.281 � 10�2 6.214 � 10�6

1 kilometer 103 105 1 3.937 � 104 3.281 � 103 0.621 4
1 inch 2.540 � 10�2 2.540 2.540 � 10�5 1 8.333 � 10�2 1.578 � 10�5

1 foot 0.304 8 30.48 3.048 � 10�4 12 1 1.894 � 10�4

1 mile 1 609 1.609 � 105 1.609 6.336 � 104 5 280 1

Mass

kg g slug u

1 kilogram 1 103 6.852 � 10�2 6.024 � 1026

1 gram 10�3 1 6.852 � 10�5 6.024 � 1023

1 slug 14.59 1.459 � 104 1 8.789 � 1027

1 atomic mass unit 1.660 � 10�27 1.660 � 10�24 1.137 � 10�28 1

Note : 1 metric ton � 1 000 kg.

Time

s min h day yr

1 second 1 1.667 � 10�2 2.778 � 10�4 1.157 � 10�5 3.169 � 10�8

1 minute 60 1 1.667 � 10�2 6.994 � 10�4 1.901 � 10�6

1 hour 3 600 60 1 4.167 � 10�2 1.141 � 10�4

1 day 8.640 � 104 1 440 24 1 2.738 � 10�5

1 year 3.156 � 107 5.259 � 105 8.766 � 103 365.2 1

Speed

m/s cm/s ft/s mi/h

1 meter per second 1 102 3.281 2.237
1 centimeter per second 10�2 1 3.281 � 10�2 2.237 � 10�2

1 foot per second 0.304 8 30.48 1 0.681 8
1 mile per hour 0.447 0 44.70 1.467 1

Note : 1 mi/min � 60 mi/h � 88 ft/s.

Force

N lb

1 newton 1 0.224 8
1 pound 4.448 1

(Continued)
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Conversion Factors (Continued)TABLE A.1

Work, Energy, Heat

J ft � lb eV

1 joule 1 0.737 6 6.242 � 1018

1 foot-pound 1.356 1 8.464 � 1018

1 electron volt 1.602 � 10�19 1.182 � 10�19 1
1 calorie 4.186 3.087 2.613 � 1019

1 British thermal unit 1.055 � 103 7.779 � 102 6.585 � 1021

1 kilowatt-hour 3.600 � 106 2.655 � 106 2.247 � 1025

cal Btu kWh

1 joule 0.238 9 9.481 � 10�4 2.778 � 10�7

1 foot-pound 0.323 9 1.285 � 10�3 3.766 � 10�7

1 electron volt 3.827 � 10�20 1.519 � 10�22 4.450 � 10�26

1 calorie 1 3.968 � 10�3 1.163 � 10�6

1 British thermal unit 2.520 � 102 1 2.930 � 10�4

1 kilowatt-hour 8.601 � 105 3.413 � 102 1

Pressure

Pa atm

1 pascal 1 9.869 � 10�6

1 atmosphere 1.013 � 105 1
1 centimeter mercurya 1.333 � 103 1.316 � 10�2

1 pound per square inch 6.895 � 103 6.805 � 10�2

1 pound per square foot 47.88 4.725 � 10�4

cm Hg lb/in.2 lb/ft2

1 pascal 7.501 � 10�4 1.450 � 10�4 2.089 � 10�2

1 atmosphere 76 14.70 2.116 � 103

1 centimeter mercurya 1 0.194 3 27.85
1 pound per square inch 5.171 1 144
1 pound per square foot 3.591 � 10�2 6.944 � 10�3 1

aAt 0°C and at a location where the free-fall acceleration has its “standard” value, 9.806 65 m/s2.

Symbols, Dimensions, and Units of Physical QuantitiesTABLE A.2

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Acceleration m/s2 L/T2 m/s2

Amount of substance n MOLE mol
Angle �, � radian (rad) 1
Angular acceleration rad/s2 T�2 s�2

Angular frequency � rad/s T�1 s�1

Angular momentum kg � m2/s ML2/T kg � m2/s
Angular velocity rad/s T�1 s�1

Area A m2 L2 m2

Atomic number Z

�:
L
:

�:

a:

(Continued)
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Symbols, Dimensions, and Units of Physical Quantities (Continued)TABLE A.2

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Capacitance C farad (F) Q2T2/ML2 A2 � s4/kg � m2

Charge q, Q , e coulomb (C) Q A � s
Charge density

Line 	 C/m Q /L A � s/m
Surface 
 C/m2 Q /L2 A � s/m2

Volume � C/m3 Q /L3 A � s/m3

Conductivity 
 1/� � m Q2T/ML3 A2 � s3/kg � m3

Current I AMPERE Q /T A
Current density A/m2 Q /TL2 A/m2

Density � kg/m3 M/L3 kg/m3

Dielectric constant 

Electric dipole moment C � m QL A � s � m
Electric field V/m ML/QT2 kg � m/A � s3

Electric flux �E V � m ML3/QT2 kg � m3/A � s3

Electromotive force � volt (V) ML2/QT2 kg � m2/A � s3

Energy E, U, K joule ( J) ML2/T2 kg � m2/s2

Entropy S J/K ML2/T2 � K kg � m2/s2 � K
Force newton (N) ML/T2 kg � m/s2

Frequency f hertz (Hz) T�1 s�1

Heat Q joule ( J) ML2/T2 kg � m2/s2

Inductance L henry (H) ML2/Q2 kg � m2/A2 � s2

Length �, L METER L m
Displacement �x, �
Distance d, h
Position x, y, z,

Magnetic dipole moment N � m/T QL2/T A � m2

Magnetic field tesla (T) (� Wb/m2) M/QT kg/A � s2

Magnetic flux �B weber (Wb) ML2/QT kg � m2/A � s2

Mass m , M KILOGRAM M kg
Molar specific heat C J/mol � K kg � m2/s2 � mol � K
Moment of inertia I kg � m2 ML2 kg � m2

Momentum kg � m/s ML/T kg � m/s
Period T s T s
Permeability of free space �0 N/A2 (� H/m) ML/Q2 kg � m/A2 � s2

Permittivity of free space �0 C2/N � m2 (� F/m) Q2T2/ML3 A2 � s4/kg � m3

Potential V volt (V)(� J/C) ML2/QT 2 kg � m2/A � s3

Power � watt (W)(� J/s) ML2/T3 kg � m2/s3

Pressure P pascal (Pa)(� N/m2) M/LT2 kg/m � s2

Resistance R ohm (�)(� V/A) ML2/Q2T kg � m2/A2 � s3

Specific heat c J/kg � K L2/T2 � K m2/s2 � K
Speed v m/s L/T m/s
Temperature T KELVIN K K
Time t SECOND T s
Torque N � m ML2/T2 kg � m2/s2

Velocity m/s L/T m/s
Volume V m3 L3 m3

Wavelength 	 m L m
Work W joule ( J)(� N � m) ML2/T2 kg � m2/s2

aThe base SI units are given in uppercase letters.
bThe symbols M, L, T, and Q denote mass, length, time, and charge, respectively.

v:
�:

p:

B
:
�:

r:

r:

F
:

E
:
p:

J
:
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Table of Atomic MassesTABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T 1/2

0 (Neutron) n 1* 1.008 665 10.4 min
1 Hydrogen H 1.007 94 1 1.007 825 99.988 5

Deuterium D 2 2.014 102 0.011 5
Tritium T 3* 3.016 049 12.33 yr

2 Helium He 4.002 602 3 3.016 029 0.000 137
4 4.002 603 99.999 863
6* 6.018 888 0.81 s

3 Lithium Li 6.941 6 6.015 122 7.5
7 7.016 004 92.5
8* 8.022 487 0.84 s

4 Beryllium Be 9.012 182 7* 7.016 929 53.3 days
9 9.012 182 100

10* 10.013 534 1.5 � 106 yr
5 Boron B 10.811 10 10.012 937 19.9

11 11.009 306 80.1
12* 12.014 352 0.020 2 s

6 Carbon C 12.010 7 10* 10.016 853 19.3 s
11* 11.011 434 20.4 min
12 12.000 000 98.93
13 13.003 355 1.07
14* 14.003 242 5 730 yr
15* 15.010 599 2.45 s

7 Nitrogen N 14.006 7 12* 12.018 613 0.011 0 s
13* 13.005 739 9.96 min
14 14.003 074 99.632
15 15.000 109 0.368
16* 16.006 101 7.13 s
17* 17.008 450 4.17 s

8 Oxygen O 15.999 4 14* 14.008 595 70.6 s
15* 15.003 065 122 s
16 15.994 915 99.757
17 16.999 132 0.038
18 17.999 160 0.205
19* 19.003 579 26.9 s

9 Fluorine F 18.998 403 2 17* 17.002 095 64.5 s
18* 18.000 938 109.8 min
19 18.998 403 100
20* 19.999 981 11.0 s
21* 20.999 949 4.2 s

10 Neon Ne 20.179 7 18* 18.005 697 1.67 s
19* 19.001 880 17.2 s
20 19.992 440 90.48
21 20.993 847 0.27
22 21.991 385 9.25
23* 22.994 467 37.2 s

11 Sodium Na 22.989 77 21* 20.997 655 22.5 s
22* 21.994 437 2.61 yr
23 22.989 770 100
24* 23.990 963 14.96 h

12 Magnesium Mg 24.305 0 23* 22.994 125 11.3 s
24 23.985 042 78.99
25 24.985 837 10.00

(Continued)
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Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(12) Magnesium 26 25.982 593 11.01
27* 26.984 341 9.46 min

13 Aluminum Al 26.981 538 26* 25.986 892 7.4 � 105 yr
27 26.981 539 100
28* 27.981 910 2.24 min

14 Silicon Si 28.085 5 28 27.976 926 92.229 7
29 28.976 495 4.683 2
30 29.973 770 3.087 2
31* 30.975 363 2.62 h
32* 31.974 148 172 yr

15 Phosphorus P 30.973 761 30* 29.978 314 2.50 min
31 30.973 762 100
32* 31.973 907 14.26 days
33* 32.971 725 25.3 days

16 Sulfur S 32.066 32 31.972 071 94.93
33 32.971 458 0.76
34 33.967 869 4.29
35* 34.969 032 87.5 days
36 35.967 081 0.02

17 Chlorine Cl 35.452 7 35 34.968 853 75.78
36* 35.968 307 3.0 � 105 yr
37 36.965 903 24.22

18 Argon Ar 39.948 36 35.967 546 0.336 5
37* 36.966 776 35.04 days
38 37.962 732 0.063 2
39* 38.964 313 269 yr
40 39.962 383 99.600 3
42* 41.963 046 33 yr

19 Potassium K 39.098 3 39 38.963 707 93.258 1
40* 39.963 999 0.011 7 1.28 �109 yr
41 40.961 826 6.730 2

20 Calcium Ca 40.078 40 39.962 591 96.941
41* 40.962 278 1.0 � 105 yr
42 41.958 618 0.647
43 42.958 767 0.135
44 43.955 481 2.086
46 45.953 693 0.004
48 47.952 534 0.187

21 Scandium Sc 44.955 910 41* 40.969 251 0.596 s
45 44.955 910 100

22 Titanium Ti 47.867 44* 43.959 690 49 yr
46 45.952 630 8.25
47 46.951 764 7.44
48 47.947 947 73.72
49 48.947 871 5.41
50 49.944 792 5.18

23 Vanadium V 50.941 5 48* 47.952 254 15.97 days
50* 49.947 163 0.250 1.5 � 1017 yr
51 50.943 964 99.750

24 Chromium Cr 51.996 1 48* 47.954 036 21.6 h
50 49.946 050 4.345

(Continued)
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Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(24) Chromium 52 51.940 512 83.789
53 52.940 654 9.501
54 53.938 885 2.365

25 Manganese Mn 54.938 049 54* 53.940 363 312.1 days
55 54.938 050 100

26 Iron Fe 55.845 54 53.939 615 5.845
55* 54.938 298 2.7 yr
56 55.934 942 91.754
57 56.935 399 2.119
58 57.933 280 0.282
60* 59.934 077 1.5 � 106 yr

27 Cobalt Co 58.933 200 59 58.933 200 100
60* 59.933 822 5.27 yr

28 Nickel Ni 58.693 4 58 57.935 348 68.076 9
59* 58.934 351 7.5 � 104 yr
60 59.930 790 26.223 1
61 60.931 060 1.139 9
62 61.928 349 3.634 5
63* 62.929 673 100 yr
64 63.927 970 0.925 6

29 Copper Cu 63.546 63 62.929 601 69.17
65 64.927 794 30.83

30 Zinc Zn 65.39 64 63.929 147 48.63
66 65.926 037 27.90
67 66.927 131 4.10
68 67.924 848 18.75
70 69.925 325 0.62

31 Gallium Ga 69.723 69 68.925 581 60.108
71 70.924 705 39.892

32 Germanium Ge 72.61 70 69.924 250 20.84
72 71.922 076 27.54
73 72.923 459 7.73
74 73.921 178 36.28
76 75.921 403 7.61

33 Arsenic As 74.921 60 75 74.921 596 100
34 Selenium Se 78.96 74 73.922 477 0.89

76 75.919 214 9.37
77 76.919 915 7.63
78 77.917 310 23.77
79* 78.918 500 � 6.5 � 104 yr
80 79.916 522 49.61
82* 81.916 700 8.73 1.4 � 1020 yr

35 Bromine Br 79.904 79 78.918 338 50.69
81 80.916 291 49.31

36 Krypton Kr 83.80 78 77.920 386 0.35
80 79.916 378 2.28
81* 80.916 592 2.1 � 105 yr
82 81.913 485 11.58
83 82.914 136 11.49
84 83.911 507 57.00
85* 84.912 527 10.76 yr
86 85.910 610 17.30

(Continued)
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Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

37 Rubidium Rb 85.467 8 85 84.911 789 72.17
87* 86.909 184 27.83 4.75 � 1010 yr

38 Strontium Sr 87.62 84 83.913 425 0.56
86 85.909 262 9.86
87 86.908 880 7.00
88 87.905 614 82.58
90* 89.907 738 29.1 yr

39 Yttrium Y 88.905 85 89 88.905 848 100
40 Zirconium Zr 91.224 90 89.904 704 51.45

91 90.905 645 11.22
92 91.905 040 17.15
93* 92.906 476 1.5 � 106 yr
94 93.906 316 17.38
96 95.908 276 2.80

41 Niobium Nb 92.906 38 91* 90.906 990 6.8 � 102 yr
92* 91.907 193 3.5 � 107 yr
93 92.906 378 100
94* 93.907 284 2 � 104 yr

42 Molybdenum Mo 95.94 92 91.906 810 14.84
93* 92.906 812 3.5 � 103 yr
94 93.905 088 9.25
95 94.905 842 15.92
96 95.904 679 16.68
97 96.906 021 9.55
98 97.905 408 24.13

100 99.907 477 9.63
43 Technetium Tc 97* 96.906 365 2.6 � 106 yr

98* 97.907 216 4.2 � 106 yr
99* 98.906 255 2.1 � 105 yr

44 Ruthenium Ru 101.07 96 95.907 598 5.54
98 97.905 287 1.87
99 98.905 939 12.76

100 99.904 220 12.60
101 100.905 582 17.06
102 101.904 350 31.55
104 103.905 430 18.62

45 Rhodium Rh 102.905 50 103 102.905 504 100
46 Palladium Pd 106.42 102 101.905 608 1.02

104 103.904 035 11.14
105 104.905 084 22.33
106 105.903 483 27.33
107* 106.905 128 6.5 � 106 yr
108 107.903 894 26.46
110 109.905 152 11.72

47 Silver Ag 107.868 2 107 106.905 093 51.839
109 108.904 756 48.161

48 Cadmium Cd 112.411 106 105.906 458 1.25
108 107.904 183 0.89
109* 108.904 986 462 days
110 109.903 006 12.49
111 110.904 182 12.80

(Continued)
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Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(48) Cadmium 112 111.902 757 24.13
113* 112.904 401 12.22 9.3 � 1015 yr
114 113.903 358 28.73
116 115.904 755 7.49

49 Indium In 114.818 113 112.904 061 4.29
115* 114.903 878 95.71 4.4 � 1014 yr

50 Tin Sn 118.710 112 111.904 821 0.97
114 113.902 782 0.66
115 114.903 346 0.34
116 115.901 744 14.54
117 116.902 954 7.68
118 117.901 606 24.22
119 118.903 309 8.59
120 119.902 197 32.58
121* 120.904 237 55 yr
122 121.903 440 4.63
124 123.905 275 5.79

51 Antimony Sb 121.760 121 120.903 818 57.21
123 122.904 216 42.79
125* 124.905 248 2.7 yr

52 Tellurium Te 127.60 120 119.904 020 0.09
122 121.903 047 2.55
123* 122.904 273 0.89 1.3 � 1013 yr
124 123.902 820 4.74
125 124.904 425 7.07
126 125.903 306 18.84
128* 127.904 461 31.74 � 8 � 1024 yr
130* 129.906 223 34.08 � 1.25 � 1021 yr

53 Iodine I 126.904 47 127 126.904 468 100
129* 128.904 988 1.6 � 107 yr

54 Xenon Xe 131.29 124 123.905 896 0.09
126 125.904 269 0.09
128 127.903 530 1.92
129 128.904 780 26.44
130 129.903 508 4.08
131 130.905 082 21.18
132 131.904 145 26.89
134 133.905 394 10.44
136* 135.907 220 8.87 � 2.36 � 1021 yr

55 Cesium Cs 132.905 45 133 132.905 447 100
134* 133.906 713 2.1 yr
135* 134.905 972 2 � 106 yr
137* 136.907 074 30 yr

56 Barium Ba 137.327 130 129.906 310 0.106
132 131.905 056 0.101
133* 132.906 002 10.5 yr
134 133.904 503 2.417
135 134.905 683 6.592
136 135.904 570 7.854
137 136.905 821 11.232
138 137.905 241 71.698

57 Lanthanum La 138.905 5 137* 136.906 466 6 � 104 yr
138* 137.907 107 0.090 1.05 � 1011 yr

(Continued)
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Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(57) Lanthanum 139 138.906 349 99.910
58 Cerium Ce 140.116 136 135.907 144 0.185

138 137.905 986 0.251
140 139.905 434 88.450
142* 141.909 240 11.114 � 5 � 1016 yr

59 Praseodymium Pr 140.907 65 141 140.907 648 100
60 Neodymium Nd 144.24 142 141.907 719 27.2

143 142.909 810 12.2
144* 143.910 083 23.8 2.3 � 1015 yr
145 144.912 569 8.3
146 145.913 112 17.2
148 147.916 888 5.7
150* 149.920 887 5.6 � 1 � 1018 yr

61 Promethium Pm 143* 142.910 928 265 days
145* 144.912 744 17.7 yr
146* 145.914 692 5.5 yr
147* 146.915 134 2.623 yr

62 Samarium Sm 150.36 144 143.911 995 3.07
146* 145.913 037 1.0 � 108 yr
147* 146.914 893 14.99 1.06 � 1011 yr
148* 147.914 818 11.24 7 � 1015 yr
149* 148.917 180 13.82 � 2 � 1015 yr
150 149.917 272 7.38
151* 150.919 928 90 yr
152 151.919 728 26.75
154 153.922 205 22.75

63 Europium Eu 151.964 151 150.919 846 47.81
152* 151.921 740 13.5 yr
153 152.921 226 52.19
154* 153.922 975 8.59 yr
155* 154.922 889 4.7 yr

64 Gadolinium Gd 157.25 148* 147.918 110 75 yr
150* 149.918 656 1.8 � 106 yr
152* 151.919 788 0.20 1.1 � 1014 yr
154 153.920 862 2.18
155 154.922 619 14.80
156 155.922 120 20.47
157 156.923 957 15.65
158 157.924 100 24.84
160 159.927 051 21.86

65 Terbium Tb 158.925 34 159 158.925 343 100
66 Dysprosium Dy 162.50 156 155.924 278 0.06

158 157.924 405 0.10
160 159.925 194 2.34
161 160.926 930 18.91
162 161.926 795 25.51
163 162.928 728 24.90
164 163.929 171 28.18

67 Holmium Ho 164.930 32 165 164.930 320 100
166* 165.932 281 1.2 � 103 yr

68 Erbium Er 167.6 162 161.928 775 0.14
164 163.929 197 1.61

(Continued)



A.10 ❚ APPENDIX A TABLES

y pp g p pp

Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(68) Erbium 166 165.930 290 33.61
167 166.932 045 22.93
168 167.932 368 26.78
170 169.935 460 14.93

69 Thulium Tm 168.934 21 169 168.934 211 100
171* 170.936 426 1.92 yr

70 Ytterbium Yb 173.04 168 167.933 894 0.13
170 169.934 759 3.04
171 170.936 322 14.28
172 171.936 378 21.83
173 172.938 207 16.13
174 173.938 858 31.83
176 175.942 568 12.76

71 Lutecium Lu 174.967 173* 172.938 927 1.37 yr
175 174.940 768 97.41
176* 175.942 682 2.59 3.78 � 1010 yr

72 Hafnium Hf 178.49 174* 173.940 040 0.16 2.0 � 1015 yr
176 175.941 402 5.26
177 176.943 220 18.60
178 177.943 698 27.28
179 178.945 815 13.62
180 179.946 549 35.08

73 Tantalum Ta 180.947 9 180 179.947 466 0.012
181 180.947 996 99.988

74 Tungsten (Wolfram) W 183.84 180 179.946 706 0.12
182 181.948 206 26.50
183 182.950 224 14.31
184 183.950 933 30.64
186 185.954 362 28.43

75 Rhenium Re 186.207 185 184.952 956 37.40
187* 186.955 751 62.60 4.4 � 1010 yr

76 Osmium Os 190.23 184 183.952 491 0.02
186* 185.953 838 1.59 2.0 � 1015 yr
187 186.955 748 1.96
188 187.955 836 13.24
189 188.958 145 16.15
190 189.958 445 26.26
192 191.961 479 40.78
194* 193.965 179 6.0 yr

77 Iridium Ir 192.217 191 190.960 591 37.3
193 192.962 924 62.7

78 Platinum Pt 195.078 190* 189.959 930 0.014 6.5 � 1011 yr
192 191.961 035 0.782
194 193.962 664 32.967
195 194.964 774 33.832
196 195.964 935 25.242
198 197.967 876 7.163

79 Gold Au 196.966 55 197 196.966 552 100
80 Mercury Hg 200.59 196 195.965 815 0.15

198 197.966 752 9.97
199 198.968 262 16.87
200 199.968 309 23.10
201 200.970 285 13.18

(Continued)
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Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(80) Mercury 202 201.970 626 29.86
204 203.973 476 6.87

81 Thallium Tl 204.383 3 203 202.972 329 29.524
204* 203.973 849 3.78 yr
205 204.974 412 70.476

(Ra E�) 206* 205.976 095 4.2 min
(Ac C�) 207* 206.977 408 4.77 min
(Th C�) 208* 207.982 005 3.053 min
(Ra C�) 210* 209.990 066 1.30 min

82 Lead Pb 207.2 202* 201.972 144 5 � 104 yr
204* 203.973 029 1.4 � 1.4 � 1017 yr
205* 204.974 467 1.5 � 107 yr
206 205.974 449 24.1
207 206.975 881 22.1
208 207.976 636 52.4

(Ra D) 210* 209.984 173 22.3 yr
(Ac B) 211* 210.988 732 36.1 min
(Th B) 212* 211.991 888 10.64 h
(Ra B) 214* 213.999 798 26.8 min

83 Bismuth Bi 208.980 38 207* 206.978 455 32.2 yr
208* 207.979 727 3.7 � 105 yr
209 208.980 383 100

(Ra E) 210* 209.984 105 5.01 days
(Th C) 211* 210.987 258 2.14 min

212* 211.991 272 60.6 min
(Ra C) 214* 213.998 699 19.9 min

215* 215.001 832 7.4 min
84 Polonium Po 209* 208.982 416 102 yr

(Ra F) 210* 209.982 857 138.38 days
(Ac C�) 211* 210.986 637 0.52 s
(Th C�) 212* 211.988 852 0.30 �s
(Ra C�) 214* 213.995 186 164 �s
(Ac A) 215* 214.999 415 0.001 8 s
(Th A) 216* 216.001 905 0.145 s
(Ra A) 218* 218.008 966 3.10 min

85 Astatine At 215* 214.998 641 � 100 �s
218* 218.008 682 1.6 s
219* 219.011 297 0.9 min

86 Radon Rn
(An) 219* 219.009 475 3.96 s
(Tn) 220* 220.011 384 55.6 s
(Rn) 222* 222.017 570 3.823 days

87 Francium Fr
(Ac K) 223* 223.019 731 22 min

88 Radium Ra
(Ac X) 223* 223.018 497 11.43 days
(Th X) 224* 224.020 202 3.66 days
(Ra) 226* 226.025 403 1 600 yr
(Ms Th1) 228* 228.031 064 5.75 yr

89 Actinium Ac 227* 227.027 747 21.77 yr
(Ms Th2) 228* 228.031 015 6.15 h

90 Thorium Th 232.038 1

(Continued)
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Table of Atomic Masses (Continued)TABLE A.3

Mass
Number

Atomic Chemical (*indicates Half-Life
Number Atomic radioactive) Atomic Percent (if radioactive)
Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(90) Thorium (Rd Ac) 227* 227.027 699 18.72 days
(Rd Th) 228* 228.028 731 1.913 yr

229* 229.031 755 7 300 yr
(Io) 230* 230.033 127 75.000 yr
(UY) 231* 231.036 297 25.52 h
(Th) 232* 232.038 050 100 1.40 � 1010 yr
(UX1) 234* 234.043 596 24.1 days

91 Protactinium Pa 231.035 88 231* 231.035 879 32.760 yr
(Uz) 234* 234.043 302 6.7 h

92 Uranium U 238.028 9 232* 232.037 146 69 yr
233* 233.039 628 1.59 � 105 yr
234* 234.040 946 0.005 5 2.45 � 105 yr

(Ac U) 235* 235.043 923 0.720 0 7.04 � 108 yr
236* 236.045 562 2.34 � 107 yr

(UI) 238* 238.050 783 99.274 5 4.47 � 109 yr
93 Neptunium Np 235* 235.044 056 396 days

236* 236.046 560 1.15 � 105 yr
237* 237.048 167 2.14 � 106 yr

94 Plutonium Pu 236* 236.046 048 2.87 yr
238* 238.049 553 87.7 yr
239* 239.052 156 2.412 � 104 yr
240* 240.053 808 6 560 yr
241* 241.056 845 14.4 yr
242* 242.058 737 3.73 � 106 yr
244* 244.064 198 8.1 � 107 yr

Sources: Chemical atomic masses are from T. B. Coplen, “Atomic Weights of the Elements 1999,” a technical report to the International Union of Pure and Applied
Chemistry, and published in Pure and Applied Chemistry 73(4), 667–683, 2001. Atomic masses of the isotopes are from G. Audi and A. H. Wapstra, “The 1995 Update to
the Atomic Mass Evaluation,” Nuclear Physics A595, vol. 4, 409–480, December 25, 1995. Percent abundance values are from K. J. R. Rosman and P. D. P. Taylor, “Iso-
topic Compositions of the Elements 1999,” a technical report to the International Union of Pure and Applied Chemistry, and published in Pure and Applied Chemistry
70(1), 217–236, 1998.
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Mathematics Review

A P P E N D I X   B

This appendix in mathematics is intended as a brief review of operations and meth-
ods. Early in this course, you should be totally familiar with basic algebraic tech-
niques, analytic geometry, and trigonometry. The sections on differential and
integral calculus are more detailed and are intended for those students who have
difficulty applying calculus concepts to physical situations.

SCIENTIFIC  NOTATION
Many quantities that scientists deal with often have very large or very small values.
The speed of light, for example, is about 300 000 000 m/s, and the ink required to
make the dot over an i in this textbook has a mass of about 0.000 000 001 kg. Obvi-
ously, it is very cumbersome to read, write, and keep track of such numbers. We
avoid this problem by using a method dealing with powers of the number ten:

and so on. The number of zeros corresponds to the power to which ten is raised,
called the exponent of ten. For example, the speed of light, 300 000 000 m/s, can
be expressed as 3 � 108 m/s.

In this method, some representative numbers smaller than unity are the
following:

In these cases, the number of places the decimal point is to the left of the digit 1
equals the value of the (negative) exponent. Numbers expressed as some power of
ten multiplied by another number between one and ten are said to be in scientific
notation. For example, the scientific notation for 5 943 000 000 is 5.943 � 109 and
that for 0.000 083 2 is 8.32 � 10�5.

10�5 �
1

10 � 10 � 10 � 10 � 10
� 0.000 01

10�4 �
1

10 � 10 � 10 � 10
� 0.000 1

10�3 �
1

10 � 10 � 10
� 0.001

10�2 �
1

10 � 10
� 0.01

10�1 �
1

10
� 0.1

105 � 10 � 10 � 10 � 10 � 10 � 100 000

104 � 10 � 10 � 10 � 10 � 10 000

103 � 10 � 10 � 10 � 1 000

102 � 10 � 10 � 100

101 � 10

100 � 1

B.1

A.13



When numbers expressed in scientific notation are being multiplied, the follow-
ing general rule is very useful:

[B.1]

where n and m can be any numbers (not necessarily integers). For example,
The rule also applies if one of the exponents is negative:

When dividing numbers expressed in scientific notation, note that

[B.2]

Exercises
With help from the preceding rules, verify the answers to the following equations.

1. 86 400 � 8.64 � 104

2. 9 816 762.5 � 9.816 762 5 � 106

3. 0.000 000 039 8 � 3.98 � 10�8

4. (4.0 � 108)(9.0 � 109) � 3.6 � 1018

5. (3.0 � 107)(6.0 � 10�12) � 1.8 � 10�4

6.

7.

ALGEBRA

Some Basic Rules
When algebraic operations are performed, the laws of arithmetic apply. Symbols
such as x, y, and z are usually used to represent unspecified quantities, called the
unknowns.

First, consider the equation

If we wish to solve for x, we can divide (or multiply) each side of the equation by
the same factor without destroying the equality. In this case, if we divide both sides
by 8, we have

Next consider the equation

In this type of expression, we can add or subtract the same quantity from each side.
If we subtract 2 from each side, we have

In general, if x � a � b, then x � b � a.

 x � 6

x � 2 � 2 � 8 � 2

x � 2 � 8

 x � 4

8x
8

�
32
8

8x � 32

B.2

(3 � 106)(8 � 10�2)
(2 � 1017)(6 � 105)

� 2 � 10�18

75 � 10�11

5.0 � 10�3 � 1.5 � 10�7

10n

10m � 10n �  10�m � 10n�m

103 �  10�8 � 10�5.
102 �  105 � 107.

10n �  10m � 10n�m
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Now consider the equation

If we multiply each side by 5, we are left with x on the left by itself and 45 on the
right:

In all cases, whatever operation is performed on the left side of the equality must also be per-
formed on the right side.

The following rules for multiplying, dividing, adding, and subtracting fractions
should be recalled, where a, b, c, and d are four numbers:

Rule Example

Multiplying

Dividing

Adding

Exercises
In the following exercises, solve for x :

Answers

1.

2.

3.

4.

Powers
When powers of a given quantity x are multiplied, the following rule applies:

[B.3]

For example, x2x4 � x2�4 � x6.
When dividing the powers of a given quantity, the rule is

[B.4]

For example, x8/x2 � x8�2 � x6.
A power that is a fraction, such as , corresponds to a root as follows:

[B.5]

For example, � 1.5874. (A scientific calculator is useful for such
calculations.)

41/3 � √3 4

x1/n �
n√x

1
3

xn

xm � xn�m

xnxm � xn � m

x � �
11
7

5
2x � 6

�
3

4x � 8

x �
7

a � b
ax � 5 � bx � 2

x � 63x � 5 � 13

x �
1 � a

a
a �

1
1 � x

2
3

�
4
5

�
(2)(5)�(4)(3)

(3)(5)
� �

2
15

a
b

 �  
c
d

�
ad �  bc

bd

2/3
4/5

�
(2)(5)
(4)(3)

�
10
12

(a/b)
(c/d)

�
ad
bc

� 2
3 � � 4

5 � �
8

15� a
b � � c

d � �
ac
bd

 x � 45

� x
5 � (5) � 9 � 5

x
5

� 9
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Finally, any quantity xn raised to the mth power is

[B.6]

Table B.1 summarizes the rules of exponents.

Exercises
Verify the following equations.

1.
2.
3.
4. (Use your calculator.)
5. (Use your calculator.)
6.

Factoring
Some useful formulas for factoring an equation are the following:

common factor

perfect square

differences of squares

Quadratic Equations
The general form of a quadratic equation is

[B.7]

where x is the unknown quantity and a, b, and c are numerical factors referred to as
coefficients of the equation. This equation has two roots, given by

[B.8]

If b2 � 4ac, the roots are real.

x �
�b �  √b2 � 4ac

2a

ax 2 � bx � c � 0

a2 � b2 � (a � b)(a � b)

a2 � 2ab � b2 � (a � b)2

ax � ay � az � a(x � y � x)

(x4)3 � x 12
601/4 � 2.783 158
51/3 � 1.709 975
x10/x�5 � x15
x5x�8 � x�3
32

 �  33 � 243

(xn)m � xnm

A.16 ❚ APPENDIX B MATHEMATICS REVIEW
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where x� refers to the root corresponding to the 
positive sign and x� refers to the root corresponding 
to the negative sign.

The equation x2 � 5x � 4 � 0 has the following roots
corresponding to the two signs of the square-root term:

�4x� �
� 5 � 3

2
��1x� �

� 5 � 3
2

�

x �
�5 �  √52 � (4)(1)(4)

2(1)
�

�5 �  √9
2

�
�5 �  3

2

EXAMPLE B.1

Rules of 
Exponents

TABLE B.1

x0 � 1
x1 � x

xnxm � xn �m

xn/xm � xn�m

(xn)m � xnm
x1/n � √n x



Exercises
Solve the following quadratic equations.

Answers

1.
2.

3.

Linear Equations
A linear equation has the general form

[B.9]

where m and b are constants. This equation is referred to as being linear because
the graph of y versus x is a straight line as shown in Figure B.1. The constant b,
called the y-intercept, represents the value of y at which the straight line intersects
the y axis. The constant m is equal to the slope of the straight line. If any two points
on the straight line are specified by the coordinates (x1, y1) and (x 2, y2) as in
Figure B.1, the slope of the straight line can be expressed as

[B.10]

Note that m and b can have either positive or negative values. If the straight
line has a positive slope as in Figure B.1. If the straight line has a negative
slope. In Figure B.1, both m and b are positive. Three other possible situations are
shown in Figure B.2.

Exercises
1. Draw graphs of the following straight lines: (a) , (b) , 

(c) .
2. Find the slopes of the straight lines described in Exercise 1.

Answers (a) 5 (b) �2 (c) �3

3. Find the slopes of the straight lines that pass through the following sets of
points: (a) (0, � 4) and (4, 2), (b) (0, 0) and (2, � 5), (c) (� 5, 2) and (4, � 2).

Answers (a) (b) (c) 

Solving Simultaneous Linear Equations
Consider the equation which has two unknowns, x and y. Such an
equation does not have a unique solution. For example, note that (x � 0, y � 3),
(x � 5, y � 0), and (x � 2, ) are all solutions to this equation.

If a problem has two unknowns, a unique solution is possible only if we have two
equations. In general, if a problem has n unknowns, its solution requires n equa-
tions. To solve two simultaneous equations involving two unknowns, x and y, we
solve one of the equations for x in terms of y and substitute this expression into the
other equation.

y � 9
5

3x � 5y � 15,

�4
9�5

2
3
2

y � � 3x � 6
y � �2x � 4y � 5x � 3

m �  0,
m �  0,

Slope �
y2 � y1

x2 � x1
�

	y
	x

y � mx � b

x� � 1 � √22/2x� � 1 � √22/22x2 � 4x � 9 � 0

x� � 1
2x� � 22x2 � 5x � 2 � 0

x� � � 3x� � 1x2 � 2x � 3 � 0
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A straight line
graphed on an x-y coordinate system.
The slope of the line is the ratio of 	y
to 	x.

FIGURE B.1

y

(x1, y1)

(x2, y2)

∆y

∆x(0, b)

(0, 0) x

The brown line 
has a positive slope and a negative 
y - intercept. The blue line has a nega-
tive slope and a positive y - intercept.
The green line has a negative slope
and a negative y - intercept.

FIGURE B.2

y
(1)

(2)

(3)

m > 0
b < 0

m < 0
b > 0

m < 0
b < 0

x



Two linear equations containing two unknowns can also be solved by a graphical
method. If the straight lines corresponding to the two equations are plotted in a
conventional coordinate system, the intersection of the two lines represents the
solution. For example, consider the two equations

These equations are plotted in Figure B.3. The intersection of the two lines has the
coordinates x � 5 and y � 3, which represents the solution to the equations. You
should check this solution by the analytical technique discussed earlier.

Exercises
Solve the following pairs of simultaneous equations involving two unknowns.

Answers

1.

2.

3.

Logarithms
Suppose a quantity x is expressed as a power of some quantity a :

[B.11]

The number a is called the base number. The logarithm of x with respect to the
base a is equal to the exponent to which the base must be raised to satisfy the ex-
pression x � ay:

[B.12]

Conversely, the antilogarithm of y is the number x :

[B.13]

In practice, the two bases most often used are base 10, called the common loga-
rithm base, and base e � 2.718 282, called Euler’s constant or the natural logarithm

x � antiloga y

y � loga x

x � a y

8x � 4y � 28
x � 2, y � �36x � 2y � 6

T � 49 � 5a
T � 65, a � 3.2798 � T � 10a

x � y � 2
x � 5, y � 3x � y � 8

 x � 2y � �1

 x � y � 2
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Alternative Solution Multiply each term in (1) by the
factor 2 and add the result to (2):

� 3y � x � 2 �

�1 x �

12x  � �12

2x � 2y � 4

10x � 2y � � 16

Solve the two simultaneous equations

Solution From (2), x � y � 2. Substitution of this 
equation into (1) gives

�1x � y � 2 �

�3 y �

 6y � �18

5(y � 2) � y � � 8

(2) 2x � 2y � 4

(1) 5x � y � �8

EXAMPLE B.2

A graphical solu-
tion for two linear equations.

FIGURE B.3

5
4
3
2
1

x – 2y = –1

1 2 3 4 5 6

(5, 3)

x

x – y = 2

y



base. When common logarithms are used,

[B.14]

When natural logarithms are used,

[B.15]

For example, log10 52 � 1.716, so antilog10 1.716 � 101.716 � 52. Likewise, ln 52 �
3.951, so antiln 3.951 � e3.951 � 52.

In general, you can convert between base 10 and base e with the equality

[B.16]

Finally, some useful properties of logarithms are the following:

GEOMETRY
The distance d between two points having coordinates (x1, y1) and (x2, y2) is

[B.17]

Radian measure: The arc length s of a circular arc (Fig. B.4) is proportional to
the radius r for a fixed value of 
 (in radians):

[B.18]

Table B.2 gives the areas and volumes for several geometric shapes used
throughout this text.

The equation of a straight line (Fig. B.5) is

[B.19]

where b is the y -intercept and m is the slope of the line.
The equation of a circle of radius R centered at the origin is

[B.20]

The equation of an ellipse having the origin at its center (Fig. B.6) is

[B.21]

where a is the length of the semimajor axis (the longer one) and b is the length of
the semiminor axis (the shorter one).

The equation of a parabola the vertex of which is at (Fig. B.7) is

[B.22]y � ax2 � b

y � b

x2

a2 �
y2

b2 � 1

x2 � y2 � R2

y � mx � b

s � r



 �
s
r

d � √(x2 � x1)2 � (y2 � y1)2

B.3

log(ab) � log a � log b 

�
   

any baselog(a/b) � log a � log b
log(an) � n log a
ln e � 1
ln e a � a

ln � 1
a � � �ln a

ln x � (2.302 585) log10 x

y � ln x  (or x � e y)

y � log10 x  (or x � 10 y)
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The angle 
 in ra-
dians is the ratio of the arc length s to
the radius r of the circle.

FIGURE B.4

r
θ

s

A straight line with
a slope of m and a y-intercept of b.

FIGURE B.5

b

0

y

m = slope

x

An ellipse with
semimajor axis a and semiminor axis b.

FIGURE B.6

y

0

b

a
x

A parabola.FIGURE B.7

y

b

0
x



The equation of a rectangular hyperbola (Fig. B.8) is

[B.23]

TRIGONOMETRY
That portion of mathematics based on the special properties of the right triangle is
called trigonometry. By definition, a right triangle is a triangle containing a 90°
angle. Consider the right triangle shown in Figure B.9, where side a is opposite the
angle 
, side b is adjacent to the angle 
, and side c is the hypotenuse of the trian-
gle. The three basic trigonometric functions defined by such a triangle are the sine
(sin), cosine (cos), and tangent (tan) functions. In terms of the angle 
, these func-
tions are defined by

[B.24]

[B.25]

[B.26]

The Pythagorean theorem provides the following relationship among the sides
of a right triangle:

[B.27]

From the preceding definitions and the Pythagorean theorem, it follows that

 tan 
 �
sin 

cos 


sin2 
 � cos2 
 � 1

c2 �  a2 � b2

tan 
 �
side opposite 


side adjacent to 

�

a
b

cos 
 �
side adjacent to 


hypotenuse
�

b
c

sin 
 �
side opposite 


hypotenuse
�

a
c

B.4

x y � constant
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Useful Information for GeometryTABLE B.2

Rectangle

Shape Area or Volume Area or VolumeShape

w

r

Circle

Triangle

h

Sphere

r

Cylinder

Rectangular box

r

�

Volume = πr 2�

Surface area = 4πr 2

Surface area =
2(�h + �w + hw)
Volume = �whw

h

Area = πr 2

Circumference = 2πr

Area = �w

b �

�

Area =   bh1
2

Volume = 4πr3

3

π
π

π

π
π

Lateral surface
area = 2πr �π

0

y

x

A hyperbola.FIGURE B.8

A right triangle,
used to define the basic functions of
trigonometry.

FIGURE B.9

a = opposite side
b = adjacent side
c = hypotenuse

90°–θc
a

b

90°
θ

θ



The cosecant, secant, and cotangent functions are defined by

The following relationships are derived directly from the right triangle shown in
Figure B.9:

Some properties of trigonometric functions are

The following relationships apply to any triangle, as shown in Figure B.10:

Law of cosines

Law of sines

Table B.3 lists a number of useful trigonometric identities.

a
sin �

�
b

sin �
�

c
sin 

c2 � a2 � b2 � 2ab cos 

b2 � a2 � c2 � 2ac cos �

a2 � b2 � c2 � 2bc cos �

� � � �  � 180�

 tan(�
) � � tan


 cos(�
) � cos 


 sin(�
) � �sin 


 cot 
 � tan(90� � 
)

 cos 
 � sin(90� � 
)

 sin 
 � cos(90� � 
)

csc 
 �  
1

sin 

  sec 
 �  

1
cos 


  cot 
 �  
1

tan 
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Some Trigonometric IdentitiesTABLE B.3

sin2 
 � cos2 
 � 1 csc2 
 � 1 � cot2 


sec2 
 � 1 � tan2 
 sin2 � (1 � cos 
)

sin 2
 � 2 sin 
 cos 
 cos2 � (1 � cos 
)

cos 2
 � cos2 
 � sin2 
 1 � cos 
 � 2 sin2

sin(A � B) � sin A cos B � cos A sin B
cos(A � B) � cos A cos B � sin A sin B

sin A � sin B � 2 sin[ (A � B)]cos[ (A B)]
cos A � cos B � 2 cos[ (A � B)] cos[ (A � B)]
cos A � cos B � 2 sin[ (A � B)] sin[ (B � A)]1

2
1
2

1
2

1
2

�
1
2

1
2

√ 1 � cos 

1 � cos 


tan



2
�tan 2
 �

2 tan 

1 � tan2 





2

1
2




2

1
2




2

An arbitrary, non-
right triangle.

FIGURE B.10

a b

c

� α



Consider the right triangle in Figure B.11 in which 
a � 2.00, b � 5.00, and c is unknown. From the
Pythagorean theorem we have

5.39c � √29.0 �

c2 � a2 � b2 � 2.002 � 5.002 � 4.00 � 25.0 � 29.0

EXAMPLE B.3

(Example B.3)FIGURE B.11

a = 2.00
c

θ
b = 5.00

�



Exercises
1. In Figure B.12, identify (a) the side opposite 
 and (b) the side adjacent to �

and then find (c) cos 
, (d) sin �, and (e) tan �.

Answers (a) 3 (b) 3 (c) (d) (e) 

2. In a certain right triangle, the two sides that are perpendicular to each other
are 5.00 m and 7.00 m long. What is the length of the third side?

Answer 8.60 m

3. A right triangle has a hypotenuse of length 3.0 m, and one of its angles is 30°.
(a) What is the length of the side opposite the 30° angle? (b) What is the
length of the side adjacent to the 30° angle?

Answers (a) 1.5 m (b) 2.6 m

SERIES  EXPANSIONS

For x �� 1, the following approximations can be used:1

DIFFERENTIAL  CALCULUS
In various branches of science, it is sometimes necessary to use the basic tools of
calculus, invented by Newton, to describe physical phenomena. The use of calculus
is fundamental in the treatment of various problems in Newtonian mechanics,

B.6

tan x � xln(1 �  x) � �x

cos x � 1e x � 1 � x

sin x � x(1 � x)n � 1 � nx

tan x � x �
x3

3
�

2x5

15
� � � �  � x � �

�

2

cos x � 1 �
x2

2!
�

x4

4!
� � � �

sin x � x �
x3

3!
�

x5

5!
� � � �

ln(1 � x) � �x � 1
2 x2 � 1

3 x 3 � � � �

ex � 1 � x �
x2

2!
�

x3

3!
� � � �

(1 � x)n � 1 � nx �
n(n � 1)

2!
 x2 � � � �

(a � b)n � an �
n
1!

 an�1b �
n(n � 1)

2!
 an�2b2 � � � �

B.5

4
3

4
5

4
5
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where tan�1(0.400) is the notation for “angle whose
tangent is 0.400,” sometimes written as arctan(0.400).

21.8�
 � tan�1(0.400) �To find the angle 
, note that

Using a calculator, we find that

tan 
 �
a
b

�
2.00
5.00

� 0.400

(Exercise 1)FIGURE B.12

5

4

3

θ

φ

1The approximations for the functions sin x, cos x, and tan x are for x � 0.1 rad.

� x in radians



electricity, and magnetism. In this section, we simply state some basic properties
and “rules of thumb” that should be a useful review to the student.

First, a function must be specified that relates one variable to another (e.g., a
coordinate as a function of time). Suppose one of the variables is called y (the de-
pendent variable) and the other x (the independent variable). We might have a
function relationship such as

If a, b, c, and d are specified constants, y can be calculated for any value of x. We usu-
ally deal with continuous functions, that is, those for which y varies “smoothly” with x.

The derivative of y with respect to x is defined as the limit, as 	x approaches
zero, of the slopes of chords drawn between two points on the y versus x curve.
Mathematically, we write this definition as

[B.28]

where 	y and 	x are defined as and (Fig. B.13). It is im-
portant to note that dy /dx does not mean dy divided by dx, but rather is simply a no-
tation of the limiting process of the derivative as defined by Equation B.28.

A useful expression to remember when where a is a constant and n is
any positive or negative number (integer or fraction), is

[B.29]

If y(x) is a polynomial or algebraic function of x, we apply Equation B.29 to each
term in the polynomial and take d[constant]/dx � 0. In Examples 4 through 7, we
evaluate the derivatives of several functions.

Special Properties of the Derivative
A. Derivative of the product of two functions If a function f (x) is given by the product
of two functions— say, g(x) and h(x) — the derivative of f (x) is defined as

[B.30]

B. Derivative of the sum of two functions If a function f (x) is equal to the sum of two
functions, the derivative of the sum is equal to the sum of the derivatives:

[B.31]

C. Chain rule of differential calculus If y � f (x) and x � g(z), then dy /dz can be writ-
ten as the product of two derivatives:

[B.32]

D. The second derivative The second derivative of y with respect to x is defined as the de-
rivative of the function dy /dx (the derivative of the derivative). It is usually written as

[B.33]
d2y
dx2 �

d
dx

 � dy
dx �

dy
dz

�
dy
dx

 
dx
dz

d
dx

 f(x) �
d
dx

 [g (x) � h(x)] �
dg
dx

�
dh
dx

d
dx

 f(x) �
d
dx

 [g (x)h(x)] � g 
dh
dx

� h 
dg
dx

dy
dx

� naxn � 1

y(x) � axn,

	y � y2 � y1	x � x2 � x1

dy
dx

� lim
	x : 0

 
	y
	x

� lim
	x : 0

 
y(x � 	x) � y(x)

	x

y(x) � ax3 � bx2 � cx � d
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The lengths 	x
and 	y are used to define the deriva-
tive of this function at a point.

FIGURE B.13

y

y2

y1

x1 x2
x

∆x

∆y



Some of the more commonly used derivatives of functions are listed in Table B.4.

INTEGRAL  CALCULUS
We think of integration as the inverse of differentiation. As an example, consider
the expression

[B.34]f(x) �
dy
dx

� 3ax2 � b

B.7
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so

Substituting this equation into Equation B.28 gives

3ax2 � b
dy
dx

�

dy
dx

� lim
	x : 0

 
	y
	x

� lim
	x : 0

 a[3x2 � 3x 	x � 	x2] � b

 � a(3x2 	x � 3x 	x2 � 	x3)� b 	x

	y � y(x � 	x) � y(x)

Suppose y(x) (that is, y as a function of x) is given by

where a and b are constants. Then it follows that

�b(x �	x) � c

 � a(x 3 � 3x2 	x � 3x 	x2 � 	x3)

 y(x � 	x) � a(x � 	x)3 � b(x � 	x) � c

y(x) � ax 3 � bx � c

EXAMPLE B.4

we have

40x4 � 12x2 � 2
dy
dx

�

dy
dx

� 8(5)x4 � 4(3)x2 � 2(1)x0 � 0

Find the derivative of

Solution By applying Equation B.29 to each term inde-
pendently and remembering that d /dx (constant) � 0,

y(x) � 8x 5 � 4x 3 � 2x � 7

EXAMPLE B.5

3x2

(x � 1)2 �
2x3

(x � 1)3
dy
dx

�

 � (x � 1)�2 3x2 � x 3(� 2)(x � 1)�3

dy
dx

� (x � 1)�2 
d
dx

 (x3) � x 3 
d
dx

 (x � 1)�2Find the derivative of y(x) � x 3/(x � 1)2 with respect 
to x.

Solution We can rewrite this function as y(x) �
x3(x � 1)�2 and apply Equation B.30:

EXAMPLE B.6

 �
h 

dg
dx

� g 
dh
dx

h2

 � �gh�2 
dh
dx

� h�1 
dg
dx

d
dx

 � g
h � �

d
dx

 (gh�1) � g 
d
dx

 (h�1) � h�1 
d
dx

 (g)
A useful formula that follows from Equation B.30 is the
derivative of the quotient of two functions. Show that

Solution We can write the quotient as gh�1 and then
apply Equations B.29 and B.30:

d
dx

 � g(x)
h(x) � �

h 
dg
dx

� g 
dh
dx

h2

EXAMPLE B.7



which was the result of differentiating the function

in Example 4. We can write Equation B.34 as dy � f (x)dx � (3ax2 � b)dx and
obtain y(x) by “summing” over all values of x. Mathematically, we write this inverse
operation

For the function f (x) given by Equation B.34, we have

where c is a constant of the integration. This type of integral is called an indefinite
integral because its value depends on the choice of c.

A general indefinite integral I(x) is defined as

[B.35]

where f (x) is called the integrand and f (x) � dI(x)/dx.
For a general continuous function f(x), the integral can be described as the area

under the curve bounded by f(x) and the x axis, between two specified values of x,
say, x1 and x2, as in Figure B.14.

The area of the blue element in Figure B.14 is approximately f (xi) 	xi. If we
sum all these area elements between x1 and x2 and take the limit of this sum as 
	xi : 0, we obtain the true area under the curve bounded by f(x) and the x axis,
between the limits x1 and x 2:

[B.36]

Integrals of the type defined by Equation B.36 are called definite integrals.
One common integral that arises in practical situations has the form

[B.37]

This result is obvious because differentiation of the right-hand side with respect to
x gives f (x) � xn directly. If the limits of the integration are known, this integral be-
comes a definite integral and is written

[B.38]	x2

x 1

xn dx �  
xn�1

n � 1 �
x 2

x1
 �  

x2 

n�1 � x1 

n�1

n � 1
  (n � �1)

	xn dx  �
xn�1

n � 1
� c  (n � �1)

Area �  lim
	xi : 0

 

i

 f (xi)	xi �  	x 2

x1

f(x) dx

I(x) � 	 f (x) dx

y(x) �  	(3ax2 � b) dx � ax 3 � bx � c

y(x) � 	 f(x)dx

y(x) � ax 3 � bx � c
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Derivatives for 
Several Functions

TABLE B.4

d
dx

 (ln ax) �
1
x

d
dx

 (csc x) � �cot x csc x

d
dx

 (sec x) � tan x sec x

d
dx

 (cot ax) � �a csc2 ax

d
dx

 (tan ax) � a sec2 ax

d
dx

 (cos ax) � �a sin ax

d
dx

 (sin ax) � a cos ax

d
dx

 (e ax) � aeax

d
dx

 (axn) � naxn �1

d
dx

 (a) � 0

Note: The letters a and n are constants.

The definite inte-
gral of a function is the area under
the curve of the function between the
limits x1 and x2.

FIGURE B.14

∆xi

x2

f(xi)

f(x)

x1



Partial Integration
Sometimes it is useful to apply the method of partial integration (also called “inte-
grating by parts”) to evaluate certain integrals. The method uses the property that

[B.39]

where u and v are carefully chosen so as to reduce a complex integral to a simpler
one. In many cases, several reductions have to be made. Consider the function

which can be evaluated by integrating by parts twice. First, if we choose u � x2, 
v � ex, we obtain

Now, in the second term, choose u � x, v � ex, which gives

or

The Perfect Differential
Another useful method to remember is the use of the perfect differential, in which we
look for a change of variable such that the differential of the function is the differ-
ential of the independent variable appearing in the integrand. For example, con-
sider the integral

This integral becomes easy to evaluate if we rewrite the differential as d(cos x) �
� sin x dx. The integral then becomes

If we now change variables, letting y � cos x, we obtain

Table B.5 lists some useful indefinite integrals. Table B.6 gives Gauss’s probabil-
ity integral and other definite integrals. A more complete list can be found in

	cos2 x sin x dx � �	y2dy � �
y3

3
� c � �

cos3 x
3

� c

	cos2 x sin x dx � �	cos2 x d(cos x)

I(x) � 	cos2 x sin x dx

	x 2e x dx � x2e x � 2xe x � 2e x � c2

	x2ex dx � x2ex � 2xex � 2 	ex dx � c1

	x2e x dx � 	x2 d(e x) � x2e x � 2	e xx dx � c1

I(x) �  	x2ex dx

	u  dv � uv �	v  du
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3. 	5

3
x dx �

x 2

2 �
5

3
�

52 � 32

2
� 81.

2. 	b

0
x 3/2 dx �

x 5/2

5/2 �
b

0
� 2

5 b5/2

	a

0
x 2 dx �

x 3

3 �
a

0
�

a3

3

EXAMPLES



various handbooks, such as The Handbook of Chemistry and Physics (Boca Raton, FL:
CRC Press, published annually).

PROPAGATION  OF  UNCERTAINTY
In laboratory experiments, a common activity is to take measurements that act as
raw data. These measurements are of several types—length, time interval, tempera-
ture, voltage, and so on—and are taken by a variety of instruments. Regardless of
the measurement and the quality of the instrumentation, there is always uncer-
tainty associated with a physical measurement. This uncertainty is a combination of
that associated with the instrument and that related to the system being measured.

B.8
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Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.)TABLE B.5

(provided n � � 1)

	 x dx
(x2 � a2)3/2 � �

1

√x2 � a2	e ax dx �
1
a

eax

	 dx
(x2 � a2)3/2 �

x

a2√x2 � a2
	x�√x2 �  a2� dx � 1

3(x2 �  a2)3/2

	cos�1 ax dx � x(cos�1 ax) �
√1 � a2x2

a
	 √x2 � a2  dx � 1

2 �x√x2 � a2 � a2 ln�x � √x2 � a2��

	sin�1 ax dx � x(sin�1 ax) �
√1 � a2x2

a
	x√a 2 � x2 dx � � 1

3(a2 � x2)3/2

	cot2 ax dx � �
1
a

 (cot ax) � x	√a2 � x2 dx � 1
2�x√a2 � x2 � a2 sin�1 

x
a �

	tan2 ax dx �
1
a

 (tan ax) � x	 x dx

√x2 �  a2
� √x2 �  a2

	 dx
cos2 ax

�
1
a

 tan ax	 x dx

√a2 � x2
� �√a 2 � x2

	 dx
sin2 ax

� �
1
a

 cot ax	 dx

√x2 �  a2
� ln�x � √x2 �  a2�

	cos2 ax dx �
x
2

�
sin 2ax

4a
	 dx

√a2 � x2
� sin�1 

x
a

� � cos�1  
x
a
  (a 2 � x2 �  0)

	sin2 ax dx �
x
2

�
sin 2ax

4a
	 x dx

a 2 �  x2 � �1
2 ln(a2 �  x2)

	csc ax dx �
1
a

 ln(csc ax � cot ax) �
1
a

 ln �tan 
ax
2 �	 dx

x2 � a2 �
1
2a

 ln 
x � a
x � a

  (x2 � a 2 �  0)

	 sec ax dx �
1
a

 ln(sec ax � tan ax) �
1
a

 ln�tan � ax
2

�
�

4 ��	 dx
a 2 � x2 �

1
2a

 ln 
a � x
a � x

  (a 2 � x2 �  0)

	cot ax dx �
1
a

 ln(sin ax)	 dx
a2 � x2 �

1
a

 tan�1 
x
a

	tan ax dx � �
1
a

 ln(cos ax) �
1
a

 ln(sec ax)	 dx
(a � bx)2 � �

1
b(a � bx)

	cos ax dx �
1
a

 sin ax	 dx
x(x � a)

� �
1
a

 ln 
x � a

x

	sin ax dx � �
1
a

 cos ax	 x dx
a � bx

�
x
b

�
a
b2  ln(a � bx)

	 dx
a � be cx �

x
a

�
1
ac

 ln(a � be cx)	 dx
a � bx

�
1
b

 ln(a � bx)

	xeax dx �
e ax

a2  (ax � 1)	 dx
x

�  	x�1dx �  ln x

	ln ax dx �  (x ln ax) � x	xn dx �
xn �  1

n � 1
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Gauss’s Probability Integral and 
Other Definite Integrals

TABLE B.6

.

.

.

I 2n �  1 � (�1)n 
dn

dan  I1

I2n � (�1)n 
dn

dan  I0

I5 �  	�

0
x 5e�ax2

 dx �  
d2I1

da2  �  
1
a3

I4 �  	�

0
x4e�ax2

 dx �  
d2I0

da2  �  
3
8 √ �

a 5

I 3 �  	�

0
x3e�ax 2

 dx �  �
dI1

da
 �  

1
2a2

I2 �  	�

0
x2e�ax2

 dx � �
dI0

da
 �  

1
4 √ �

a3

I1 �  	�

0
xe�ax2

 dx �
1

2a

I0 �  	�

0
e�ax2

 dx � 1
2 √ �

a
  (Gauss’s probability integral)

	�

0
xne�ax

 dx �
n!

an �  1

An example of the former is the inability to determine exactly the position of a
length measurement between the lines on a meter stick. An example of uncertainty
related to the system being measured is the variation of temperature within a sam-
ple of water so that a single temperature for the sample is difficult to determine.

Uncertainties can be expressed in two ways. Absolute uncertainty refers to an un-
certainty expressed in the same units as the measurement. Thus, the length of a com-
puter disk label might be expressed as (5.5 � 0.1) cm. The uncertainty of � 0.1 cm by
itself is not descriptive enough for some purposes, however. This uncertainty is large if
the measurement is 1.0 cm, but it is small if the measurement is 100 m. To give a
more descriptive account of the uncertainty, fractional uncertainty or percent uncer-
tainty is used. In this type of description, the uncertainty is divided by the actual mea-
surement. Therefore, the length of the computer disk label could be expressed as

or as

When combining measurements in a calculation, the percent uncertainty in the
final result is generally larger than the uncertainty in the individual measurements.
This propagation of uncertainty is one of the challenges of experimental physics.

Some simple rules can provide a reasonable estimate of the uncertainty in a cal-
culated result.

Multiplication and division: When measurements with uncertainties are mul-
tiplied or divided, add the percent uncertainties to obtain the percent uncer-
tainty in the result.

� �  5.5 cm �  1.8%  (percent uncertainty)

� �  5.5 cm �  
0.1 cm
5.5 cm

 �  5.5 cm �  0.018  (fractional uncertainty)



PROPAGATION OF UNCERTAINTY ❚ A.29

y pp g p pp

Example: The Area of a Rectangular Plate 

A � �w � (5.5 cm � 1.8%) � (6.4 cm � 1.6%) � 35 cm2 � 3.4%

� (35 � 1) cm2

Addition and subtraction: When measurements with uncertainties are added
or subtracted, add the absolute uncertainties to obtain the absolute uncertainty
in the result.

Example: A Change in Temperature

	T � T2 � T1 � (99.2 � 1.5)°C � (27.6 � 1.5)°C � (71.6 � 3.0)°C

� 71.6°C � 4.2%

Powers: If a measurement is taken to a power, the percent uncertainty is mul-
tiplied by that power to obtain the percent uncertainty in the result.

Example: The Volume of a Sphere

For complicated calculations, many uncertainties are added together. This can
cause the uncertainty in the final result to be undesirably large. Experiments
should be designed such that calculations are as simple as possible. 

Notice that uncertainties in a calculation always add. As a result, an experiment
involving a subtraction should be avoided if possible, especially if the measure-
ments being subtracted are close together. The result of such a calculation is a
small difference in the measurements and uncertainties that add together. It is pos-
sible that the uncertainty in the result could be larger than the result itself!

 �  (998 �  60) cm3

 V �  
4
3 �r 3

 �  
4
3 �(6.20 cm �  2.0%)3

 �  998 cm3
 �  6.0%
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Periodic Table 
of the Elements

*Lanthanide series

**Actinide series

Note: Atomic mass values given are averaged over isotopes in the percentages in which they exist in nature.
†For an unstable element, mass number of the most stable known isotope is given in parentheses.

†††For a description of the atomic data, visit physics.nist.gov/atomic.
††Elements 111, 112, and 114 have not yet been named

Atomic numberSymbol

Electron configuration

20Ca
Atomic mass †

58

90

57

89

3

11

19

37

55

87

20

38

56

88

21

39

57–71*

89–103**

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76

108

27

45

77

109

4

12

59 60 61 62

94939291

1

Li

Na

K

Rb

Cs

Fr

Ca

Sr

Ba

Ra

Sc

Y

Ti

Zr

Hf

Rf

V

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

Fe

Ru

Os

Hs

Co

Rh

Ir

Mt

Be

Mg

Ce Pr Nd Pm Sm

PuNpUPaTh

H

La

Ac

4s2

5f 66d 07s25f 46d 17s25f 36d17s25f 26d17s26d 27s26d17s2

4f 66s24f 56s24f 46s24f 36s25d14f 16s25d16s2

6d 37s26d 27s27s27s1

5d 76s25d 66s25d 56s25d 46s25d 36s25d 26s26s26s1

4d 85s14d 75s14d 55s24d 55s14d 45s14d 25s24d15s25s25s1

3d 74s23d 64s23d 54s23d 54s13d 34s23d 24s23d14s24s24s1

3s23s1

2s22s1

1s

(261) (262)1 (266) (264) (269) (268)

6.941 9.0122

1.007 9

22.990

39.098

85.468

132.91

(223)

40.078

87.62

137.33

(226)

44.956

88.906

47.867

91.224

178.49

50.942

92.906

180.95

51.996

95.94

183.84

54.938

(98)

186.21

55.845

101.07

190.23

58.933

102.91

192.2

24.305

140.12 140.91 144.24 (145) 150.36

(244)(237)238.03231.04232.04

40.078

138.91

(227)

Group
I

Group
II Transition elements

A P P E N D I X C

A.30
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1.007 9

26.982 28.086 30.974 32.066 35.453 39.948

58.693

106.42

195.08

63.546

107.87

196.97

65.39

112.41

200.59

114.82

204.38

118.71

207.2

121.76

208.98

127.60

(209)

126.90

(210)

131.29

(222)

162.50 164.93 167.26 168.93 173.04

(259)(258)(257)(252)(251)

158.93

(247)

157.25

(247)

151.96

(243)

69.723 72.61 74.922 78.96 79.904 83.80

10.811 12.011 14.007 15.999 18.998 20.180

4.002 6

174.97

(262)

1

13 14 15 16 17 18

28

46
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SI Units

A P P E N D I X D

SI Base UnitsTABLE D.1

SI Base Unit

Base Quantity Name Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Some Derived SI UnitsTABLE D.2

Expression in Expression in
Terms of Base Terms of Other

Quantity Name Symbol Units SI Units

Plane angle radian rad m/m
Frequency hertz Hz s�1

Force newton N kg � m/s2 J/m
Pressure pascal Pa kg/m � s2 N/m2

Energy; work joule J kg � m2/s2 N � m
Power watt W kg � m2/s3 J/s
Electric charge coulomb C A � s
Electric potential volt V kg � m2/A � s3 W/A
Capacitance farad F A2 � s4/kg � m2 C/V
Electric resistance ohm w kg � m2/A2 � s3 V/A
Magnetic flux weber Wb kg � m2/A � s2 V � s
Magnetic field tesla T kg/A � s2

Inductance henry H kg � m2/A2 � s2 T � m2/A

A.32
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Nobel Prizes

A P P E N D I X  E

All Nobel Prizes in Physics are listed (and marked with a P), as well as relevant
Nobel Prizes in Chemistry (C). The key dates for some of the scientific work are
supplied; they often antedate the prize considerably.

1901 (P) Wilhelm Roentgen for discovering x-rays (1895).

1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman for
discovering the Zeeman effect, the splitting of spectral lines in magnetic
fields.

1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre
Curie and Marie Curie for studying radioactivity.

1904 (P) Lord Rayleigh for studying the density of gases and discovering argon.
(C) William Ramsay for discovering the inert gas elements helium, neon,
xenon, and krypton, and placing them in the periodic table.

1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899).
1906 (P) J. J. Thomson for studying electrical discharge through gases and discov-

ering the electron (1897).
1907 (P) Albert A. Michelson for inventing optical instruments and measuring the

speed of light (1880s).
1908 (P) Gabriel Lippmann for making the first color photographic plate, using in-

terference methods (1891).
(C) Ernest Rutherford for discovering that atoms can be broken apart by al-
pha rays and for studying radioactivity.

1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless teleg-
raphy.

1910 (P) Johannes D. van der Waals for studying the equation of state for gases and
liquids (1881).

1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a blackbody
spectrum (1893).
(C) Marie Curie for discovering radium and polonium (1898) and isolating
radium.

1912 (P) Nils Dalén for inventing automatic gas regulators for lighthouses.
1913 (P) Heike Kamerlingh Onnes for the discovery of superconductivity and lique-

fying helium (1908).
1914 (P) Max T. F. von Laue for studying x-rays from their diffraction by crystals,

showing that x-rays are electromagnetic waves (1912).
(C) Theodore W. Richards for determining the atomic weights of 60 elements,
indicating the existence of isotopes.

1915 (P) William Henry Bragg and William Lawrence Bragg, his son, for studying the
diffraction of x-rays in crystals.

1917 (P) Charles Barkla for studying atoms by x-ray scattering (1906).
1918 (P) Max Planck for discovering energy quanta (1900).
1919 (P) Johannes Stark for discovering the Stark effect, the splitting of spectral

lines in electric fields (1913).



1920 (P) Charles-Édouard Guillaume for discovering invar, a nickel–steel alloy with
low coefficient of expansion.
(C) Walther Nernst for studying heat changes in chemical reactions and
formulating the third law of thermodynamics (1918).

1921 (P) Albert Einstein for explaining the photoelectric effect and for his services
to theoretical physics (1905).
(C) Frederick Soddy for studying the chemistry of radioactive substances and
discovering isotopes (1912).

1922 (P) Niels Bohr for his model of the atom and its radiation (1913).
(C) Francis W. Aston for using the mass spectrograph to study atomic
weights, thus discovering 212 of the 287 naturally occurring isotopes.

1923 (P) Robert A. Millikan for measuring the charge on an electron (1911) and
for studying the photoelectric effect experimentally (1914).

1924 (P) Karl M. G. Siegbahn for his work in x-ray spectroscopy.
1925 (P) James Franck and Gustav Hertz for discovering the Franck–Hertz effect in

electron–atom collisions.
1926 (P) Jean-Baptiste Perrin for studying Brownian motion to validate the discon-

tinuous structure of matter and measure the size of atoms.
1927 (P) Arthur Holly Compton for discovering the Compton effect on x-rays, their

change in wavelength when they collide with matter (1922), and Charles 
T. R. Wilson for inventing the cloud chamber, used to study charged parti-
cles (1906).

1928 (P) Owen W. Richardson for studying the thermionic effect and electrons
emitted by hot metals (1911).

1929 (P) Louis Victor de Broglie for discovering the wave nature of electrons
(1923).

1930 (P) Chandrasekhara Venkata Raman for studying Raman scattering, the scat-
tering of light by atoms and molecules with a change in wavelength (1928).

1932 (P) Werner Heisenberg for creating quantum mechanics (1925).
1933 (P) Erwin Schrödinger and Paul A. M. Dirac for developing wave mechanics

(1925) and relativistic quantum mechanics (1927).
(C) Harold Urey for discovering heavy hydrogen, deuterium (1931).

1935 (P) James Chadwick for discovering the neutron (1932).
(C) Irène Joliot-Curie and Frédéric Joliot-Curie for synthesizing new radioactive
elements.

1936 (P) Carl D. Anderson for discovering the positron in particular and antimat-
ter in general (1932) and Victor F. Hess for discovering cosmic rays.
(C) Peter J. W. Debye for studying dipole moments and diffraction of x-rays
and electrons in gases.

1937 (P) Clinton Davisson and George Thomson for discovering the diffraction of
electrons by crystals, confirming de Broglie’s hypothesis (1927).

1938 (P) Enrico Fermi for producing the transuranic radioactive elements by neu-
tron irradiation (1934–1937).

1939 (P) Ernest O. Lawrence for inventing the cyclotron.
1943 (P) Otto Stern for developing molecular-beam studies (1923) and using them

to discover the magnetic moment of the proton (1933).
1944 (P) Isidor I. Rabi for discovering nuclear magnetic resonance in atomic and

molecular beams.
(C) Otto Hahn for discovering nuclear fission (1938).

1945 (P) Wolfgang Pauli for discovering the exclusion principle (1924).
1946 (P) Percy W. Bridgman for studying physics at high pressures.
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1947 (P) Edward V. Appleton for studying the ionosphere.
1948 (P) Patrick M. S. Blackett for studying nuclear physics with cloud-chamber

photographs of cosmic-ray interactions.
1949 (P) Hideki Yukawa for predicting the existence of mesons (1935).
1950 (P) Cecil F. Powell for developing the method of studying cosmic rays with

photographic emulsions and discovering new mesons.
1951 (P) John D. Cockcroft and Ernest T. S. Walton for transmuting nuclei in an ac-

celerator (1932).
(C) Edwin M. McMillan for producing neptunium (1940) and Glenn T.
Seaborg for producing plutonium (1941) and further transuranic elements.

1952 (P) Felix Bloch and Edward Mills Purcell for discovering nuclear magnetic
resonance in liquids and gases (1946).

1953 (P) Frits Zernike for inventing the phase-contrast microscope, which uses in-
terference to provide high contrast.

1954 (P) Max Born for interpreting the wave function as a probability (1926) and
other quantum-mechanical discoveries and Walther Bothe for developing the
coincidence method to study subatomic particles (1930–1931), producing,
in particular, the particle interpreted by Chadwick as the neutron.

1955 (P) Willis E. Lamb Jr., for discovering the Lamb shift in the hydrogen spec-
trum (1947) and Polykarp Kusch for determining the magnetic moment of
the electron (1947).

1956 (P) John Bardeen, Walter H. Brattain, and William Shockley for inventing the
transistor (1956).

1957 (P) T.-D. Lee and C.-N. Yang for predicting that parity is not conserved in
beta decay (1956).

1958 (P) Pavel A. Čerenkov for discovering Čerenkov radiation (1935) and Ilya M.
Frank and Igor Tamm for interpreting it (1937).

1959 (P) Emilio G. Segrè and Owen Chamberlain for discovering the antiproton (1955).
1960 (P) Donald A. Glaser for inventing the bubble chamber to study elementary

particles (1952).
(C) Willard Libby for developing radiocarbon dating (1947).

1961 (P) Robert Hofstadter for discovering internal structure in protons and neu-
trons and Rudolf L. Mössbauer for discovering the Mössbauer effect of recoil-
less gamma-ray emission (1957).

1962 (P) Lev Davidovich Landau for studying liquid helium and other condensed
matter theoretically.

1963 (P) Eugene P. Wigner for applying symmetry principles to elementary-particle
theory and Maria Goeppert Mayer and J. Hans D. Jensen for studying the shell
model of nuclei (1947).

1964 (P) Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for devel-
oping masers (1951–1952) and lasers.

1965 (P) Sin-itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman for devel-
oping quantum electrodynamics (1948).

1966 (P) Alfred Kastler for his optical methods of studying atomic energy levels.
1967 (P) Hans Albrecht Bethe for discovering the routes of energy production in

stars (1939).
1968 (P) Luis W. Alvarez for discovering resonance states of elementary particles.
1969 (P) Murray Gell-Mann for classifying elementary particles (1963).
1970 (P) Hannes Alfvén for developing magnetohydrodynamic theory and Louis

Eugène Félix Néel for discovering antiferromagnetism and ferrimagnetism
(1930s).

1971 (P) Dennis Gabor for developing holography (1947).
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(C) Gerhard Herzberg for studying the structure of molecules spectroscopically.
1972 (P) John Bardeen, Leon N. Cooper, and John Robert Schrieffer for explaining

superconductivity (1957).
1973 (P) Leo Esaki for discovering tunneling in semiconductors, Ivar Giaever for

discovering tunneling in superconductors, and Brian D. Josephson for pre-
dicting the Josephson effect, which involves tunneling of paired electrons
(1958–1962).

1974 (P) Anthony Hewish for discovering pulsars and Martin Ryle for developing
radio interferometry.

1975 (P) Aage N. Bohr, Ben R. Mottelson, and James Rainwater for discovering why
some nuclei take asymmetric shapes.

1976 (P) Burton Richter and Samuel C. C. Ting for discovering the J/psi particle,
the first charmed particle (1974).

1977 (P) John H. Van Vleck, Nevill F. Mott, and Philip W. Anderson for studying solids
quantum-mechanically.
(C) Ilya Prigogine for extending thermodynamics to show how life could
arise in the face of the second law.

1978 (P) Arno A. Penzias and Robert W. Wilson for discovering the cosmic
background radiation (1965) and Pyotr Kapitsa for his studies of liquid he-
lium.

1979 (P) Sheldon L. Glashow, Abdus Salam , and Steven Weinberg for developing the
theory that unified the weak and electromagnetic forces (1958–1971).

1980 (P) Val Fitch and James W. Cronin for discovering CP (charge-parity) violation
(1964), which possibly explains the cosmological dominance of matter over
antimatter.

1981 (P) Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spec-
troscopy and Kai M. Siegbahn for developing high-resolution electron spec-
troscopy (1958).

1982 (P) Kenneth G. Wilson for developing a method of constructing theories of
phase transitions to analyze critical phenomena.

1983 (P) William A. Fowler for theoretical studies of astrophysical nucleosynthesis
and Subramanyan Chandrasekhar for studying physical processes of impor-
tance to stellar structure and evolution, including the prediction of white
dwarf stars (1930).

1984 (P) Carlo Rubbia for discovering the W and Z particles verifying the elec-
troweak unification, and Simon van der Meer for developing the method of
stochastic cooling of the CERN beam that allowed the discovery
(1982–1983).

1985 (P) Klaus von Klitzing for the quantized Hall effect, relating to conductivity
in the presence of a magnetic field (1980).

1986 (P) Ernst Ruska for inventing the electron microscope (1931) and Gerd Bin-
nig and Heinrich Rohrer for inventing the scanning-tunneling electron
microscope (1981).

1987 (P) J. Georg Bednorz and Karl Alex Müller for the discovery of high-temperature
superconductivity (1986).

1988 (P) Leon M. Lederman, Melvin Schwartz, and Jack Steinberger for a collaborative
experiment that led to the development of a new tool for studying the weak
nuclear force, which affects the radioactive decay of atoms.

1989 (P) Norman Ramsay for various techniques in atomic physics and Hans
Dehmelt and Wolfgang Paul for the development of techniques for trapping
single-charge particles.

1990 (P) Jerome Friedman, Henry Kendall, and Richard Taylor for experiments
important to the development of the quark model.
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1991 (P) Pierre-Gilles de Gennes for discovering that methods developed for study-
ing order phenomena in simple systems can be generalized to more com-
plex forms of matter, in particular to liquid crystals and polymers.

1992 (P) George Charpak for developing detectors that trace the paths of evanes-
cent subatomic particles produced in particle accelerators.

1993 (P) Russell Hulse and Joseph Taylor for discovering evidence of gravitational
waves.

1994 (P) Bertram N. Brockhouse and Clifford G. Shull for pioneering work in neu-
tron scattering.

1995 (P) Martin L. Perl and Frederick Reines for discovering the tau particle and the
neutrino, respectively.

1996 (P) David M. Lee, Douglas C. Osheroff, and Robert C. Richardson for developing
a superfluid using helium-3.

1997 (P) Steven Chu, Claude Cohen-Tannoudji , and William D. Phillips for develop-
ing methods to cool and trap atoms with laser light.

1998 (P) Robert B. Laughlin, Horst L. Störmer, and Daniel C. Tsui for discovering a
new form of quantum fluid with fractionally charged excitations.

1999 (P) Gerardus ’T Hooft and Martinus J. G. Veltman for studies in the quantum
structure of electroweak interactions in physics.

2000 (P) Zhores I. Alferov and Herbert Kroemer for developing semiconductor
heterostructures used in high-speed electronics and optoelectronics and
Jack St. Clair Kilby for participating in the invention of the integrated circuit.

2001 (P) Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman for the achievement
of Bose–Einstein condensation in dilute gases of alkali atoms.

2002 (P) Raymond Davis Jr. and Masatoshi Koshiba for the detection of cosmic neu-
trinos and Riccardo Giacconi for contributions to astrophysics that led to the
discovery of cosmic x-ray sources.

2003 Alexei A. Abrikosov, Vitaly L. Ginzburg, and Anthony J. Leggett for pioneering
contributions to the theory of superconductors and superfluids.

2004 David J. Gross, H. David Politzer, and Frank Wilczeck for the discovery of asymp-
totic freedom in the theory of the strong interaction.
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Answers to Odd-Numbered 
Problems

Chapter 1
1. 5.52 � 103 kg/m3, between the density of aluminum and

that of iron and greater than the densities of typical 
surface rocks

3. 4��(r2
3 � r1

3)/3

5. No

7. (b) only

9. (a) 0.071 4 gal/s (b) 2.70 � 10�4 m3/s
(c) 1.03 h

11. 667 lb/s

13. 151 �m

15. 2.86 cm

17. (a) 2.07 mm (b) 8.62 � 1013 times as large

19. �106 balls

21. �102 tuners

23. (a) 3 (b) 4 (c) 3 (d) 2

25. 31 556 926.0 s

27. 5.2 m3, 3%

29. 108° and 288°

31. 3.46 or � 3.46

33. (a) 2.24 m (b) 2.24 m at 26.6°

35. (a) r, 180° � � (b) 2r, 180° � � (c) 3r, � �

37. (a) 10.0 m (b) 15.7 m (c) 0

39. Approximately 420 ft at �3°

41. 47.2 units at 122°

43. 196 cm at 345°

45. (a) 2.00 � 6.00 (b) 4.00 � 2.00 (c) 6.32
(d) 4.47 (e) 288°; 26.6°

47. 240 m at 237°

49. (a) 10.4 cm (b) 35.5°

51. (a) 8.00 � 12.0 � 4.00 (b) 2.00 � 3.00 � 1.00
(c) � 24.0 � 36.0 � 12.0

53. (a) 49.5 � 27.1 (b) 56.4 units at 28.7°

55. 70.0 m

57. 0.141 nm

59. 4.50 m2

61. 0.449%

63. (a) 0.529 cm/s (b) 11.5 cm/s

65. �1011 stars

ĵî

k̂ĵî
k̂ĵîk̂ĵî

ĵîĵî

67. (a) 185 N at 77.8° from the �x axis
(b) (� 39.3 � 181 ) N

69. (a) (10.0 m, 16.0 m)

71. (a) � a � b ; R1 �
(b) � a � b � c ; R2 �

Chapter 2
1. (a) 2.30 m/s (b) 16.1 m/s (c) 11.5 m/s

3. (a) 5 m/s (b) 1.2 m/s (c) � 2.5 m/s
(d) – 3.3 m/s (e) 0

5. (a) � 2.4 m/s (b) � 3.8 m/s (c) 4.0 s

7. (b) vt � 5.0 s � 23 m/s, vt � 4.0 s � 18 m/s, 
vt � 3.0 s � 14 m/s, vt � 2.0 s � 9.0 m/s
(c) 4.6 m/s2 (d) 0

9. 5.00 m

11. (a) 20.0 m/s, 5.00 m/s (b) 262 m

13. (a) 2.00 m (b) � 3.00 m/s (c) � 2.00 m/s2

15. (a) 1.3 m/s2 (b) 2.0 m/s2 at 3 s
(c) at t � 6 s and for t 	 10 s (d) � 1.5 m/s2 at 8 s

17. (a) 6.61 m/s (b) � 0.448 m/s2

19. � 16.0 cm/s2

21. (a) 20.0 s (b) no

23. 3.10 m/s

25. (a) 35.0 s (b) 15.7 m/s

27. yes; 212 m, 11.4 s 

29. (a) 29.4 m/s (b) 44.1 m

31. (a)10.0 m/s up (b) 4.68 m/s down

33. (a) 7.82 m (b) 0.782 s

35. (b) 7.4 m/s2 and 2.1 m/s2 (c) 48 m and 170 m
(d) 2.74 s

37. (a) 70.0 mi/h 
 s � 31.3 m/s2 � 3.19g
(b) 321 ft � 97.8 m

39. (a) � 202 m/s2 (b) 198 m

41. 2.74 � 105 m/s2, which is 2.79 � 104 g

43. (a) 3.00 m/s (b) 6.00 s (c) � 0.300 m/s2

(d) 2.05 m/s

45. 1.60 m/s2

47. (a) 41.0 s (b) 1.73 km (c) � 184 m/s

49. (a) 5.43 m/s2 and 3.83 m/s2

(b) 10.9 m/s and 11.5 m/s 
(c) Maggie by 2.62 m

√a2 � b2 � c2k̂ĵîR
:

2

√a2 � b2ĵîR
:

1

ĵî



51. (a) 3.00 s (b) � 15.3 m/s (c) 31.4 m/s down and 
34.8 m/s down

53. (c) , 0 (d) vboy, 0

55. (a) 26.4 m (b) 6.82%

57. 0.577v 

Chapter 3
1. (a) 4.87 km at 209° from east (b) 23.3 m/s

(c) 13.5 m/s at 209°

3. (a) (b) 339°
(c) , �15.2°

5. (a) 
(b) (10.0 m, 6.00 m), 7.81 m/s

7. (a) (b) � 50.9°

9. 12.0 m/s

11. 22.4° or 89.4°

13. 67.8°

15. (a) The ball clears by 0.889 m while (b) descending

17. (a) 18.1 m/s (b) 1.13 m (c) 2.79 m

19. 9.91 m/s

21. tan�1[(2gh)1/2/v]

23. 377 m/s2

25. 10.5 m/s, 219 m/s2 inward

27. 7.58 � 103 m/s, 5.80 � 103 s

29. 1.48 m/s2 inward and 29.9° backward

31. (a) 13.0 m/s2 (b) 5.70 m/s (c) 7.50 m/s2

33. 2.02 � 103 s; 21.0% longer

35. 153 km/h at 11.3° north of west

37. 15.3 m

39. 0.975g

41. (a) 101 m/s (b) 32 700 ft (c) 20.6 s
(d) 180 m/s

43. 54.4 m/s2

45. (a) 41.7 m/s (b) 3.81 s (c) ;
36.7 m/s

47. 10.7 m/s

49. (a) 6.80 km (b) 3.00 km vertically above the impact
point (c) 66.2°

51. (a) 20.0 m/s, 5.00 s (b) 
(c) 6.53 s (d) 

53. (a) 22.9 m/s (b) 360 m from the base of the cliff
(c) 

55. (a) 1.52 km (b) 36.1 s (c) 4.05 km

57. (a) 43.2 m (b) 

59. 4.00 km/h

61. Safe distances are less than 270 m and greater than 
3.48 � 103 m from the western shore.

Chapter 4
1. (a) 1/3 (b) 0.750 m/s2

3. ; 16.2 N(6.00 î � 15.0 ĵ)  N

(9.66 î � 25.6 ĵ)m/s

v: � (114 î � 44.3 ĵ)m/s

24.5 î m
(16.0 î � 27.1 ĵ)m/s

(34.1 î � 13.4 ĵ)m/s

3.34 î  m/s

v: � (5.00 î � 3.00t ĵ)m/sr: � (5.00t î � 1.50t 2 ĵ)m,

(360 î � 72.7 ĵ)m
(0.800 î � 0.300 ĵ)m/s2

v 2
boy/h

5. (a) (b) 5.59 N

7. (a) 5.00 m/s2 at 36.9° (b) 6.08 m/s2 at 25.3°

9. (a) 534 N down (b) 54.5 kg

11. 2.55 N for an 88.7-kg person

13. (a) 3.64 � 10�18 N (b) 8.93 � 10�30 N is 408 billion
times smaller

15. (a) �10�22 m/s2 (b) �10�23 m

17. (a) 15.0 lb up (b) 5.00 lb up (c) 0

21. (a) From a free-body diagram of the forces on the bit
of string touching the weight hanger we have ΣFy � 0: 
� Fg � T sin � � 0, so T � Fg /sin�. The force the
child feels gets smaller, changing from T to T cos �
when the counterweight hangs from the string. On the
other hand, the kite does not notice what you are do-
ing and the tension in the main part of the string stays
constant. You do not need a level because you learned
in physics lab to sight to a horizontal line in a build-
ing. Share with the parents your estimate of the exper-
imental uncertainty, which you made by thinking criti-
cally about the measurement, repeating trials,
practicing in advance, and looking for variations and
improvements in technique, including using other 
observers. You will then be glad to have the parents
themselves repeat your measurements.
(b) 1.79 N

23. (a) a � g tan � (b) 4.16 m/s2

25. 100 N and 204 N

27. 8.66 N east

29. 3.73 m

31. A is in compression 3.83 kN and B is in tension 3.37 kN

33. 950 N

35. (a) Fx 	 19.6 N (b) Fx � � 78.4 N

(2.50 î  � 5.00 ĵ)  N
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+100–100

ax, m/s2

Fx ,N

–10

+10

(c)

37. (a) 706 N (b) 814 N (c) 706 N (d) 648 N

39. (a) Removing mass (b) 13.7 mi/h
 s



41. (a)

(b) 27.2 N, 1.29 m/s2

13. any value between 31.7 N and 48.6 N

15. any speed up to 8.08 m/s

17. v � 14.3 m/s

19. (a) 68.6 N toward the center of the circle and 784 N up
(b) 0.857 m/s2

21. No. The jungle-lord needs a vine of tensile strength 1.38 kN.

23. 3.13 m/s

25. (a) 32.7 s�1 (b) 9.80 m/s2 down
(c) 4.90 m/s2 down

27. (a) 1.47 N· s/m (b) 2.04 � 10�3 s
(c) 2.94 � 10�2 N

29. (a) 0.034 7 s�1 (b) 2.50 m/s (c) a � �cv

31. 2.97 nN

33. 0.613 m/s2 toward the Earth

35. �0.212 m/s2

37. (a) M � 3m sin � (b) T1 � 2mg sin �, T2 � 3mg sin �

(c) 

(d) T1 � 4mg sin � 

T2 � 6mg sin �

(e) Mmax � 3m(sin � � �s cos �)

(f) Mmin � 3m(sin � � �s cos �)

(g) T2,max � T2,min � (Mmax � Mmin)g � 6�smg cos �

39. (b) � 0 15° 30° 45° 60°

P (N) 40.0 46.4 60.1 94.3 260

41. (a) 0.087 1 (b) 27.4 N

43. (a) 2.13 s (b) 1.67 m
45. (a)

vmax � √ Rg(tan � � �s)
1 � �s tan �

vmin � √ Rg(tan � � �s)
1 � �s tan �

� 1 � sin �
1 � 2 sin � �

� 1 � sin �
1 � 2 sin � �

a �
g sin �

1 � 2 sin �
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250 N

n

250 N 250 N

480 N

250 N

320 Nn 160 N

(b) 0.408 m/s2 (c) 83.3 N

43. (a) 2.00 m/s2 forward (b) 4.00 N forward on 2 kg,
6.00 N forward on 3 kg, 8.00 N forward on 4 kg
(c) 14.0 N between 2 kg and 3 kg, 8.00 N between 4 kg
and 3 kg (d) The 3-kg block models the heavy
block of wood. The contact force on your back is rep-
resented by Q, which is much less than F. The differ-
ence between F and Q is the net force causing acceler-
ation of the 5-kg pair of objects. The acceleration is
real and nonzero but lasts for so short a time interval
that it is never associated with a large velocity. The
frame of the building and your legs exert forces, small
compared with the hammer blow, to bring the parti-
tion, block, and you to rest again over a time interval
large compared with the duration of the hammer
blow.

45. (a) Mg/2, Mg/2, Mg/2, 3Mg/2, Mg (b) Mg/2

47. (M � m1 � m2)(m2g/m1)

49. (c) 3.56 N

51. 1.16 cm

53. (a) 30.7° (b) 0.843 N

55. mg sin � cos � � (M � m cos2 �)g

57. (a) , = , 

T3 �

(b) 

Chapter 5
1. �s � 0.306; �k � 0.245

3. (a) 3.34 (b) The car would flip over backwards; or
the wheels would skid, spinning in place, and the time
would increase.

5. (a) 1.11 s (b) 0.875 s

7. �s � 0.727, �k � 0.577

9. (a) 1.78 m/s2 (b) 0.368 (c) 9.37 N
(d) 2.67 m/s

�2 � tan�1� tan �1

2 �

2 mg
tan �1

mg
sin [tan�1(1

2 tan �1)]
T2 �

mg
 sin �2

T1 �
2mg

 sin �1

ĵî

n2

68 N

176 N

f k2

T
m2

n1

f k1

T

118 N

m1

11. (a)



(b) �s � tan �
(c) 8.57 m/s � v � 16.6 m/s

47. 0.835 rev/s

49. (b) 732 N down at the equator and 735 N down at the poles

51. (a) 1.58 m/s2 (b) 455 N (c) 329 N
(d) 397 N upward and 9.15° inward

53. 2.14 rev/min

55. (b) 2.54 s; 23.6 rev/min

57. (a) 0.013 2 m/s (b) 1.03 m/s (c) 6.87 m/s

59. 12.8 N

Chapter 6
1. (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J

3. � 4.70 kJ

5. 5.33 W

7. (a) 16.0 J (b) 36.9°

9. (a) 11.3° (b) 156° (c) 82.3°

11. (a) 7.50 J (b) 15.0 J (c) 7.50 J (d) 30.0 J

13. (a) 0.938 cm (b) 1.25 J

15. (a) 575 N/m (b) 46.0 J

17. 12.0 J

19. (b) mgR

21. (a) 1.20 J (b) 5.00 m/s (c) 6.30 J

23. (a) 60.0 J (b) 60.0 J

25. 878 kN up

27. 0.116 m

29. (a) 650 J (b) 588 J (c) 0 (d) 0 (e) 62.0 J
(f) 1.76 m/s

31. (a) � 168 J (b) 184 J (c) 500 J (d) 148 J
(e) 5.65 m/s

33. 2.04 m

35. 875 W

37. $46.2

39. (a) 423 mi/gal (b) 776 mi/gal

41. 830 N

43. 2.92 m/s

45. (a) (2 � 24t2 � 72t4) J (b) 12t m/s2; 48t N 
(c) (48t � 288t3) W (d) 1 250 J

47. (a)

49. 7.37 N/m

51. (b) 240 W

53. (a) 4.12 m (b) 3.35 m

55. 1.68 m/s

57. � 1.37 � 10 � 21 J

59. 0.799 J

61. (a) 2.17 kW (b) 58.6 kW

Chapter 7
1. (a) 259 kJ, 0, � 259 kJ (b) 0, � 259 kJ, � 259 kJ

3. 22.0 kW

mgnhhs

v � nhs
   (b) 

mgvh
v � nhs

5. (a) v � (3gR)1/2 (b) 0.098 0 N down

7. 1.84 m

9. (a) 4.43 m/s (b) 5.00 m

11. (b) 60.0°

13. (a) 1.24 kW (b) 20.9%

15. (a) 125 J (b) 50.0 J (c) 66.7 J
(d) Nonconservative; the work done depends on the path.

17. 10.2 m

19. (a) 22.0 J, 40.0 J (b) Yes; the total mechanical energy
changes.

21. 26.5 m/s

23. 3.74 m/s

25. (a) �160 J (b) 73.5 J (c) 28.8 N (d) 0.679

27. (a) 1.40 m/s (b) 4.60 cm after release
(c) 1.79 m/s

29. (a) 0.381 m (b) 0.143 m (c) 0.371 m

31. (a) 40.0 J (b) �40.0 J (c) 62.5 J

33. (A/r 2) away from the other particle

35. (a) �4.77 � 109 J (b) 569 N (c) 569 N up

37. 2.52 � 107 m

39. (a) � at �, � at �, 0 at �, �, and � (b) � stable;
� and � unstable

(c)
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2 4 6 8 x (m)

Fx

�

�

�

�

�

41. (b) 

–2 20 x (m)

50

100

U ( J)

Equilibrium at x � 0. (c) 0.823 m/s

43. 0.27 MJ/kg for a battery. 17 MJ/kg for hay is 63 times
larger. 44 MJ/kg for gasoline is 2.6 times larger still. 
142 MJ/kg for hydrogen is 3.2 times larger than that.



45. �103 W peak or �102 W sustainable

47. (8gh/15)1/2

49. (a) 0.225 J (b) �Emech � �0.363 J (c) No; the
normal force changes in a complicated way.

51. 0.328

53. 1.24 m/s

55. (a) 0.400 m (b) 4.10 m/s (c) The block stays on
the track.

57. (a) 6.15 m/s (b) 9.87 m/s

59. (a) 11.1 m/s (b) 19.6 m/s2 upward
(c) 2.23 � 103 N upward (d) 1.01 � 103 J
(e) 5.14 m/s (f) 1.35 m (g) 1.39 s

63. (a) 14.1 m/s (b) �7.90 kJ (c) 800 N
(d) 771 N (e) 1.57 kN up

Context 1 Conclusion
1. (a) 315 kJ (b) 220 kJ (c) 187 kJ (d) 127 kJ

(e) 14.0 m/s (f) 40.5% (g) 187 kJ

Chapter 8
1. (a) (b) 15.0 kg � m/s at 307°

3. 40.5 g

5. (a) 6.00 m/s toward the left (b) 8.40 J

7. (a) 13.5 N � s (b) 9.00 kN (c) 18.0 kN

9. 260 N normal to the wall

11. 15.0 N in the direction of the initial velocity of the exit-
ing water stream

13. (a) 2.50 m/s (b) 37.5 kJ

15. (a) vgx � 1.15 m/s (b) vpx � � 0.346 m/s

17. force on truck driver � 1.78 � 103 N; force on car 
driver � 8.89 � 103 N in the opposite direction

19. (a) 0.284 (b) 115 fJ and 45.4 fJ

21. 91.2 m/s

23. (a) 4.85 m/s (b) 8.41 m

25. orange: vi cos�; yellow: vi sin�

27. 2.50 m/s at � 60.0°

29.

31. (a) (b) 439 fJ

33.

35. (b) 3.57 � 108 J

37. (a) (b) 

39. 0.700 m

41. (a) 39.0 MN (b) 3.20 m/s2 up

43. (a) 442 metric tons (b) 19.2 metric tons

45. 4.41 kg

47. (a) (b) (c) 0.680 s
(d) and (e) 1.81 m
(f ) 0.454 m (g) � 427 J (h) � 107 J (i) Equal
friction forces act through different distances on person
and cart to do different amounts of work on them. The
total work on both together, � 320 J, becomes � 320 J of
extra internal energy in this perfectly inelastic collision.

49. (a) 2.07 m/s2 (b) 3.88 m/s

� 160 î  N �s� 160 î  N �s
� 235 î  N1.33 î m/s

(7.00 î �12.0 ĵ) kg�m/s(1.40 î � 2.40 ĵ) m/s

r:CM � (11.7 î � 13.3 ĵ) cm

(�9.33 î � 8.33 ĵ) Mm/s

(3.00 î � 1.20 ĵ) m/s

(9.00 î � 12.0 ĵ) kg�m/s

51. (a) � 0.667 m/s (b) 0.952 m

53. (a) and
(b) and 0 (c) 0 and 0

55. 2vi and 0

57. (a) m/M � 0.403 (b) no changes; no difference

59. (a) 3.75 kg � m/s2 to the right (b) 3.75 N to the right
(c) 3.75 N (d) 2.81 J (e) 1.41 J (f) Friction
between sand and belt causes half of the input work to
appear as extra internal energy.

Chapter 9
5. 0.866c

7. (a) 25.0 yr (b) 15.0 yr (c) 12.0 ly

9. 1.54 ns

11. 0.800c

13. (a) 20.0 m (b) 19.0 m (c) 0.312c

15. (a) 21.0 yr (b) 14.7 ly (c) 10.5 ly (d) 35.7 yr

17. (a) 17.4 m (b) 3.30°

19. (a) 2.50 � 108 m/s (b) 4.97 m (c) �1.33 � 10�8 s

21. 0.960c

23. (a) 2.73 � 10�24 kg � m/s (b) 1.58 � 10�22 kg � m/s
(c) 5.64 � 10�22 kg � m/s

25. 4.50 � 10�14

27. 0.285c

29. (a) 0.582 MeV (b) 2.45 MeV

31. (a) 3.07 MeV (b) 0.986c

33. (a) 938 MeV (b) 3.00 GeV (c) 2.07 GeV

35. (a) 0.979c (b) 0.065 2c (c) 0.914c � 274 Mm/s
(d) 0.999 999 97c ; 0.948c ; 0.052 3c � 15.7 Mm/s

39. 4.08 MeV and 29.6 MeV

41. 4.28 � 109 kg/s

43. 1.02 MeV

45. (a) 3.87 km/s (b) � 8.36 � 10�11

(c) 5.29 � 10�10 (d) � 4.46 � 10�10

47. (a) v/c � 1 � 1.12 � 10�10 (b) 6.00 � 1027 J
(c) $2.17 � 1020

49. (a) a few hundred seconds (b) � 108 km

51. 0.712%

53. (a) 0.946c (b) 0.160 ly (c) 0.114 yr
(d) 7.50 � 1022 J

55. yes, with 18.8 m to spare

57. (b) For u small compared to c, the relativistic expression
agrees with the classical expression. As u approaches c,
the acceleration approaches zero, so the object can never
reach or surpass the speed of light.
(c) Perform (1 � u2/c 2)�3/2du � (qE/m) dt to obtain
u � qEct(m2c2 � q 2E 2t2)� 1/2 and then 
dx � qEct(m2c2 � q2E 2t2)�1/2dt to obtain 

x � (c/qE)[(m2c2 � q2E2t2)1/2 � mc].

63. (a) The refugees conclude that Tau Ceti exploded
16.0 yr before the Sun.
(b) A stationary observer at the midpoint concludes that
they exploded simultaneously.

��

��

� 0.064  2 î m/s
0.128 î   m/s� 0.256 î   m/s
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Chapter 10
1. (a) 5.00 rad, 10.0 rad/s, 4.00 rad/s2

(b) 53.0 rad, 22.0 rad/s, 4.00 rad/s2

3. (a) 5.24 s (b) 27.4 rad

5. 50.0 rev

7. (a) 7.27 � 10�5 rad/s (b) 2.57 � 104 s � 428 min

9. (a) 126 rad/s (b) 3.77 m/s (c) 1.26 km/s2

(d) 20.1 m

11. (a) 0.605 m/s (b) 17.3 rad/s (c) 5.82 m/s
(d) The crank length is unnecessary.

13. 0.572

17. (a) (b) 

19. 24.5 m/s

21. � 3.55 N 
 m

23.

27. [(m1 � mb)d � m1�/2]/m2

29. (a) 1.04 kN at 60.0° (b) 

31. (a) T � Fg(L � d)/sin �(2L � d)
(b) Rx � Fg(L � d) cot �/(2L � d ); Ry � Fg L/(2L � d )

33. (a) 21.6 kg 
 m2 (b) 3.60 N 
 m (c) 52.4 rev

35. 21.5 N

37. (a) 118 N and 156 N (b) 1.17 kg 
 m2

39. (a) 11.4 N, 7.57 m/s2, 9.53 m/s down (b) 9.53 m/s

41.

43. (a) 0.433 kg 
 m2/s (b) 1.73 kg 
 m2/s

45. (a) f � i I1/(I1 � I2) (b) I1/(I1 � I2)

47. (a) 0.360 rad/s counterclockwise (b) 99.9 J

49. (a) 7.20 � 10�3 kg 
 m2/s (b) 9.47 rad/s

51. 5.99 � 10�2 J

53. (a) 500 J (b) 250 J (c) 750 J

55. (a) 2.38 m/s. Its weight is insufficient to provide the
centripetal acceleration. (b) 4.31 m/s
(c) The ball does not reach the top of the loop.

57. 131 s

59. (a) (3g/L)1/2 (b) 3g/2L (c) 

(d) 

61. (a) (b) 1.74 rad/s

67. (a) 61.2 J (b) 50.8 J

69. (a) Mvd (b) Mv 2 (c) Mvd (d) 2v
(e) 4Mv2 (f) 3Mv 2

71. T � 2.71 kN, Rx � 2.65 kN

73. (a) 20.1 cm to the left of the front edge; �k � 0.571
(b) 0.501 m

75. (a) 133 N (b) nA � 429 N and nB � 257 N
(c) Rx � 133 N and R y � � 257 N

77.

Chapter 11
1. 2.67 � 10�7 m/s2

3. 7.41 � 10�10 N

3
8 Fg

√ 2mgd sin � � kd2

I � mR2

� 
3
2 Mg î � 1

4Mg ĵ

� 
3
2g î � 3

4g ĵ

(60.0k̂) kg 
 m2/s

(370 î  � 900 ĵ) N

� : � (2.00k̂) N 
 m

√ 2(m1 � m2)gh
m1R2 � m2R2 � I√ 2(m1 � m2)gh

m1 � m2 � I/R2

5. (a) 4.39 � 1020 N toward the Sun (b) 1.99 � 1020 N
away from the Sun (c) 3.55 � 1022 N toward the Sun

7. �M/�E � 2/3

9. (a) 7.61 cm/s2 (b) 363 s (c) 3.08 km
(d) 28.9 m/s at 72.9° below the horizontal

11. � 2MGr (r 2 � a2)�3/2 toward the center of mass

13. (a) 4.23 � 107 m (b) 0.285 s

15. 1.90 � 1027 kg

17. 1.26 � 1032 kg

19. After 3.93 yr, Mercury would be farther from the Sun
than Pluto.

21. (a) 1.84 � 109 kg/m3 (b) 3.27 � 106 m/s2

(c) � 2.08 � 1013 J

23. 1.78 km

25. 1.66 � 104 m/s

29. 1.58 � 1010 J

31. (b) 1.00 � 107 m (c) 1.00 � 104 m/s

33. (a) 0.980 (b) 127 yr (c) �2.13 � 1017 J

35. (a) 5 (b) no; no

37. (a) ii (b) i (c) ii and iii

39. (a) 0.212 nm (b) 9.95 � 10�25 kg 
 m/s
(c) 2.11 � 10�34 kg 
 m2/s (d) 3.40 eV
(e) � 6.80 eV (f) � 3.40 eV

41. 4.42 � 104 m/s

43. (a) 29.3% (b) no change

45. 2.26 � 10�7

47. (c) 1.85 � 10�5 m/s2

49. v � 492 m/s

51. (a) 7.79 km/s (b) 7.85 km/s (c) � 3.04 GJ
(d) � 3.08 GJ (e) loss � 46.9 MJ (f) A compo-
nent of the Earth’s gravity pulls forward on the satellite
on its downward-banking trajectory.

53. (a)m2(2G/d )1/2(m1 � m2)�1/2 and 
m1(2G/d)1/2(m1 � m2)�1/2; relative speed
(2G/d )1/2(m1 � m2)1/2

(b) 1.07 � 1032 J and 2.67 � 1031 J

55. (a) 200 Myr (b) � 1041 kg; � 1011 stars

57. (GME /4RE)1/2

61. rn � (0.106 nm)n2, En � � 6.80 eV/n 2 , for n � 1, 2, 3, . . .

Context 2 Conclusion
1. (a) 146 d (b) Venus 53.9° behind the Earth

3. (a) 2.95 km/s (b) 2.65 km/s (c) 10.7 km/s
(d) 4.80 km/s

Chapter 12
1. (a) The motion repeats precisely. (b) 1.81 s

(c) No, the force is not in the form of Hooke’s law.

3. (a) 1.50 Hz, 0.667 s (b) 4.00 m (c) � rad
(d) 2.83 m

5. (b) 18.8 cm/s, 0.333 s (c) 178 cm/s2, 0.500 s
(d) 12.0 cm

9. 40.9 N/m

g:
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11. (a) 40.0 cm/s, 160 cm/s2

(b) 32.0 cm/s, � 96.0 cm/s2 (c) 0.232 s

13. 2.23 m/s

15. (a) 0.542 kg (b) 1.81 s (c) 1.20 m/s2

17. (a) 28.0 mJ (b) 1.02 m/s (c) 12.2 mJ
(d) 15.8 mJ

19. (a) E increases by a factor of 4 (b) vmax is doubled.
(c) amax is doubled. (d) The period is unchanged.

21. 2.60 cm and � 2.60 cm

23. Assume simple harmonic motion: (a) 0.820 m/s
(b) 2.57 rad/s2 (c) 0.641 N More precisely:
(a) 0.817 m/s (b) 2.54 rad/s2 (c) 0.634 N

27. 0.944 kg 
 m2

31. 1.00 � 10�3 s�1

33. (a) 1.00 s (b) 5.09 cm

37. 1.74 Hz

39. If the cyclist goes over them at one certain speed, the
washboard bumps can excite a resonance vibration of the
bike, so large in amplitude as to make the rider lose
control. � 101 m

41. 6.62 cm

43. 9.19 � 1013 Hz

45. (b) 1.04 m/s (c) four times larger, 3.40 m

47. f � (2�L)�1(gL � kh2/M)1/2

49. (b) 1.23 Hz

51. (a) 3.00 s (b) 14.3 J (c) 25.5°

57. (a) 5.20 s (b) 2.60 s

Chapter 13
1. y � 6 [(x � 4.5t)2 � 3]�1

3. 0.319 m

5. (a) (b) �5.48 cm
(c) 0.667 m, 5.00 Hz (d) 11.0 m/s

7. (a) 31.4 rad/s (b) 1.57 rad/m
(c) y � (0.120 m) sin(1.57x � 31.4t) (d) 3.77 m/s
(e) 118 m/s2

9. (a) y � (8.00 cm) sin(7.85x � 6�t)
(b) y � (8.00 cm) sin(7.85x � 6�t � 0.785)

11. (a) 0.021 5 m (b) 1.95 rad (c) 5.41 m/s
(d) y(x, t) � (0.021 5 m) sin(8.38x � 80.0�t � 1.95)

13. 80.0 N

15. 13.5 N

17. 0.329 s

19. 1.07 kW

21. 55.1 Hz

23. 5.56 km

25. (a) 23.2 cm (b) 1.38 cm

27. (a) 4.16 m (b) 0.455 �s (c) 0.158 mm

29. 5.81 m

31. �P � (0.200 N/m2) sin(62.8x/m � 2.16 � 104t/s)

33. (a) 3.04 kHz (b) 2.08 kHz (c) 2.62 kHz; 2.40 kHz

35. 26.4 m/s

(3.33 î) m/s

37. 19.3 m

39. (a) 0.364 m (b) 0.398 m (c) 941 Hz
(d) 938 Hz

41. 184 km

43. (Lm/Mg sin �)1/2

45. 0.084 3 rad

49. (a) (b) (c) 

51. (a) �0 � (�L � �0)x/L

55. 6.01 km

57. (a) 55.8 m/s (b) 2 500 Hz

59. The gap between bat and insect is closing at 1.69 m/s.

Chapter 14
1. (a) � 1.65 cm (b) � 6.02 cm (c) 1.15 cm

3. (a) �x, � x (b) 0.750 s (c) 1.00 m

5. (a) 9.24 m (b) 600 Hz

7. 91.3�

9. (a) 156� (b) 0.058 4 cm

11. (a) To reach the receiver, waves from the more distant
source must travel an extra distance �r � �/2 and inter-
fere destructively with waves from the closer source.
(b) It should move along the hyperbola represented by
9.00x2 � 16.0y2 � 144.

13. at 0.089 1 m, 0.303 m, 0.518 m, 0.732 m, 0.947 m, and
1.16 m from one speaker

15. (a) 4.24 cm (b) 6.00 cm (c) 6.00 cm
(d) 0.500 cm, 1.50 cm, 2.50 cm

17. 0.786 Hz, 1.57 Hz, 2.36 Hz, 3.14 Hz

19. 15.7 Hz

21. (a) reduced by (b) reduced by 
(c) increased by 

23. (a) 163 N (b) 660 Hz

25.

27. (a) 0.357 m (b) 0.715 m

29. 57.9 Hz

31. n(206 Hz) for n � 1 to 9 and n(84.5 Hz) for n � 2 to 23

33. 50.0 Hz, 1.70 m

35. n(0.252 m) with n � 1, 2, 3, . . .

37. (a) 350 m/s (b) 1.14 m

39. 5.64 beats/s

41. (a) 1.99 beats/s (b) 3.38 m/s

43. The second harmonic of E is close to the third harmonic
of A, and the fourth harmonic of C# is close to the fifth
harmonic of A.

45. The condition for resonance is satisfied because the 
12 h 24 min period of free oscillation agrees precisely
with the period of the lunar excitation.

47. (a) 34.8 m/s (b) 0.977 m

49. 3.85 m/s away from the station and 3.77 m/s toward the
station

Mg
4Lf 2 tan�

√2
1/√21

2

e�2bx� 3

2k
 A 2

0
� 3

2k
 A 2

0 e�2bx
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51. 21.5 m

53. (a) 59.9 Hz (b) 20.0 cm

55. (a) (b) [n/(n � 1)]2T (c) 

57. y1 � y2 � 11.2 sin(2.00x � 10.0t � 63.4�)

59. (a) 78.9 N (b) 211 Hz

Context 3 Conclusion
1. 3.5 cm

2. The speed decreases by a factor of 25.

3. Station 1: 15:46:32; Station 2: 15:46:22; Station 3:
15:46:08, all with uncertainties of �1 s

Chapter 15
1. 0.111 kg

3. 6.24 MPa

5. 1.62 m

7. 7.74 � 10�3 m2

9. 271 kN horizontally backward

11. 2.31 lb

13. 10.5 m; no because some alcohol and water evaporate

15. 98.6 kPa

17. (a) 7.54 kg (b) 39.8 N (c) 41.9 N up (d) zero
(e) The tension decreases and the normal force increases.

19. 0.258 N

21. (a) 1.017 9 � 103 N down, 1.029 7 � 103 N up
(b) 86.2 N (c) 11.8 N

23. (a) 7.00 cm (b) 2.80 kg

25. 1 430 m3

27. 1 250 kg/m3 and 500 kg/m3

29. 1.01 kJ

31. 12.8 kg/s

33.

35. (a) 27.9 N (b) 3.32 � 104 kg (c) 7.26 � 104 Pa

37. 0.247 cm

39. (a) 1 atm � 15.0 MPa (b) 2.95 m/s (c) 4.34 kPa

41. 347 m/s

43. (a) 4.43 m/s (b) The siphon can be no higher than
10.3 m.

45. 12.6 m/s

47. 1.61 � 104 m2

51. 0.604 m

55. The top scale reads (1 � �0/�Fe)mFeg. The bottom scale
reads [m b � m 0 � �0mFe/�Fe]g.

57. (a) 2.79 �m/s (b) 7.95 h (c) 8.88 � 103 m/s2

(d) 31.6 s

59. 4.43 m/s

61. (a) 1.25 cm (b) 13.8 m/s

63. (a) 3.307 g (b) 3.271 g (c) 3.48 � 10�4 N

Context 4 Conclusion
1. 9.8 � 109 N 
 m

2. (a) 1.30 MPa (b) yes, but only with specialized 
equipment and techniques

2√h(h0 � h)

9
16

1
2

3. (a) 0.42 m/s (b) greater

4. (a) 16 knots at 56° west of south (b) 47%

Chapter 16
1. (a) �273°C (b) 1.27 atm (c) 1.74 atm

3. (a) �320°F (b) 77.3 K

5. 1.54 km. The pipeline can be supported on rollers. 
�-shaped loops can be built between straight sections.
They bend as the steel changes length.

7. 0.001 58 cm

9. (a) 0.176 mm (b) 8.78 �m (c) 0.093 0 cm3

11. (a) 0.109 cm2 (b) increase

13. (a) 99.4 cm3 (b) 0.943 cm

15. 8.72 � 1011 atoms/s

17. (a) 400 kPa (b) 449 kPa

19. 1.50 � 1029 molecules

21. 472 K

23. (a) 7.13 m (b) The open end of the tube should be
at the bottom after the bird surfaces so that the water can
drain out. There is no other requirement. Air does not
tend to bubble out of a narrow tube.

25. 4.39 kg

27. 3.55 L

29.

31. 17.6 kPa

33. (a) 3.54 � 10 23 atoms (b) 6.07 � 10�21 J
(c) 1.35 km/s

35. (a) 8.76 � 10�21 J for both (b) 1.62 km/s for helium
and 514 m/s for argon

39. (a) 2.37 � 104 K (b) 1.06 � 103 K

41. (a) �9.73°C/km (b) As rising air drops in tempera-
ture, water vapor in it condenses into liquid. It releases
energy in this process to reduce the net temperature
drop. (c) �4.60°C/km (d) 4.34 km (e) Dust
aloft absorbs sunlight to raise the temperature there.
Mariner occurred in dustier conditions.

43. 0.523 kg

45. (a) Expansion makes density drop. (b) 5 � 10�5/°C

47. (a) h � nRT/(mg � P0A) (b) 0.661 m

49. We assume that � �T is much less than 1.

51. (a) 0.340% (b) 0.480%

53. 2.74 m

55. (a) It increases. As the disk cools, its radius and hence 
its moment of inertia decrease. Conservation of angular
momentum then requires that its angular speed increase.
(b) 25.7 rad/s

57. (b) 1.33 kg/m3

59. 1.12 atm

61. (d) 0.275 mm (e) The plate creeps down the roof
each day by an amount given by the same expression.

m1 � m 2 �
P0VM

R
 � 1

T1
�

1
T2

�
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63. 1.09 � 10�3, 2.69 � 10�2, 0.529, 1.00, 0.199, 
1.01 � 10�41, 1.25 � 10�1 082

Chapter 17
1. 0.281�C

3. 87.0�C

5. 29.6�C

7. (a) 16.1�C (b) 16.1�C

9. 23.6�C

11. 1.22 � 105 J

13. 0.294 g

15. (a) 0�C (b) 114 g

17. liquid lead at 805�C

19. � 1.18 MJ

21. � 466 J

23. Q � � 720 J

25. Q W �E int
BC � 0 �

CA � � �

AB � � �

27. (a) 7.50 kJ (b) 900 K

29. � 3.10 kJ; 37.6 kJ

31. (a) 0.041 0 m3 (b) � 5.48 kJ (c) � 5.48 kJ

33. (a) 3.46 kJ (b) 2.45 kJ (c) � 1.01 kJ

35. (a) 209 J (b) zero (c) 317 K

37. between 10�2�C and 10�3�C

39. 13.5PV

41. (a) 1.39 atm (b) 366 K, 253 K
(c) 0, � 4.66 kJ, � 4.66 kJ

43. (a)

51. 3.85 � 1026 J/s
53. 74.8 kJ
55. 279 K � 6�C
57. (a) 0.964 kg or more (b) The test samples and the 

inner surface of the insulation can be preheated to
37.0�C as the box is assembled. Then nothing changes in
temperature during the test period, and the masses of
the test samples and insulation make no difference.

59. (a) 13.0�C (b) � 0.532 �C/s
61. c � �/�R �T
63. (a) 9.31 � 1010 J (b) � 8.47 � 1012 J

(c) 8.38 � 1012 J
65. 5.31 h
67. (a) 15.0 mg; block: Q � 0, W � � 5.00 J, �E int � 0, 

�K � � 5.00 J; ice: Q � 0, W � � 5.00 J; �E int � 5.00 J, 
�K � 0 (b) 15.0 mg; block: Q � 0, W � 0, 
�E int � 5.00 J, �K � � 5.00 J; metal: Q � 0, W � 0, 
�E int � 0, �K � 0 (c) 0.004 04�C; moving block: Q � 0,
W � �2.50 J, �E int � 2.50 J, �K � �5.00 J; stationary
block: Q � 0, W � �2.50 J, �E int � 2.50 J, �K � 0

69. 38.6 m3/d
71. (a) 100 kPa, 66.5 L, 400 K; 5.82 kJ; 7.48 kJ; �1.66 kJ

(b) 133 kPa, 49.9 L, 400 K; 5.82 kJ; 5.82 kJ; 0
(c) 120 kPa, 41.6 L, 300 K; 0; � 909 J; � 909 J
(d) 120 kPa, 43.3 L, 312 K; 722 J; 0; � 722 J

73. (a) 300 K (b) 1.00 atm
75. (a) 0.203 mol (b) TB � TC � 900 K, VC � 15.0 L

(c, d) P, atm V, L T, K E int, kJ

A 1.00 5.00 300 0.760
B 3.00 5.00 900 2.28
C 1.00 15.0 900 2.28
A 1.00 5.00 300 0.760

(e) Lock the piston in place and put the cylinder into an
oven at 900 K. Keep the gas in the oven while gradually
letting the gas expand to lift a load on the piston as far 
as it can. Move the cylinder from the oven back to the
300-K room and let the gas cool and contract.

(f, g) Q , kJ W , kJ �E int, kJ

AB 1.52 0 1.52
BC 1.67 � 1.67 0
CA � 2.53 � 1.01 � 1.52
ABCA 0.656 � 0.656 0

Chapter 18
1. (a) 6.94% (b) 335 J

3. (a) 10.7 kJ (b) 0.533 s

5. (a) 67.2% (b) 58.8 kW

7. (a) 741 J (b) 459 J

9. 0.330

11. (b) 1 � Tc/Th (c) (Tc � Th)/2 (d) (ThTc)1/2

13. (a) 24.0 J (b) 144 J

15. (a) 2.93 (b) coefficient of performance for a 
refrigerator (c) $300 is twice as large as $150
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(b) 8.77 L (c) 900 K (d) 300 K (e) � 336 J
45. 25.0 kW
47. (a) 9.95 cal/K, 13.9 cal/K (b) 13.9 cal/K, 17.9 cal/K
49. 51.2�C



19. 1.17 J

21. 72.2 J

23. 195 J/K

25. (a) isobaric (b) 402 kJ (c) 1.20 kJ/K

27. (a) 1 (b) 6

29. (a) Result Number of ways to draw

All R 1
2R, 1G 3
1R, 2G 3
All G 1

(b) Result Number of ways to draw

All R 1
4R, 1G 5
3R, 2G 10
2R, 3G 10
1R, 4G 5
All G 1

31. 1.02 kJ/K

33. � 100 W/K from metabolism; much more if you are 
using high-power electric appliances or an automobile,
or if your taxes are paying for a war.

35. 0.507 J/K

37. (a) 5.2 � 1017 J (b) 1.8 � 103 s

39. (a) 5.00 kW (b) 763 W

41. 32.9 kJ

43. (a) 2nRTi ln 2 (b) 0.273

45. 5.97 � 104 kg/s

49. (a) 4.11 kJ (b) 14.2 kJ (c) 10.1 kJ (d) 28.9%

51. (a) 10.5nRTi (b) 8.50nRTi (c) 0.190
(d) 0.833

53. (a) nCP ln 3 (b) Both ask for the change in entropy
between the same two states of the same system. Entropy
is a state variable. The change in entropy does not 
depend on path, but only on original and final states.

55. (a) VA � 1.97 L, VB � 11.9 L, VC � 32.8 L, VD � 5.44 L,
PB � 4.14 atm, PD � 6.03 atm (b) 2.99 kJ
(c) 0.333

57. 1.18 J/K

Context 5 Conclusion
1. 298 K

2. 60 km

3. (c) 336 K (d) The troposphere and stratosphere are 
too thick to be accurately modeled as having uniform 
temperatures. (e) 227 K (f) 107 (g) The
multilayer model should be better for Venus than for the
Earth. There are many layers, so the temperature of each
can be reasonably uniform.

Chapter 19
1. (a) � 160 zC, 1.01 u (b) � 160 zC, 23.0 u

(c) � 160 zC, 35.5 u (d) � 320 zC, 40.1 u

(e) � 480 zC, 14.0 u (f) � 640 zC, 14.0 u
(g) � 1.12 aC, 14.0 u (h) � 160 zC, 18.0 u

3. The force is � 10 26 N.

5. 0.872 N at 330°

7. (a) 2.16 � 10�5 N toward the other
(b) 8.99 � 10�7 N away from the other

9. (a) 82.2 nN (b) 2.19 Mm/s

11. 1.82 m to the left of the negative charge

13. (a) 
(b) 

15. (a) 5.91 keq/a2 at 58.8° (b) 5.91 keq2/a2 at 58.8°

17. 1.59 � 106 N/C toward the rod

19. (a) (b) 
(c) (d) , taking the axis of
the ring as the x axis

21.

23. (a) 2.00 � 10�10 C (b) 1.41 � 10�10 C
(c) 5.89 � 10�11 C

25.

27. (a) 61.3 Gm/s2 (b) 19.5 �s (c) 11.7 m
(d) 1.20 f J

29. (a) 111 ns (b) 5.68 mm (c) 

31. 4.14 MN/C

33. (a) � Q /2�0 (b) � Q /2�0

35. (a) 0 (b) 365 kN/C radially outward
(c) 1.46 MN/C outward (d) 649 kN/C radially
outward

37. (a) 913 nC (b) 0

39. � �r/2�0 away from the axis

41. 3.50 kN

43. � Q /2�0A vertically upward in each case if Q 	 0

45. (a) 0 (b) 79.9 MN/C radially outward (c) 0
(d) 7.34 MN/C radially outward

47. (a) � �, � 3� (b) 3�/2��0r radially outward

49. (a) 80.0 nC/m2 on each face (b) 
(c) 

51. 1.77 � 10�12 C/m3, positive

53. possible only with a charge of � 51.3 �C at x � � 16.0 cm

55. 40.9 N at 263°

57. 26.7 �C

59. (a) �1 � �2

61. (b) in the � z direction

63. (a) �/�0 away from both plates (b) 0 (c) �/�0
away from both plates

� 9.04 k̂ kN/C
9.04 k̂  kN/C

E
:

E
:

(450 î � 102 ĵ) km/s

� 21.6 î
 
MN/C

0.664i ̂MN/C6.40 î
 
MN/C

24.1 î
 
MN/C6.64 î

 
MN/C

(�3.00 î � 13.5 ĵ) �N
(� 0.599 î � 2.70 ĵ) kN/C
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65. (a) �r/3�0; Q /4��0r 2; 0; Q /4��0r 2, all radially outward
(b) � Q /4�b2 and � Q /4�c 2

Chapter 20
1. (a) 152 km/s (b) 6.49 Mm/s

3. (a) � 600 �J (b) � 50.0 V

5. 38.9 V; the origin

7. (a) 1.44 � 10�7 V (b) � 7.19 � 10�8 V
(c) � 1.44 � 10�7 V, � 7.19 � 10�8 V

9. (a) � 4.83 m (b) 0.667 m and � 2.00 m

11. � 11.0 MV

15. (a) 10.8 m/s and 1.55 m/s (b) greater

17. (a) no point at a finite distance from the charges
(b) 2keq/a

19. 5keq 2/9d

21. (a) 10.0 V, � 11.0 V, � 32.0 V
(b) 7.00 N/C in the � x direction

23. ; 7.07 N/C

25. (a) coulombs per square meter
(b) ke�[L � d ln (1 � L/d)]

27. � 1.51 MV

29. (a) 0, 1.67 MV (b) 5.84 MN/C away, 1.17 MV
(c) 11.9 MN/C away, 1.67 MV

31. (a) 48.0 �C (b) 6.00 �C

33. (a) 1.33 �C/m2 (b) 13.3 pF

35. (a) 11.1 kV/m toward the negative plate
(b) 98.3 nC/m2 (c) 3.74 pF (d) 74.7 pC

37. mgd tan �/q

39. (a) 17.0 �F (b) 9.00 V (c) 45.0 �C and 108 �C

41. (a) 5.96 �F (b) 89.5 �C on 20 �F, 63.2 �C on 6 �F,
26.3 �C on 15 �F and on 3 �F

43. 120 �C; 80.0 �C and 40.0 �C

45. (a) 398 �F in series (b) 2.20 �F in parallel

47. (a) 216 �J (b) 54.0 �J

49. (a) circuit diagram:

stored energy � 0.150 J

(b) potential difference � 268 V

circuit diagram:

53. (a) 81.3 pF (b) 2.40 kV

55. 1.04 m

100 V

5.00   Fµ25.0   Fµ

E
:

� (�5 � 6xy) î � (3x2 � 2z2) ĵ � 4yzk̂

57. (a) 369 pC (b) 118 pF, 3.12 V (c) � 45.5 nJ

59. 9.79 kg

61. 253 MeV

63 keQ 2/2R

65. 579 V

67. (a) volume 9.09 � 10�16 m3, area 4.54 � 10�10 m2

(b) 2.01 � 10�13 F
(c) 2.01 � 10�14 C; 1.26 � 105 electronic charges

71. (a) � 2Q /3 on upper plate, �Q /3 on lower plate
(b) 2Qd/3�0A

73. 0.188 m2

75. (a) 

(b) 

(c) to the right

(d) 205 �N to the right

77.

Chapter 21
1. 7.50 � 1015 electrons

3. (a) 0.632 I0� (b) 0.999 95 I0� (c) I0�

5. 0.130 mm/s

7. 6.43 A

9. (a) 31.5 n�
m (b) 6.35 MA/m2 (c) 49.9 mA
(d) 659 �m/s (e) 0.400 V

11. 1.71 �

13. 0.181 V/m

15. 448 A

17. 36.1%

19. (a) 184 W (b) 461�C

21. (a) $1.61 (b) $0.005 82 (c) $0.416

23. (a) 667 A (b) 50.0 km

25. (a) 6.73 � (b) 1.97 �

27. (a) 17.1 � (b) 1.99 A for 4 � and 9 �, 1.17 A for 7 �,
0.818 A for 10 �

29. (a) 227 mA (b) 5.68 V

31. 14.2 W to 2 �, 28.4 W to 4 �, 1.33 W to 3 �, 
4.00 W to 1 �

33. (a) 470 W (b) 1.60 mm or more
(c) 2.93 mm or more

35. 846 mA down in the 8-� resistor; 462 mA down in the
middle branch; 1.31 A up in the right-hand branch

37. (a) � 222 J and 1.88 kJ (b) 687 J, 128 J, 25.6 J, 616 J,
205 J (c) 1.66 kJ of chemical energy is transformed
into internal energy

39. 50.0 mA from a to e

41. (a) 5.00 s (b) 150 �C (c) 4.06 �A

43. (a) 1.50 s (b) 1.00 s (c) 

45. (a) 6.00 V (b) 8.29 �s

(200 � 100e�t/1.00 s)�A

4
3 
C

Q2d�(� � 1)
2�0(�2 � �x(� � 1))2  

Q2d
2�0(�2 � �x(� � 1))

 

�0

d
(�2 � �x(� � 1))
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47. 6.00 � 10�15/� 
 m

49. (a) 576 �, 144 � (b) 4.80 s. The charge is the same.
It is at a location of lower potential energy.
(c) 0.040 0 s. Energy entering by electrical transmission
exits by heat and electromagnetic radiation.
(d) $1.26, energy at 1.94 � 10�8 $/J

51. (a) (b) 0.637 � (c) 6.28 A
(d) 

53. (a) 12.5 A, 6.25 A, 8.33 A
(b) No; together they would require 27.1 A.

55. 2.22 h

57. (a) R : � (b) R : 0 (c) R � r

59. (a) 9.93 �C (b) 33.7 nA (c) 334 nW
(d) 337 nW

61. (a) 222 �C (b) increases by 444 �C

63. (a) 0.991 (b) 0.648
(c) Insulation should be added to the ceiling.

Context 6 Conclusion
1. (a) 87.0 s (b) 261 s (c) t : �

2. (a) 0.01 s (b) 7 � 106

3. (a) 3 � 106 (b) 9 � 106

Chapter 22
1. (a) up (b) toward you, out of the plane of the paper

(c) no deflection (d) into the plane of the paper

3. (a) 8.67 � 10�14 N (b) 5.19 � 1013 m/s2

5. 8.93 � 10�30 N down, 1.60 � 10�17 N up, 
4.80 � 10�17 N down

7. 115 keV

9. 7.88 pT

11. 0.278 m

13. 70.1 mT

15.

17. 2�rIB sin � up

19. (a) 5.41 mA 
m2 (b) 4.33 mN 
m

21. 9.98 N 
m clockwise as seen looking down from above

23. 12.5 T

25. into the paper

27. directed into the page

29. (a) 2I1 out of the page (b) 6I1 into the page

31. 261 nT into the page

33. (a) 21.5 mA (b) 4.51 V (c) 96.7 mW

35.

37. 20.0 �T toward the bottom of the page

39. (a) 6.34 mN/m inward (b) greater

41. (a) 3.60 T (b) 1.94 T

43. 500 A

45. 31.8 mA

47. 207 W

49. (a) 8.63 � 1045 electrons (b) 4.01 � 1020 kg

(� 27.0 î)�N

�1 �
1
� � 

�0I
2R

�0I
4�x

(� 2.88 ĵ) N

(200 î) MA/m2
(8.00 î) V/m

51. (a) 1.4 MJ/mi (b) 5.7 MJ/mi (c) 1/400

53. for x 	 0 and for x � 0

55. (a) The electric current experiences a magnetic force.
(c) no, no, no

57. (a) (b) 24.4�

59. B � 10�1 T, � � 10�1 N 
 m, I � 100 A, A � 10�3 m2, 
N � 103

61. (a) 1.04 � 10�4 m (b) 1.89 � 10�4 m

63.

65.

67. (a) 2.46 N up (b) 107 m/s2 up

Chapter 23
1. 0.800 mA

3. 160 A

5. (a) (� 0IL/2�) ln(1 � w/h)
(b) � 4.80 �V; current is counterclockwise

7. 61.8 mV

9. (b) The emf induced in the coil is proportional to the
line integral of the magnetic field around the circular
axis of the toroid. By Ampère’s law, this line integral 
depends only on the current the circle encloses.

11. (a) eastward (b) 458 �V

13. (a) 3.00 N to the right (b) 6.00 W

15. mvR/B2�2

17. 24.1 V with the outer contact positive

19. 2.83 mV

21. (b) Larger R makes current smaller, so the loop must
travel faster to maintain equality of magnetic force and
weight. (c) The magnetic force is proportional to the
product of field and current, whereas the current is itself
proportional to field. If B becomes two times smaller, the
speed must become four times larger to compensate.

23. (a) 7.54 kV (b) The plane of the coil is parallel to .

25. 1.80 mN/C upward and to the left, perpendicular to r1

27. 19.5 mV

29. �(18.8 V) cos(377t)

31. (a) 360 mV (b) 180 mV (c) 3.00 s

33. (a) 0.139 s (b) 0.461 s

35. (a) 2.00 ms (b) 0.176 A (c) 1.50 A (d) 3.22 ms

37. (a) 20.0% (b) 4.00%

39. (500 mA)(1 � e�10t/s), 1.50 A � (0.250 A)e�10t/s

41. (a) 5.66 ms (b) 1.22 A (c) 58.1 ms

43. 2.44 � J

45. 44.2 nJ/m3 for the field and 995 �J/m3 for the field

47. (a) 2.93 mT up (b) 3.42 Pa (c) clockwise
(d) up (e) 1.30 mN

49. � 7.22 mV cos(2� 523 t/s)

51. �10�4 V, by reversing a 20-turn coil of diameter 3 cm in
0.1 s in a field of 10�3 T

B
:

E
:

B
:

�0q

2.5�R√5

�0I
2�w

 ln �1 �
w
b � k̂

(3.52 î � 1.60 ĵ) aN

B
:

� � 

�0 J
S

2
  k̂B

:
�

�0 J
S

2
  k̂
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53. (a) 254 km/s (b) 215 V

55. 6.00 A

59. (�87.1 mV) cos(200� t � �)

61. (a) L � (�/2)N 2�0R (b) �100 nH (c) �1 ns

63. 3.97 � 10�25 �

65. (a) 50.0 mT (b) 20.0 mT (c) 2.29 MJ
(d) 318 Pa

Context 7 Conclusion
1. 5.56 Hz

2. Both are correct.

Chapter 24
1. 1.85 aT up

3.

5. 2.25 � 108 m/s

7. (a) 6.00 MHz (b) 

(c) 

11. 2.9 � 108 m/s � 5%

13. (c) 2.00 kHz (d) � 0.075 0 m/s � 0.2 mi/h

15. 0.220c � 6.59 � 107 m/s

17. 608 pF

19. (a) 503 Hz (b) 12.0 �C (c) 37.9 mA (d) 72.0 �J

21. 307 �W/m2

23. 3.33 � 103 m2

25. (a) 332 kW/m2 radially inward
(b) 1.88 kV/m and 222 �T

27. 5.16 m

29. (a) 1.90 kN/C (b) 50.0 pJ (c) 1.67 � 10�19 kg 
 m/s

31. The radio audience hears it 8.41 ms sooner.

33. 545 THz

35. (a) 6.00 pm (b) 7.50 cm

37. 56.2 m

39. (a) 0.690 wavelengths (b) 58.9 wavelengths

41. (a) 54.7° (b) 63.4° (c) 71.6°

45.

49. (a) 4.24 PW/m2 (b) 1.20 pJ � 7.50 MeV

51. 3.49 � 1016 photons

53. (a) three: 632.808 57 nm, 632.809 14 nm, and 
632.809 71 nm (b) 697 m/s (c) For an atom
moving away from the observer at the rms speed, the
wavelength is increased by 0.001 47 nm. For an 
approaching atom, the wavelength is decreased by this
amount. Many atoms are moving at speeds higher than
the rms speed.

55. (a) 3.85 � 1026 W (b) 1.02 kV/m and 3.39 �T

57. (a) 2�2r 2fBmax cos �, where � is the angle between the
magnetic field and the normal to the loop
(b) The loop should be in the vertical plane containing
the line of sight to the transmitter.

59. (a) 6.67 � 10�16 T (b) 5.31 � 10�17 W/m2

(c) 1.67 � 10�14 W (d) 5.56 � 10�23 N

61. 95.1 mV/m

1
8

B
:

 �  [(�73.3k̂) nT] cos(0.126x � 3.77 �  107t)

(�73.3k̂) nT

(�2.87 ĵ  �  5.75k̂) Gm/s2

63. (a) 625 kW/m2 (b) 21.7 kN/C, 72.4 �T
(c) 17.8 min

65. (b) 17.6 Tm/s2, 1.75 � 10�27 W (c) 1.80 � 10�24 W

67. (a) 388 K (b) 363 K

69. (a) 22.6 h (b) 30.6 s

Chapter 25
1. (a) 1.94 m (b) 50.0° above the horizontal

3. six times from the mirror on the left and five times from
the mirror on the right

5. 15.4°; 2.56 m

7. 19.5° above the horizon

9. (a) 2.0 � 108 m/s (b) 474 THz (c) 4.2 � 10�7 m

11. (a) 181 Mm/s (b) 225 Mm/s (c) 136 Mm/s

13. 30.0° and 19.5° at entry; 19.5° and 30.0° at exit

15. tan�1 n

17. 3.88 mm

19. 30.4° and 22.3°

21. �10�11 s; between 103 and 104 wavelengths

23. 0.171°

25. 27.9°

27. 4.61°

29. (a) 24.4° (b) 37.0° (c) 49.8°

31. 1.000 08

33. 67.2°

35. 82 reflections

37. 23.1°

39. (a) (b) times longer

41. 2.27 m

43. (a) 0.172 mm/s (b) 0.345 mm/s (c) northward
at 50.0° below the horizontal (d) northward at 50.0°
below the horizontal

45. 62.2%

47. (a) 0.042 6 � 4.26% (b) no difference

49. 70.6%

51. 27.5°

53. (a) It always happens. (b) 30.3° (c) It cannot
happen.

55. 2.36 cm

57. 1.93

59. (a) 1.20 (b) 3.40 ns

Chapter 26
1. � 10�9 s younger

3. 35.0 in.

5. 10.0 ft, 30.0 ft, 40.0 ft

7. (a) 13.3 cm, real and inverted, �0.333 (b) 20.0 cm,
real and inverted, �1.00 (c) No image is formed.

9. (a) �12.0 cm; 0.400 (b) �15.0 cm; 0.250
(c) upright

� n � 1.00
2 �h

c
 � n � 1.00

2 �
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11. (a) q � 45.0 cm; M � �0.500 (b) q � �60.0 cm; 
M � 3.00 (c) Image (a) is real, inverted, and 
diminished. Image (b) is virtual, upright, and 
enlarged.

13. At 0.708 cm in front of the reflecting surface. Image is
virtual, upright, and diminished.

15. 7.90 mm

17. (a) a concave mirror with radius of curvature 2.08 m
(b) 1.25 m from the object

19. (a) 25.6 m (b) 0.058 7 rad (c) 2.51 m
(d) 0.023 9 rad (e) 62.8 m from your eyes

21. 38.2 cm below the top surface of the ice

23. 8.57 cm

25. (a) 45.0 cm (b) �90.0 cm (c) �6.00 cm

27. (a) 16.4 cm (b) 16.4 cm

29. (a) 650 cm from the lens on the opposite side from 
the object; real, inverted, enlarged (b) 600 cm from
the lens on the same side as the object; virtual, upright,
enlarged

31. 2.84 cm

35. (a) �12.3 cm, to the left of the lens (b) 0.615
(c)

C FO I

C F O I

37. 1.16 mm/s toward the lens

39. (a) (b) Both images are real

and inverted. One is enlarged, the other diminished.

41. (a) 0.833 mm (b) 0.820 mm

43. if M � 1, if M 	 1

45. � 25.0 cm

47. (a) 67.5 cm (b) The lenses can be displaced in two
ways. The first lens can be displaced 1.28 cm farther away
from the object and the second lens 17.7 cm toward the
object. Alternatively, the first lens can be displaced 
0.927 cm toward the object and the second lens 4.44 cm
toward the object.

49. 0.107 m to the right of the vertex of the hemispherical face

51. 8.00 cm

f �
Md

(M � 1)2f �
� Md

(1 � M )2

p �  
d
2

 �  √ d2

4
� fd
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53. 1.50 m in front of the mirror; 1.40 cm (inverted)

55. (a) 30.0 cm and 120 cm (b) 24.0 cm
(c) real, inverted, diminished with M � �0.250

57. (a) 263 cm (b) 79.0 cm

59. The image is real, inverted, and actual size.

Chapter 27
1. 515 nm

3. (a) 55.7 m (b) 124 m

5. 1.54 mm

7. 641

9. (a) 13.2 rad (b) 6.28 rad (c) 0.012 7°
(d) 0.059 7°

11. 48.0 �m

13. 0.968

15. (a) green (b) violet

17. 96.2 m

19. 4.35 �m

21. 0.230 mm

23. 91.2 cm

25. 51.8 �m wide and 949 �m high



27. 3.09 m

29. 13.1 m

31. 105 m

33. 5.91° in first order, 13.2° in second order, 26.5° in third
order

35. (a) 5 orders (b) 10 orders in the short-wavelength
region

37. three, at 0° and at 45.2° to the right and left

39. 14.4°

41. (a) 0.738 mm (b) Individual waves from all the
transparent zones will add crest-on-crest to interfere
constructively at the slit images. The grating equation 
d sin � � m� is satisfied at the slit images. Elsewhere on
the screen destructive interference will prevent light
from reaching the screen.

43. number of antinodes � number of constructive interfer-
ence zones � 1 plus 2 times the greatest positive integer
� d/�; number of nodes � number of destructive inter-
ference zones � 2 times the greatest positive integer
� (d/� � )

45. 20.0 � 10�6 °C�1

47. 2.50 mm

49. 113 dark fringes

53. 632.8 nm

55. (a) 25.6° (b) 19.0°

57. (a) 3.53 � 103 cm�1 (b) 11

59. 4.58 �m � d � 5.23 �m

Context 8 Conclusion
1. 130 nm

2. 74.2 grooves/mm

3. 1.8 �m/bit

4. 48 059

5. � 108 W/m2

Chapter 28
1. 1.69%

3. About 5 200 K. A firefly cannot be at this temperature, so
its light cannot be blackbody radiation.

5. 2.27 � 1030 photons/s

7. 1.32 � 1031

9. (a) 296 nm, 1.01 PHz (b) 2.71 V

11. (a) 1.90 eV (b) 0.216 V

13. 8.41 pC

15. (a) 488 fm (b) 268 keV (c) 31.5 keV

17. 70.0°

19. By this definition, ionizing radiation is the ultraviolet
light, x-rays and � rays with wavelength shorter than 
124 nm; that is, with frequency higher than 2.41 � 1015 Hz.

21. (a) 0.709 nm (b) 414 nm

23. (a) �100 MeV or more (b) No. With kinetic energy
much larger than the magnitude of its negative electric

1
2

potential energy, the electron would immediately 
escape.

25. (a) 14.9 keV (b) 124 keV

29. (a) 993 nm (b) 4.96 mm (c) If its detection
forms part of an interference pattern, the neutron must
have passed through both slits. If we test to see which slit
a particular neutron passes through, it will not form part
of the interference pattern.

31. within 1.16 mm for the electron, 5.28 � 10�32 m for the
bullet

33. 3.79 � 1028 m, 190 times the diameter of the visible
Universe

35. (b) 519 am

37. (a) 126 pm (b) 5.27 � 10�24 kg 
 m/s (c) 95.5 eV

39. (a)

(b) 2.20 nm, 2.75 nm, 4.12 nm, 4.71 nm, 6.60 nm, 11.0 nm

41. (a) (15h�/8mec)1/2 (b) 1.25�

45. (a) L/2 (b) 5.26 � 10�5 (c) 3.99 � 10�2

(d) The probability density has peaks around L/4 and
3L/4, and a zero at L/2. Because the probability density
is symmetric about L/2, the average experimental value
has to be L/2.

47. 0.250

49. (a) 0.010 3 (b) 0.990

51. 85.9

53. (a) 1.06 mm (b) microwave

55. length 0.333 m, radius 19.8 �m

57. (a)

(b) 6.4 � 10�34 J 
 s � 8% (c) 1.4

59. (a) 2.82 � 10�37 m (b) 1.06 � 10�32 J
(c) 2.87 � 10�35 % or more

1

2
Kmax (eV)

0
400 500 600 700 f  (THz)

Maximum photoelectron
energy increasing linearly
with photon frequency

E
N

E
R

G
Y

4

n

1

2

3

603 eV

339 eV

151 eV

37.7 eV
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61.

(c) The wave function is continuous. It shows localization
by approaching zero as x : � �. It is everywhere finite
and can be normalized. (d) A � (e) 0.632

65. (a)

(b) 0 (c) 0.865

Chapter 29
1. (b) 0.846 ns

3. (a) 2.89 � 1034 kg 
 m2/s (b) 2.74 � 1068

(a) 7.30 � 10�69

5. (a) 1.89 eV, 656 nm (b) 3.40 eV, 365 nm

7. (a) 1.31 �m (b) 164 nm

9. (a) (b) Choosing , we find 
that .
(c) and E � � 13.6 eV, in agreement
with the Bohr theory

11. (b) 0.497

13. It does, with E � � kee2/2a0.

r � �2/meke e 2 � a0

E � K � U � �2/2mer 2 � ke e 2/r
p � �/r�p � �/2r

2
a–

a x0

ψ2 = (2/a)e –2x/aψ

√�

  2ψ

1/α–1/α 0

A2

(b)

x

1/α–1/α 0

A

(a)

ψ

x

15. (a) n � m� ms

3 2 2

3 2 2

3 2 1

3 2 1

3 2 0

3 2 0

3 2 �1

3 2 �1

3 2 �2

3 2 �2

(b) n � m� ms

3 1 1

3 1 1

3 1 0

3 1 0

3 1 �1

3 1 �1

17. � � 4

19. (a) 2 (b) 8 (c) 18 (d) 32 (e) 50

21. (a) 3.99 � 1017 kg/m3 (b) 81.7 am (c) 1.77 Tm/s
(d) 5.91 � 103 c

23. n � 3; � � 2; m � � � 2, � 1, 0, 1, or 2; s � 1; ms � � 1,
0, or 1, for a total of 15 states

25. The 4s subshell is filled first. We would expect [Ar]3d 44s2

to have lower energy, but [Ar]3d 54s1 has more unpaired
spins and lower energy according to Hund’s rule. It is the
ground-state configuration of chromium.

27. aluminum

29. (a) 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s
(b) Element 15 should have valence � 5 or � 3, and it
does. Element 47 should have valence � 1, but it has 
valence � 1. Element 86 should be inert, and it is.

31. 18.4 T

33. 124 V

35. 0.072 5 nm

37. iron

41. (a) 0.160c (b) 2.82 � 109 ly

43. (a) 609 �eV (b) 6.9 �eV (c) 147 GHz, 2.04 mm

47. The classical frequency is 4�2meke
2e4/h3n3.

49. (a) 1.57 � 1014 m�3/2 (b) 2.47 � 1028 m�3

(c) 8.69 � 108 m�1

51. 3h2/4mL2

55. 5.39 keV

57. 0.125

59. 9.79 GHz

61. (a) � �106 m/s2 (b) �1 m

�1
2

1
2

�1
2

1
2

�1
2

1
2

�1
2

1
2

�1
2

1
2

�1
2

1
2

�1
2

1
2

�1
2

1
2
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Chapter 30
1. � 1028;  � 1028;  � 1028

3. (a) 29.5 fm (b) 5.18 fm (c) The wavelength is
much less than the distance of closest approach.

5. 16.0 km

7. (a) 29.2 MHz (b) 42.6 MHz (c) 2.13 kHz

9. greater for by 3.54 MeV

11. 200 MeV

13. (a) 1.55 � 10�5/s, 12.4 h (b) 2.39 � 1013 atoms
(c) 1.88 mCi

15. 86.4 h

17. 2.66 d

19. 4.27 MeV

21. 9.96 � 103 yr

23. (a) e� � p : n � �

(b) (c) 2.75 MeV

25. (a) 148 Bq/m3 (b) 7.05 � 107 atoms/m3

(c) 2.17 � 10�17

27. (a) 
(b) 7.89 MeV

29. 5.80 Mm

31. about 3 000 yr

33. 3.60 � 1038 protons/s

35. (b) 26.7 MeV

37. (a) 8 � 104 eV (b) 4.62 MeV and 13.9 MeV
(c) 1.03 � 107 kWh

39. (a) 5.70 MeV (b) exothermic; 3.27 MeV

41. (b) 1.53 MeV

43. (a) conservation of energy (b) electric potential 
energy of the nucleus (c) 1.20 MeV

45. (b) 1.94 meV

47. (a) �10�1356 (b) 0.891

49. (b) 4.78 MeV

51. 1.66 � 103 yr

53. (a) 0.963 mm (b) It increases by 7.47%

55. (b) R/�

57. 2.56 � 104 kg

59. (a) 2.65 GJ (b) The fusion energy is 78.0 times larger.

61. (a) 15.5 cm (b) 51.7 MeV (c) The number of
decays per second is the decay rate R, and the energy
released in each decay is Q. Then the energy released
per unit time interval is � � QR. (d) 227 kJ/yr
(e) 3.18 J/yr

63. (a) 422 MBq (b) 153 ng

Chapter 31
1. 453 ZHz; 662 am

3. (a) 558 TJ (b) $2.17 � 107

5. 118 MeV

7. �10�18 m

197
79Au � 1

0n  :   198
80Hg � 0

�1e� � �

15
8O atom  :   15

7N atom � �

15
7N

9. 67.5 MeV, 67.5 MeV/c, 16.3 ZHz

11. (a) 0.782 MeV (b) ve � 0.919c, vp � 380 km/s
(c) The electron is relativistic; the proton is not.

13. , , ,

15. (b) The second violates strangeness conservation.

17. (a) (b) �� (c) (d) �e (e) �� (f) 

19. (a), (c), and (f) violate baryon number conservation.
(b), (d), and (e) can occur. (f) violates muon-lepton
number conservation.

21. (a) �e (b) �� (c) (d) 

23. (b) and (c) conserve strangeness. (a), (d), (e), and 
(f) violate strangeness conservation.

25. (a) not allowed; violates conservation of baryon number
(b) strong interaction (c) weak interaction
(d) weak interaction (e) electromagnetic interaction

27. (a) K� (b) �0 (c) � 0

29. 9.26 cm

31. (a) 3.34 � 1026 e�, 9.36 � 1026 u, 8.70 � 1026 d
(b) �1028 e�, �1029 u, �1029 d. You have zero
strangeness, charm, truth, and beauty.

33. mu � 312 MeV/c2, md � 314 MeV/c2

35. (a) The reaction has a total of 1 u,
2 d, and 0 s quarks originally and finally. (b) The 
reaction has a net of 3 u, 0 d, and 
0 s before and after. (c) 
shows conservation at 1 u, 1 d, and 1 s quark.
(d) The process 
nets 4 u, 2 d, and 0 s initially and finally; the mystery
particle is a �0 or a !0.

37. a neutron, udd

39. (a) �e, antiproton (b) 0, antineutron

41. (a) 590.07 nm (b) 597 nm (c) 661 nm

43. (a) 8.41 � 106 kg (b) No. It is only the fraction
4.23 � 10�24 of the mass of the Sun.

45. (a) �1013 K (b) �1010 K

47. (b) 11.8 Gyr

49. �1014

51. one part in 50 000 000

53. 0.407%

55. 5.35 MeV and 32.3 MeV

57. 1 116 MeV/c2

59. 70.4 MeV

61. 2.52 � 103 K

63. (a) Z0 boson (b) gluon or photon

65. (a) 127 MeV (b) 1.06 mm (c) 1.17 meV
(d) 58.1 EeV

Context 9 Conclusion
1. (a) 1.61 � 10�35 m (b) 5.38 � 10�44 s (c) yes

uud � uud : sd � uud � du � uds

us � uud : su � sd � sss
du � uud : su � uus

ud � uud : sd � uds

�� � ����

�e � ���e��

n : p � e� � �e

�0 : p � � �K 0
S : � � � ���� : �0 � K�
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Earth temperature and, 497–498
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energy transfer from ground to, 588
hydrogen in, 348–349
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modeling of, 597–599
thermodynamic effects of, 560
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Atmospheric pressure, 466

altitude and, 466–467
measurements of, 470
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Atomic mass, 1016–1017
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neutron number versus, 1021
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Atomic spectrum(a), hydrogen, 351–357
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definition of, 1049
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quantized energy levels of, 354–355,
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753–755
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angular momentum of, 316
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working substance in, 573n
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drag coefficients of, 145–147
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lateral acceleration of, 86
performance, 179
traditional, 179

Average acceleration, 47, 49, 61
angular, 293
definition of, 47, 70–71
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Bachelet, Emile, 725
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775–776
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Barrier penetration, 971
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conservation law of, 1057–1058, 1068
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Baryon(s), 1077

colored quarks forming, 1069
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properties of, 1056t
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emf of, 714
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potential difference across terminal of, 
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difference across, 707
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Bednorz, J. Georg, 692
Benz, Karl, 34
Bernoulli, Daniel, 478
Bernoulli effect, 479
Bernoulli’s equation, 478–480, 482
Bernoulli’s principle, 481, 482
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pattern of, 919
Beta decay, 1031–1033, 1039

energy level diagram of, 1035
of carbon-14, 1033
pathway of, 1035t

Beta particle(s), energy distribution of, 
1032

Beta ray(s), 1016, 1025–1026
Beta-plus decay, 1033, 1038
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Betelgeuse, red glow of, 940
Bevatron particle accelerator, 1052
Big Bang, 936, 973, 1072

evolution of fundamental forces from,
1073

microwave radiation from, 836
Big Bang theory, 145
Bimetallic strip, bending with temperature

change, 508
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Binding energy(ies), in fission process,
1036–1037
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of nucleus, 1023–1025, 1039
per nucleon versus mass number, 1024

Biodiesel fuel, potential energy in, 208
Biological system(s), diffusion in, 689
Bioluminescence, 172–173
Biot, Jean-Baptiste, 743
Biot-Savart law, 743–745, 749, 755
Black body(ies), 820

definition of, 938
theoretical wavelength distribution of, 974

Black holes, 349–351
supermassive, 350

Blackbody radiation, 935, 938–941
characteristics of, 974
intensity of with temperature and

wavelength, 938–939
spectrum of predicted by classical theory,
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Block-spring collision, 199–200
Block-spring system, 176–177

oscillating motion in, 374, 378–380, 815,
816

simple harmonic motion for, 383
Blood flow, Bernoulli’s principle in, 481

Doppler measurements of, 419
Blood pressure, measuring, 468
Bohr, Niels, 337, 353, 985
Bohr magneton, 996, 1009, 1021
Bohr model of atom, 353, 752, 985
Bohr orbit, quantum number of, 354, 940
Bohr radius, 354–355, 359

for Earth-Sun system, 990–991
Bohr theory of hydrogen, 351–357
Boiling, 536
Boiling point, 501
Boltzmann, Ludwig, 513
Boltzmann’s constant, 512, 522
Born, Max, 962
Boron, electronic configuration of, 999
Bose, Satyendra Nath, 829
Bose-Einstein condensate, 829
Boson(s), 1050, 1070, 1077

Higgs, 1071
Bottomness, 1067
Bound system, 346
Boundary conditions, 432–433

at end of air column, 443
in solution to Schrödinger equation, 969,

986
quantum particle under, 966–967
wave under, 440

Boyle’s law, 511
Bragg, W. Lawrence, 920
Bragg’s law, 920
Brain, active areas of, 1052
Bremsstrahlung, 1005, 1009
Brewster’s angle, 860
Bridges, collapse of, 390–391
Bridge(s), thermal expansion joints on, 505
British thermal unit (Btu), 533
Brown, Robert, 526
Brownian motion, 526
Bubble chamber, 756, 1051, 1061

events in, 1062
Bubble-chamber track(s), 1064
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Bulk modulus, 421
Buoyant force, 141n, 470, 482

Archimedes’s principle and, 470–475
on floating object, 472–473
on totally submerged object, 471–472

C
C string, harmonics of, 442
Calibration, thermometer, 501–502
Calibration curve(s), for measuring unknown

temperatures, 503
Calorie (cal), 532–533

original definition of, 533n
Calorie (kilocalorie), 533
Calorimeter, 535
Calorimetry, 535
Calorimetry equation(s), sign errors in, 537
Camera(s), antireflective coatings in lenses

of, 908
light meter detector in, 945
pinhole, 929

Candle flame, light spectrum of, 940
Capacitance, 642, 642–643, 656–660, 673

concept of, 657
equivalent, 664

of capacitors in series, 663–664
of parallel capacitors, 662

of cylindrical capacitor, 659–660
of parallel-plate capacitor, 658–659
SI units of, 657

Capacitor plate(s), conduction current
between, 807, 808

Capacitor(s), 656
atmospheric, 672–673, 713, 723–724
charged, 714

energy stored in, 664–667
rewiring, 666–667

charging, 708–710, 712
combinations of, 660–664
conductors in, 657
connected to battery, 668
cylindrical, 659–660
designs of, 670
discharging, 710–712, 714
electrolytic, 670
energy stored in, 785
high-voltage, 669
in series, circuit diagram of, 709

combination of, 662–664
paper-filled, 671
parallel combination of, 661–662, 673
parallel-plate, 646, 658–659

potential difference in, 665
properties of, 642–643
spherical, 677
storing charge in, 657
types of, 669–672
variable, 669–670
with dielectrics, 667–672

Carbon, electronic configuration of, 999
Carbon-14, beta decay of, 1032, 1033
Carbon cycle, 1038
Carbon dating, 1033–1034
Carbon dioxide, 207

atmospheric, concentrations of, 497, 498,
599

dissolved in water, 509–510
sudden deadly release of from water, 509

Carbon monoxide, from propane fuel, 209
in combustion, 207

Carbon-13 nucleus, fusion of, 1038
Carbon-burning reaction(s), 1043
Carnot, Sadi, 575
Carnot cycle, 589

processes in, 575–576
Carnot engine, 575–577

in reverse, 578
thermal efficiency of, 577

Carrier wave(s), frequency of, 817–818
Cartesian coordinate system, 13

designation of points in, 13
Cat eyes, pupils of, 914
Categorize, in problem-solving strategy, 25
Cathode-ray tube, 621
Cavendish, Sir Henry, 608
Cavendish apparatus, 338
Celsius temperature scale, 501

Fahrenheit temperature and, 521–522
temperature changes in, 504
versus Kelvin temperature, 521, 

535
zero point in, 503–504

Center of gravity, 243–244
Center of mass, 242–245

acceleration of, 246
experimental determination of, 

244
motion of, 245–247
of right triangle, 245
of three particles, 244
velocity of, 245, 250
versus center of gravity, 243–244

Centrifugal force, 134
Centripetal acceleration, 79, 87, 132–133

in loop-the-loop maneuver, 137–138
magnitude of, 79–80
nonconstant, 81
of automobiles, 86
of Earth, 81

Centripetal force, 133
Chadwick, James, 1043–1044
Chamberlain, Owen, 1052
Charge carrier(s), 684

density of, 685
mobile, moving through conductor,

684–685
zigzag motion of, 685

Charge density, concept of, 614
Charge distribution, continuous, 634

electric field due to, 613–614
electric potential due to, 652–654, 

673
cylindrically symmetric, 628–629
on metallic spheres, 611
spherically symmetric, 627–628, 651
symmetric, 634

Gauss’s law applied to, 626–630
tripolar, 632

Charge pump, 699–700
Charge-coupled device (CCD), 946
Charge-field system, potential energy change

in, 643, 645–646
Charge-to-mass ratio of electron, 737
Charged particle(s), equation for force on,

611
motion of in uniform electric field,

618–621
motion of in uniform magnetic field,

732–735
notation for, 609n

Charged-particle accelerator, 1035
Charge(s), accelerated, 952

conservation of, 706
in motion, 684
magnetic field around, 728–732
movement of around circuit, 697
nonconducting plane sheet of, 629–630
of elementary particles, 1067–1068
of proton, 1017
SI unit of, 746

Charles’s law, 511
Charm, 1066–1067, 1077
Charon, discovery of, 914, 915
Chlorofluorocarbons, 824
Chu, Steven, 828, 1015
Circuit breaker, 703
Circuit diagram(s), 660–661

for parallel combination of capacitors, 661
for photoelectric effect, 942
for series combination of capacitors, 662

Circuit symbol(s), 660–661
for capacitor, battery, and open switch, 661

Circuit(s), charge movement around, 697
consisting of battery and resistor, 699
current in, 696, 708n
elements of, 656
household, 703
inductor in, 782
Kirchhoff’s rules in analyzing, 705–708
local and global changes in, 701
positive charge flow in, 696
steady-state, 708
with varying currents, 708–712
zero-resistance path through, 701

Circular aperture(s), resolution of, 912–914
Circular current loop, axis of, 744–745
Circular motion, nonuniform, 138–140

uniform, 79–81
Circular orbit, mechanical energy of,

346–347
parking, 368
to elliptical orbit, 357–358

Clausius, Rudolf, 580
Clausius statement of second law, 580, 585,

589
Cloud chamber, 1050–1051
Cloud(s), water droplets in, 531
Cloud-to-cloud discharge, 601
Cloud-to-ground discharge, 601
Coaxial cable, self-inductance of, 787
COBE (COsmic Background Explorer),

973–974
Coefficient of performance, 578–579
Cohen-Tannoudji, Claude, 828, 1015
Coil(s), electric current in, 766

Helmholtz, 764
inducing emf in, 770
inductance of, 780–781, 789
magnetic moment and torque on, 742–743
pickup, 768, 769
primary, 767
secondary, 767
sensing, 769

Cold reservoir, empty space as, 589
Collider(s), 1071
Collision(s)

block-spring, 199–200
definition of, 233–234
elastic, 234, 235–236, 250, 513, 514
energy molecules gain in, 553–554
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Collision(s) (Continued)
energy transfer by, 561
high-energy, 1049
in copper, 694–695
inelastic, 234, 236–237, 250

one-dimensional, 234, 236–237
perfectly, 234, 236–237, 239, 250

momenta before and after, 229, 232
of electrons, in copper, 694–695

with metal atoms, 685
one-dimensional, 234–239, 235–236
proton-antiproton, 1055
slowing neutrons by, 237–238
two-dimensional, 239–242
value of air bags in, 232
value of bumpers in, 233

Color charge, 1069, 1077
Color force, 145, 1069, 1077
Colored quark(s), 1068–1070
Color(s), in fireworks display, 983

in reflected light, 918
of light, mnemonic device for

remembering, 850n
visible light wavelengths and, 824t

Coma cluster, 1076
Comet Halley, motion of, 343
Compact disc (CD), information storage on,

931
surface of, 932

Compact disc (CD) player, detection system
in, 933

tracking system in, 933
Compass, 728

tracing magnetic field lines, 729
Component vectors, 17–18
Components, 17
Compressed air lift, 469
Compression in sound wave, 415
Compton, Arthur Holly, 947

diagram of apparatus of, 948
Compton effect, 947–949, 974
Compton scattering, 1073
Compton shift equation, 948
Compton wavelength, 948–949, 952
Conceptualize, in problem-solving strategy,

25
Condon, Edward, 1031
Conducting loop, induced electric field in,

778
Conduction, 171, 561

electrical, 606
structural model for, 692–695

thermal, 554–556
Conduction current, 807, 808
Conduction electron(s), 693
Conductivity, 561, 688, 714
Conductor(s), 606–608, 633

atmosphere as, 712–713
cavity within, 656
charged, electric potential of, 

655–656
current density in, 686
current in, 714
current-carrying, magnetic force on,

738–740
electric field created in, 778
grounded, 606–607
in electrostatic equilibrium, 630–631, 634,

646n, 686
irregularly shaped, 634

Conductor(s) (Continued)
mobile charge carriers moving through,

684–685, 686
parallel, magnetic force between, 746
resistance in, 687–690
thermal, 555–556

Cone of acceptance, 862
Conical pendulum, 135–136
Conservation law(s), 1057–1060

of angular momentum, 316–319
of energy, 171, 706
of momentum, 229–231

Conservative field, 648n
Conservative forces, 195–196, 209, 643

potential energy and, 200–201, 203–205
Constant force, work done by, 157–160
Contact forces, 97
Contact lens(es), electrical attraction of, 

605
Contextual approach, 2–3
Continuity equation

for energy, 171–172, 180–181
for fluids, 476–478, 482

Convection, 171n, 561
energy transfer mechanisms in, 557
forced, 557
of air in atmosphere, 588

Conversion factor, 9
Cooling process, evaporation in, 519
Coordinate systems, 12–14
Coordinates, Galilean transformation of,

261–262
Lorentz transformation of, 272

COP. See Coefficient of performance
Copernican theory, 134–135
Coplanar forces, 306
Copper, electron collisions in, 694–695

wire, drift speed in, 686
Cornell, Eric, 829
Corner-cube reflector, 859–860
Correspondence principle, 940, 941
Coulomb, Charles, 608
Coulomb constant, 144, 634, 986
Coulomb force(s), repulsive, 972, 1018,

1030–1031, 1039
in fusion, 1037
nuclear force dominating, 1020

Coulomb(s) (C), 746
Coulomb’s law, 144, 608–610, 634
Coulomb’s torsion balance, 608
Cowan, Clyde, 1032
Crab Nebula, 317, 806
Crest(s), wave, 403–404

in Doppler effect, 417–419
Critical angle, for total internal reflection,

854
Critical temperature, for superconductivity,

693t
Cross product, 304–306, 324
Crude oil, discovery of, 35
Crust, Earth, 423
Crystalline enzyme, Laue pattern from, 919
Crystalline plane(s), 920
Crystal(s), structural change in, 536

x-ray diffraction by, 918–920
Cugnot, Nicholas Joseph, 34
Curie, Marie, 1025
Curie, Pierre, 1025
Curie (Ci), 1027
Curie temperature, 934

Current density, 686
fair-weather, in atmosphere, 713

Current loop, rectangular, 741
torque on, in uniform magnetic field,

741–743
Current-carrying conductor, 743
Current-carrying wire, magnetic field created

by, 749
Current-potential difference curve, 687
Current(s), induced, 766. See also Electric

current(s)
opposing magnetic field change, 775
with bar magnet movement, 775–776

Curzon, F. L., 577n
Curzon-Ahlborn efficiency, 577n
Cutoff frequency, 943
Cutoff wavelength, 945
Cyclic process(es), 545, 546, 561, 589

heat engines in, 573
PV diagram for, 574

Cycloid, 320
Cyclotron frequency, 733
Cyclotron(s), 737–738
Cylinder, moment of inertia of, 300t, 302

net torque on, 305
rolling motion of, 320–321

Cylindrical capacitor, 659–660

D
da Vinci, Leonardo, 34
Daimler, Gottlieb, 34
Dam, force on, 469
Damped oscillations, 387–388, 391
Dark energy, 1076, 1084
Dark matter, 1084
Dark nebula(e), 1007, 1008
Dart leader, 602
Daughter nucleus, 1029, 1033
Davisson, C. J., 951
Davisson-Germer experiment, 951–952
DC voltage, 775
de Broglie, Louis Victor, 950
de Broglie wave, 961
de Broglie wavelength, 951, 952, 974

expression for, 964
de Maricourt, Pierre, 728
Dead Sea Scrolls, carbon dating of, 1033
Decay, radioactive, pathways of, 1035t

rate of, 1026–1027, 1039
spontaneous, 1029

Decay constant, 1026, 1039
for radium-226, 1028
half-life and, 1027

Deceleration, 48
Defibrillator(s), 678–679

charging, 712
Definite integral, 162–163
Degrees of freedom, molecular motion,

551–552
Density, 26

definition of, 7
of common substances at standard

temperature and pressure, 467t
of fluids, 466

Derivative, 42
Derived quantities, 6
Descartes’s law, 848n
Deuterium, formation of, 1038
Deuteron, binding energy of, 1024
Diamagnetism, perfect, 797
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Diatomic gas, molar specific heat of, 548t,
553

molecules, possible motions of, 552
Dielectric constant, 667, 673

of various materials at room temperature,
669t

Dielectric strength(s), of various materials at
room temperature, 669t

Dielectric(s), capacitors with, 667–672
Diesel engine cylinder, fuel-air mixture in,

551
Diesel fuel, potential energy in, 207–208
Differential equation, 141
Diffraction, 841, 899, 922

by narrow slit, 910
in two-slit electron experiment, 958–959
of electron, 957
of light waves, 909–912
of x-rays, 918–920
versus diffraction pattern, 909

Diffraction grating, 915–918, 922
intensity distribution for, 916

Diffraction pattern(s), 909–912, 922
condition for destructive interference in,

910
of electrons, 951
orders of, 918
point sources producing, 912
single-slit, 913–914

Diffuse reflection, 842
Diffusion process, 689
Digital micromirror device(s) (DMDs),

843–844, 917
Digital playback, 932–933
Digital recording, 931–932
Digital videodisc (DVD), lasers in, 805
Digital videodisc (DVD) player(s), 933
Dimension, 8
Dimensional analysis, 8–9, 26
Dimension(s), in string theory, 1085
Diode, 688
Dipole(s), electric, field lines for, 617–618

electric field of, 612–613
electric potential of, 651–652
equipotential surface for, 651
magnetic, random orientation of, 753

Dirac, Paul Adrien Maurice, 994, 1050
theory of, 1052

Direct current (DC) circuits, 683–712
Disintegration constant, 1026, 1039
Disintegration energy, 1029

of radioactive decay, 1035–1036
Dispersion, 402n, 858

of light, 850–851
Displacement, 14–15

angular, 293
average velocity and, 38–39
direction of, 158–159
negative, 40–41

Displacement amplitude, 416
Displacement antinode, 443
Displacement current, 807–808

definition of, 829
Displacement node, 443
Displacement vectors, 21

magnitude of, 15
Displacement wave, 416
Dissipation, energy, 697
Distance, 15, 38–39
Disturbance, propagation of, 401–403

Diving mask(s), corrective lenses on, 885
Domain(s), of ferromagnetic materials, 753

walls of, 753
Doppler effect, 417–420, 424, 947

for electromagnetic radiation, 813
misconception about, 417

Doppler shift, 947, 1073
of laser light, 828n
with Big Bang, 973

Doppler-shifted frequency, 420
Doppler-shifted laser frequency, 828, 829
Dot product, 160–161, 180
Double-slit experiment(s), 899–901,

957–959
interference patterns in, intensity

distribution of, 904
Drag, 481
Drag coefficients, 142

of automobiles, 145–147
Drift speed, 684–685, 694, 714

in copper wire, 686
Drift velocity, 693–694
Dual sign convention(s), 543
Dynamics, 96
Dynode(s), 945–946

E
Earth, average surface charge of, 631–632

calculating surface temperature of, 497
centripetal acceleration of, 81
cross-section of, 423
crust of, 423
energy balance of, 498, 558–560
energy emitting from, 560
kinetic energy of, 229–230
liquid core of, 423
magnetic field of, 728
mantle of, 423
mass and radius of, 338
place of in Universe, 341
predicting surface temperatures of,

597–599
satellite of, 340–341
solar energy delivered to surface of, 821
solid core of, 423

Earth-atmosphere system, energy transfer
mechanisms in, 202–203

Earthquakes, 371–372
epicenter of, 421
focus or hypocenter of, 421
minimizing damage in, 459–461
paths of waves in, 423f
seismic waves in, 421–424
standing waves in, 450–451

Earth-Sun system, quantized, 990–991
Eccentricity, of ellipse, 343, 344, 359
Eddy current(s), 800, 803
Eightfold way pattern, 1063

predicting missing particle from, 1064
Einstein, Albert, prediction of Bose-Einstein

condensate, 829
brownian motion analysis by, 526
general relativity theory of, 280–283
photoelectric effect explanation of,

943–944
photon concept of, 985
relativity theory of, 2, 260, 263–272

Elastic collision. See Collisions, elastic
Elastic modulus, 421
Elastic potential energy, 195–196, 209

Elastic scattering, 1036
Electric charge(s), conservation of, 605–606,

633
negative, 605–606, 633
positive, 605–606, 633
properties of, 604–606, 633
quantized, 633
rate of flow of, 684
varieties of, 611

Electric circuit. See Circuit(s)
Electric current(s), 683, 684–686

direction of, 684
in conductor, 714
in time-varying magnetic field, 767
mathematical definition of, 684
microscopic parameters of, 685
misconceptions about, 696
paths of, 702

Electric field line(s), 616–618, 634
equipotential surfaces perpendicular to,

673
for charge distributions, 617
for point charge, 617
for positive and negative point charges,

618
for two point charges of equal magnitude

by opposite signs, 617–618
for two positive point charges, 618
for uniform electric field, 650

Electric field wave equation, 812
Electric field(s), 603–604, 611–612, 634

atmospheric, 631–633
between parallel capacitor plates, 658
between two parallel plates of opposite

charge, 646
calculating, 614–615
conducting slab in, 630
definition of, 611, 634
due to charged conductor, 656
due to charged rod, 615
due to continuous charge distributions,

613–614, 634
due to finite number of point charges, 612,

634
due to point charge, 611–612, 627, 634
energy density in, 665–666
from electric potential, 650–652
Gauss’s law in calculating, 626
induced by changing magnetic field in

solenoid, 779–780
induced emf and, 778–780
inside cavity in conductor, 656
magnetic fields and, 728
of cylindrical capacitor, 660
of dipole, 612–613
of uniform ring of charge, 616
potential difference between points in,

643–644
SI units of, 644
time-varying, 807
uniform, equipotential surfaces and

electric field lines from, 650
motion of charged particles in, 618–621
motion of proton in, 647
potential difference between points in,

673
potential difference in, 645–647

Electric flux, 621–624, 634
charge enclosed by surface and, 624–626
definition of, 622
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Electric flux (Continued)
net, 626, 634, 809
rate of change of, 809–810
through closed surface, 622–623, 626
through cube, 623–624
through rectangle, 811–812
zero, 625

Electric force(s), 205
acting on test particle, 611
between charged objects, 608
holding electrons to nucleus, 1025
potential energy for, 205
versus magnetic force, 730–731

Electric guitar, pickup coils producing sound
in, 768, 769

Electric potential energy, 210, 644, 673
calculating, 652–653
definition of, 642, 643
due to continuous charge distributions,

652–654
due to point charges, 647–650, 673
due to uniformly charged ring, 653–654
due to uniformly charged sphere, 654
obtaining electric field from, 650–652
of charged conductor, 655–656
of dipole, 651–652
of system of point charges, 649
SI units of, 644
versus electric field, 648

Electric power plant, generators in, 765
Electric vehicles, 34, 209

hybrid, 220–221
Electrical conduction. See Conduction,

electrical
Electrical discharge, lightning, 601–602
Electrical short, 508
Electrical signal(s), nerve impulses as, 603
Electrical transmission, 171, 173, 181, 578n

in electric heater, 579
Electricity, historical overview of, 604

magnetism and, 728
thermodynamics and, 698–699

Electrodynamic system model, disadvantage
of, 788

versus repulsive magnetic levitation model,
787–788

Electromagnetic force(s), 144, 147, 1049,
1077

mediation of, 1054
mediators of, 1055

Electromagnetic radiation, 171, 173, 181,
561, 667, 985

as energy transfer mechanism, 557–558
from high-energy to low-energy state in

hydrogen, 355–356
from star surface, 1039
from sun, 559
on inside surface of incandescent

lightbulb, 507–508
point source of, 819
types of, 944

Electromagnetic system (EMS), 753–755
Electromagnetic wave(s), 351, 401, 810–814.

See also Laser(s); specific wave types
abstract nature of, 951
angular frequency of, 830
carrying energy, 830
diffraction effects of, 950
Doppler effect for, 417, 813
electric and magnetic fields of, 830

Electromagnetic wave(s) (Continued)
energy carried by, 818–819
frequency of, 351
Hertz’s apparatus for generating and

detecting, 817
Hertz’s discoveries about, 814–818
instantaneous magnitudes in, 830
intensity of, 818–819
interference in, 899, 950
laboratory production of, 604
linear momentum of, 820–822
phase change in, 905
photons and, 949–950
polarization of, 824–826
propagation direction of, 830
properties of, 829–830
quantization of, 943
sinusoidal, 810, 812–813, 814
spectrum of, 822–824, 830
speed of, 812, 830
striking perfectly absorbing surface, 820
superposition of, 433
through free space, 812
wavelength of, 351

Electromagnetism, Ampère-Maxwell law in,
808

formulation of laws of, 604
historical overview of, 728
in propulsion, 801–802
Maxwell’s equations in, 808–810, 985
unified theory of, 2

Electromagnet(s), 753
Electromotive force, 699n
Electron beam, bending, 734–735
Electron bombardment CCD camera, 946
Electron capture, 1033, 1035t, 1039
Electron gun, 621
Electron microscope, 953
Electron spin resonance (ESR), 1015
Electron volt (eV), 278, 644
Electron-electron interaction(s), 997, 1054
Electronic configuration(s), of elements, 998,

999, 1000–1001t, 1002–1003
Electronic transition(s), 1009

for hydrogen, 1003
Electron-lepton number, conservation of,

1059–1060
Electron-neutrino, properties of, 1056t
Electron-nucleus interaction(s), 997
Electron-positron pair(s), 1070

tracking, 1051
Electron(s), 1049

accelerated, 54, 620
in cathode-ray tube, 621

antiparticle of, 1025–1026
battery exerting force on, 686
bound, 966
charge of, 608–609
diffraction of, 957
force holding to nucleus, 1025
in atomic shells, 1005–1006
in circular orbit, 752
intrinsic angular momentum of, 752
mass number of, 1032
mass of, 1018t
momentum of, 276
motion of through metal, 693–794
moving in magnetic field, 732
particle characteristics of, 950
probability density of, 988–989

Electron(s) (Continued)
projected into uniform electric field, 619
properties of, 1056t
rest energy of, 1032
spin angular momentum of, 995
trajectory of in uniform electric field, 620
transfer of in charging an object, 605–606
transition of, in atom, 355, 357
transmission coefficient for, 972
valence, 825
wavelength of, 952, 953
wave-like properties of, 695, 950
wave-particle duality of, 950, 955–959
x-ray scattering from, 947

Electrostatic equilibrium, 655
conductors in, 630–631, 634, 646n, 656,

686
Electrostatic force(s), 144, 145

attractive, 604–605
in vector form, 609
of hydrogen atomic particle, 610
repulsive, 1019

Electroweak force, 145, 1049, 1073, 1077
Electroweak theory, 1070
Element(s), electronic configurations of, 998,

999, 1000–1001t, 1002–1003
periodic table of, 1002–1003

Elevation, atmospheric temperature and,
520–521

Elliptical orbit, 343, 368
circular orbit changing to, 357–358
mechanical energy of, 346–347
of satellite, 347–348
semimajor axis of, 344–345

Elliptical transfer orbit, 368
major axis of, 368–369

emf, 714
induced, 766, 768

electric fields and, 778–780
in coil, 770

motional, 770–775, 789
self-induced, 780–781, 789
sources of, 699–700, 714

Emission nebula(e), 1007–1008
Emission spectrum, 351

of hydrogen, 352
Emission wavelengths, hydrogen, 356
Emissivity, 558
End correction, 443
Endoscope, medical uses of, 889
Endothermic reaction(s), 1036, 1039
Energy. See also Energy transfer; Kinetic

energy; Mechanical energy; Potential
energy

absorbed by oscillator, 939
balance of, atmospheric, alteration of with

global warming, 599
for Earth, 498, 558–560

carried by electromagnetic waves,
818–819, 830

conservation, law of, 531, 535, 706
in nuclear reactions, 1036
processes consistent with, 572–573
violation of, 1054–1055

conservation of, 171–172, 181, 197
continuity equation for, 542–544, 572
dark, 1076, 1084
“dissipation” of, 697
equipartition of, 551–554, 561
for particle in a box, 963–964
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Energy (Continued)
forms of, 156–157
in capacitor versus resistor and inductor,

785
in planetary and satellite motion, 345–351
in rotational motion, 311–313
in simple harmonic motion, 381–384
in thermal processes, 532–561
internal, 169–170, 173, 175, 181, 188–190,

522, 560, 685
change in, 543
definition of, 532
energy transfer by heat and work and,

561
heat and, 532–533
increasing at constant volume, 544–545
kinetic energy transformed to, 204
system temperature and, 506
temperature associated with, 700
with random molecular motion of ice,

538
ionization, 355, 1003
liberated with radium decay, 1030
mass and, 279–280
of hydrogen atom, 354
of proton, 279
of x-radiation, 1006, 1007
potential, 188–210
quantization of, 553–554, 939, 940, 965

for macroscopic object, 966
quantized, 432–433
radiated by oscillator, 939
relativistic, 276–279
sources of, developing, 35–36
storage of, in charged capacitor, 664–667

in Earth’s surface, 821
in electric field, 665
in inductor, transferred to resistor,

786–787
in magnetic field, 785–787, 789
types of, 685

total, 284
in simple harmonic motion, 381, 391

total relativistic, 278
transformation of, 191–192
transition, 355–356
uncertainty principle for, 960
work and, 532
zero-point, 965

Energy conservation principle, 1018
Energy density, average, of electromagnetic

waves, 819
in electric field, 665–666
in magnetic field, 786, 789
instantaneous, of electromagnetic waves,

818–819
Energy level diagram(s), 355, 356f, 827

for neon atom in helium-neon laser, 828
for particle in one-dimensional box, 965
for vibrational and rotational states, 554
height on, 971

Energy rating(s), lightbulb, 698
Energy reservoir(s), 541–542

gas in thermal contact with, 575–576
Energy state(s), nuclear, 1022
Energy transfer, 156–157, 169, 173, 197

along power lines, 683
between initial and final system states, 542
between system and environment, 499
by photon, in photoelectric effect, 944

Energy transfer (Continued)
continuous, 985
direction of, 579–580
from transmitter to receiver, 817
in boiling liquid helium, 539
in thermal processes, 554–558
in typical circuits, 696
into heat engines, 573n
large water bodies and, 534–535
measures of, 533
mechanisms of, 170–173, 181

in Earth-atmosphere system, 202–203
in home, 202
in human body, 203
in nonisolated systems, 202–203

negative, 534
phase changes with, 531, 536–539
positive, 534
rate of, 500

by sinusoidal waves on string, 413–415
in thermal conduction, 556
into top of atmosphere, 560
per area, 559

sign convention in, 580
specific.See Heat, specific
through leaky window, 556
through material, 555
to ideal gas by heat, 549–550
to metal atoms, 685
with exercise, 533

Energy-momentum relationship, 278
Engine(s), cylinder in, interior of, 572

efficiency of, 574
Enlargement, of image in concave mirror,

874, 876
versus magnification, 868

Entropy, 580–583, 589
change in, 580–581, 583, 584, 589

in irreversible processes, 585–587
microscopic definition of, 582–583
second law of thermodynamics and,

583–584, 585
Environment, 157, 180
Epicenter, 421

of earthquake, 371
seismic waves spreading from, 460

Equal-arm balance(s), 777
Equilibrium, maximum position relative to,

416
neutral, 207, 210
particle in, 107–108
rigid object in, 306–309
stability of, 206–207, 210
stable, 206, 210
unstable, 207, 210

Equilibrium position, 374
Equilibrium temperature, 500
Equipartition of energy, 551–554

theorem of, 561
Equipotential surface(s), 646, 673

for electric dipole, 651
for isolated point charge, 647–648
for uniform electric field, 650

Equivalence principle, 281
Equivalent capacitance, 673

of capacitors in parallel, 662
of capacitors in series, 663

Equivalent resistance, 714
of resistors in parallel, 702–703
of resistors in series, 700–701

Escape speed, 348–349
Etafilcon, 605
Ethanol, potential energy of, 208
Ether, luminiferous, 262
European Space Agency, 223–224
Evaporation, 519
Event horizon, 349
Events, in relativity, 261, 284
Exclusion principle, 997–1003, 1009

definition of, 998
violation of, 1068–1069

Exothermic reaction(s), 1036, 1039
Expansion coefficient(s), for materials near

room temperature, 506t
Expectation value, 963, 974

for particle in a box, 970
Eye(s), center of sensitivity of, 824

interpreting diverging light rays, 868n

F
Fahrenheit temperature scale, 504–505,

521–522
Fair-weather current density, in atmosphere,

713
Fair-weather electric field, in atmosphere,

632
Falling objects, 55–59
Faraday, Michael, 604, 657, 728, 765, 767

experiments of, 767
Faraday disk, 793
Faraday’s law of induction, 765–770, 778,

789, 809
equation for, 768
general form of, 779, 789
in electrodynamic system model, 788
in predicting electromagnetic waves, 811

Farad(s) (F), 657, 673
Fermi, Enrico, 1032, 1033
Fermilab, particle collision photo from, 1072
Fermion(s), 998, 1065, 1068–1069
Ferromagnet, 777
Ferromagnetic material(s), 752–753
Feynman, Richard P., 134–135, 635, 1054
Feynman diagram(s), 1054
Fiber optics, 857
Fiberscope(s), 857

construction of, 888
illuminating bundle of, 888
medical, 888–890
objective lens of, 888
viewing bundle of, 888–889

Fick’s law, 689
Field, electric. See Electric Field.
Field, gravitational force and, 339–340
Field, magnetic. See Magnetic Field.
Field forces, 97–98
Field mill, 632–633
Field particle(s), 1049–1050, 1070, 1077
Filament(s), lightbulb, failure of, 701n

resistance of, 697
resistance values of, 704

Finalize, in problem-solving strategy, 25
Fish eye, view from, 855
Fission, 279–280
Fission reaction(s), 1024, 1036–1037
Floating object, buoyant forces on, 

472–473
Flow calorimeter(s), 568
Flow characteristics, 475–476
Flow rate, 482
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Fluid(s). See also Gases; Liquids
buoyant force due to, 470–475
continuity equation for, 476–478
definition of, 464–465
dynamics of, 475–476, 482

in airplanes, 480–481
in blood flow, 481

incompressible, 476
irrotational flow, 476
mechanics of, 464–482
nonviscous, 476
pressure of, 465–466
pressure variation with depth of, 

466–469
statics of, 475
steady flow, 476
viscosity of, 476

Flux compression, 793
Focal length, 872, 881, 890
Focal point, 872, 881
Focus, of ellipse, 342

of earthquake, 371
Forbidden atomic transition(s), 1004
Forced oscillations, 389–390, 391
Force(s). See also specific forces

action, 104–106
centrifugal, 134
centripetal, 133
concept of, 97–98
conservative, 195–196, 209
constant, 157–160

work done by, 157–160
elastic, 604
external, motion change in response to,

687
fundamental, 143–145, 147, 1049–1050,

1077
in Big Bang, 1072
evolution of, 1073
unification of, 1084–1085

gravitational, 103–104
in equilibrium, 306–309
nonconservative, 196–200, 209
normal, 105–106
of friction, 126–132
on automobiles, 114–115
point of application of, 169
pressure and, 465
proportional to acceleration, 48–49
reaction, 104–106
relativistic, 276
sum of, 101
unit of, 102
varying, 162–166, 180
vector nature of, 98f
versus torque, 304

Ford, Henry, 35
Fourier series, 448
Fourier synthesis, 449
Fourier’s theorem, 448–450, 452
Franklin, Benjamin, electricity experiments

of, 605
Fraunhofer diffraction pattern, 909
Free expansion, 544

entropy changes in, 586–587
Free space, electromagnetic waves in, 812

Maxwell’s equations applied to, 809
permeability of, 743, 755
permittivity of, 608

Free-body diagram, 106

Free-fall, ball in, 193
for projectile motion, 78–79
magnitude of acceleration for, 115

Freely falling objects, 55–59
Freezing point, 501
Frequency, 351, 376, 377, 391, 424. See also

Angular frequency
beat, 446–447, 448
of air column, 443
of musical instruments, 450
of normal modes, 441
of stringed instrument strings, 442
of tuning fork, 446
versus pitch, 448

Frequency modulation (FM), 817–818
Fresnel diffraction, 909n
Friction, coefficients of, 127, 130

forces of, 126–132
kinetic, 147, 173–177
static, 127–131, 147

Friction force, and internal energy, 175
direction of, 127
on automobiles, 114–115
point of application of, 196–197

Frictionless surface, 107
acceleration on, 110, 112–113
block pulled on, 167–168
revolving object on, 318

Fringe(s), 900
angular positions of, 902
bright, 910–911, 916
dark, 910, 911–912
linear positions of, 902
order number of, 922

Front-back reversal, in mirror, 869
Fuel cell vehicles, advantages of, 221

disadvantages of, 221–222
Fuels, potential energy in, 207–209
Fundamental frequency, 441

of air column, 443–444
of string, 441

Fundamental quantities, 6
Fusion

latent heat of, 537, 584
nuclear, 1024, 1037
of hydrogen atoms, 1025

Fusion reaction, 280

G
Gabor, Dennis, 920
Gabrielse, Gerald, 1014
Galaxy M87, 350
Galaxy(ies), formation of, 936

luminous matter in, 1076
mass of, 1075
measuring speed of, 1073–1075
speed of recession of, 1075

Galilean transformation, 272
of coordinates, 261–262
of velocities, 261–262

Galileo Galilei, 1, 99
free-fall acceleration theory of, 55–56

Gamma decay, 1034–1035, 1035t, 1039
Gamma detector, 1051
Gamma ray(s), 823, 824, 1016, 

1025–1026
in nuclear reactions, 1038
production of, 1052–1053

Gamma-ray photon(s), 1051
Gamow, George, 973, 1031

Gas molecule(s), average kinetic energy of,
522

root-mean-square speed of, 522
speed distribution of, 518–520
speed of, 522

Gas(es). See also Ideal gas(es)
atmospheric, average temperatures of,

520–521
equation of state of, 510–511
in thermal contact with energy reservoir,

575–576
inert, 1002
kinetic theory of, 513–518
molar specific heats of, 548t
monatomic, 522, 549

molar specific heat of, 548t
translational kinetic energy of, 551–552

physical properties, 464
pressure of, 504
quasi-static compression of, 540
root-mean-square speed of molecules of,

517
temperature proportional to average

kinetic energy of, 516
work done on, 540–541

Gasing, 291
Gasoline, in hybrid electric vehicles, 221

potential energy in, 207–209
Gasoline engines, electric starter for, 35
Gasoline-powered car, 34–35
Gauge pressure, 470
Gaussian surface, 626

cylindrical, 628–629, 631
net charge inside, 630–631
spherical, 624, 627–628

Gauss’s law, 624–626, 634, 747, 809, 1004,
1006

applied to symmetric charge distributions,
626–630

to verify conductor property in
electrostatic equilibrium, 630–631

Gay-Lussac’s law, 511
Geiger, Hans, 984
Geiger-Mueller tube, 680
Gell-Mann, Murray, 1063–1064

original quark model of, 1065–1066
General Motors EV1, 209, 220

acceleration of, 59–60
drag coefficient on, 146
fuel in, 209

General relativity, postulates of, 281
theory of, 284

Generator(s), alternating-current, 
774–775

homopolar, 793
Geocentric model, 341
Geometric length of day, 848
Geometric model(s), 22–23

for describing Young’s double-slit
experiment, 901

for images formed by concave mirrors,
871–872

for images formed by refraction, 
878–881

for images formed in flat mirror, 
868–870

for images in convex mirror, 873
for thin lens equation, 882
of image formation, 867
to locate object image in flat mirror, 868
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Geometric optics, 858, 898
ray model in, 841–842

Geosynchronous satellite, 339, 346
Gerlach, Walther, 994–995
German maglev project, 725, 726
German Transrapid system, 753–755, 754,

787
Germanium, 606
Germer, L. H., 951
Gilbert, William, 604, 728
Glancing collision, 239–240
Glashow, Sheldon, 1070
Glass rod, electrons transferred from, 

605
positively charged, 605

Global warming, 207, 497–498, 599
social aspects of, 498

Gluino(s), 1085
Gluon(s), 1049–1050, 1069, 1077

emission and absorption of, 1070
Goddard, Robert, 249, 725
Goudsmit, Samuel, 994, 995
Gould, Gordon, 804
Granulation, on surface of sun, 557
Graphical representation, 24–25, 38
Graphs, slopes of, 40
Grating light valve (GLV), 917, 917
Gravitation, law of universal, 280, 337,

338–341, 359
Gravitational constant, 143–144, 338–339,

359
Gravitational field, 339–340, 359, 611

light beam and, 281–282
Gravitational force, 103–104, 143–144, 147,

338, 1049, 1077
acting on planets, 343–344
average position of, 243–244
buoyant force in equilibrium with, 471
in gravitational field, 611
in precessional motion, 319
in Solar System, 821
mediation of, 1050
on floating object, 472
on spacecraft, 223
potential energy for, 203–205
weight and, 113–114
work done by, 159, 191–192

Gravitational lens, 282
Gravitational mass, 104
Gravitational potential energy, 189–190, 198,

209, 210, 478–479, 482
of planet-star system, 346
stored in system, 190–191

Graviton(s), 1050, 1055, 1077
Gravity, 337

center of, 243–244
Gravity waves, 351
Greenhouse effect, 207
Grimaldi, Francesco, 840
Ground, electrical, 606–607

energy transfer to atmosphere from, 588
Ground fault interrupter, 769
Ground state(s), 355

of elements, 998–999
of hydrogen, 990
wave function for hydrogen in, 988

Group speed, 956–957
Gurney, Ronald, 1031
Gyroscopes, 319–320

in spacecraft, 323

H
Hadron(s), 1055, 1056–1057, 1077

composition of, 1065
properties of, 1056t
structural model for, 1065–1066

Hafele, J. C., 267
Hahn, Otto, 1036
Halbach array of magnets, 802
Half-life, 1027, 1039

of carbon-14, 1034
of iodine-131, 1028
of radium-226, 1028

Hall effect, 757–758
Hall voltage, 758
Halogen(s), 1002
Han, Moo-Young, 1069
Hard magnetic material, 753
Harmonic motion, amplitude of, 438

simple, 374–375, 391
acceleration in, 377
energy considerations in, 

381–384
mathematical representation of,

375–381
of oscillating particle, 380
position in, 375, 378–379
velocity in, 377

Harmonic motion model, of atoms in a solid,
506

simple, 814–815
Harmonic series, 441, 443, 452
Harmonics, 441, 452

Fourier synthesis of, 449
in pipe, 445
of C string, 442
physical mixture of, 450
superposition of, 448

Heart-lung machine(s), 762
Heat, 171, 173, 181, 560

definition of, 532
internal energy and, 532–533
latent, 537–539, 560–561
mechanical equivalent of, 533
of combustion, 207
of fusion, 537
of vaporization, 537–538
specific, 533–536, 560

molar, 547–554, 561
of substances at atmospheric pressure,

534t
units of, 532–533
versus temperature, 532

Heat capacity, 566
Heat death, of Universe, 585
Heat engine(s), 589

atmosphere as, 587–589
schematic representation of, 573
second law of thermodynamics and,

573–574
thermal efficiency of, 574, 589
thermodynamics of, 545–546

Heat pump(s), 578–579
impossible, 580
schematic representation of, 578

Heat ray(s), 823
Heat sink, 696
Heisenberg, Werner, 959
Heisenberg uncertainty principle, 

959–960
Heliocentric model, 341

Helium, electrons of, 998–999
formation of, 1025
gas, average kinetic energy of molecules,

518
energy transfer to, 549–550
pressure of in tank, 512

in space, 1008
liquid, boiling of, 539

Helium-3 nucleus, 1038
Helium-neon laser, 828
Helmholtz coil(s), 764
Henry, Joseph, 604, 728, 765, 781
Henry (H), 789
Hermann, Robert, 973
Hertz, Heinrich Rudolf, 604

discoveries of, 814–818, 840
Hertz (Hz), 376
Higgs boson, 1071
Hohmann transfer, 368–370
Hologram, experimental arrangement for,

921
viewing, 921

Holography, 890, 920–921
Home system, energy transfer mechanisms

in, 202
Homopolar motor, 793
Honda Civic, 220
Honda Insight, 220

acceleration of, 60
forces on, 115
lateral acceleration of, 86

Hooke’s law, 163–164, 165–166, 195, 201,
374, 391

Horizontal motion, of projectile, 77–78, 86
Horizontal range, of projectile, 75–76
Horsepower (hp), 177–178

ratings of, 179–180
Hose, water flow through, 477–478
Hot-air balloons, floating, 472
Hubble, Edwin P., 1074
Hubble parameter, 1074
Hubble Space Telescope, 914

photographs by, 350, 936
Hubble’s law, 1074
Human body system, energy transfer

mechanisms in, 203
Humason, Milton, 1074
Hund’s rules, 999
Huygens, Christiaan, 34, 840, 852
Huygens source(s), 922
Huygens wavelet(s), 852
Huygens’s principle, 851–853, 858
Hybrid electric vehicles, 60, 220–221

gas mileage for, 220
parallel and series, 220

Hydraulic press, 468
Hydrocarbons, oxidation of, 207
Hydrocephalus, laser treatment of, 889
Hydrogen, atomic spectra of, 351–357

in atmosphere, 348–349
in bubble chamber, 1061
in Milky Way galaxy, 1008
in space, 1007
molar mass and speed of, 517
molar specific heat of, 553

Hydrogen atom(s), allowed energies for, 
986

Bohr model of, 353–357, 359, 939, 991
Bohr orbits in, 354
electronic transition in, 357, 1003
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Hydrogen atom(s) (Continued)
emission spectrum of, 352
emission wavelengths of, 356
energy level diagram for, 356
frequency of radiation from, 356
fusion of, 1025
gravitational and electrostatic forces of,

610
ground state of, 990
in Rosette Nebula, 337
modeling of, 1048
probabilities for electron in, 990
quantum model of, 983–984, 985–987
quantum numbers in, 987t
space quantization for, 993
spin of, 997
total energy of, 354
wave functions for, 987–991

Hydrogen fuel cell, 221
Hyperbolic escape orbit, 368
Hypocenter, 421

of earthquake, 371

I
Ice, phase changes for, 538
Ice Man, 1016

carbon dating of, 1034
Ice point, 501

of early gas thermometers, 504
Icebergs, visible portion of, 464
Ideal gas law, 511, 512
Ideal gas model, 511, 522
Ideal gas(es), adiabatic processes for,

550–551
definition of, 511
energy transferred by heat to, 548
free expansion of, 586–587
macroscopic description of, 510–513
molar specific heats of, 547–550, 

561
monatomic, total internal energy of, 

548
on macroscopic scale, 499–500
on microscopic (molecular) scale, 500
pressure of, 514–516
temperature of, molecular interpretation

of, 516–518
Image distance, 868
Image formation, 890

by concave mirror, 871–877
by convex mirror, 873–877
by flat mirror, 868–870
by refraction, 878–881
by spherical mirror, 871–877

Image(s), inverted, 869, 874
magnification of, 868–869
multiple, formed by two mirrors, 870
real, 868, 890
virtual, 868, 890

Immersion heater, 698–699
Impedance matching, 721
Impulse, approximation, 232

of net force, 231, 250
Impulse-momentum equation, 514
Impulse-momentum theorem, 231–233, 250
Impulsive force, 232
Incidence, angle of, 843

critical angle of, 858
Incline, object sliding down, 132
Indefinite integral, 162–163

Inductance, of coil, 789
of solenoid, 781
SI unit of, 789

Induction, charging by, 606–608
energy stored in, 785–786, 789
Faraday’s law of, 765–770, 789, 809

Inductor, circuit element, 782
energy stored in, 785–786
in RL circuit, 782–785

Inductrack system, 802–803
Inertia, 100

moment of, 298–299, 324
and angular momentum, 315, 317
of homogenous rigid objects, 300
of uniform solid cylinder, 302

Inertial frame of reference, 99, 115
Infrared radiation, 559, 806, 823, 824

from atmosphere, 588
from Earth’s surface, 597–598, 599

Instantaneous current, 684
Instantaneous power, 177, 181
Insulator(s), 606–608, 633
Intensity, 559

of electromagnetic waves, 818, 819
Interference

conditions for, 899
constructive, 435, 452, 900, 902

conditions for, 906, 922
definition of, 434
destructive, 435, 436, 452, 900

conditions for, 902, 906, 922
in diffraction pattern, 910

double-slit, 922
intensity distribution of, 904

in acoustical system, 436
in light waves, 899–901, 901–904
in soap film, 907
in thin films, 905–908
in wedge-shaped film, 908
of electrons, 958
of waves, 434–437, 898–899, 957–958
spatial, 446
stable pattern of, 899
temporal, 446–448

Interference grating, 915
Interference path(s), constructive, 903

destructive, 903
Interferometer, Michelson, 262–263
Internal combustion engine, 34

chemical reaction in, 207
mass production of, 35

Internal energy. See Energy, internal
Internal thermal equilibrium, 539
International Committee on Weights and

Measures, temperature points of, 504
International Space Station, 223
Inverse tangent function, 85
Iodine, radioactive isotope of, 1028
Ionization, 354n

atmospheric, 1004–1005
Ionization energy, 355, 1003, 1025
Ionized elements, 356–357
Ion(s), magnetic moments of, 752t

mass-to-charge ratio of, 736–737
Iridescence, 928–929
Irreversible process(es), 572–573, 575, 589

entropy change in, 585–587
Irrotational flow, 476
Isentropic process(es), 584
Isobaric process(es), 544, 561

Isolated system, 190–194, 209
electric charge version of, 605–606
total energy in, 952
total energy of, 197–200
total momentum of, 229

Isolation dampers, 460
Isotherm, 545
Isothermal compression, 575–576
Isothermal expansion, 550–551

in Carnot cycle, 575, 576
Isothermal process(es), 545, 546–547, 561,

580–581
entropy change in, 584

Isotope(s), 1017, 1039
Isotropic motion, 513

of gas molecules, 515
Isovolumetric process(es), 544–545, 548, 561

J
Japan Railways magnetic levitation system,

787–788
maglev vehicle of, 726
schematic diagram of, 788

Japanese Aerospace Exploration Agency
( JAXA), 223–224

Joule, James Prescott, 531, 532
Joule heating, 685n
Joule(s), 158

per kilogram-degree Celsius, 534
Junction rule, Kirchhoff’s, 706, 707, 714

application of, 708

K
K capture, 1033
K meson, 1056
K shell electron(s), 1005–1006

capture of, 1033
Kaon(s), 1060

decay of, 230–231
neutral, 230
properties of, 1056t

Keating, R. E., 267
Keck telescope, 914
Kelvin, Lord (William Thomson), 573
Kelvin temperature scale, 502–504, 521

versus Celsius temperature, 535
Kelvin-Planck statement, of second law of

thermodynamics, 574, 575, 585, 589
Kelvin(s) (units), 503, 504
Kepler, Johannes, 1, 342
Kepler’s laws of planetary motion, 342, 368

first, 342–343, 359
second, 343–344, 359
third, 344–345, 359, 369

Kilocalorie(s) (Calories), 533
Kilogram (kg), 26

definition of, 5
Kilowatt-hour (kWh), 178
Kinematic equation, 53, 61
Kinematics, 37

rotational, 295–296
variables in rotational motion, 292

Kinetic energy, 180, 181
average, pressure and, 516–517

translational, per molecule, 522
conservation of in collisions, 234, 237–238
conserved in proton-proton collision,

240–241
for particle in a box, 964
in atomic and nuclear processes, 279–280
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Kinetic energy (Continued)
in Bernoulli’s equation, 482
in elastic collisions, 234, 235
in fusion process, 1037–1038
in perfectly inelastic collision, 236–237
in simple harmonic motion, 381–382
in two-dimensional collisions, 239–240
of alpha particle collision with nucleus,

1018–1019
of alpha particle emission, 1030–1031
of gas molecules, 504

pressure and, 516
of hydrogen atom, 354
of nuclear reactions, 1039
of orbital system, 985n
of rolling object, 321
of rotating object, 318
of sinusoidal wave on string, 414
of system, 188–189
of viscous fluid, 476
photoelectron, 943
photoelectron, maximum, 944
potential energy transformed into, 204
relativistic, 276–277, 284
rotational, 298–302, 324, 532
total, 324

temperature of ideal gas and, 517
translational, 532

transformed to internal energy, 725
translational, 312
units of, 644
work-kinetic energy theorem and, 166–168

Kinetic friction, 181
coefficient of, 127, 147
force of, 126–127, 132, 147
situations involving, 173–177

Kinetic theory of gases, 513–518
Kirchhoff, Gustav, 706
Kirchhoff’s rules, 705–708, 714

junction rule, 706, 707, 714
application of, 708

loop rule, 706–707, 714, 782
application of, 708
applied to RL circuit, 783

Kobe, Japan, earthquake, 460

L
L shell electron, 1006
Lagoon Nebula, 1007
Lake Monoun, explosive carbon dioxide

release from, 509–510
Lake Nyos, explosive carbon dioxide release

from, 509–510
Laminar flow, through constricted pipe, 

478
Land, E. H., 825
Landau, Lev Davidovich, 1014
Large Electron-Positron (LEP) Collider, 

1071
Large Hadron Collider (LHC), 1071
Large Magellanic Cloud, 935
Laser cooling, 828–829
Laser Interferometer Gravitational Wave

Observatory (LIGO), 351
Laser light, in holography, 920–921

measuring wavelength of, 903
rectangular pulse of, 856
special properties of, 826–829

Laser, in playback system of CD player, 932
Laser pointer(s), 821–822

Laser(s), design of, 828
Doppler-shifted frequency of, 828, 829
high-power, 835
invention of, 804
medical uses of, 889–890
technology of, 804–805
to record and read digital information,

931–934
Laser trapping, 828–829
Laue pattern, 919
LC circuit, resistanceless, 816

resonance frequency of, 817
Lederman, Leon, 1067
Left-right reversal, in mirror, 869
Length, 5, 26

approximate values of, 6–7, 7t
contraction of, 269–272, 284

Lens makers’ equation, 883, 885
Lens(es), antireflecting coatings on, 908

converging, 881, 882–883, 884, 890
combination of, 887–888
image formed by, 885–886

cross sectional shapes of, 881
diverging, 881, 882–883, 884, 890
focal length of, 881, 883, 890
focal points for, 881, 883
thin, 881–883, 883t, 890.See also Thin lens

equation
Lenz’s law, 775–777, 789, 802

application of, 777–778
in repulsive magnetic levitation model, 788

Lepidoglyphus destructor, 937
Lepton number, checking, 1060

conservation of, 1059–1060, 1068
Lepton-antilepton pair, 1068
Lepton(s), 1055, 1057, 1067, 1070, 1077,

1084
properties of, 1056t

Lift, on object moving through fluid, 481
Light, classical wave theory of, 947

coherent, 826
diffraction of, 841
dispersion of, 850–851
Doppler effect for, 813
frequency of, electron ejection and, 943,

945
photoelectron kinetic energy and, 943,

945
geometric model of propagation of,

851–853
incoherent sources of, 899
intensity of, photoelectron kinetic energy

and, 944–945
through polarizing material, 

825–826
laser, special properties of, 826–829
monochromatic, 826
nature of, 840–841
particle model of, 840, 949–950
path of through spherical raindrop, 851
photon model of, 944–945
point source of, 868n
polarized, 830
refraction of, 870
small angle of divergence of, 826
ultraviolet, 823–824
visible, 823

spectrum of, 850
wavelengths of and color, 824t

wave model of, 839, 840, 950

Light beam, bending, 281–282
passing through slab, 849
unpolarized and linearly polarized, 825

Light clock, 267
Light ray(s), average speed of through glass,

846
coherent, 921

sources of, 905
diverging, brain’s interpretation of, 868n

from object, 871
in rainbow, 850
moving from air into glass, 846
passing through raindrop, 867
reflecting through focal point, 872
refracted, 845, 853–854
reversible path of, 843

Light speed, in material, 848–849
in vacuum, 846

Light wavelength, measurement of, 902–903
Light wave(s), 263, 812

diffraction patterns of, 909–912
interference of, 899–904, 922
oscillating, 373
phase change in, 904–905
speed of, 813
under reflection, 842–845
under refraction, 845–849

Lightbulb(s), “burned out,” 701n
connected across same potential

difference, 697
connected in series, 703–704
electrical rating of, 698
electromagnetic radiation on inside

surface of, 507–508
parallel connection of, 702
series connection of, 701
three-way, 704

Lightning, 601–602
above erupting volcano, 602
air as conductor for, 712–713
dart leader of , 602
light streaks after, 1004–1005
return stroke of, 602
stepped leader of, 601
strokes of, 601
thunder associated with, 602

Lightning flash, 601
determining number of, 602

Lightning rod, 656
Lightning strike(s), currents during, 713

determining number of, 723–724
Limiting process, 43–44
Line integral, 643
Linear charge density, 614
Linear expansion, average coefficient of,

506–507, 522
Linear mass density, 421
Linear momentum, 227–231, 313, 316–317,

324
conservation of, 229–231, 250
definition of, 228, 315
for system of particles, 246–247

Linear wave equation, 407–408
Linear wave(s), 433

speed of, 409
Liquefaction, 459–460
Liquid crystal display (LCD), 936
Liquid(s), boiling of, 536

characteristics of, 464
evaporation of, 519
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Liquid(s) (Continued)
pressure in, 482
thermal expansion of, 505–510

Lithium, electronic configuration of, 999
Lloyd’s mirror, 904
Load resistance, 699–700
Loma Prieta earthquake, 459

amplitude of oscillations during, 460
destruction caused by, 451

Longitudinal wave, 401, 424
oscillations and propagation of, 416
propagating along tube, 416f
sound, 415–417

Loop rule, Kirchhoff’s, 706–707, 714, 782
application of, 708

Loop-the-loop maneuver, 137–138
Lorentz force, 735, 809

law, 829
Lorentz transformation equations, 272–275,

284
Lorentz velocity transformation, 273–274,

284
Love wave, 422, 424
Luminiferous ether, 262
Lyman series, 355

M
Macroscopic system(s), connection with

microscopic particles, 935–936
quantization of energy in, 966

Macrostate(s), entropy of, 582–583
generation of, 583
high-probability, 581
low-probability, 581
versus microstates, 581

Magic number(s), 1020–1021, 1039
Magnetic braking, 800, 802
Magnetic charge, 747n
Magnetic dipole moment, 742, 755
Magnetic energy density, 786, 789
Magnetic field line(s), 729

circular, 747
coming out of and going into paper, 731
for tightly wound solenoid, 751
orientations of, 780
surrounding current loop, 745

Magnetic field wave equation, 812
Magnetic field(s), 728–732

changing, electric field generated by,
779–780

charged particles moving into, 735–738
created by long current-carrying wire, 749
created by toroid, 749–750
determining direction of, 744
due to long, straight wire, 744
electron moving in, 732
energy stored in, 785–787, 789
induced current opposing change in, 775
inside long solenoid, 751–752
magnitude of, 755

versus time, 769
nonuniform, 758
of Earth, 728
of solenoid, 750–752
on axis of circular current loop, 744–745
patterns of, 729
point source of, 819
produced by conduction currents and

changing electric fields, 808
sliding bar in, 773–774

Magnetic field(s) (Continued)
sources of, 728, 743
time-varying, electric current produced by,

767
uniform, charged particle motion in,

732–735
proton moving perpendicular to, 734
torque on current loop in, 741–743

Magnetic fingerprinting, 727
Magnetic flux, 767–768, 789

changing, 769
electric field generated by, 778
rate of, 809–810

increasing with time, 775–776
inducing emf, 774
net, 809
through rectangle, 811

Magnetic force(s), 729–730, 755
between two parallel conductors, 746
direction of, 730, 731
exerted on fast-moving particles, 735–736
magnitude of, 730
nonzero, 741
on current-carrying conductor, 738–740
right-hand rules for, 730–731
versus electric force, 730–731

Magnetic induction, 765
Magnetic levitation, attractive model for,

753–755
control system for, 754
Inductrack model of, 802–803
repulsive model for, 787–788

Magnetic levitation vehicle(s), 725–726
braking system in, 802
funding for, 726
propulsion of, 801–802

Magnetic moment(s), 1021–1022
direction of, 742
of current loop, 742
of nucleus, 1039
of some atoms and ions, 752t

Magnetic orbital quantum number(s),
992–993

Magnetic propulsion, 801–802
Magnetic resonance imaging (MRI), 1023

of human brain, 1023
Magnetic tape(s), 727
Magnetism, Biot-Savart law of, 743–745

electricity and, 728
Gauss’s law for, 809
historical overview of, 604, 728
in matter, 752–753
technological applications of, 727

Magnetite, 604, 728
Magnetized needle, mapping of, 728
Magnetooptical disc, 934
Magnet(s), applications of, 727

Halbach array of, 802
in ammeter, 766
permanent, 753
poles of, 728

Magnification, 890
lateral, 868–869
of image formed by refraction, 879
versus enlargement, 868

Maiman, Theodore, 804
Malus’s law, 826
Mambu, Yoichiro, 1069
Manometer, 470
Mantle, 423

Marconi, Guglielmo, 817n
Mars Climate Orbiter, 223
Mars Express orbiter, 224
Mars Global Surveyor, 223
Mars Pathfinder, 223
Mars Polar Lander, 223
Marsden, Ernst, 984
Mass, 5, 100–101. See also Center of mass

acceleration and, 115
approximate values of, 6–7
as manifestation of energy, 278
center of, 242–245, 250
changing in radioactive decay, 280
continuous distribution of, 243, 245
definition of, 100, 687
dual behavior of, 280–281
energy and, 279–280
nuclear, unit for, 1017–1018
of selected particles in various units, 1018t
of various objects, 7t
per unit volume, 7
relativistic, 275
spherically symmetric distributions of, 204
units of, 102
weight and, 101, 103–104

Mass number(s), 1017, 1039
binding energy per nucleon versus, 1024
of electron, 1032

Mass production, 35
Mass spectrometer, 736–737
Mass-to-charge ratio, measuring, 736–737
Mathematical representation, 25
Matter, dark, 1084

dual nature of, 950–951
magnetism in, 752–753
quantum structure of, 959
transfer of, 554

Matter, states of, 464
Matter transfer, 171, 181
Maximum height, projectile, 75–76
Maxwell, James Clerk, 2, 518, 604, 728, 808,

840
Maxwell-Boltzmann distribution function,

518, 522
Maxwell’s equations, 806–807, 808–812,

829–830, 985
Mean free path, 694
Measurement standards, 5–6
Mechanical energy, 531

conservation of, 191, 192, 199–200, 209
in collisions, 238–239

total, 191, 209
transformation of, 195

Mechanical wave(s), 170–171, 181, 400–401,
806

disturbance and, 401–403
linear, 408
reflection and transmission of, 

411–413
traveling, 405–408
types of, 401–425

Mechanics, classical, 1–2
Meissner effect, 797
Melting, 536

entropy change in, 584
Mendeleev, Dmitri, 1002
Mental representation, 24
Mercury, resistance versus temperature for,

692
Mercury barometer, 470
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Meson(s), 1053–1055, 1066, 1068, 1077
composition of, 1065
decay of, 1056
mass and spin of, 1056
patterns of, 1064
properties of, 1056t
quark composition of, 1067t
spin-zero, 1063

Metal ingot, cooling of, 536
Metallic object, charging by induction of,

606–607, 607
Metal(s), alkali, 1002

homogeneous, thermal expansion of, 507
resistance versus temperature for, 692
work function of, 944, 974
x-ray spectrum of, 1009

Metastable state, 827
Meteor shower, light streaks after, 1004–1005
Meteoroid, interacting with Sun, 346

motion of, 343
Meter, 26

definition of, 5
Methane, 208

atmospheric concentrations of, 599
Mexico City, earthquake destruction in, 

451
Michell, John, 728
Michelson, Albert A., 262
Michelson-Morley experiment, 262–263
Michoacán earthquake, 371–372, 460

destruction in, 451
Microscopic disorder, measure of, 589
Microscopic particle(s), 935–936
Microscopic state(s), 589
Microstate(s), 581, 582

generation of, 583
two-dice, 581

Microwave beam, 822
Microwave oven(s), 824
Microwave(s), 420, 823, 944

concave reflector for, 873
from Big Bang, 836
polarizer for, 826

Milky Way galaxy, hydrogen distribution in,
1008

measuring radiation from, 973
Mirror equation, 890

in terms of focal length, 873
in terms of radius of curvature, 872

Mirror isobar(s), 1041
Mirror(s), concave, center of curvature of,

871
images formed by, 871–873, 877
ray diagram for, 874, 875

constructing ray diagrams for, 873–876
convex, images formed by, 877

ray diagram for, 874–876
diverging, 873

enlarged image in, 874, 876
flat, images formed by, 868–870
focal length of, 873, 890
focal point of, 872–873
Lloyd’s, 904
principal axis in, 871, 875
sign conventions for, 874t
spherical, images formed by, 871–877

Models, 22–26
categories of, 22, 337

Molar mass, 511
root-mean-square speed and, 517

Molar specific heat(s), 561
at constant pressure, 547–550, 561
at constant volume, 547, 548, 561
equipartition of energy and, 551–554
of various gases, 548t
relation between, 549

Molecular speed(s), distribution curve for,
519

distribution of, 518–520, 522
Molecule(s), elastic collisions of, 513, 514

kinetic and potential energy associated
with vibration of, 532

short-range forces between, 513
Mole(s), 511
Moment arm, 303
Momentum, 226–227. See also Angular

momentum; Linear momentum
angular, of electron, 752

orbital, 991–992
photon carrying, 1004
spin, 995–996

conservation of, 229–231
in collisions, 234
in proton-proton collision, 240–241
in rocket propulsion, 248–250
in two-dimensional collisions, 

240–242
delivered to perfectly absorbing surface,

820
impulse and, 231–233
in elastic collisions, 234, 235–236
in isolated system, 229
in perfectly inelastic collision, 237
instantaneous angular, 313–314
law of conservation of, in nuclear

reactions, 1036
linear, 227–231, 228–231, 246–247, 250,

313, 315–317, 324
of electromagnetic waves, 830
of electron, 276
of gas molecule in collisions, 514
of photons, 1053
of system of particles, 245, 246–247
radiation pressure and, 820–822
relativistic, 275–276, 284
time rate of change of, 228–229
uncertainty principle, 959–960

Monopole(s), magnetic, 728
Moon, escape speed from surface of, 349t
Morse code, 818
Moseley, Henry G. J., 1006
Motion, direction of, length contraction in,

370–371
frequency of oscillatory, 376, 377
in one dimension, 37–61
in plane, 73
in presence of velocity-dependent resistive

forces, 140–143
in two dimensions, 69–87
laws of, 1, 96–115
Newton’s first law of, 98–100
Newton’s second law of, 101–103
Newton’s third law of, 104–106
nonuniform circular, 138–140
of charged particles, 618–621
of system of particles, 245–247
oscillatory, 373–391
period of oscillatory, 376, 377
projectile, 73–79, 86
quantity of, 228

Motion (Continued)
rotational, 291–324
uniform circular, 132–138

Motion diagrams, 50–51
Motional emf, 770–775, 789

induced in rotating bar, 772–773
M-theory, 1085
Müller, K. Alex, 692
Multimode graded index optical fiber, 857
Multimode stepped index optical fiber,

855–856
Multiplication, distributive law of, 161
Muon-neutrino, properties of, 1056t
Muon(s), 267, 1053–1054, 1056n, 1084

properties of, 1056t
time dilation of, 370–371

Musical instruments, characteristic sounds of,
450

standing waves produced by, 443–446
Musical sound, nonsinusoidal wave patterns

of, 448–450

N
Nanotechnology, 969
National Aerodynamics and Space

Administration (NASA), Mars mission
of, 223–224

Natural frequency, 388, 443–444
of oscillation, 389, 391

Natural gas, potential energy in, 208
Natural process(es), entropy in, 583–584
Nature, fundamental forces in, 143–145,

1049–1050
Nebula(e), dark, 1007, 1008
Ne’eman, Yuval, 1063
Nerve impulse(s), as electrical signals, 

603
Net force, impulse of, 231, 250

particle motion under, 101–103
particle under, 108–109
variable, work done by, 163

Net torque, external, 324
angular momentum and, 315, 316

internal, 310
angular momentum and, 314

rigid object under, 309–313
Net work, 163
Neutrino(s), 1053–1054, 1084

nonzero mass of, 1057
properties of, 1032

Neutron number(s), 1017, 1039
versus atomic number, 1021

Neutron star, 317
rotation period of, 318–319

Neutron-neutron interaction(s), 1020
Neutron(s), 1049, 1057

charge of, 609t
decay of, 1032, 1059–1060
mass of, 1017–1018, 1018t
neutrality of, 1017
number of, 1017
properties of, 1056t
slowed by collisions, 237–238

Newton, 102
per square meter, 465–466

Newton, Isaac, 1–2
particle model of light of, 840
relativity principle of, 259–262, 263
self-propelled vehicle of, 34

Newton . meter, 158
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Newton’s law of universal gravitation,
143–144, 337, 338–341, 359

Newton’s laws of motion, 55, 96, 98–115
applications of, 107–114, 125–147
first, 98–100, 115, 229
in inertial reference frame, 409
kinetic theory of gases and, 513
relativistic form of, 275–276
second, 101–103, 115, 147, 179, 227, 368,

411, 687, 733, 773
application of, 130–138
applied to satellites, 340–341
for floating objects, 472
for particle, 228–229
for system of particles, 246–247
for translational motion, 309
for uniform circular motion, 344
rotational analog to, 309–310, 314
with velocity-dependent resistive forces,

142–143
third, 104–106, 115, 226, 227, 514–515

Nichrome wire, resistance of, 690
Nimitz Freeway collapse, 451, 459
Nitrogen, beta-plus decay of nucleus of, 1038

speed distribution of molecules of, 519
Nitrogen-15, fusion of, 1038
Nodal lines, in sedimentary basin, 451
Nodes, 452

in string, 440–441
positions of, 438–439

Nonconducting plane sheet of charge,
629–630

Nonconservative force, 209
Nonisolated system, 169–173
Nonlinear waves, 433
Nonohmic material, 688
Normal force, 105–106
Normalization, 962, 974
North pole, 728
Northridge, California, earthquake, 371, 451
Nozomi orbiter, 223, 224
Nuclear atom, classical model of, 985
Nuclear bomb testing, 1046
Nuclear chain reaction, 1037
Nuclear fission, 1036–1037
Nuclear force(s), 1019–1021, 1039,

1049–1050, 1053, 1077
attractive, 1030–1031
limited range of, 1020
mediation of, 1055
saturated, 1024–1025
short-range character of, 1025

Nuclear fusion, 972–973, 1037–1039
Nuclear magnetic resonance (NMR), 1022

experimental arrangement for, 1023
Nuclear magnetism, 1022
Nuclear magneton, 1021, 1039
Nuclear processes, mass and energy in,

279–280
Nuclear reaction(s), 1035–1036, 1039

in stars, 1036–1039
Q value of, 1029–1030

Nuclear spin, angular momentum of, 1021
quantum numbers of, 1021, 1039

Nucleon(s), 144–145, 1017
binding energies per, 1024–1025
fluctuations in, 1055
force between, 1077
forming nucleus, 1019
rest energy of, 1023

Nucleus-alpha particle system, 972
Nucleus(ei), alpha particle collision with,

1018–1019
angular momentum of, 1021, 1039
as cluster, 1019
atomic mass in, 1016–1017
charge and mass of, 1017–1018
charge of, 985
energy states of, 1022
fissionable, 1036–1037
high temperatures and densities of,

1037–1038
magnetic resonance of, 1022–1023
properties of, 1017
radius of, 1019, 1039
size of, 1018–1019
spin and magnetic moment of, 1021–1022
stability of, 1019–1021, 1039
volume and density of, 1019

O
Object distance, 868
Oblique incidence, 820n
Occhialini, Giuseppe P. S., 1053
Ocean, affecting Earth temperature, 497
Oersted, Hans Christian, 604, 728, 743

experiments of, 747
Ohm, Georg Simon, 687
Ohmic material(s), 687–688, 714

current-potential difference curve for, 687
Ohm’s law, 695, 714

resistance and, 687–691
Ohm(s) (�), 687, 714
Oil crisis, 209
One-dimensional motion. See Motion, in one

dimension
Open-circuit voltage, 699
Opportunity rover, 224–225
Optical fiber(s), 855–857

construction of, 855
medical use of in fiberscope, 888–890

Optical length of day, 848
Optical lens(es), antireflecting coatings in,

908
Optical storage, 931
Optical tweezers, 828
Optics, 839

geometric, 841–842
wave, 898–922

Orbital angular momentum, 997, 1009
Orbital angular momentum vector, 991–992
Orbital magnetic quantum number(s), 986,

1009
Orbital period, 344–345
Orbital quantum number(s), 986, 991–992,

1009
magnetic, 992–993

Orbital(s), definition of, 998
kinetic energy of, 985n
of equal energy, 999

Orbiting object, escape speed of, 348–349
Orbit(s), circular, 752
Order number, 902
Order-of-magnitude calculations, 10
Orion Nebula, 1007

stars in, 940
Oscillating particle, 380
Oscillation(s), damped, 387–388, 391

forced, 389–390, 391
frequency of, 817

Oscillation(s) (Continued)
in LC circuit, 814–815
number of per unit time interval, 376
of block-spring system, 815, 816
of simple pendulum, 384–386
simple harmonic, 374, 378–379, 391, 459

energy of, 381–384
total energy and frequency of, 941

Oscillator(s), allowed energy levels for, 939
energy units emitted and absorbed by, 939
quantized, 941

Oscillatory motion, 373–391
of particle attached to spring, 374–375

Oscilloscope(s), electrons deflected in, 621
Otto cycle, 596
Oxygen, beta-plus decay of nucleus of, 1038

molar mass and speed of, 517
Oxygen molecule, rotation of, 300
Ozone shield, stratospheric, 823–824

P
P waves, 421–424

in earthquake, 461
Pair production, 1051
Parabolic path, projectile, 247
Parabolic trajectory, 73–74
Parallel axis theorem, 321
Parallel combination of capacitor(s),

661–662
Parallel combination of resistors, 702–703
Parallel ray(s), 881
Parallel-plate capacitor(s), 646, 658–659

with dielectric, 668
Paraxial ray(s), 871, 890
Parent nucleus, 1029
Particle accelerator(s), 737–738, 1071–1072
Particle in a box, 963–966

expectation values for, 970
Schrödinger equation for, 968–970

Particle model of light, 949–950
Particle models, 22, 37, 45–47, 51–53, 61
Particle physics, 1048–1077

beginning of, 1053–1055
connected to physics of Universe,

1084–1086
Standard Model of, 1070–1072

Particle in equilibrium model, 107–108
Particle in uniform circular motion model,

132–134
Particle under a net force model, 101, 108
Particle under constant acceleration model,

51–53, 61
Particle under constant speed model, 45–47
Particle-antiparticle pair(s), 1077
Particle-Earth system, potential energy of,

203–204
Particle(s). See also Charged particle(s)

acceleration of, 618–619
classification of, 1055–1057
finding patterns in, 1063–1064
head-on-collisions of, 1072
high-energy collisions of, 1049
in equilibrium, 107–108, 610
in uniform circular motion, 79–81,

132–138
interactions of, 1050t
kinetic energy of, 956–957
localization of, 954–955
mass of, 1077
measuring lifetimes of, 1061–1063
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Particle(s) (Continued)
motion of system of, 245–247
properties of, 1056t
quantized energy of, 965
quantum, 954–957
representing interactions of, 1054
shorthand notation for charge of, 609n
strange, 1060–1061
under net force, 108–109
wave function of, 962
wave properties of, 950–953

Pascal (Pa), 465–466
Pascal’s law, 467–468, 482
Paschen series, 355
Path difference(s), 901–902, 904
Path integral, 643, 646n
Path length, 436, 437
Pauli, Wolfgang, 994, 998

proposal of neutrino in beta decay, 1032
Pauli exclusion principle, 1002–1003

violation of, 1068–1069
Pendulum, conical, 135–136

physical, 386–387, 391
simple, 384–386, 391

motion of, 383
Penzias, Arno, 836, 973
Perigee, 343
Perihelion, 343
Period, 377, 391, 424

of particle in uniform circular motion, 81
of physical pendulum, 387
of simple pendulum, 385
of wave, 404

Periodic motion, 373–374
Periodic table, 1002–1003
Permeability of free space, 743, 755
Perrin, Jean, 526
Personal digital assistants (PDAs), 936
Phase, 376
Phase change(s), 536–539

due to reflection, 413, 904–905
energy in, 560–561

Phase constant, 376, 391, 405, 406
Phase difference(s), 904
Phase shift, 180�, 413, 905
Phase speed, 956
Phased array, 923
Phillips, William, 1015
Phipps, T. E., 995
Phipps-Taylor experiment, 995
Phosphorus-32, radiopharmaceutical, 1046
Photoelectric current(s), 942, 943
Photoelectric effect, 840, 942–947, 974

apparatus, 942
features of, 943
practical uses of, 945–946

Photoelectric photometry, 946
Photoelectron(s), 942

ejection of, and incidence of light, 943, 
945

and light frequency, 945
kinetic energy of, light frequency and, 943

light intensity and, 943, 944–945
maximum, 944

Photomultiplier tube(s), 945–946
Photon model of light, 944–945
Photon momentum, 947
Photon(s), 943, 974

collection of, 829
Compton scattering of, 1073

Photon(s) (Continued)
Einstein’s concept of, 985
electromagnetic waves and, 949–950
emission of, 1008

in de-excitation process, 1034–1035
stimulating, 827

energy of, 951
frequencies of, 1003–1004
high-energy, 1025, 1039
momentum of, 947, 951, 1053
virtual, 1054
wave properties of, 950–953

Phototube(s), 945
Physics, classical, 1–2

contextual approach to, 2–3
goal of, 4
modern, 2, 935–936

Pickup coil, 768, 769
Pictorial representation, 24, 39

simplified, 24
Pinch effect, 761
Pion exchange model, 1054–1055, 1070
Pioneer 10 spacecraft, 1046
Pion(s), 1053, 1056

charge of, 1069–1070
negative and positive, 230–231
properties of, 1056t

Pipe, harmonics in, 445
Pipeline(s), loops for thermal expansion and

contraction in, 499
Pitch, versus frequency, 448
Planck, Max, 939
Planck length, 1084–1085, 1086
Planck’s constant, 353, 939, 974
Planck’s theory of blackbody radiation,

939–941
Plane, motion in, 73
Plane polar coordinates, 13–14
Plane sheet of charge, nonconducting,

629–630
Plane wave(s), 810

passing through rectangular path, 811
propagation of, 841, 852

Planetary motion, 1
Copernican theory of, 134–135
energy considerations in, 345–351
Kepler’s laws of, 342–345, 359, 368
two-object system of, 346

Planetary orbits, 337
eccentricities of, 343

Planets, escape speeds from surface of, 349t
useful data on, 345t

Plasma, stripped electrons in, 1004
Plastic optical fiber, 856
Pleiades Nebula, 1007
Pluto, telescopic images of, 914
Point charge(s), 611n

electric field due to, 611–612, 627, 634
electric potential and electric potential

energy due to, 647–650, 673
in electric field, 643
outside closed surface, 625
positive, at center of spherical surface,

624–625
Point source(s), emitting spherical waves,

841
fields due to, 819
object as, 868n

Polar molecule(s), 669
Polar satellite, 340

Polarization, 607–608, 824–826, 830
dielectric effects and, 668–669
linear, 825
plane, 825

Polarized wave(s), linearly, 810
Polarizer, 825–826
Polarizing angle, 860
Polarizing direction, 825
Polarizing film, 830
Polarizing material, 825–826
Polaroid, 825
Polonium, discovery of, 1025
Polyatomic gas, molar specific heat of, 548t,

553
Population inversion, 827
Position, 292

as function of time, 52
as function of velocity and time, 52
change of, 14
expectation value for, 963
of particle in simple harmonic motion,

378–379
uncertainty principle, 959–960

Position vector, 69–71
as function of time, 72
of projectile, 75

Positron-emission tomography (PET),
1051–1052

Positron(s), 1025–1026, 1050–1053
decay of, 1032
production of, 1051

Potential. See Electric potential
Potential difference, 643–644, 673

across capacitor, 665, 709–710
across inductor, 780
across resistor, 709, 714
in conductor moving through magnetic

field, 771
in uniform electric field, 645–647
Kirchhoff’s rules in determining, 708
rules for determining sign of across resistor

and battery, 707
Potential energy, 532, 643

change in, 204–205, 643, 673
conservative forces and, 200–201
elastic, 195–196, 209
electric, 210
for gravitational and electric forces,

203–205
for particle in a box, 964
gravitational, 189–190, 198, 209, 210
in fuels, 207–209
in simple harmonic motion, 381–382
negative, 204
of photoelectric system, 943
of sinusoidal wave on string, 414
of system, 188–190
rate of system loss of, 696–697
versus separation distance for neutron-

proton and proton-proton systems,
1020

versus separation distance in alpha decay,
1031

Potential energy barrier, tunneling through,
970–973

Potential energy difference, 644
Powell, Cecil Frank, 1053
Power, 181, 414, 714

associated with sinusoidal wave, 424
delivered by elevator motor, 178–179
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Power (Continued)
delivered to resistor, 696–697
delivered to rotating object, 312
electric energy and, 696–699
general expression for, 177–178
instantaneous, 177
SI units of, 697

Power line(s), 683
Powers of ten, prefixes for, 7t
Poynting vector, 818, 822, 830
Precessional motion, 319–320
Pressure, 482. See also Atmospheric pressure;

Blood pressure
as function of volume, 542
constant, molar specific heat at, 547–550,

561
definition of, 465
depth of Titanic and, 493–494
in adiabatic process for ideal gas, 550–551
in compressed air lift, 469
measurements of, 470
of ideal gas, 516, 522

molecular interpretation of, 514–516
units of, 465–466
variation of with depth, 466–469
variation of with fluid speed, 479

Pressure amplitude, 416
Pressure differential, 466
Pressure node, 443
Pressure versus temperature graph, for gas,

503
with constant-volume gas thermometer,

503
Pressure wave, 416
Principal quantum number, 986
Prism, 850–851

white light entering, 850
Probability, of finding particle, 962–963
Probability amplitude, 961
Probability density, 962, 974

wave function and, 965
Problem-solving strategy, 26

analyze, 25
categorize, 25
conceptualize, 25
finalize, 25
for applying Newton’s laws, 108
for calculating electric potential, 652
for calculating the electric field, 614
for isolated systems, 197
for Kirchoff’s Rules, 707
for one-dimensional collisions, 236
for projectile motion, 76
for particle under constant acceleration,

53–54
for rigid object in equilibrium, 307
for two-dimensional collisions, 240

Projectile, exploding, 247
horizontal range and maximum height of,

75–76
motion of, 73–79, 86

Projections, of a vector, 17
Propagation, of disturbance, 401–403
Propane, potential energy in, 208–209
Propellant gas, temperature and pressure of,

512–513
Proper time interval, 266–267
Propulsion, magnetic, 801–802
Proton accelerator, 1071
Proton-antiproton collider, 1055

Proton-neutron interaction(s), Feynman
diagram of, 1054–1055

quark model of, 1069, 1070
Yukawa’s pion model of, 1069–1070

Proton-proton collider, 1071
Proton-proton collision, 240–241
Proton-proton cycle, 1038
Proton(s), 1049, 1057

charge of, 608–609, 1017
decay of, detection of, 1032, 1057–1059
energy of, 279
half-life of, 1058
magnetic moment of, 1022
mass of, 1017–1018, 1018t
motion of in uniform electric field, 647
moving perpendicular to uniform

magnetic field, 734
properties of, 1056t
repulsive electrostatic force between,

144–145
Pulse(s), 401, 409

at boundary, 413
propagation of, 401–402
reflection of, 411, 412
shape of, 409
speed of on cord, 410
superposition of, 433–434
transmission of, 412–413

Pure rolling motion, 320–321
PV diagram(s), 540–541, 543

for adiabatic expansion, 551
for arbitrary cyclic process, 574
for Carnot cycle, 577
for cyclic process, 546
for isothermal expansion of ideal gas, 545

Pythagorean theorem, 85, 515

Q
Q value, 1029–1031, 1035–1036
Quanta, 1049–1050
Quantization, 432–433, 440, 452

of energy for quantum particle, 966–967
Quantized Solar system, 990–991
Quantum chromodynamics (QCD), 1069,

1077
electroweak theory and, 1070–1071

Quantum corral, 969
Quantum dot, 969
Quantum mechanical model, 695
Quantum mechanics, 2, 354, 935

applied to hydrogen atom, 1008
interpretation of, 961–963
nature of light in, 950

Quantum number(s), 354, 359, 939, 1009
for microscopic systems, 939n
in hydrogen atoms, 984, 987t
in Schrödinger equation, 986–987, 997
magnetic orbital, 992–993
nuclear spin, 1021
orbital, 991–992
physical interpretation of, 991–997
principal, 1009
spin magnetic, 994–997
strangeness, 1060–1061

Quantum of action. See Planck’s constant
Quantum particle model, 974, 1084
Quantum particle(s), 840–841, 954–957

quantization of energy for, 966–967
under boundary conditions, 966–967

Quantum physics, 337, 935–936, 937, 939

Quantum state(s), 354, 939, 967, 974
allowed for atoms, 998
energies of, 355

Quark model, 145, 1022
Quark-antiquark pair(s), 1068, 1070
Quark-gluon plasma, 1072

creation of, 1048, 1068
Quark(s), 144, 936, 1049, 1065, 1070, 1084

bottom, 1067
charmed, 1066–1067
colored, 1068–1070
down, 1065
flavors of, 1065, 1077
force between, 1053, 1055
in structural model for hadrons,

1065–1066
properties of, 1066–1068
strange, 1065
superpartner to, 1085
top, 1067
up, 1065

Quasar, recession of, 1074
Quasi-static adiabatic expansion, 550
Quasi-static process(es), 540–541, 561
Quasi-steady state, 202

R
Radar, 373
Radial acceleration, 82–83, 138–139
Radial probability density, 989

for state of hydrogen, 988
Radian (rad), 292
Radiation, 171n. See also specific types of

as energy transfer mechanism, 557–558
braking, 1005
electromagnetic, 559, 561
energy transfer by, 558
from hot object, 559
from sun, 822
of energy into atmosphere, 587–588
of stratosphere, 598
of universe, 973–974
particle emission in, 1026
thermal, 561
21–cm, 1008
types of, 1025–1026

Radiation pressure, apparatus for measuring,
820

from laser pointer, 821–822
momentum and, 820–822
on perfectly absorbing surface, 820

Radiator, convection currents from, 557
Radio, invention of, 817n
Radio wave(s), 822, 823, 944

discovery of, 815
frequencies of, 824
oscillating, 373
short-wavelength.See Microwaves
transmission of, 817–818

Radioactive dating, 1033–1034
Radioactive decay, 280

Alpha, 1029–1031
Beta, 1031–1033
disintegration energy of, 1035–1036
energy from, 559
Gamma, 1034–1035
Half-life for, 1027
pathways of, 1035t
processes of, 1029–1035
rate of, 1026–1027, 1039



INDEX ❚ I.17

Radioactive nucleus, 971–972
Radioactive process(es), 1039
Radioactivity, 1016, 1025–1028

lead shielding from, 1045
of radium-226, 1028
unit of activity in, 1027

Radio-frequency radiation, 1023
Radio-frequency wave(s), 806
Radium, activity of, 1028

discovery of, 1025
Radium-226, alpha decay of, 1030

energy liberated in, 1030
Radon, 1042
Rail guns, 764
Rainbow, double, 851

formation of, 851
light rays in, 850
secondary, 839

Rainbow hologram, 921
Raindrop(s), light entering, 851

light rays passing through, 867
Ramp, crate sliding down, 198
Rare-earth magnets, 753
Rarefactions, 415
Ray approximation, 841–842, 858
Ray diagram(s), 868

for flat mirror, 868
for spherical mirrors, 873–876
for thin lenses, 883–886

Ray model, 841–842
Rayleigh wave, 422, 424
Rayleigh’s criterion, 913, 922
RC circuit(s), 708–712, 714, 782

charging capacitor in, 708–710, 712
discharging capacitor in, 710–712, 808
in roadway construction flasher, 711

Reaction energy, 1039
in nuclear reaction, 1036

Reaction force, 104–106, 107, 226
Rearview mirror, daytime and nighttime

settings of, 870
Reasonable values, 6
Rectangular coordinate system, 13
Rectangular loop, induced emf in, 772
Red shift, 813, 832–833, 1075
Reference clock, 6
Reference frames, absolute, 262

inertial, 99, 115
noninertial, 99
time measurement and, 264

Reflected ray(s), 843, 844
Reflection, angle of, 843

images formed by, 867
in flat mirror, 868–870

law of, 843, 852–853, 858
mechanical wave, 411–413
phase change due to, 904–905
total internal, 853–855
wave under, 842–845

Reflection nebula(e), 1007, 1008
Refracting surface(s), curved, 878–879

in lenses, 881
sign conventions for, 879t

Refraction, angle of, 845, 850
images formed by, 867, 878–881
in material, 845–848
in prism, 850
index of, 846, 848, 858, 922

for various substances, 847t
of thin film, 906

Refraction (Continued)
of water, 855
total internal reflection and, 854
variation of, 850

law of, 847–848, 852–853, 858
of light rays, 870
wave under, 845–849

Refrigerant fluid, 578n
Refrigerator(s), 578–579
Reines, Frederick, 1032
Relative velocity, 83–85, 87
Relativistic energy, 276–279
Relativistic Heavy Ion Collider (RHIC), 1068
Relativistic momentum, 275–276
Relativistic particle, total energy of, 278
Relativistic wave equation, 1050
Relativity, 259–284. See also General relativity;

Special relativity
Einstein’s principle of, 263–264
general theory of, 280–283, 284
in space travel, 283–284
length contraction and, 269–272
Lorentz transformation equations and,

272–275
Michelson-Morley experiment and,

262–263
Newtonian, 259–263
special theory of, 260, 284

consequences of, 264–272
theory of, 2
time dilation and, 265–269
twin paradox and, 268–269

Repulsive force(s), 205, 607–608, 728, 788
Repulsive magnetic levitation model,

787–788
Resistance, color code for determining, 690

internal, 699, 700
in battery, 714

microscopic origin of, 692–693
of conductor, 687–690, 714
of fluid flowing through pipe, 688–689
of lightbulb filament, 697
of Nichrome wire, 690

Resistance thermometer, platinum, 691
Resistive force, 147

magnitude of, 140
mathematical representation of, 141
proportional to object speed, 140–142
proportional to object speed squared,

142–143
velocity-dependent, 140–143

Resistivity, 688, 714
change in with temperature, 691
for various materials, 689t
high temperature, 691–692
microscopic parameters of, 694

Resistor(s), 683, 688
color code for, 690t
composition, 690
energy delivered to, 696–697
energy transferred to, 786–787
in electric circuit, 696
in parallel, 702–705, 705
in series, 700–701, 703–704
rule for determining sign of potential

difference across, 707
wire-wound, 690

Resolution, limiting angle of, 913
of single-slit and circular apertures, 912–914
of telescope, 914

Resonance, 389, 391, 450
in structures, 390–391

Resonance frequency, 389–390, 817
Resonance particle(s), 1062–1063
Rest energy, 278, 284

of elementary particles, 1067–1068
of nucleons, 1023
transformed to kinetic energy, 1039

Restoring force, 163
Resultant force, 101
Resultant vector, 16
Reversible process(es), 575, 589

entropy change in, 583
in Carnot cycle, 577n

Richter, Burton, 1066
Rigel, blue glow of, 940
Right-hand rule, 294, 766

for direction of angular momentum vector,
294

for direction of area vector, 742
for direction of magnetic field of long wire,

744
for direction of vector product, 304

Rigid object, angular position, speed, and
acceleration of, 292–294

definition of, 291
in equilibrium, 306–309
modeling of, 23, 293–294
moment of inertia of, 298–300
rolling motion of, 320–423
rotational kinetic energy of, 298–302
under constant angular acceleration,

295–296
under net torque, 309–313

Ring galaxy, 936
RL circuit(s), 782–785

current versus time plot for, 782
dI/dt versus time plot for, 783
emf induced in, 782
energy storage in inductor in, 786
iron bar inserted into solenoid of, 783–784
switch positions in, 783
time constant of, 783, 784–785, 789

Roadways, switchbacks on, 159–160
Robotic device, laser in, 805
Rocket propulsion, 248–250
Rod, rotating, 302
Roentgen, Wilhelm, 918
Rogowski coil, 792
Rolling motion, 320–423, 324
Rolling object, translational and rotational

variables of, 320–321
Rolling sound of thunder, 416–417
Root-mean-square speed, 522

of gas molecules, 517
of various gas molecules, 517t

Rosette Nebula, 337
Rotating ball, 139–140
Rotating bar, motional emf induced in,

772–773
Rotational equilibrium, 306
Rotational motion, 291, 324, 551, 552–553

angular momentum and, 313–316
angular position, speed, and acceleration

in, 292–294
conservation of angular momentum in,

316–319
dynamic equations of, 315t
equilibrium and, 306–309
kinematic equations of, 295–296
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Rotational motion (Continued)
kinetic energy of, 298–302, 324
net torque in, 309–313
of gyroscopes, 319–320
of molecules, 551–553

energy levels for, 554
of spacecraft, 323
rolling as special case of, 320–322
torque and vector product in, 303–306
translational quantities and, 296–298
work and energy in, 311–313

Rotational motion equations, 295t, 315t
Rotational position, 292
Rotational variables, 292
Rubbia, Carlo, 1055, 1070
Ruby laser(s), 804, 805
Rutherford, Ernest, 984–985

observation of nuclear reactions, 1035
radiation work of, 1016–1017
scattering experiments of, 1018–1019

Rutherford model, 988–989
Rydberg, Johannes, 352
Rydberg constant, 353
Rydberg equation, 352–353, 355–356

empirical, 356
generalized, 356

S
S waves, 421–424

in earthquake, 461
Salam, Abdus, 1070
Samarium-cobalt, 753
Sand, specific heat of, 534–535
Sandage, Allan R., 1074–1075
Sanduleak star, 1081
Santa Ana wind, 521
Satellite, artificial, 346

energy considerations in motion of, 345–351
gravitational force applied to, 340–341
in elliptical orbit, 347–348

Savart, Félix, 743
Scalar product, 17, 180

integral of, 174
of two vectors, 160–162

Scalars, 14–15, 26
multiplication of vector by, 17

Scanning tunneling microscope, 973, 974
Scattering, inelastic, 1036
Scattering event, 1036
Schawlow, Arthur L., 804
Schrödinger, Erwin, 962, 967
Schrödinger equation(s), 963, 967

algebraic solution of, 997
mathematical solution of, 985–986, 991n
particle in a box via, 968–970
solution of, 1008–1009
time-independent, 967–968, 974

Schwarzschild radius, 349
Scientific notation, 12
Scott, David, 56
Second, 26

definition of, 6
Sedimentary basins, standing waves in,

450–451
Segré, Emilio, 1052
Seiche, 451
Seismic isolation, 460
Seismic wave(s), 371–372, 421–424

speed of, 422
spread of, 459–460

Seismograph trace, 422
Selection rule(s), 1009

for atomic transitions, 1004
Selectron, 1085
Self-induced emf, 789
Self-inductance, 780–781

of coaxial cable, 787
Self-propelled vehicles, 34–36
Semiconductor(s), 606

nonreflecting coatings of, 907–908
Sensing coil, 769
Series combination of capacitors, 662–664
Series combination of resistors, 700–701
Seurat, Georges, scintillating canvas of,

925–926
Shear modulus, 421
Shearing force, 465
Shell, 987, 1009
Shock wave, 419
SI system, 5, 6

units of, 8t
Sigma, 1060

properties of, 1056t
Sign convention(s)

for mirrors, 874
for refracting surfaces, 879
for thin lenses, 883
in applying loop rule, 707

Significant figures, 11–12
Silicon, 606
Simple harmonic motion, 374–384
Simple pendulum, 384–386
Simplification model(s), 23, 37, 573n

for trajectory, 73–74
Simultaneity, 264
Single-mode stepped index optical fiber, 856,

857
Single-slit aperture(s), resolution of, 912–914
Sinusoidal wave(s), 351, 403, 812–813

at boundary, 413
electromagnetic, 814

intensity of, 818, 830
energy transfer rate of on string, 413–415
one-dimensional, 405
physical characteristics of, 404
traveling, 405–408, 424

Sliding bar, 773–774
Slipher, Vesto Melvin, 1073
Small angle approximation, 384–385
Smith, E. J., 481
Snell’s law, 847–848, 849, 853, 858
Snowshoes, design of, 466
Soap film, interference in, 907
Sodium, photoelectric effect for, 947

trapped atoms of, 828
Sodium chloride, crystalline structure of, 

920
Soft magnetic material, 753
Soil, liquefaction of, 459–460
Solar cell(s), nonreflecting coatings of,

907–908
Solar constant, 559, 560
Solar day, 5–6
Solar energy, converted to kinetic energy, 588

to Earth’s surface, 821
Solar system, Copernican theory of, 134–135

Kepler’s laws of planetary motion in,
342–345

structural model of, 337, 341–342
Solar system, quantized, 990–991

Solenoid(s), changing magnetic field in,
779–780

ideal, 750–751
inductance of, 781
magnetic field of, 750–752

Solid(s), 464
atomic configuration of, structural model

of, 506
melting of, 536
thermal expansion of, 505–508

Sommerfeld, Arnold, 994
Sonic boom, 419
Sound, spectrum of, 450

timbre of, 450
Sound wave(s), 415–417

abstract nature of, 951
digital recording of, 931–932
Doppler effect for, 417–420
frequency of, 817–818
interference of, 436–437
longitudinal, 401
nonsinusoidal patterns of, 448–450
reconstruction of, 932
resonance of in tube, 446
speed of in various media, 415t
standing, in air column, 437–440

Source particle(s), 611
South pole, 728
Space, atoms in, 1007–1008

dimensions of, 1085
Space quantization, 992, 993, 994, 1009
Space sailing, 822
Space travel, length contraction in, 269–272

physics of, 223–225
relativity in, 283–284

Spacecraft, circular to elliptical orbit of,
357–358

gravitational forces on, 223
relative velocity of, 274
rotational motion of, 323
successful mission of, 367–369

Space-time, 272
curvature of, 282
ripples in, 351

Spark, anatomy of, 713
Spatial interference, 446
Special relativity, consequences of, 

264–272
postulates of, 263, 284
second postulate of, 265–266

Specific energy transfer. See Heat, specific
Specific heat. See Heat, specific
Spectral line(s), 351–356

Balmer series of, 352, 355
Doppler shifts in, 1073

Spectrometer, diffraction grating, 916–917
Spectroscope, 351
Spectroscopy, atomic, 917

spectral line descriptions in, 987n
Specular reflection, 842, 843
Speed, 6. See also Angular speed; Velocity

average, 61
definition of, 38
versus average velocity, 38

constant, in loop-the-loop maneuver,
137–138

instantaneous, 42–43, 61
instantaneous angular, 293, 324
of light, 846, 848–849

constancy, 263–264
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Speed (Continued)
of sound in various media, 415t
of transverse wave on strings, 408–411

Sphere, rolling down incline, 322
Spherical coordinate(s), for particle in a box,

967
Spherical shell, 988
Spherical symmetry, 988
Spherical wave(s), 810–811

emission of, 841
Sphygmomanometer, 468
Spin, 985

nuclear, 1021
of baryons, 1057
of electron, 752
of mesons, 1056

Spin angular momentum, 752, 995, 996–997,
1009

Spin magnetic moment, 752, 996
Spin magnetic quantum number(s),

994–997, 1009
Spin state(s), 1022
Spinning top, 319–320
Spirit rover, 224
Spring, compression of in collision, 238–239

dropping block onto, 168
elastic force in, 604
elastic potential energy in, 195
motion of particle attached to, 374–375
work done by, 163–166, 195
work required to stretch, 165–166

Spring-drive car, 34
Square barrier, 970
Square well, 968
Squark, 1085
Stability, line of, 1021, 1029
Stable equilibrium, 206–207, 210
Standing wave(s), 437–440, 452

amplitude of, 438
formation of, 439–440
in air columns, 443–446
in earthquakes, 450–451
in strings, 440–442
multiflash photograph of, 438

Stanford Linear Accelerator (SLAC), 1066
Star(s), cores of, cool, 1038

high temperatures and densities in, 
1037

electromagnetic radiation from, 1039
formation of, 1025
nuclear reactions in, 1036–1039

State, equation of, 510–511
State variable(s), 539–540, 561
States of matter, 464
Static equilibrium, 306
Static friction, coefficient of, 127, 147

force of, 126, 136
maximum force of, 147

Statistical mechanics, 552, 581
Steady flow, 476
Steady-state, condition for oscillator, 389

flow in, 476–477
nonisolated system in, 202–203, 210

Steam, energy to raise temperature of,
538–539

Steam engine, 35
efficiency of, 577

Steam point, 501
Steam-driven vehicles, 34
Stefan-Boltzmann constant, 558

Stefan’s law, 557–558, 560, 561, 938–939,
940

Stepped index, 855–856
Stepped leader, 601–602
Stereo speakers, out of phase, 436–437
Stern, Otto, 994–995
Stern-Gerlach experiment, 995, 996–997
Stiffness, in cable, 411
Stimulated emission, 827
Stirling, Robert, 594
Stirling engine, 594
Stopping potential, 942
Strange particle(s), 1060–1061

formed in bubble chamber, 1062
low decay rate of, 1061

Strange quark(s), 1065
Strangeness, 1052, 1060–1061, 1077

conservation of, 1061
Strassman, Fritz, 1036
Stratosphere, 521, 598

ozone in, 823–824
Streamline flow, 478–479

around airplane wing, 480–481
Streamlines, 476–478
String theory, 1084–1085
Stringed instrument, tuning, 447
Strings, frequencies of standing waves on, 442

pulses overlapping on, 433–434
speed of transverse waves on, 408–411
standing waves in, 440–442

Stroboscopic photograph, definition of, 50
Strong force, 144–145, 147, 1049, 1053,

1055, 1073, 1077
gluons as mediators of, 1069

Structural models, 23–24, 337, 341–342
features of, 341

Structures, resonance in, 390–391
Strutt, John William (Lord Rayleigh), 923
Subatomic particle(s), properties and

classifications of, 1049
Submarines, Doppler effect in, 420
Submerged object, buoyant forces on,

471–472
Subshell(s), 1009

notations of, 987t
Sun, bound and unbound systems in relation

to, 346
electromagnetic radiation from, 559
energy input to atmosphere from, 587
escape speed from surface of, 349t
formation of, 204
granulation of surface of, 557
position of, in elliptical orbit of planets,

343
radiation force from, 822
radius vector from planet to, 343–344
ultraviolet light from, 823–824

Sunglasses, UV blocking, 823
Super Kamiokande neutrino facility,

1058–1059
Superconducting magnet(s), 727

in magnetic levitation system, 787
Superconductivity, 503
Superconductor(s), 691–692

critical temperatures for, 693t
lack of resistance in, 693
type I, 797

Supernova, remnant of, 317
Supernova explosion, 935, 1025, 1076
Supernova Shelton 1987A, 1081

Superposition, 
of electric fields, 612
of electric forces, 609
of harmonics, 448
of light, 901
principle of, 433–434, 437, 452

Superposition principle, 609, 813
applied to fields, 612

Supersymmetry, 1085
Surface charge density, 614
Surgery, laser, 804
Switchbacks, 159–160
Symmetric object, moment of inertia of, 299
Symmetry breaking, 1071
Synchrotron(s), 738
System boundary, 157, 180
System(s), 157, 180

center of mass of, 242–245
change of state of, 543
identifying, 157
in thermal equilibrium, 539–540
internal energy and temperature of, 506
isolated, 172, 190–194, 197–200, 209
motion of, 245–247
nonisolated, 169–173, 180–181, 210
nonisolated in steady state, 202–203
potential energy of, 188–190, 200–201
states of, 539
total mechanical energy of, 209

T
Tabular representation, 25, 38
Tacoma Narrows Bridge, destruction of,

390–391
Tailpipe emissions, carcinogens in, 208

from propane-fueled vehicles, 209
Tangent function, 18
Tangential acceleration, 82–83, 138–139,

324
Tangential position, 324
Tangential speed, 296, 297–298, 324
Tangential velocity, 296
Tarantula Nebula, 935
Tau, 1056t, 1067
Tau-neutrino, 1056t
Taylor, J. B., 995
Telescope(s), atmospheric turbulence effects

on, 914, 915
resolution of, 914

Temperature coefficient(s), of resistivity, 691,
714

for various materials, 689t
Temperature gradient, 561

in thermal conduction, 555
Temperature scale(s), based on water

freezing and boiling points, 504–505
Celsius, 501
Fahrenheit, 504–505
Kelvin, 502–504
relationships among, 521–522

Temperature(s), altitude and variation in,
599

associated with internal energy, 700
average, of atmospheric gases, 520–521
blackbody radiation intensity and,

938–939
converting, 505
cosmic, 973–974
energy to raise, 533–536
factors affecting, 497
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Temperature(s) (Continued)
formal definition of, 500
gas molecule speed distribution and, 518,

522
molecular kinetic energy and, 532
of Earth’s surface, predicting, 597–599
of ideal gas, 516–518
proportional to average kinetic energy of

gas, 516
resistivity and, 691–692
thermodynamics and, 499
versus heat and internal energy, 532
volume expansion and, 507
zeroth law of thermodynamics and,

500–501
Temporal interference, 446–448
Tension, 107

in cable, 410–411
Terminal speed, 141, 147

calculation of, 143
Terminal voltage, 699n, 714
Test charge, 612

positive, 634
Test particle(s), positive charge of, 611
Tevatron, 1071
Theoretical atmospheric lapse rate, 567
Thermal conduction, 171, 561

as energy transfer mechanism, 
554–556

Thermal conductivity, 555, 561
of metal, 555, 696
of various substances, 556t

Thermal contact, 500
Thermal efficiency, 589

of Carnot engine, 577
of heat engine, 574

Thermal equilibrium, 500–501, 539–540
Thermal expansion, 502

causing railroad tracks to buckle, 506
of solids and liquids, 505–510
of water, 509–510

Thermal expansion joint(s), 505
Thermal pollution, 573
Thermal process(es), 554–558
Thermal radiation, 561

classical explanation of, 938
as energy transfer mechanism, 557–558
from Big Bang, 973–974
from human body, 941

Thermodynamic process(es), work in,
539–542

Thermodynamics, concepts of, 499
electricity and, 698–699
first law of, 531–561, 542–544, 561, 572

applications of, 544–547
second law of, 573–574

alternative statement of, 579–580
Clausius statement of, 589
entropy statement of, 583–584, 589
Kelvin-Planck statement of, 574, 575, 

589
third law of, 577n
zeroth law of, 500–501, 521, 580–581

Thermometer(s), 500
alcohol, 502
calibration of, 501–502
constant-volume gas, 502

Kelvin scale and, 502–504
discrepancies between types of, 502
ear, 940

Thermometer(s) (Continued)
early, 504
gas, 502–504
mercury, 502
platinum resistance, 691
sensitivity of, 940

Thermonuclear detonation, 1073
Thermostat, bimetallic strip in, 507, 508
Thin film(s), interference in, 905–908, 922
Thin lens equation, 882–883, 890
Thomson, G. P., 951
Thomson, J. J., 737

structural model of atoms of, 984–985
Thomson, William. See Kelvin, Lord (William

Thomson)
Thomson’s apparatus, 737
Threshold energy, 1036, 1039
Thrust, 248–249
Thunder, rolling sound of, 416–417

shock wave in, 602
Thundercloud, charge distribution in, 632
Thunderstorm, freed electrons in, 713
Timbre, 450
Time, 5–6

dilation in special relativity, 265–269
simultaneity and relativity of, 264

Time constant, 141
for radioactive decay, 1026
of RC circuit, 710, 714
of RL circuit, 783, 784–785, 789

Time dilation, 265–269, 284
twin paradox and, 268–269

Time intervals
approximate values of, 7t
in calculating average velocity, 39–40
proper length and, 270–271

Time-average light intensity, 904, 922
Ting, Samuel, 1066
Titanic, design of, 493

maiden voyage of, 481–482
mass of, 462
salvaging, 494–496
search for, 462–463
sinking of, 493–494

Topness, 1067
Toroid, magnetic field created by, 

749–750
Torque, 324. See also Net torque

angular momentum and, 314–315
definition of, 303
in rotational motion, 303–306
on coil, 742–743
on current loop, 741–743, 755
vector expression for, 304
versus force, 304

Torricelli, Evangelista, 470
Torricelli’s law, 480
Torsion balance, 608
Townes, Charles H., 804
Toyota Prius, 220, 221

acceleration of, 60
forces on, 115

Trajectory, of projectile, 73–74
Transfer variable(s), 539–540
Transformations, energy, 156–157
Translational acceleration, 324

of rolling object, 322
tangential component of, 296
total, 297

Translational equilibrium, 306

Translational kinematic variables, 292
Translational motion, 551–552

angular momentum and, 314
dynamic equations of, 315t
kinematic equations of, 295t

Translational motion equations, 295t, 315t
Translational quantities, 296–298
Translational speed, 294, 321
Transmission, of mechanical waves, 411–413
Transmission axis, 825, 826
Transmission coefficient, 971

for electron, 972
Transmission electron microscope, 953
Transport equation, 690
Transrapid line, 725, 726
Transrapid system, 753–755, 754, 787
Transverse acceleration, 407
Transverse velocity, 407
Transverse wave(s), 401, 424, 812–813

speed of on strings, 408–411
Trigonometric function, 375n
Triple point of water, 504
Tripole, charge distribution, 632
Tropopause, 521, 597, 598n
Troposphere, 521, 597–598
Trough, 403–404
Tuning fork, frequencies of, 448

measuring frequency of, 446
Tunneling, 971–972, 974

applications of, 972–973
through potential energy barrier, 

970–973
Turbulent flow, 475–476
Turning points, 206–207
21–cm radiation, 1008
Twin paradox, 268–269
Two-dimensional motion, 69–87

with constant acceleration, 71–73

U
Uhlenbeck, George, 994, 995
Ultrasound image, 416
Ultraviolet catastrophe, 939
Ultraviolet light, 823–824

on diffraction grating, 917
Unbalanced force, 101
Unbound system, 346
Uncertainty principle, 959–960, 974, 1054
Underwater vision, 848
Uniform circular motion, 79–81

Newton’s second law applied to, 132–138
Uniform gravitational field, 281
Uniformly charged ring, 653–654
Uniformly charged sphere, 654
Unit vectors, 19–20
Units of measure, 5–7

conversion of, 9–10
Universal gas constant, 511
Universal gravitation, Newton’s law of, 280,

337, 338–341, 359
Universal gravitational constant, 144,

338–339, 359
Universe, atoms in, 1008

brief history of, 1073
cooling of, 1073
critical density of, 1075–1076
dark energy in, 1076
dark matter in, 1076
energy forms in, 156–157
entropy of, 589
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Universe (Continued)
expansion of, evidence for, 1073–1074

measuring, 1074–1076
heat death of, 585
microscopic particles connected to,

935–936
missing mass in, 1076
mysterious energy in, 1076
origin of, 936
oscillating, 1075
structure of, 1084
temperature of, 973–974

Upwelling, 509
Uranium, depleted, 1046

radioactivity of, 1016
Uranyl potassium sulfate crystals, 1016
Urey, Harold, 1011
U.S. customary system, 6

units of, 8t
UV light. See Ultraviolet light

V
Vacuum, rocket in, 249–250
Valence electron, 825
Van de Graaff generator, 1043
van der Meer, Simon, 1055, 1070
Vaporization, latent heat of, 537–538
Variable capacitor, 642
Varying force, work done by, 162–166
Vascular flutter, 481
Vector model, 992–993
Vector product, 17, 324

definition of, 304
properties of, 305
torque vector and, 304–306

Vector(s), 14–15, 26
addition of, 16, 20, 71
components of, 17–20
direction of, 18
equality of, 15–16
magnitude of, 18
multiplication of, 17
multiplication of by scalar, 17
negative of, 16
position, velocity, and acceleration, 69–71
scalar product of, 160–162
subtraction of, 17

Velocity, 292
as function of position, 52
as function of time, 51–53
average, 38–41, 44–45, 61

calculation of, 39–41, 44–45
definition of, 38–39, 70
for particle under constant acceleration,

52
changing in rocket propulsion, 248
constant, analysis of particle under, 45–47
dimensions of, 9
in simple harmonic motion, 378–379, 382
instantaneous, 41–45, 44–45, 61

calculating, 44–45
definition of, 70

magnitude and direction of, 79
of center of mass, 245, 250
relative, 83–85, 87
units of, 8t

Velocity selector, 735–736
Velocity transformation, 273–274, 284

Galilean, 261–262
Lorentz, 273

Velocity vector(s), 69–71
as function of time, 71–72
change in direction of, 82–83

Velocity-dependent resistive forces, 140–143,
145

Velocity-time graphs, 39–40, 48–49
for simple harmonic oscillator, 377–378

Ventriculostomy, laser-assisted, 889–890
Vertical motion, of projectile, 86
Very Large Array (VLA), 928
Vibrating strings, power supplied to, 415

resonance of, 389–390
Vibrational motion, of molecules, 551, 552

energy level for, 553–554
Videodisc(s), information storage on, 931
Viking Project, 223
Virtual image, 868, 890

formed by concave mirror, 874
formed by converging lens, 884
formed by convex mirror, 873
formed by flat refracting surface, 879
formed by diverging lens, 884

Virtual object, 873
in thin lenses, 886–887

Virtual photon, 1054
Viscosity, in fluid flow, 476
Visible atomic spectra, 1003–1005
Volcanic eruption, 69
Volcano, lightning above, 602
Volta, Alessandro, 34
Voltage, 644
Volt(s) (V), 644, 673
Volume, constant, molar specific heat at, 547,

548, 561
constant, in isovolumetric processes,

544–545
in adiabatic process for ideal gas, 

550–551
units of, 8t

Volume charge density, 614
Volume expansion, average coefficient of,

507, 509, 522
von Laue, Max, 918
Vostok spacecraft, 223
Voyager 2 spacecraft, rotation of, 323

W
Warm reservoir, Earth surface as, 589
Water, apparent depth of objects in, 

880–881
boiling, 532
density of, 509, 509
disturbance of, 400
freezing and boiling points of, 504–505
freezing of surface of, 509
high specific heat of, 534–535
index of refraction of, 855
phases of, 531
unusual thermal expansion behavior of,

509–510
upwelling and mixing process in, 509
vaporization of, 537–539
waves in, 423

Water wave(s), in ripple tank, 852
Water-air boundary, 855
Water-cornea interface(s), 848
Watt (W), 177, 697
Wave equation, 407–408, 812, 963
Wave front(s), 810–811

moving between media, 847

Wave function(s), 402, 424, 974
continuous in space, 963
for free particle, 962
for hydrogen, 987–991
for particle in a box, 963–964, 970
for sinusoidal wave, 405, 406
in Schrödinger equation, 969
infinite derivative of, 963n
normalized, 989
of particle, 962
probability density and, 965
space- and time-dependent, 

961–962
Wave interference pattern, 957–958
Wave model, 403–405
Wave number, 406, 424
Wave optics, 898
Wave packet, 955, 974

group speed for, 956–957
Wave speed, 351, 404

frequency and, 420
normal mode frequencies as functions of,

441
of transverse wave on strings, 408–411
of traveling sinusoidal wave, 405, 406

Wave under boundary conditions, 452
Waveform, 402
Wavelength(s), 351, 404, 424

Balmer series of, 1007
blackbody radiation intensity and,

938–939
determining, 817
of electron, 952, 953
of laser light, 903
of normal modes, 441
of sinusoidal electromagnetic waves, 

814
Wavelet(s), 852
Wave(s), coherent, 899

combination of, 432–433
crest of, 403–404
electromagnetic, 810
envelope of, 955–956
idealized, 954
incoherent, 899
interference model of, 898–899
interference of, 434–437
nonsinusoidal patterns of, 448–450
phase speed for, 956
speed of, inverse to index of refraction,

847
standing, 437–440

in air columns, 443–446
in strings, 440–442

superposition of, 433–434
transfer of disturbance in, 400–401
traveling, 405–408
trough of, 403–404
types of, 400–401
under reflection, 842–845
under refraction, 845–849

Weak charge, 1070
Weak force(s), 145, 147, 1049, 1077

mediation of, 1049–1050
Wedge-shaped film, interference in, 908
Weight, gravitational force and, 103–104,

113–114
losing through exercise, 533
versus mass, 5, 101, 115

Weinberg, Steven, 1070
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Wheel, block unwinding from, 
312–313

White light, diffraction grating for, 918
incident on glass-air interface, 854

Wieman, Carl, 829
Wien’s displacement law, 938–939
Wilson, Robert, 836, 973
Wind instruments, standing waves produced

by, 444
Wind tunnel test, 475
Work, 181

as method of energy transfer, 170
definition of, 158
done by constant force, 157–160
done by spring, 163–166
done by varying force, 162–166
energy and, 532
in thermodynamic processes, 539–542
on gas, 561

in quasi-static process, 540–541
Work function, metal, 944, 974

Working substance, 573–574
Work-kinetic energy theorem, 166–168, 172,

176–177, 180, 191, 731
for rotational motion, 311–313
relativistic, 276–279

X
X-ray photon(s), scattered intensity of and

wavelength, 947–948
scattering angles of, 948

X-ray scattering, 974
absorbed by hospital and lab technicians,

949
intensity versus wavelength of, 949
quantum model for, 947–948

X-ray(s), 823, 824
characteristic, 1005–1006, 1009
diffraction of by crystals, 918–920
estimating energy of, 1007
scattering of from electron, 947
spectrum of, 1005–1007, 1009

Y
Young, Thomas, 840, 899–900

double-slit experiments of, 
899–901

Yukawa, Hideki, 1053–1054
pion model of, 1069–1070

Z
Zero acceleration, 50
Zero amplitude, 438–439, 452
Zero flux, 625
Zero force, 610
Zero net force, 100
Zero point, in different temperature scales,

503–504
Zero power output, 577n
Zero-point energy, 504, 965
Zero-resistance emf source, 699
Zweig, George, original quark model of,

1065–1066



y g p p pp

Standard Abbreviations and Symbols for Units

Symbol Unit Symbol Unit

A ampere K kelvin
u atomic mass unit kg kilogram
atm atmosphere kmol kilomole
Btu British thermal unit L liter
C coulomb lb pound
°C degree Celsius ly lightyear
cal calorie m meter
d day min minute
eV electron volt mol mole
°F degree Fahrenheit N newton
F farad Pa pascal
ft foot rad radian
G gauss rev revolution
g gram s second
H henry T tesla
h hour V volt
hp horsepower W watt
Hz hertz Wb weber
in. inch yr year
J joule 
 ohm

Mathematical Symbols Used in the Text and Their Meaning

Symbol Meaning

� is equal to
� is defined as
� is not equal to
� is proportional to
� is on the order of
� is greater than
 is less than
��() is much greater (less) than
� is approximately equal to
∆x the change in x

the sum of all quantities xi from i � 1 to i � N

the magnitude of x (always a nonnegative quantity)
∆x approaches zero

the derivative of x with respect to t

the partial derivative of x with respect to t

integral�
�x
�t

dx
dt

�x : 0
� x �

�
N

i �1
xi
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Conversions

Length
1 in. � 2.54 cm (exact)
1 m � 39.37 in. � 3.281 ft
1 ft � 0.304 8 m
12 in. � 1 ft
3 ft � 1 yd
1 yd � 0.914 4 m
1 km � 0.621 mi
1 mi � 1.609 km
1 mi � 5 280 ft
1 �m � 10�6 m � 103 nm
1 lightyear � 9.461 � 1015 m

Area
1 m2 � 104 cm2 � 10.76 ft2

1 ft2 � 0.092 9 m2 � 144 in.2

1 in.2 � 6.452 cm2

Volume
1 m3 � 106 cm3 � 6.102 � 104 in.3

1 ft3 � 1 728 in.3 � 2.83 � 10�2 m3

1 L � 1 000 cm3 � 1.057 6 qt � 0.035 3 ft3

1 ft3 � 7.481 gal � 28.32 L � 2.832 � 10�2 m3

1 gal � 3.786 L � 231 in.3

Mass
1 000 kg � 1 t (metric ton)
1 slug � 14.59 kg
1 u � 1.66 � 10�27 kg � 931.5 MeV/c2

Some Approximations Useful for Estimation Problems
1 m � 1 yd 1 m/s � 2 mi/h
1 kg � 2 lb 1 yr � � � 107 s
1 N � lb 60 mi/h � 100 ft/s
1 L � gal 1 km � mi

Note: See Table A.1 of Appendix A for a more complete list.

1
2

1
4

1
4

The Greek Alphabet

Alpha � � Iota � � Rho � �
Beta � � Kappa � � Sigma � �
Gamma � � Lambda � 	 Tau � !
Delta � " Mu # � Upsilon $ %
Epsilon & � Nu ' ( Phi � )
Zeta * + Xi , - Chi . /
Eta 0 1 Omicron O 2 Psi 3 4
Theta 5 6 Pi 7 � Omega 
 8

Force
1 N � 0.224 8 lb
1 lb � 4.448 N

Velocity
1 mi/h � 1.47 ft/s � 0.447 m/s � 1.61 km/h
1 m/s � 100 cm/s � 3.281 ft/s
1 mi/min � 60 mi/h � 88 ft/s

Acceleration
1 m/s2 � 3.28 ft/s2 � 100 cm/s2

1 ft/s2 � 0.304 8 m/s2 � 30.48 cm/s2

Pressure
1 bar � 105 N/m2 � 14.50 lb/in.2

1 atm � 760 mm Hg � 76.0 cm Hg
1 atm � 14.7 lb/in.2 � 1.013 � 105 N/m2

1 Pa � 1 N/m2 � 1.45 � 10�4 lb/in.2

Time
1 yr � 365 days � 3.16 � 107 s
1 day � 24 h � 1.44 � 103 min � 8.64 � 104 s

Energy
1 J � 0.738 ft·lb
1 cal � 4.186 J
1 Btu � 252 cal � 1.054 � 103 J
1 eV � 1.602 � 10�19 J
1 kWh � 3.60 � 106 J

Power
1 hp � 550 ft·lb/s � 0.746 kW
1 W � 1 J/s � 0.738 ft·lb/s
1 Btu/h � 0.293 W
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